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Computational study of baryon number violation in high energy electroweak collisions

Claudio Rebbi* and Robert Singleton, Jr.†

Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215
~Received 25 January 1996!

We use semiclassical methods to study processes which give rise to change of topology and therefore to
baryon number violation in the standard model. We consider classically allowed processes, i.e., energies above
the sphaleron barrier. We develop a computational procedure that allows us to solve the Yang-Mills equations
of motion for spherically symmetric configurations and to identify the particle numbers of the in and out states.
A stochastic sampling technique is then used to map the region spanned by the topology changing solutions in
the energy versus incoming particle number plane and, in particular, to determine its lower boundary. A lower
boundary which approaches small particle number would be a strong indication that baryon number violation
would occur in high energy collisions, whereas a lower asymptote at large particle number would be evidence
of the contrary. With our method and the computational resources we have had at our disposal, we have been
able to determine the lower boundary up to energies approximately equal to one and a half times the sphaleron
energy and observed a 40% decrease in particle number with no sign of the particle number leveling off.
However encouraging this may be, the decrease in incoming particle number is only from 50 particles down to
approximately 30. Nevertheless, the formalism we have established will make it possible to extend the scope
of this investigation and also to study processes in the classically forbidden region, which we plan to do in the
future. @S0556-2821~96!02511-8#

PACS number~s!: 11.15.Ex, 11.15.Kc
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I. INTRODUCTION

Since the pioneering work of ’t Hooft@1# it has been
known that the axial vector anomaly implies that baryo
number is not conserved in processes which change the
pology of the gauge fields. Baryon number violating ampl
tudes are nonperturbative and viable methods of calculat
are scarce. The two primary methods of obtaining nonpertu
bative information in quantum field theory are either sem
classical techniques or direct lattice simulations of the qua
tum fluctuations. Theories with small coupling constants a
not suited for the latter, so the electroweak sector of th
standard model lies beyond the reach of direct lattice calc
lations. This means that semiclassical methods presently
fer the only way to study baryon number violating elec
troweak processes.

Electroweak baryon number violation is associated wi
topology change of the gauge fields. Classically, gauge fie
configurations with different topology~i.e., differing by a
topologically nontrivial gauge transformation! are separated
by an energy barrier. The~unstable! static solution of the
classical equations of motion which lies at the top of th
energy barrier is called the sphaleron@2#. At energies lower
than the sphaleron energy, topology changing transition
and hence baryon number violation, can only occur via qua
tum mechanical tunneling. At zero temperature and low e
ergy the tunneling rate can be reliably calculated and is e
ponentially small. A few years ago, however, Ringwald@3#
and Espinosa@4# noticed that a summation of the semiclas
sical amplitudes over final states gives rise to factors whi
increase very rapidly with increasing energy. This may lea
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to a compensation of the exponential suppression for ener
gies approaching the energy of the barrier, i.e., the sphalero
energyEsph. Intuitively, one might expect suppression of
tunneling to become much less severe as the energy ap
proaches the energy of the barrier, in particular, one might
expect it to disappear altogether forE.Esph, i.e., in the
region where the topology changing processes are classicall
allowed. Investigations have indeed confirmed that this is
precisely what happens in high temperature electroweak pro
cesses@5#: as the temperature approachesEsph ~which is in
fact temperature dependent for a thermal plasma!, the
barrier-penetration suppression factor becomes progressive
less pronounced, and electroweak baryon number violation
becomes unsuppressed altogether above the critical temper
ture. The situation is, however, much less clear for high en-
ergy collisions and it would be premature to conclude that
baryon number violation can occur with a non-negligible
amplitude. Phase space considerations are more subtle an
simply because one has enough energy to pass over the ba
rier does not guarantee that one does so. The problem is th
in high energy collisions the incident state is an exclusive
two-particle state, which is difficult to incorporate in a semi-
classical treatment of the transition amplitude.

A possible remedy to this situation has recently been pro-
posed by Rubakov, Son, and Tinyakov@6# who suggested
that one consider incident coherent states, but constrained s
that energy and particle number take fixed average values

E5
e

g2
, ~1.1a!

N5
n

g2
. ~1.1b!
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54 1021COMPUTATIONAL STUDY OF BARYON NUMBER VIOLATION . . .
In the limit g→0, with e andn held fixed, the path integra
giving the transition amplitudes are then dominated b
saddle point configuration which solves the classical eq
tions of motion. This permits a semiclassical calculation
the transition rates. Information on high energy collision p
cesses with small numbers of incident particles can the
obtained from the limitn→0. While this limit does no
strictly reproduce the exclusive two-particle incoming sta
under some reasonable assumptions of continuity it ca
argued that the corresponding transition rates will be equ
suppressed or unsuppressed.

When the energy is below the sphaleron barrier the s
classical paths that dominate the functional integral in R
@6# must be complex for~1.1! to be satisfied. Finding suc
solutions is a formidable analytic problem, but one tha
well suited to numerical study. The numerical evolut
naturally divides into two regimes. There is a purely Euc
ean evolution, corresponding to tunneling under the bar
and a Minkowski evolution corresponding to classical m
tion before and after the tunneling event. The desired s
classical paths may be obtained by appropriately matc
the Euclidean and Minkowski solutions onto one anoth
and the transition amplitude may then be calculated.

When the energy is greater than the sphaleron bar
transitions are classically allowed and solutions that satu
the functional integral are real. This is the regime exami
in this paper. When chiral fermions are coupled to gauge
Higgs fields which undergo topological transitions, Ref.@7#
shows that the anomalous fermion number violation is gi
by the change in Higgs winding number of the classical s
tem. This paper is primarily an investigation of whether a
to what extent topology change occurs in classical evolu
with low particle number in the incident state. Sin
Minkowski evolution is also required for the analysis bel
the sphaleron, the techniques developed in the present i
tigation will be useful there as well.

The primary impediment for rapid baryon number vio
tion is the phase space mismatch between incoming stat
low multiplicity and outgoing states of many particles. T
authors of Ref.@8# look at simplified models and observ
that, classically, it is difficult to transfer energy from a sm
number of hard modes to a large number of soft mo
However, the investigations in Ref.@9# find that for pure
Yang-Mills theory in two dimensions the momenta can
dramatically redistributed, although unfortunately the in
dent particle number seems to be rather large in their dom
of applicability. Reference@10# studies the Yang-Mills-
Higgs system in a two-dimensional wave-packet ansatz
again finds that momentum can be efficiently redistribute
is the purpose of our investigation to shed further light on
situation in four dimensions in the presence of a Higgs fi
and to investigate the relation between incoming part
number and topology change.

Given a typical classical solution, because of the dis
sion of the energy, the fields will asymptotically approa
vacuum values. Consequently, at sufficiently early and
times the field equations will reduce to linearized equati
describing small oscillations about the vacuum and the fi
evolution will be a superposition of normal mode oscil
a
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tions. In terms of the frequenciesvn and amplitudesan of
these oscillators the energy and particle number of~1.1! are
given by

e5(
n

vnuanu2, ~1.2a!

n5(
n

uanu2, ~1.2b!

and we see that for typical classical evolution the energye
and the particle numbersn i andno of the asymptotic incom-
ing and outgoing states are well defined@the energy is of
course conserved and well defined even in the nonlinear re
gime, although no longer given by~1.2a!#. In addition, since
the fields approach vacuum values fort→6`, the winding
numbers of incoming and outgoing configurations are also
well defined. Because of the sphaleron barrier, the energye
of all the classical solutions with a net change of winding
number is bounded below by the sphaleron energyesph. The
problem we would like to solve then is whether the incoming
particle numbern i of these solutions can be arbitrarily small,
or more generally, we would like to map the region spanned
by all possible values ofe and n i for topology changing
classical evolution.

One could easily parametrize an initial configuration of
the system consisting of incoming waves in the linear re-
gime; however, it would be extremely difficult to adjust the
parameters to ensure that a change of winding number occur
in the course of the subsequent evolution. For this reason w
will instead parametrize the configuration of the system at
the moment when a change of topology occurs~this will be
our starting configuration!, and we will then evolve the equa-
tions of motion backward in time. Following the time re-
versed evolution until the system reaches the asymptotic lin
ear regime allows us to identify the incident particle number
n i . By varying the parameters of the starting configuration
with a suitable stochastic procedure we will then be able to
map the boundary of the region of topology changing solu-
tions in thee-n plane.

Note that the problem of baryon number violation above
the barrier may roughly be divided into two parts. One must
find the set of incoming coherent states which give rise to a
change in topology of the fields, and one must calculate the
overlap between the incident two-particle scattering state and
such coherent states. Both are very challenging. The problem
considered in this paper is the more fundamental of the two
in the sense that if topology change cannot occur for coher
ent states with small average particle number, the overlap
effect with a two-particle beam is a moot point. On the other
hand, if a change of topology can be induced with arbitrarily
low particle number in the incoming state, one is at the very
least assured that exponential suppression, which is a re
sidual of the barrier penetration, will be absent.

In summary, then, our strategy is the following. We start
with a ~not necessarily small! perturbation about the sphale-
ron with some energye. We evolve the configuration until it
reaches the linear regime, at which time we extract the nor
mal mode amplitudesan and compute the asymptotic particle
numbern. The time reversed solution will have an incident
particle numbern and will typically undergo topology
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1022 54CLAUDIO REBBI AND ROBERT SINGLETON, JR.
change, since by construction it will pass over the sphale
barrier. There is of course the possibility that the system w
go back over the sphaleron barrier and return to the orig
topological sector, but we check against this occurrence
evolving the starting configuration in the opposite directi
in time and measuring the winding number of the asympto
state. We can then explore the space of topology chan
solutions by varying the parameters of the starting confi
ration using suitable stochastic techniques. This permits u
map the allowede-n plane in an attempt to place a reliab
lower bound on the incident particle number. If this bound
comparable with two particles in the incoming state, it wou
be an indication that the time reversed solution, which pas
over the sphaleron barrier, can be excited in a high ene
collision. Hence, this would be a signal that baryon num
violation becomes unsuppressed. Likewise, if the bound
large this would indicate that high energy baryon num
violation is unobservable in a two-particle scattering expe
ment.

In what follows we put meat on the bones of the abo
discussion and present our numerical results. The structu
this paper is as follows. In Sec. II we illustrate the gene
properties of sequences of topology changing field confi
rations, not necessarily solutions to the equations of mot
For simplicity we first consider the two-dimensional Abelia
Higgs model. We then examine the four-dimensional SU~2!
Higgs model, but restricted to the spherical ansatz to obta
computationally tractable system. In Sec. III we examine
classical evolution in the continuum. Since the field eq
tions are coupled nonlinear partial differential equations
Sec. IV we solve them by numerical techniques. In Sec
we describe the starting configurations at the moment of
pology change, i.e., our parametrization of the initial sta
and in Sec. VI we solve the normal mode problem necess
for extracting the particle number in the linear regime.
Sec. VII we explain the stochastic sampling technique u
to probe the initial configuration space and we present
numerical results concerning the region spanned in thee-n
plane by topology changing solutions. In Sec. VIII w
present concluding remarks and directions for future
search. The reader who is familiar with the basic proper
of the SU~2! Higgs system and of topology changing sol
tions, and is impatient to learn about our results, may s
directly to Sec. VII. However, in our opinion, much of th
value of the research we present here is to be found in
formalism we have established to parametrize, evolve,
analyze classical solutions of the SU~2! Higgs system in the
spherical ansatz. This formalism, which is illustrated in Se
II–VI, has not only been crucial for obtaining our curre
results, but we are confident it will be invaluable for furth
investigation into the problem of collision-induced bary
number violation both above and below the sphaleron b
rier.

II. TOPOLOGY CHANGING SEQUENCES OF
CONFIGURATIONS

We start our investigation with the~111!-dimensional
Abelian Higgs system, which is defined in terms of a co
plex scalar fieldf(x) and an Abelian gauge potentia
Am(x) with action
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S5E dx2H 2
1

4
FmnF

mn1Dmf*Dmf2l~ ufu221!2J ,
~2.1!

where the indices run over 0 and 1,Fmn5]mAn2]nAm , and
Dmf5]mf2 iAmf. We have set the coupling constant
g51 and several inessential constants have been eliminate
by a suitable choice of units.

The most important feature of this system is that the
vacuum, i.e., the configuration of minimum energy, occurs
for nonvanishingf, indeed, in our units forufu51. Since
this does not specify the phase off, there is not a unique
vacuum state, but rather multiple vacua. Still, because o
gauge invariance one must be careful in regard to the physi
cal significance of the phase off. A local variation in the
phase off can always be undone by a suitable gauge trans
formation, and since gauge equivalent configurations mus
be considered physically indistinguishable, local variations
of the phase of the scalar field do not lead to different vacua
However, variations of the phase off by multiples of 2p ~as
the coordinatex1 spans the entire spatial axis! cannot be
undone by a local gauge transformation, and thus define to
pologically distinct vacuum states. These vacua differ by the
global topological properties of the field configuration. The
conditionufu51 restricts the values of the scalar field to the
unit circle~in the complex plane!. In theA050 gauge, which
we use throughout this paper, the values assumed byf at
x156` stay constant in time. If we demand thatf takes
fixed identical values asx1→6` ~a condition we later re-
lax!, then the number of timesf winds around the unit circle
asx1 spans the entire real axis is a topological invariant~the
winding number! which characterizes different topologically
inequivalent vacuum states.

Figures 1~a!–1~c! illustrate three possible contours traced
in the complex plane by the field variablef(x1) as the co-
ordinatex1 spans the entire space axis. Inequivalent vacuum
configurations with winding numbers 0 and 1, respectively,
are depicted in Figs. 1~a! and 1~c!. In the contour of Fig. 1~a!
the phase off stays fixed at zero asx1 ranges between
2` and1`, whereas it goes once around the unit circle in

FIG. 1. Example of two inequivalent vacuum configurations~a!
and ~c! and a field configuration at the top of the energy barrier
separating them~b!. ~a!–~c! trace the fieldf in the complex plane
as the spatial coordinate spans the entire axis. A three-dimensiona
perspective has been added in~d!–~f! to illustrate the detailed de-
pendence off on the spatial coordinate.
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Fig. 1~c!. Consequently, the corresponding vacuum config
rations have winding numbers 0 and 1. The detailed va
tion of the phase is immaterial since it can always
changed locally by a gauge transformation. Thus, in Fig. 1~a!
for example, asx varies from2` to 1` the field does not
have to stay fixed, but could wander continuously on the u
circle provided the net change in phase is zero. However,
configuration of Fig. 1~a! cannot be continuously deforme
to that of Fig. 1~c! without leaving the vacuum manifold
Therefore a continuous path of configurations connect
neighboring vacua must pass over an energy barrier, a
figuration which has the property thatf vanishes at a point,
rendering its phase there undefined. The smallest such
ergy barrier is called the sphaleron@2#, and its Higgs field
component is illustrated in Fig. 1~b!. Figures 1~d!–1~f! add
the additional perspective of spatial dependence for the fi
f(x1). Figures 1~a!–1~c! can be viewed as projections ont
the complex plane orthogonal to thex1 axis of the curves in
Figs. 1~d! and 1~e!.

One should note that the periodic boundary conditions
f at x156` can be relaxed. Sometimes it is convenient
use the freedom of performing a time independent ga
transformation to makef(`) andf(2`) differ while keep-
ing both fixed in time@for solutions, the constancy in time o
f(6`) follows from the equations of motion in theA050
gauge#. Thus, the configurations of Figs. 1~a!–1~c! can be
gauge transformed into the configurations shown in Fi
2~a!–2~c!. In Fig. 2~a! the phase off changes by2p as
x1 goes from2` to 1`, while in Fig. 2~c! it rotates by
p. As in Fig. 1, the two vacuum configurations differ by
phase rotation of 2p, i.e., by a unit change of winding num
ber. In the intermediate configuration@Fig. 2~b!# the scalar
field takes only imaginary values. In this gauge the sphale
configuration takes a very simple form

f~x1!5 i tanh@Al~x12c!#, Am50, ~2.2!

wherec specifies the location of the sphaleron.
A possible parametrization for the entire evolution illu

trated in Fig. 2 can be conveniently written as

f~x1!5 i
12exp@ i t22Al~x12c!#

11exp@ i t22Al~x12c!#
, ~2.3a!

A15
4tAl

pcosh@2Al~x12c!#
, ~2.3b!

with A050. As the reader can easily verify, fort52p/2
andt5p/2 the fieldf reduces to a number of unit modulu

FIG. 2. A different gauge equivalent representation of the c
figurations illustrated in Fig. 1.
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precisely spanning the contours of Fig. 2~a! and Fig. 2~c!,
respectively~as x1 ranges from2` to 1`). The corre-
sponding values ofA1 are chosen to make the gauge covari
ant derivative off vanish, thus ensuring vacuum. We should
point out, however, that~2.3! does not represent the solution
of any particular set of equations of motion~Euclidean or
Minkowski!. It is merely a compact parametrization of inter-
polating configurations, in terms of two variablesc and t,
which might be useful in studying sphaleron transitions
based on the method of collective coordinates.

Classical solutions of the two-dimensional Abelian Higgs
model can exhibit topology change in much the same way a
the vacuum-to-vacuum paths described above. If one coupl
chiral fermions to the system, the fermionic current has a
anomaly which leads to fermion number violation in the
presence of topology changing classical solutions. Therefor
this model would appear to be a very convenient system fo
a simplified study of baryon number violation in high energy
processes. However, as we will discuss in a future section,
crucial component of the computational investigation is th
ability to identify numerically the normal mode amplitudes
of the fields in the asymptotic linear regime. No matter how
nonlinear the system may be at any given point in its class
cal evolution, typically the energy will disperse and bring the
system to a regime where the fields undergo small oscilla
tions about a vacuum configuration. This dispersion is ex
pected to occur in any field theoretical system, unless pr
vented by conservation laws such as those underlying solito
phenomena. Now, while the two-dimensional Abelian Higgs
model does not possess soliton solutions, we have observ
computationally that the decay of the sphaleron in this sys
tem nevertheless gives origin to persistent, localized, larg
oscillations with an extremely small damping rate~this ob-
servation was also made by Arnold and McLerran in Ref
@11#!. These oscillations, illustrated in Fig. 3, make the sys
tem quite unwieldy for a computational investigation of
baryon number violation based on semiclassical technique
Consequently we turn our attention to the more realistic four
dimensional SU~2! Higgs system.

Throughout this paper we will ignore both the U~1! hy-
percharge and the back reaction of the fermions on the d
namics of the gauge and Higgs fields. We shall examine th
311-dimensional SU~2! Higgs system, which is defined in
terms of a complex doubletF(x) and a gauge potential
Am(x) with action

S5E dx4H 2
1

2
TrFmnF

mn1~DmF!†DmF2l~F†F21!2J ,
~2.4!

where the indices run from 0 to 3 and where

Fmn5]mAn2]nAm2 i @Am ,An#, ~2.5!

DmF5~]m2 iAm!F ~2.6!

with Am5Am
asa/2. We use the standard metric

hmn5diag(1,21,21,21), and we have eliminated several
inessential constants by a suitable choice of units. We ha
also set the coupling constantg51, but shall restore it when
explicitly needed using the standard model valueg50.652.
For our numerical investigation we shall take the Higgs self

n-



-

y,

ut
t.
/

1024 54CLAUDIO REBBI AND ROBERT SINGLETON, JR.
FIG. 3. Sphaleron decay in the two-
dimensional Abelian Higgs model: classical evo
lution of thef field. The values of the phase of
the complex field are coded by shades of gra
and the modulus of the field by the height of the
surface. The sphaleron decays rather quickly, b
leaves behind a quasistable oscillating remnan
For a full color figure see http://cthulu.bu.edu
;bobs/bviolate.html.
o

t

h
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m
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couplingl50.1, which corresponds tomH5110 GeV. This
value ofl is small enough that Higgs-field dynamics is non
trivial, but large enough to allow many lattice sites to fa
within a single Higgs Compton wavelength.

Because of the larger dimensionality of space one expe
the energy to disperse much more readily in this system th
in the ~111!-dimensional Abelian Higgs model, an expecta
tion borne out by results of Hellmund and Kripfganz@12#
who observed the onset of a linear regime following th
sphaleron’s decay. For a computationally manageable pr
lem, we focus on the spherically symmetric configurations
Ratra and Yaffe@13#, which reduce the system to an effec
tive two-dimensional theory. This effective theory, howeve
still has much in common with the full four-dimensiona
theory, such as possessing similar topological structure. F
thermore, despite its lower dimensionality, we shall see th
the effective system still linearizes because of explicit kin
matic factors ofr in the equations of motion@these factors
are lacking for the ~111!-dimensional Abelian Higgs
model#. The ease of linearization in this effective two
dimensional theory is physically reasonable since solutio
within the spherical ansatz can have their energy distribu
over expanding spherical shells.

Explicitly, the spherical ansatz is given by expressing t
gauge and Higgs fields in terms of six real functionsa0 ,
a1 , a, b, m, andn of r and t:

A0~x,t !5
1

2
a0~r ,t !s• x̂, ~2.7a!

Ai~x,t !5
1

2 S a1~r ,t !s• x̂x̂i1
a~r ,t !

r
~s i2s• x̂x̂i !

1
11b~r ,t !

r
e i jk x̂ jskD , ~2.7b!

F~x,t !5@m~r ,t !1 in~r ,t !s• x̂#j, ~2.7c!
-
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where x̂ is the unit three-vector in the radial direction and
j is an arbitrary two-component complex unit vector. For the
four-dimensional fields to be regular at the origin,a0 , a,
a12a/r , (11b)/r , andn must vanish like some appropri-
ate power ofr as r→0.

Note that configurations in the spherical ansatz remain i
the spherical ansatz under gauge transformations of the for

Am→Am1 iU †]mU, m50, . . . ,3, ~2.8!

F→UF, ~2.9!

where the gauge function is given by

U5exp@ iV~r ,t !s• x̂/2#. ~2.10!

We requireV(0,t)50 to ensure that gauge transformed con-
figurations of regular fields remain regular at the origin. This
spherical gauge degree of freedom induces a residual U~1!
gauge invariance in an effective two-dimensional theory
The action of this effective theory can be obtained by insert
ing ~2.7! into ~2.4!, from which one finds

S54pE dtE
0

`

drF2
1

4
r 2f mn f mn1Dmx*Dmx

1r 2Dmf*Dmf2
1

2r 2
~ uxu221!22

1

2
~ uxu211!ufu2

2Re~ ix*f2!2lr 2~ ufu221!2G , ~2.11!

where the indices now run from 0 to 1 and in contrast to Ref
@13# are raised and lowered withhmn5diag(1,21), and
where

f mn5]man2]nam , ~2.12!

x5a1 ib, ~2.13!



s
e

h

t

n

.

i

o
u

t

l

e

t
t

-

to
ay

.
e
en
ld
ier.
m
he
point

he

te

ly
s,

in-
e-

e

tion
of
d-
the

on,
e

-
v-
,
ial
e-
le-

out

54 1025COMPUTATIONAL STUDY OF BARYON NUMBER VIOLATION . . .
f5m1 in, ~2.14!

Dmx5~]m2 iam!x, ~2.15!

Dmf5S ]m2
i

2
amDf. ~2.16!

The action~2.11! is indeed invariant under the U~1! gauge
transformation

am→am1]mV, ~2.17a!

x→eiVx, ~2.17b!

f→eiV/2f, ~2.17c!

and we see that the spherical ansatz effectively yields a
tem very similar to the Abelian Higgs model consider
above. In this reduced system the variablesa0(r ,t) and
a1(r ,t) play the role of the two-dimensional gauge field. T
variablesx(r ,t) andf(r ,t), which parametrize the residua
components of the four-dimensional gauge field and
four-dimensional Higgs field, respectively, both behave
two-dimensional Higgs fields. Note thatx has a U~1! charge
of one whilef has charge one-half. Of course, the prese
of metric factors~powers ofr ) in the action~2.11! is a re-
minder that we are really dealing with a four-dimension
system.

We shall work in thea050 ~or A050) gauge throughout
In the four-dimensional theory, if one compactifies thre
space toS3 by identifying the points at infinity, it is well
known that the vacua correspond to the topologically
equivalent ways of mappingS3 into SU~2!;S3 @14#. These
maps are characterized by the third homotopy group
SU~2! and a vacuum can be labeled by an integer called
homotopy index or winding number. The effective tw
dimensional theory inherits a corresponding vacuum str
ture. From~2.11! it is apparent that the vacuum states a
characterized byuxu5ufu51, with the additional constrain
that ix*f2521 ~as well asD1x5D1f50). Convenient
zero-winding vacua are given byxvac52 i , fvac561 with
a1vac50. There are in fact other vacua with constant fie
~and hence zero winding!, but from ~2.7! they yield singular
four-dimensional fields. Nontrivial vacua can be obtain
from the trivial vacua via the gauge transformation~2.17!:

amvac5]mV, ~2.18a!

xvac52 ieiV, ~2.18b!

fvac56eiV/2. ~2.18c!

When three-space is compactifiedV→2np as r→` ~for
nonzero integersn). SinceV has been set to zero at th
origin, the winding numbers of such vacua are simply
integersn. Note thatxvac winds n times around the uni
circle whilefvac only winds byn/2. This is because thef
field has half a unit of U~1! charge whilex has a full unit.
Hence, the phase change ofx is more dramatic in a topo
logical transition, and for this reason we will often conce
trate our attention uponx rather thanf, even though the
Higgs field is more fundamental for topology change@7#.
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As will become apparent shortly, it is often convenient
relax the condition that three-space be compactified. We m
then consider vacua~2.18! for whichV does not become an
even multiple of p at large r . In particular, when
V→(2n11)p, thenxvac→ i andfvac→6 i as r→`. Then
the gauge functionU→6 is• x̂ and becomes direction de-
pendent, and as expected, space cannot be compactified

As in the Abelian Higgs model a continuous path in th
space of all field configurations which interpolates betwe
two inequivalent vacua must necessarily leave the manifo
of vacuum configurations and pass over an energy barr
On such a path there will be a configuration of maximu
energy, and of all these maximal energy configurations t
sphaleron has the lowest energy and represents a saddle
along the energy ridge separating inequivalent vacua@2#. In
the spherical ansatz we can work in a gauge in which t
sphaleron takes a particularly simple form, witham50 and

xsph~r !5 i @2 f ~r !21#,

fsph~r !5 ih~r !, ~2.19!

wheref andh vary between 0 and 1 asr changes from 0 to
` and are chosen to minimize the energy functional. No
that thef field vanishes at the origin and that thex field
vanishes at some nonzero value ofr .

This form of the sphaleron, in which the gauge fieldam
vanishes and the fieldsx andf are pure imaginary, is con-
venient for numerical calculations. Nevertheless, it is slight
peculiar in the following sense. Finite energy configuration
like ~2.19!, asymptote to pure gauge at spatial infinity~note
that ixsph* fsph

2 →21 asr→`). Typically a gauge is chosen
so that the appropriate gauge function is unity at spatial
finity, and then space can be compactified to the thre
sphere. But~2.19! givesxsph→ i andfsph→ i , which as we
have seen in the discussion following~2.18! corresponds to
the direction dependent gauge functionU→ is• x̂. So the
sphaleron~2.19! is in a gauge in which three-space cannot b
compactified. Note that an arbitrary element of SU~2! can be
parametrized byb011 is•b where1 is the two-by-two unit
matrix andb0

21b251. Hence SU~2!;S3, and defining the
north and south poles by61, we see thatis•b with b251
parametrizes the equatorial sphere. Thus the gauge func
U maps the sphere at infinity onto the equatorial sphere
SU~2!. In this gauge, a topology changing transition procee
ing over the sphaleron corresponds to a transition where
fields wind over the lower hemisphere of SU~2! before the
transition and over the upper hemisphere after the transiti
with a net change in winding number still equal to one. Th
behavior of thex field in a topological transition is then very
similar to the behavior of the Higgs field in the two
dimensional model, already illustrated in Fig. 2. The beha
ior of thef field is illustrated in Fig. 4. We could of course
and sometimes will, work in a gauge consistent with spat
compactification where topological transitions interpolate b
tween vacua of definite winding, as in Fig. 1, but the spha
ron would look more complicated. The advantage of~2.19!
from a computational perspective is that perturbations ab
the sphaleron can be more easily parametrized.
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III. CLASSICAL EVOLUTION IN THE CONTINUUM

So far we have only examined topology changing pat
that interpolate between inequivalent vacua. We are now
terested in examining the topological structure of solutions
the equations of motion. For vacuum to vacuum sequence
is clear what we mean by topology change: this is simply t
change in winding number between the initial and fin
vacua. For solutions, however, the situation is not quite
straightforward. Nevertheless, topology change can be p
cisely defined for solutions whose energy density dissipa
to zero uniformly in the distant past and future, which is th
generic case for classical evolution. In the asymptotic regi
the uniform dissipation of energy renders the system line
and the waves can be expressed as small oscillations a
vacua of definite winding numbers. By the topology chan
of such a solution, we simply mean the difference in th
winding number between these two asymptotic vacua. T
difference in winding is in fact just given by the change i
Higgs winding number, and hence is characterized by ze
of the Higgs field~although in the spherical ansatz it is cha
acterized by zeros of bothf and x). The most important
physical consequence of this topology change is that wh
chiral fermions are coupled to the system, fermion numb
violation occurs and is proportional to the change in windin
of the Higgs field~see Ref.@7#!.

We wish to study whether topology change, and hen
fermion number violation, can occur in the course of clas
cal evolution with small gauge or Higgs particle number
the incoming state. Since the system we are studying line
izes in the past, the incident particle number is defined a
our question is well posed. However, the field equations
coupled nonlinear partial differential equations which w
cannot solve in closed form. Our approach, then, is to so
the equations numerically with a discretizedr axis and dis-
cretized time steps, but first it is useful to examine the co
tinuum system.

The equations of motion obtained from the action~2.11!
are

]m~r 2f mn!5 i @Dnx* x2x*Dnx#1
i

2
r 2@Dnf*f2f*Dnf#,

~3.1a!

FD21
1

r 2
~ uxu221!1

1

2
ufu2Gx52

i

2
f2, ~3.1b!

FDmr 2Dm1
1

2
~ uxu211!12lr 2~ ufu221!Gf5 ixf* .

~3.1c!

FIG. 4. Topological transition in the four-dimensional SU~2!
Higgs model: behavior of thef field. Thex field behaves as in Fig.
2.
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To solve these equations given an initial configuration, we
must specify the appropriate boundary conditions. Boundar
conditions for the fields atr50 can be derived from the
requirement that the four-dimensional configurations they
parametrize be regular at the origin. One finds that the be
havior asr→0 must be

a05a0,1r1a0,3r
31•••, ~3.2a!

a15a1,01a1,2r
21a1,4r

41•••, ~3.2b!

a5a1r1a3r
31a5r

51•••, ~3.2c!

b5211b2r
21•••, ~3.2d!

m5m01m2r
21•••, ~3.2e!

n5n1r1n3r
31•••, ~3.2f!

where the coefficients of ther expansion are undetermined
functions of time. Ther behavior of the various fields is
determined by the requirement thatr5(x21y21z2)1/2 have
the appropriate power to render four-dimensional fields ana
lytic in x, y, andz. For example, sinceA0 is proportional to
a0s–x̂5(a0 /r )s–x, a0 must be odd inr . In terms ofx and
f, the boundary conditions atr50 become

a0~0,t !50, ~3.3a!

x~0,t !52 i , ~3.3b!

Re] rf~0,t !50, ~3.3c!

Imf~0,t !50. ~3.3d!

SinceV(r ,t) vanishes at the origin, one can check that these
boundary conditions are gauge invariant under spherica
gauge transformations.

There is an additionalr50 boundary condition given by

a1,05a1 , ~3.4!

which is obtained by requiring that the two terms in~2.7b!
proportional tos• x̂ cancel asr→0. Note that then50 com-
ponent of~3.1a! is Gauss’ law constraint, and once imposed
on the initial data it remains satisfied at subsequent times
Substituting ~3.2! into Gauss’ law gives] t(a1,02a1)50.
Therefore, if the boundary conditiona1,05a1 is satisfied by
the initial data it remains satisfied.

We turn now to large-r boundary conditions. Since we are
interested in finite energy solutions, we require that the field
go to pure gauge at larger . Hence, from ~2.18!,
am→]mV, x→2 iexp@iV#, andf→6exp@iV/2# as r→`,
where V(r ,t) is the spherical gauge function defined in
~2.10!. We can choose a gauge in whichV at spatial infinity
becomes a constant, independent ofr andt, so thatam→0 as
r→`. When we compactify three-space and require
V→2np at large r for integer n, then x→2 i and
f→61 as r→`. But as discussed in the previous section
this is inconvenient for parametrizing the sphaleron, and in
stead we will takeV→(2n11)p for integern. Then the
four-dimensional gauge functionU maps spatial infinity onto
the equatorial sphere of SU~2!, and we cannot compactify
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space. In this case, however,x→ i andf→6 i asr→`. We
will choose the plus sign forf, and in summary we take the
large-r boundary conditions to be

am~r ,t !→0, ~3.5a!

x~r ,t !→ i , ~3.5b!

f~r ,t !→ i , ~3.5c!

as r→`. There will be times in which it is convenient,
mostly for purposes of illustration, to take the boundary co
ditions am→0, x→2 i , andf→1 asr→` consistent with
spatial compactification, however, unless otherwise spe
fied, we will use the boundary conditions~3.5!.

One can now solve the equations of motion for initia
configurations and investigate to what extent topolog
changing transitions occur. Since one cannot obtain analy
solutions, we will exploit computational methods. These n
merical techniques, which are presented in the next secti
are based on a Hamiltonian formulation, so we close th
section with a brief exposition of the Hamiltonian approac
to the continuous system.

Central to this approach are the conjugate momenta to
fields, defined by

E[
1

4p

]L
]ȧ1

5r 2~]0a12]1a0!, ~3.6a!

px[
1

4p

]L
]ẋ*

5D0x, ~3.6b!

pf[
1

4p

]L
]ḟ*

5r 2D0f, ~3.6c!

where L is the Lagrangian density for the action~2.11!.
Sincea0 does not appear in~2.11!, it has no corresponding
conjugate momentum and is not considered a dynami
variable. Upon inverting~3.6! for the time derivatives of the
dynamical fields, the Hamiltonian of the system is found t
beH1HC where

H54pE
0

`

drF E2

2r 2
1upxu21upfu21uDrxu21r 2uDrfu2

1
1

2r 2
~ uxu221!21

1

2
~ uxu211!ufu21Re~ ix*f2!

1lr 2~ ufu221!2G ~3.7a!

and

HC54pE
0

`

dra0F2] rE1 i ~px* x2x*px!

1
i

2
~pf*f2f*pf!G . ~3.7b!

Variation with respect toa0 gives Gauss’ law
-

ci-

l
y
tic
-
n,
is
h
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al

o

] rE5 i ~px* x2x*px!1
i

2
~pf*f2f*pf!. ~3.8!

Note that this is also then50 component of~3.1a!. This is
not a dynamical equation just asa0 is not a dynamical vari-
able. In fact, the Hamiltonian formulation makes it clear that
this equation is a constraint equation anda0 is the corre-
sponding Lagrange multiplier. If the initial data are chosen to
satisfy Gauss’ law, it will continue to be satisfied at subse-
quent times.

In thea050 gauge, the variables

a1~r !, x~r !, f~r ! ~3.9!

form a set of canonical coordinates conjugate to the mo
menta

E~r !5r 2]0a1 ,

px~r !5]0x, ~3.10!

pf~r !5r 2]0f.

The evolution of these variables is generated by the Hamil
tonian ~3.7a!. Gauss’ law,~3.8!, expresses the residual in-
variance of the system under time independent local gaug
transformations and is imposed as a constraint on the initia
configuration. It is subsequently conserved by the equation
of motion. Given initial data also satisfying the regularity
boundary conditiona1,05a1 , and using the boundary condi-
tions ~3.3! and ~3.5!, a regular solution is uniquely deter-
mined. We now turn to approximating this solution numeri-
cally.

IV. CLASSICAL EVOLUTION ON THE LATTICE

To solve the equations of motion numerically the system
must be discretized. For this purpose we subdivide ther axis
into N equal subintervals of lengthDr with finite length
L5NDr . Thus, the lattice sites have spatial coordinates
r i5 iDr with i50, . . . ,N ~for our numerical simulations we
shall takeN52239 andDr50.04, giving a lattice of size
L589.56). It is convenient to use the formalism of lattice
gauge theories in assigning the space components of th
gauge fields to the oriented links between neighboring site
and in the definition of gauge-covariant finite difference op-
erators. For simplicity, we will identify the lattice links via
the midpoints between lattice sites, which have coordinate
r i11/25( i11/2)Dr with i50, . . . ,N21.

The variables for the discretized system will now be de-
fined as follows. The zero-component gauge degrees of free
dom are defined over the lattice sites, and are given by

a0,i~ t ! for i51, . . . ,N21 ~4.1!

with a0,05a0,N50. The spatial components of the gauge
field are defined over the links of the lattice. We will use the
notationa1,i , or simply ai , to represent the gauge variable
defined over the link betweenr i and r i11 . This gives the
variables

ai~ t ![a1,i~ t ! for i50, . . . ,N21. ~4.2!
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As we show momentarily, boundary conditions for the sp
tial variablesai are not required to determine the evolutio
of the system. However, just as in the continuum, we w
impose an initial data boundary condition ona0 correspond-
ing to ~3.4! to ensure the regularity of the four-dimension
fields at the origin~this condition will be discussed shortly!.

The other field variables become

x i~ t ! for i51, . . . ,N21, ~4.3!

with x052 i , xN5 i and

f i~ t ! for i51, . . . ,N21 ~4.4!

with fN5 i . We are using boundary conditions atr5L mo-
tivated by ~3.5!. These boundary conditions do not adm
spatial compactification and are chosen so that perturbat
about the sphaleron may be parametrized more convenie
Occasionally we will take the boundary conditionsxN52 i
and fN51 consistent with spatial compactification; how
ever, unless otherwise specified we will use the aforem
tioned large-r boundary conditions.

The value off at r50 has so far not been specified. W
will return to this in a moment, but first we consider th
discretized covariant derivative. The timelike covariant d
rivatives need no modification, but the continuum covaria
spatial derivatives are replaced by covariant finite diffe
ences, e.g.,

Drx→
exp@2 iaiDr #x i112x i

Dr
, i50, . . . ,N21,

~4.5!

and like the gauge fields they are to be thought of as be
defined on the links between lattice sites. The rest of
discretization is straightforward, and one obtains a d
cretized actionSD expressed in terms of a finite set of var
ables which still possess an exact local gauge invariance
a-
n
ill

l

it
ns
tly.

-
n-

-
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ng
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:

a0,i→a0,i1] tV i ,
ai→ai1~V i112V i !/Dr ,
x i→eiV ix i ,
f i→eiV i /2f i ,

i50. . . . ,N
i50, . . . ,N21,
i50, . . . ,N,
i50, . . . ,N.

~4.6a!
~4.6b!
~4.6c!
~4.6d!

The discretized gauge functionV i(t) with i50, . . . ,N is de-
fined over the lattice sites, and satisfiesV0(t)50 to maintain
the regularity of the corresponding four-dimensional gauge
transformed fields.

Before we continue, however, we must derive the bound-
ary condition forf at i50. This is obtained from~3.3c! and
~3.3d!, in which the continuum fieldf at r50 is real with
vanishing spatial derivative. Since a statement about the
‘‘derivative’’ is not gauge covariant, we prefer to state that
the real part of the covariant derivative] rf2 iaf, together
with the imaginary part off, must vanish atr50. This is
equivalent to~3.3c! and~3.3d! sincef is real atr50. But it
has the advantage that it translates into the following bound-
ary conditions for the discretized case:

ReFexpS 2 ia0Dr

2 Df12f0G50, ~4.7a!

Imf050, ~4.7b!

wherea0 is the value ofa1,i at i50 and should not be con-
fused with the timelike vector field. Thus, we write the
boundary condition as

f05ReFexpS 2 ia0Dr

2 Df1G , ~4.8!

which allows us to eliminatef0 from the list of dynamical
variables.

The discretized Lagrangian becomes
L54p (
i50

N21 H r i11/2
2

2 S ]0ai2
a0,i112a0,i

Dr D 22 uexp~2 iaiDr !x i112x i u2

Dr 2 J Dr1 4p (
i51

N21 H u~]02 ia0,i !x i u2

1r i
2US ]02

ia0,i
2 Df iU22r i11/2

2 uexp~2 iaiDr /2!f i112f i u2

Dr 2
2
1

2
~ ux i u211!uf i u22Re~ ix i*f i

2!

2
1

2r i
2 ~ ux i u221!22lr i

2~ uf i u221!2J Dr2 4pr 1/2
2 $Im@exp~2 ia0Dr /2!f1#%

2

Dr
. ~4.9!

This Lagrangian was obtained by discretizing the system as previously explained and by replacingf0 by the right-hand side
of ~4.8!. One might think this induces an additional contribution to the kinetic term off1 from the time derivative of~4.8!.
However, the term proportional toḟ0 vanishes since it is multiplied byr 0

250, and hence~4.9! is the complete Lagrangian.
We define conjugate momenta~the factor 1/4pDr is introduced so as to have Poisson brackets with a continuumlike

normalization$p i* ,f j%5d i , j /Dr , etc.!

Ei5
1

4pDr

]L

]~]0ai !
5r i11/2

2 S ]0ai2
a0,i112a0,i

Dr D , i50, . . . ,N21, ~4.10a!

Pi5
1

4pDr

]L

]~]0a0,i !
50, i50, . . . ,N, ~4.10b!
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pi5
1

4pDr

]L

]~]0x i* !
5]0x i2 ia0,ix i , i50, . . . ,N, ~4.10c!

p i5
1

4pDr

]L

]~]0f i* !
5r i

2S ]0f i2
ia0,i
2

f i D , i50, . . . ,N. ~4.10d!

Equation~4.10b! is a primary constraint equation, in the sense of Dirac. From~4.9! and ~4.10! we obtain the Hamiltonian
H1HC , with

H54p (
i50

N21 H Ei
2

2r i11/2
2 1

uexp~2 iaiDr !x i112x i u2

Dr 2 J Dr1 4p (
i51

N21 H upi u21
up i u2

r i
2 1r i11/2

2 uexp~2 iaiDr /2!f i112f i u2

Dr 2

1
1

2
~ ux i u211!uf i u21Re~ ix i*f i

2!1
1

2r i
2 ~ ux i u221!21lr i

2~ uf i u221!2J Dr1 4pr 1/2
2 @ Im~exp~2 ia0Dr /2!f1!#

2

Dr
,

~4.11a!

and

HC54p (
i51

N21

a0,i H 2
Ei2Ei21

Dr
1 i ~pi* x i2x i* pi !1

i

2
~p i*f i2f i*p i !J Dr . ~4.11b!

Upon commuting~or more precisely, taking the Poisson bracket! the constraint~4.10b! with H1HC one obtains as a further
constraint Gauss’ law

Ei2Ei21

Dr
5 i ~pi* x i2x i* pi !1

i

2
~p i*f i2f i*p i ![ j i , i51, . . . ,N21. ~4.12!

We impose the second-class constrainta0,i50 for i51, . . . ,N21. The equations of evolution that follow fromH are then

dai
dt

5
Ei

r i11/2
2 , i50, . . . ,N21, ~4.13a!

dx i

dt
5pi , i51, . . . ,N21, ~4.13b!

df i

dt
5

p i

r i
2 , i51, . . . ,N21 ~4.13c!

and

dEi
dt

5 i
x i11* exp~ iaiDr !x i2x i* exp~2 iaiDr !x i11

Dr
1 i

r i11/2
2

2

f i11* exp~ iaiDr /2!f i2f i* exp~2 iaiDr /2!f i11

Dr
,

i50, . . . ,N21, ~4.14a!

dpi
dt

5
exp~2 iaiDr !x i112x i

Dr 2
1
exp~ iai21Dr !x i212x i

Dr 2
2

x i uf i u21 if i
2

2
2

1

r i
2x i~ ux i u221!, i51, . . . ,N21,

~4.14b!

dp i

dt
5r i11/2

2 exp~2 iaiDr /2!f i112f i

Dr 2
1r i21/2

2 exp~ iai21Dr /2!f i212f i

Dr 2
2

f i~ ux i u211!

2
1 ix if i*22lr i

2f i~ uf i u221!,

i51, . . . ,N21, ~4.14c!



y

n
n

r

l

e

g
o

t

o
t

y
v
o
c
a
b

o
ti
e

e

-

e

r-

e
lly
-
,
s

a
-

f
-
l
of
e

e

s

s
t
l
-
t

u-
e
e

d
l
h
d

1030 54CLAUDIO REBBI AND ROBERT SINGLETON, JR.
wheref0 is given by~4.8!, fN5 i , x052 i , andxN5 i ~or
xN52 i andfN51, if as we will occasionally do, boundar
conditions consistent with spatial compactification are use!.
The momenta ofx andf vanish ati50 andi5N.

In summary, we have the following table of independe
dynamical variables and their respective conjugate mome

Variable Momentum Index range Numbe

ai Ei i50, . . . ,N21 N
x i pi i51, . . . ,N21 2(N21)
f i p i i51, . . . ,N21 2(N21)

Since we have seta0,i to zero, the number of dynamica
variables and momenta~excluding boundary fields atr50
and r5L) are 2(5N24). Note that~4.13! and ~4.14! give
2(5N24) equations, so the system is uniquely determin
given the initial values of the fieldsx andf and their mo-
menta~note that boundary conditions for the spatial gau
field ai are not required!. The initial data must be chosen t
be consistent with Gauss’ law~4.12!. We will also impose
the boundary conditiona05Re(x12x0)/Dr , which approxi-
mates the continuum relation~3.4!. @This relation, which
would be conserved in the continuum limit, will remain sa
isfied toO(Dr ) in the evolution of the discretized system.#

The restriction to uniform spacing of the subintervals
the r axis is not fundamental and we have also implemen
a discretization in whichDr increases as one moves out o
the r axis. In this manner one can effectively make the s
tem larger and delay the effects of the impact of the wa
with the boundary without worsening the spatial resoluti
nearr50, where most of the nonlinear dynamics takes pla
We have found, however, that the advantages one g
hardly warrant the additional complications introduced
the nonuniform spacing.

For the numerical integration of the time evolution w
have used the leapfrog algorithm. Since this algorithm c
stitutes one of the fundamental techniques for the integra
of ordinary differential equations of the Hamiltonian typ
and as such is textbook material, we will not discuss it
depth. Essentially, given conjugate canonical variablesqi
andpi which obey equations

dqi
dt

5gi~p!,

dpi
dt

5 f i~q!, ~4.15!

one evolves the values ofq and p from some initial t to
t1Dt as follows. In a first steppi is evolved to the midpoint
of the time interval by

pi→pi85pi1 f i~q!
Dt

2
,

qi→qi85qi , ~4.16!

~althoughqi is left unchanged, it is convenient to consid
the step formally as a transformation of the entire set
d
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canonical variables!. In a second step one evolves the coor
dinates from their initial valueqi5qi8 to their value at the
end of the interval

pi8→pi95pi8 ,

qi8→qi95qi81gi~p8!Dt. ~4.17!

Finally, the momenta are evolved from their value at the
midpoint to the final value

pi9→pi-5pi91 f i~q9!
Dt

2
,

qi9→qi-5qi9 . ~4.18!

One can easily verify that these equations reproduce th
correct continuum evolution fromt to t1Dt up to errors of
order (Dt)3. Moreover, the algorithm has the very nice prop-
erty that all three steps above constitute a canonical transfo
mation and that it is reversible~in the sense that starting from
qi- , 2pi9 , up to roundoff errors one would end up exactly
with qi , 2pi). Because the physical solutions of interest ar
the time reversed processes of the ones we numerica
evolve, it is important that we use an algorithm that is re
versible. Another very nice feature of the algorithm is that
although the evolution of the variables is affected by error
of order (Dt)3, the energy of a harmonic oscillator, and
therefore of any system which can be decomposed into
linear superposition of harmonic oscillators, is conserved ex
actly ~always up to roundoff errors, but if one works as we
do in double precision, these are very small!. Since extract-
ing the asymptotic normal mode amplitudes is the heart o
our numerical approach, it is also important to have an algo
rithm that is well behaved in the linear regime. One fina
comment is in order. In a sequence of several iterations
the algorithm, after the momenta have been evolved by th
initial Dt/2, the first and third steps,~4.16! and ~4.18!, re-
spectively, can be combined into a single step, whereby th
momenta are evolved from the midpoint of one interval to
the midpoint of the next one ‘‘hopping over’’ the coordi-
nates, which are evolved from end point to end point. Thi
motivates the name assigned to the algorithm.

V. THE INITIAL CONFIGURATION: PERTURBATION
ABOUT THE SPHALERON

With a good grasp on numerical solutions of the equation
of motion, we can turn now to the second crucial componen
of the computation, namely, the parametrization of the initia
configuration. One could easily construct an initial state con
sisting of an incoming wave in the linear regime; however, i
would be very difficult to ensure that such a configuration
underwent a topology change during its subsequent evol
tion. Instead, it is much more convenient to parametrize th
initial state at or near the instant of topology change. Th
system is then allowed to evolve until the linear regime is
reached, at which point the particle number can be extracte
in the manner explained in the next section. The physica
process of interest is then the time reversed solution, whic
starts in the linear regime with a known particle number an
undergoes a change of topology at subsequent times.~In fact,
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it must be explicitly checked that the winding number of th
outgoing configuration is different from the incoming one
ensuring that the topology has changed, since the sys
could pass back over the sphaleron barrier and into the or
nal topological sector. We have found however that topolo
change does typically occur.!

Topology changing transitions within the spherical ansa
are characterized by the vanishing off at r50 and the van-
ishing ofx at nonzeror . The zero ofx is reminiscent of the
zero which characterizes the sphaleron of the Abelian Hig
model. However, as shown in Ref.@7#, it is the zero of the
Higgs field ~i.e., the zero off) which carries a deeper sig-
nificance and should be associated with the actual occurre
of the topological transition. For a sequence of configur
tions that pass directly through the sphaleron these two ze
occur at the same time. Nonetheless, this is not the m
general case and the zeros off andx need not occur simul-
taneously~although for a topological transition,both fields
will vanish sometime during their evolution! @15#. We are
free then to parametrize initial topology changing configur
tions imposing that eitherf vanish at the origin or thatx has
a zero at some nonzeror . It is convenient to choose the
latter, in which we parametrize the initial configuration i
terms of coefficientscn of some suitable expansion of the
fields and their conjugate momenta, constrained only by
boundary conditions and the requirement that the fieldx has
a zero at some nonzeror . Furthermore, we can use the re
sidual time independent gauge invariance to makex pure
imaginary at the initial time. The fieldf is only restricted to
obey the boundary conditions and does not necessarily v
ish at the origin~although it will vanish at the origin at some
instant in its evolution if the topology is to change!.

To be more specific, we parametrize each field as a~not
necessarily small! perturbation about the sphaleron given b
a linear combination of spherical Bessel functions with th
appropriate small-r behavior of~3.2!. We only need the first
three functions,

j 0~x!5
sinx

x
, ~5.1a!

j 1~x!5
sinx

x2
2
cosx

x
, ~5.1b!

j 2~x!5S 3x3 2
1

xD sinx2
3

x2
cosx, ~5.1c!

since j 0(x);1, j 1(x);x, and j 2(x);x2 at smallx. Moti-
vated by the boundary conditions~3.5!, we require the per-
turbation to vanish atr5L. We thus parametrize perturba
tions about the sphaleron in terms ofj nm(r )5 j n(anmr /L)
with n50, 1, or 2, whereanm are the zeros ofj n(x), i.e.,
j n(anm)50 with m51,2, . . . . Thefunctions j nm(r ) form a
complete set for everyn, and the small-r behavior deter-
mines the appropriate value ofn for each field. The reader
should note that the expansion of the starting configuration
terms of Bessel functions is largely a matter of convenien
This expansion is not related to the expansion of the fields
the linear regime~to be discussed in the next section!, and
any complete set of functions with the correct behavior
e
,
em
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r→0 can be used to parametrize a perturbation of the spha
ron localized in the neighborhood of the origin.

Recall that we must impose the boundary condition
a1,05a1 on the initial data~using continuum notation!. We
are working in thea050 gauge, but we still have the free-
dom to impose a time independent gauge transformation o
the starting configuration to seta50. Therefore,~3.2b! gives
a1(r );r 2 at smallr , and hencea1(r ) is expanded only in
terms of j 2(x). We are thus led to parametrize the initial
configuration by

x~r !5xsph~r !1 i (
m51

Nsph

c1mj 2m~r !, ~5.2a!

f~r !5fsph~r !1 (
m51

Nsph

c2mj 0m~r !1 i (
m51

Nsph

c3mj 1m~r !,

~5.2b!

px~r !5 (
m51

Nsph

c4mj 1m~r !1 i (
m51

Nsph

c5mj 2m~r !, ~5.2c!

pf~r !5F (
m51

Nsph

c6mj 0m~r !1 i (
m51

Nsph

c7mj 1m~r !G r 2,
~5.2d!

a1~r !5 (
m51

Nsph

c8mj 2m~r !, ~5.2e!

wherexsph5 i (2 f21) andfsph5 ih as in ~2.19!, and where
we have cut off the sums at someNsph<N. The most general
initial configuration is obtained withNsph5N, but to avoid
exciting short wavelength modes which only correspond t
lattice artifacts, we takeNsph,N/5 toN/10. This implies no
limitations on the physical properties of the system othe
than those coming from an ultraviolet cutoff~finite Dr ) any-
way, and as one expects this is borne out by numerical r
sults in which typical solutions excite only modes with
wavelength substantially larger than the lattice spacing. A
the dimension of the initial configuration space is 8Nsph, and
since the lattice we work with is rather large, to improve the
efficiency of our stochastic search we have take
Nsph;N/50 (Nsph550 for N52239).

To obtain the correct small-r behavior ofpf , we have
inserted an explicit factor ofr 2 in ~5.2d! because
pf5r 2]0f. The profile functionsf andh satisfy the bound-
ary conditionsf (0)5h(0)50 and f (L)5h(L)51, and will
be specified momentarily. For now it is sufficient to note tha
sincex(0)52 i andx(L)5 i , and sincex(r ) is pure imagi-
nary, it will necessarily have a zero for somer.0. Hence,
~5.2! specifies a configuration at the moment in whichx
vanishes. We should also point out that because of its larg
r behavior,~5.2! is expressed in a gauge in that is inconsis
tent with spatial compactification.

We have so far used continuum notation, but~5.2! is to be
understood as determining the configuration at the lattic
sitesr5r i for ~5.2a!–~5.2d! and atr5r i11/2 for ~5.2e!, i.e.,
x i5x(r i), pi5px(r i), f i5f(r i), p i5pf(r i), and
ai5a1(r i11/2). We have not yet specified the electric field,
but since the initial configuration must satisfy Gauss’ law we
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can determineEi by integrating~4.12! outward fromi50 to
i5N21. The value ofE0 must be given for this procedure
however. In the continuumE(r50)50, so one is tempted to
set E050. But since E0 lives on the first link at
r5r 1/25Dr /2, it is better to set

E05
Dr

2

j 01 j 1
2

5
Dr @ i ~p1* x12x1* p1!1 i ~p1*f12f1*p1!/2#

4
,

~5.3!
b

n

t
r

a
h
a

.

r

m
v

e

e

and then subsequent values ofEi for i51, . . . ,N21 can be
obtained by integrating~4.12!.

The sphaleronxsph, fsphof ~2.19! is parametrized by pro-
file functions f (r ) and h(r ) and is a saddle point of the
potential energy functional with one unstable direction. Th
direction involves an excitation of the two-dimensiona
gauge potentiala1 . Hence the sphaleron is an absolute mini
mum of the potential obtained from~4.11a! by dropping the
a1 terms~and all the momenta!. Using the method of conju-
gate gradients, with an initial guess forf andh that satisfies
the appropriate boundary conditions, we can obtain an e
tremely accurate approximation to the sphaleron by minimi
ing
Hsph/4p5 (
i50

N21 H ux i112x i u2

Dr 2
1r i11/2

2 uf i112f i u2

Dr 2
1
1

2
~ ux i u211!uf i u21Re~ ix i*f i

2!1lr i
2~ uf i u221!2J Dr

1 (
i51

N21
1

2r i
2 ~ ux i u221!2Dr ~5.4a!

5 (
i50

N21 H 4~ f i112 f i !
2

Dr 2
1r i11/2

2 ~hi112hi !
2

Dr 2
12~ f i21!2hi

21lr i
2~hi

221!2J Dr1 (
i51

N21
8

r i
2 f i

2~12 f i !
2Dr ,

~5.4b!
-

d

e

where we have used the boundary conditionf05Imf1 to
extend the sum onf in ~4.11a! to includei50. In our units
and withg51, the energy of the sphaleron is then given
esph/4p52.5426 forl50.1.

We are now in a position to numerically evolve perturb
tions about the sphaleron. Figure 5 illustrates the behavio
the x field for an initial configuration given by~5.2! with
c4,m5150.002 47 and all otherc parameters zero. This is i
fact the configuration from which we have chosen to seed
stochastic sampling procedure which we will describe in S
VII. We have found it very convenient and informative
use color to code the phase of the complex fields. Unfo
nately the illustrations in these pages cannot be reprodu
in color and we have tried to render the variation of the ph
with a gray scale. At some point a gauge transformation
been performed in Fig. 5 bringing the asymptotic linear st
into the sector of zero winding number~consistent with spa-
tial compactification!. The gauge transformation is mad
manifest by the sudden change of shading of the surface
have performed this gauge transformation because eve
ally we want to study the topology change of the time
versed solution~cf. Fig. 6!, and this is best done in a gaug
in which the asymptotic linear state has zero winding nu
ber. Moreover, the gauge transformation also serves to gi
graphic illustration of the gauge invariance of our procedu
which is made manifest by the fact that although the shad
~or color! of the surface changes, there is no discontinuity
the surface itself.

From Fig. 5 it is clear that the energy, which is conce
trated in the neighborhood ofr50, disperses and gives ris
to a pattern of outgoing waves. The waves soon beco
linear and possess a definite particle number, in this cas
y
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FIG. 5. Decay of a small perturbation about the sphaleron: evo
lution of thex field. The values of the phase of the complex field
are coded by different shades of gray, and the modulus of the fiel
by the height of the surface. As explained in the next section, the
asymptotic linear system has a particle number of order 53. Th
lattice parameters areN52239 andDr50.04 with a Higgs cou-
pling of l50.1. The initial configuration is given by~5.2! with
c4,150.002 47 being the only nonzero parameter. For a full color
figure see http://cthulu.bu.edu/;bobs/bviolate.html.
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order 53 physical particles~using units appropriate to the
standard model, which we will refer to as physical units!.

The physical process of interest is then the time rever
solution which starts in the linear regime with known partic
number, proceeds through the nonlinear sphaleron pertu
tion ~5.2! at intermediate times and finally linearizes on
again at late times. Because of time invariance of the eq
tions of motion, this process can be obtained by first evo
ing the perturbation~5.2! until the linear regime is reached
and then reversing the momenta and evolving that confi
ration forward in time. The resulting solution retraces t
evolution of the sphaleron decay, and then proceeds over
barrier into another topological sector. Since our numeri
strategy for obtaining asymptotically linear topology chan
ing solutions relies upon first evolving the sphaleron pert
bation, we shall refer to~5.2! as the ‘‘initial’’ state, while the
asymptotic linear states of the physical process will be ca
the ‘‘in’’ and ‘‘out’’ states.

Figure 6 represents a physical process obtained from
5 in the above manner, and it illustrates the evolution of
x field for a topology changing solution. The ‘‘initial’’ state
in Fig. 6, determined from~5.2! by the coefficientscn , cor-
responds to the time-slice half-way through the depicted e
lution. We have reverted to a gauge in which the bound
conditions arexN52 i and fN51, consistent with spatia
compactification, and in which the in state has no windi
and the out state has unit winding number. This process
resents an imploding spherical energy shell that conver
on the origin, where a change of topology takes place. T
topology change is indicated by the strip of rapidly varyin
tonality which persists in the neighborhood of the origin a
codes the variation of the 2p phase change ofx. With color,
this strip would appear as a vivid rainbow, left over as

FIG. 6. Topology changing transition: behavior of thex field
obtained from Fig. 5 by the time reversal procedure described in
text. The various shades of gray code the phase of the com
field. The field starts as an excitation about the trivial vacuu
passes over the sphaleron and then emerges as an excitation
the vacuum of unit winding. Note the persistent strip of 2p phase
change nearr50 after the wave bounces off the origin. For a fu
color figure see http://cthulu.bu.edu/;bobs/bviolate.html.
ed
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marker of the change of topology of the evolving fields.
It is important to keep in mind that an arbitrary configu-

ration ~5.2! does not necessarily produce a topology chang-
ing solution, in the sense that at late times the out state might
evolve back into the original topological sector. With our
parametrization~5.2!, however, we have found that the sys-
tem does in fact typically change topology. Nonetheless, us-
ing the time reversed procedure above we can always verify
whether the in and out states have the same topology, and i
so the initial configuration that produced them can be re-
jected@or equivalently, and more efficiently, we can evolve
the initial configuration~5.2! both forward and backward in
time and compare the asymptotic states obtained in this
way#.

We now have a procedure for constructing solutions
which, in the course of their evolution, undergo changes of
topology. By varying the values of the parameterscn we will
be able to study the properties of such field evolution and, in
particular, explore the domain of permissible values fore
and n. Before we can implement this procedure, however,
we must devise a way to calculate the particle number in the
asymptotic linear regime. In the next section we describe
how this can be done.

VI. NORMAL MODES

Given an initial configuration parametrized by the coeffi-
cientscn , we evolve the system until the linear regime is
reached, where the fields undergo small oscillations about a
vacuum configuration. The normal mode amplitudesan may
then be extracted and the particle number computed using
~1.2b!. We turn now to the problem of identifying the normal
modes.

Since we have put the field theoretic system of interest on
a spatial lattice, to be entirely consistent we should also solve
the normal mode problem on the lattice. The discrete prob-
lem, however, cannot be solved analytically and one must
resort to numerical methods. On the other hand, the normal
modes of the continuum system, even restricted to a box of
finite size L5NDr , can be found analytically. We have
solved the problem both numerically on the lattice and ana-
lytically in the continuum limit. The lattice we consider
(N52239 withDr50.04) is big enough that there is excel-
lent numerical agreement between the normal modes found
by the two methods~the difference between the normalized
modes never exceeds 1026), so we will present here only the
continuum solution.

Following Ref.@15#, we work in terms of gauge invariant
variables. We write the fieldsx andf in polar form

x52 ireiu ~6.1a!

f5seih. ~6.1b!

The variablesr and s are gauge invariant. We can also
define the gauge invariant angle

j5u22h. ~6.2!

Finally, in ~111! dimensions we can write

he
lex
,
bout

l
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r 2f mn522emnc, ~6.3!

wheree01511 andm, n run over 0 and 1. The variablec is
gauge invariant. Rather than working with the six gaug
variant degrees of freedomx, f, and am we use the four
gauge-invariant variablesr, s, c, and j. These variables
satisfy the equations@15#

]m]mr2
r@~1/4!r 2s2]mj1emn]nc#2

@r21~1/4!r 2s2#2
1

1

r 2
~r221!r

1
1

2
rs22

1

2
s2cosj50, ~6.4a!
e-

]mr
2]ms2

~1/4!r 2s~r2]mj2emn]nc!2

@r21~1/4!r 2s2#2
1
1

2
~r211!s

12lr 2~s221!s2rscosj50, ~6.4b!

]mH ]mc2r2emn]nj

r21~1/4!r 2s2 J 1
2

r 2
c50, ~6.4c!

]mH r2@~1/4!r 2s2]mj1emn]nc#

r21~1/4!r 2s2 J 1
1

2
rs2sinj50,

~6.4d!

where the indices run over 0 and 1 and are raised and low
ered with the metric1 hmn5diag(1,21), so that
]m]m5] t

22] r
2 . The energy takes the form
e54pE
0

`

drH ~] tr!21~] rr!21r 2~] ts!21r 2~] rs!21
~1/4!r 2s2r2

r21~1/4!r
2s2 @~] tj!21~] rj!2#1

1

r21~1/4!r 2s2 @~] tc!21~] rc!2#

1
2c2

r 2
1

1

2r 2
~r221!21

1

2
~r211!s22rs2cosj1lr 2~s221!2J , ~6.5!
m

n
s

e

and we see that the vacuum is given byrvac51, svac51,
cvac50, andjvac50.

We wish to consider small fluctuations about the vacuu
It is convenient to define shifted fieldsy andh by

r~r ,t !511y~r ,t !, ~6.6a!

s~r ,t !511
h~r ,t !

r
. ~6.6b!

Then to linear order inh, y, c, andj, ~6.4! becomes

~]m]m14l!h50, ~6.7a!

S ]m]m1
1

2
1

2

r 2D y50, ~6.7b!

]mH ]mc2emn]nj

11 ~1/4!r 2 J 1
2

r 2
c50, ~6.7c!

]mH 1
4 r

2]mj1emn]nc

11~1/4!r 2
J 1

1

2
j50. ~6.7d!

Equation~6.7a! corresponds to a pure Higgs field excita
tion characterized by massmH52Al, while ~6.7b!–~6.7d!
are the three gauge modes of massmW51/A2.2 To imple-
ment the boundary conditions~3.3!, we take the gauge-
invariant fieldsh, y, c, andj to vanish atr50. At r5L we

1The sign convention of the metric in this paper is opposite to th
of Ref. @15#.
2Upon restoring the factors ofg and the Higgs field vacuum ex-

pectation value v, these masses take the standard for
mH5A2lv andmW5(1/2)gv.
.

-

takeh, y, andj to vanish~consistent withx andf taking
their vacuum values there!. Ther5L boundary condition on
c is that] rc is zero (c cannot vanish at larger since it is
proportional to the time derivative of the gauge field!. We
wish to solve~6.7! subject to these boundary conditions, and
then extract the corresponding amplitudes.

Let us examine the four types of modes in turn. They ca
all be expressed in terms of the spherical Bessel function
~5.1!. Equation~6.7a! produces an eigenmode whose non-
vanishing components are of the form
hn(r ,t)5hn(r )cosv1nt, with

hn~r !5l1nr j 0~l1nr !N1n , ~6.8!

wherev1n5(4l1l1n
2 )1/2 andl1n5np/L for n51,2, . . . .

The parametersl1n have been chosen so thathn(L,t)50,
and the normalization constantsN1n are taken to be

N1n5F2LG1/2 ~6.9!

so that thehn(r ) are orthonormal over the interval@0,L#. To
extract these modes from a given solution we expand th
Higgs excitation as

h~r ,t !5(
n

Anhn~r !cosv1nt ~6.10!

with

An5H F E
0

L

drh~r ,t !hn~r !G21 1

v1n
2 F E

0

L

drḣ~r ,t !hn~r !G2J 1/2,
~6.11!

at

m
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where the dot denotes the time derivative. To find the as
ciated amplitudes, we consider the energy of a pureh exci-
tation. Using~6.5!, and the boundary conditions onh, the
quadratic energy is

Hh5E
0

L

dr$~] th!21~] rh!214lh2%. ~6.12!

Integrating the second term by parts and using the equa
of motion ~6.7a! we find

Hh54pE
0

L

dr$~] th!22h] t
2h% ~6.13a!

54p(
n

An
2v1n

2 . ~6.13b!

Hence, the modulus squared of the amplitudes for this fi
mode is

ua1nu254pAn
2v1n , ~6.14!

wherev1n5@4l1(x1n /L)
2#1/2, x1n5np with n51,2, . . .

and theAn are given by~6.11!.
Equation~6.7b! produces an eigenmode whose nonva

ishing components are of the formyn(r ,t)5yn(r )cosv2nt,
with

yn~r !5l2nr j 1~l2nr !N2n , ~6.15!

wherev2n5(1/21l2n
2 )1/2 and l2n[x2n /L, with x2n being

the positive solutions to tanx2n5x2n ~with this set of modes
and those that follow, we will label the normal modes sta
ing from n51). The parametersl2n have been chosen s
that yn(L,t)50, and the normalization constantsN2n are
taken to be

N2n5F 2

Lsin2x2n
G1/2 ~6.16!

so that theyn(r ) are orthonormal over@0,L#. To extract the
amplitudes from a given solution we first expand they exci-
tation as

y~r ,t !5(
n

Bnyn~r !cosv2nt ~6.17!

with

Bn5H F E
0

L

dry~r ,t !yn~r !G21 1

v2n
2 F E

0

L

drẏ~r ,t !yn~r !G2J 1/2.
~6.18!

Using ~6.5!, the quadratic energy of a purey excitation is

Hy5E
0

L

drH ~] ty!21~] ry!21
y2

2
1
2y2

r 2 J . ~6.19!

Integrating the second term by parts and using the equa
of motion ~6.7b! we find
so-

tion

rst

n-

rt-

tion

Hy54pE
0

L

dr$~] ty!22y] t
2y% ~6.20a!

54p(
n

Bn
2v2n

2 , ~6.20b!

Hence, the modulus squared of the amplitudes for the secon
mode is

ua2nu254pBn
2v2n , ~6.21!

wherev2n5@1/21(x2n /L)
2#1/2, with x2n being the positive

solutions of tanx2n5x2n , and where theBn are given by
~6.18!.

The remaining two modes are more involved since~6.7c!
and~6.7d! are two coupled equations forc andj. To disen-
tangle these modes, we first rewrite these equations as

] t
2c2] r

2c1
c

2
1
2c

r 2
1

2r

41r 2
@] rc1] tj#50,

~6.22a!

] t
2j2] r

2j1
j

2
1
2j

r 2
2

8

r ~41r 2!
@] rj1] tc#50.

~6.22b!

We now definez5r (] rc1] tj)/(41r 2), so that~6.22! may
be rewritten as

] t
2c2] r

2c1
c

2
1
2c

r 2
12z50, ~6.23a!

] t
2z2] r

2z1
z

2
1
2z

r 2
50. ~6.23b!

Equation~6.23a! follows directly from ~6.22a! and the defi-
nition of z, while ~6.23b! is derived as follows. First, take a
time derivative of ~6.22b!. This gives a] t

2c term in the
square brackets, which may be eliminated using~6.23a! to
give

] t
2j̇2] r

2j̇1
j̇

2
1
2j̇

r 2
2

8

r ~41r 2!
@] r j̇1] rc822z#1

4c

r 3
50,

~6.24!

where the dot and prime denote time and space derivatives
respectively. We have written] t

2j̇ rather than] t
3j, ] rc8

rather than] r
2c, etc., for future convenience. Taking a spa-

tial derivative of~6.23a! gives

] t
2c82] r

2c81
c8

2
1
2c8

r 2
2
4c

r 3
12z850. ~6.25!

Adding ~6.24! and ~6.25!, and using j̇1c85(41r 2)z/r
gives ~6.23b!.

These normal modes fall into two classes, one in which
z50 and another in whichz is nonvanishing. In the former
case, ~6.23a! may be solved forc. We may then use
] tj1] rc50 to solve forj. Thus, mode three takes the form
c3n(r ,t)5c3n(r )sinv3nt and j3n(r ,t)5j3n(r )cosv3nt, and
after some algebra we find
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c3n~r !5l3nr j 1~l3nr !N3n , ~6.26a!

j3n~r !5
l3n

v3n
@2 j 1~l3nr !2l3nr j 2~l3nr !#N3n ,

~6.26b!

wherev3n5(1/21l3n
2 )1/2 and l3n[x3n /L, with x3n being

the positive solutions to tanx3n5x3n /(12x3n
2 ). The param-

etersl3n have been chosen so thatj3n(L,t)50 @since z
vanishes, this automatically ensures that] rc3n(L,t)50#.
The normalization constantsN3n will be chosen below to
ensure a convenient orthonormality relation for thec3n(r )
andj3n(r ).

We turn now to the other class of modes in whichz is
nonvanishing. We can first solve~6.23b! for z, and then
solve ~6.23a! for c treatingz as a source. Then, using the
definition of z, we can solve for j. Again, writing
c4n(r ,t)5c4n(r )sinv4nt and j4n(r ,t)5j4n(r )cosv4nt, we
find

c4n~r !5
r

l4n
2 @2 j 1~l4nr !2l4nr j 0~l4nr !#N4n ,

~6.27a!

j4n~r !5
1

l4n
2 v4n

@22l4nr j 0~l4nr !14~12l4n
2 ! j 1~l4nr !

22l4nr j 2~l4nr !#N4n , ~6.27b!
wherev4n5(1/21l4n
2 )1/2 and l4n[x4n /L, with x4n being

the positive solutions to tanx4n5x4n . The parametersl4n
have been chosen so thatj4n(L,t)50 and ] rc4n(L,t)50,
and the normalization constantsN4n will be chosen below.

We expand thec-j excitation as

c~r ,t !5 (
j53,4

(
n

Cjnc jn~r !sinv jnt, ~6.28a!

j~r ,t !5 (
j53,4

(
n

Cjnj jn~r !cosv jnt. ~6.28b!

Choosing the normalization constants

N3n5F ~22x3n
2 !sin2x3n
2Lx3n

4 1
x3n
4 2x3n

2 22

2Lx3n
2 G21/2

,

~6.29a!

N4n5FL3~2x4n6 1L2!sin2x4n
x4n
8 1

L5~x4n
2 21!

x4n
6 G21/2

,

~6.29b!

the modes satisfy the orthonormality relations
E
0

L

drH r 2

41r 2
v jnj jn~r !vkmjkm~r !1

4

41r 2
] rc jn~r !] rckm~r !1

2

r 2
c jn~r !ckm~r !J 5dnmd jk , ~6.30a!

E
0

L

drH 4

41r 2
v jnc jn~r !vkmckm~r !1

r 2

41r 2
] rj jn~r !] rjkm~r !1

1

2
j jn~r !jkm~r !J 5dnmd jk . ~6.30b!

Using ~6.30! in ~6.28!, the overlap coefficientsCjn become

Cjn5H F E
0

L

drS 2v jn

r 2

41r 2
] tj~r ,t !j jn~r !1

4

41r 2
] rc~r ,t !] rc jn~r !1

2

r 2
c~r ,t !c jn~r ! D G2

1F E
0

L

drS v jn

4

41r 2
] tc~r ,t !c jn~r !1

r 2

41r 2
] rj~r ,t !] rj jn~r !1

1

2
j~r ,t !j jn~r ! D G2J 1/2. ~6.31!

To extract the amplitudes, consider a purec-j excitation. Using~6.5!, the quadratic energy is given by

Hjc54pE
0

L

drH r 2

41r 2
@ j̇21j82#1

4

41r 2
@ċ21c82#1

2c2

r 2
1

j2

2 J ~6.32a!

54p (
j53,4

(
n

Cjn
2 , ~6.32b!
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hence

uajnu254p
Cjn
2

v jn
, j53,4. ~6.33!

Even though we have solved the normal mode proble
analytically in the continuum, the amplitudesuajnu2 will be
extracted using discrete numerical solutions. This is justifi
by the large size of our lattice:N52239,Dr50.04 ~with
l50.1).

For computational purposes it is important to note th
strictly speaking, completeness sums involve all norm
modes, but in a physically meaningful situation they will b
saturated well before the normal mode indices reach
maximum valueN. The highest normal modes indeed corr
spond to artifacts of the discretization. Thus, to avoid unne
essary computational burdens, we will place a cuto
Nmode;N/5 to N/10 on the number of normal modes an
calculate the Higgs and gauge boson particle numbers a

nHiggs5 (
n51

Nmode

ua1nu2, ~6.34a!

ngauge5 (
n51

Nmode

$ua2nu21ua3nu21ua4nu2%. ~6.34b!

The total particle number is given by

n5nHiggs1ngauge. ~6.35!

We have verified that our results are insensitive to this c
off, which means that short wavelength modes comparable
the lattice spacing are not excited in any appreciable mann
One should also note that our procedure for calculating
particle number is obviously gauge invariant~as it should be!
since it makes use of an expansion into normal modes
gauge-invariant variables.

In Fig. 7 we display the behavior of the particle number

FIG. 7. Decay of a small perturbation about the sphaleron: b
havior of the particle number in the four normal modes of oscill
tion of the linearized system as function of time for lattice param
eters N52239, Dr50.04, and Nmode5200 with l50.1. The
physical particle numbers are obtained by multiplying the asym
totic values in the graph by 4p/g2;30, which givesNHiggs;8 and
Ngauge;45, for a total physical particle number ofNphys;53.
m

d

t,
al

he
-
c-
ff

t-
to
er.
he

of

n

the four normal modes of oscillation as function of time. The
initial state is the small perturbation about the sphaleron i
Fig. 5, which gives rise to outgoing spherical waves as th
configuration decays. This is the state from which we sta
the stochastic sampling procedure described in the next se
tion. Since the energy density is distributed over an expan
ing shell, the system quickly approaches the linear regim
This is apparent from Fig. 7 where, after an initial transition
period in which the particle numbers of the four modes ar
not constant, they settle to values which are reasonably co
stant in time. We take this as evidence that the system h
indeed reached an asymptotic linear regime where one c
define a conserved particle number.

There are two additional quantities that are useful in mea
suring the extent of linearity, namely, the spectral energ
espec and the linearized energye lin . The spectral energy is
defined as the sum over normal mode energies,

espec5 (
n51

Nmode

$v1nua1nu21v2nua2nu21v3nua3nu21v4nua4nu2%,

~6.36!

while the linearized energy is defined by integrating the en
ergy density in~6.5! expanded to second order in a pertur-
bation about the vacuum,

e lin54pE
0

`

drH ~] ty!21~] ry!21
2y2

r 2
1
y2

2
1~] th!2

1~] rh!214lh21
r 2

41r 2
@~] tj!21~] rj!2#1

j2

2

1
4

41r 2
@~] tc!21~] rc!2#1

2c2

r 2 J .
Both the spectral and linear energies are gauge invaria
since they have been defined using gauge-invariant quan
ties. If the system linearizes, then bothespecande lin should
be close to the conserved total energye, which is given by
the integral~6.5! @or in terms of gauge-variant variables by
~3.7!#. The total energy of the configuration in Fig. 7 is given
by e/4p52.5447, while the asymptotic spectral and linea
energies are given by espec/4p52.5679 and
e lin /4p52.5685, and we see that the system has linearize
to within one percent.~We also see that the sum over the
energies of individual modes, although cut off atNmode, es-
sentially accounts for all the linearized energy.!

We can also investigate the mode distribution by examin
ing the amplitudesuajnu2 as a function of mode numbern.
As the system linearizes and the particle number becom
well defined, the mode distribution also becomes constant
time. Figure 8 illustrates the distribution of the asymptotic
linear state of Figs. 5 and 7. Note that the population of th
system is heavily weighted towards low lying modes. The
mode cutoff used in calculating the particle number wa
Nmode5200, and we see that modes greater than abo
n5150 are not populated to any appreciable extent. Th
mode distributions are heavily peaked nearnpk;50, which
corresponds to a frequency ofvpk;npkp/L;0.1. The per-
turbation about the sphaleron of Figs. 5 and 7 decays in
about 50 rather soft particles~in physical units!, each one of

e-
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comparable energy. Finally, we point out that the mode d
tribution is gauge invariant as well.

VII. STOCHASTIC SAMPLING OF INITIAL
CONFIGURATIONS

As we have discussed, our goal is to find the region in
e-n plane spanned by all topology changing classical so
tions. More specifically, we would like to find the lowe
boundary of this region. The tools we have at our dispo
allow us to vary the coefficientscn of ~5.2!, which defines
the system as it passes over the sphaleron barrier, an
calculate the corresponding energye and incoming particle
numbern. From the computational point of view,e and n
can be considered as known functions~albeit laboriously ob-
tained! of the variablescn . We would then like to find

n lower~e!5Min$cn, fixed e%n. ~7.1!

The particle numbern may have several local minima
since it is a highly nonlinear function of the variablescn ,
and a straightforward constrained minimization procedu
such as a conjugate gradient technique, could fail to rev
the absolute minimum ofn at a givene. We therefore de-
cided to solve the problem using stochastic sampling. S
chastic sampling methods, driven by suitable weight fu
tions and in combination with annealing techniques, ha
indeed proven very effective in exploring the overall stru
ture of complicated surfaces and in approximating their g
bal minima.

Our procedure consists in generating ‘‘configurations’’
the system weighted by a function

W5exp~2F !, ~7.2!

with

F5be2mn. ~7.3!

By ‘‘configuration’’ we mean simply the collection of vari
ablescn , which determine the whole evolution of the sy
tem. Sincee andn are functions ofcn , the weight given by
~7.2! and ~7.3! is also a function ofcn and defines a prob-
ability distribution

FIG. 8. Mode distribution for the asymptotic state of Figs. 5 a
7. This distribution is gauge invariant, and shows that all the p
ticle are rather soft and comparable in energy.
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dP5Z21)
n

dcnW~cn!. ~7.4!

We will generate topology changing configurations distrib
uted according to~7.4!. Clearly, by taking large values for
the parametersb and m we will drive the distribution
strongly towards the lower boundary in the space of all to
pology changing solutions. By using different ratiosm/b we
will be able to drive the distribution in a different direction
and thus follow the lower envelope of the region, while tem
porarily lowering the values ofm and/orb will allow us to
anneal the distribution. We will typically takeb between
50 and 1000 whilem will range between 1000 and 20 000.

To generate the desired distribution we have used a m
tropolis Monte Carlo algorithm. Starting from a definite con-
figurationcn , we randomly select one of the variablesci and
perform a variationci→ci85ci1Dci ~in our computation,
theDci are Gaussian distributed with a mean of 0.0008!. The
system is evolved backward and forward in time and w
calculate the energy, in-state particle number, and change
winding number. If the winding number does not change, w
proceed to vary another of the variablescn . If the topology
changes, we evaluateDF5bDe1mDn and the new value
ci8 is accepted with conditional probability
p5Min@1,exp(2DF)#. Specifically, we generate a pseudo-
random numberr uniformly distributed between 0 and 1,
and if r<exp(2DF) the change is accepted and the new
value ci8 replaces the old one. Otherwise, ifr.exp(2DF)
the old value is kept and we select another of the variable
cn for a possible upgrade.~We should note here that when
the winding number changes, even if the trial valueci8 is
rejected, we still record its value and the corresponding va
ues ofe andn, since they do correspond to a possible topol
ogy changing evolution.!

It must be emphasized that although our algorithm gene
ates a distribution of topology changing solutions of the
equations of motion, this distribution represents only a com
putational device and carries no special physical signifi
cance. Indeed, the probability measure~7.4! is based on the
arbitrary choice of variablescn and no Jacobian factor of any
kind has been introduced. It would be possible to define
measure which represents a physically meaningful distribu
tion, and our notationb andm for the weights ofe andn has
been inspired by the analogy with a grand canonical en
semble. But still, in the present context, there is no reason f
defining any particular physically meaningful measure an
no justification for the attached computational costs.

Figure 9 illustrates the results of our Monte Carlo inves
tigation. It represents about 300 hours of CPU time on
16-node partition of a CM-5. We generated approximatel
30 000 configurations of which approximately 3000 repre
sentatives are plotted in the figure. We have chosen lattic
parametersN52239 andDr50.04, for a lattice of size
L589.56. We have used a cutoffNmode5200 on the sums
over the modes, and the dimension of the initial configura
tion space over which we have sampled is determined b
Nsph550. We have taken the Higgs self-coupling to be
l50.1, which in lattice units corresponds to a mass of abou
mH5(40Dr )21, or a physical mass ofmH5110 GeV. As
one can see, our lattice is sufficiently dense that there a
many lattice sites within a single Higgs Compton wave
length.
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It is apparent from Fig. 9 that our search procedure
effective in reducing the particle number and in exploring
lower boundary of the space of topology changing class
solutions. The complex nature of this space~or at least of our
search procedure! is also apparent from the figure, in that o
can clearly observe two breaks in the outline of the low
boundary ate/4p;3 ande/4p;3.4. The reason for the dis
continuity is that in a first extended search we did not ve
that every individual solution changed topology~performing
this check is costly in computer time!, trusting that topology
change would be the typical outcome of an evolution wh
passes over the sphaleron barrier. A subsequent analys
vealed however that for a whole subset of our configurati
comprised betweene/4p;3 and e/4p;3.4, the topology
did not change: the system went over the sphaleron barr
second time in the reversed direction and returned to
original topological sector. We discarded all these confi
rations and verified that the topology changed in all the
maining ones. We then implemented the check for topol
change at every Monte Carlo step and restarted our sam
procedure by annealing a topology changing configura
obtained fore/4p;3. This second search produced the se
configurations which stand out at slightly lowern between
e/4p;3 ande/4p;3.4.

Our search procedure not only leads to classical solut
with lower particle number, but is effective in selecting co
figurations with special properties in the in state~these two
features of course go hand in hand!. In Fig. 10 we illustrate
the entire evolution for one of the topology changing p
cesses with low particle number, corresponding to one o
points at the bottom-right corner of the plot in Fig. 9. Figu
10 should be contrasted with Fig. 6 in which the evolution
our Monte Carlo seed configuration is illustrated. The cha
is dramatic. The in and out states in Fig. 6 look rather s
metric, up to the topology change of the out state conc

FIG. 9. Monte Carlo results with lattice parameters
N52239,Dr50.04 ~giving L589.56!, Nmode5200, andNsph550,
and with a Higgs self-coupling ofl50.1. The solid line marks th
sphaleron energyesph54p(2.5426), below which no topolog
changing process can lie. The diamond represents the configu
from which we seeded our Monte Carlo search. To obtain quan
in physical units, multiply the numbers along the axes
4p/g2;30. The energy axis extends from about 10 TeV to 15 T
while the particle number axis ranges from about 30 particle
60.
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trated about the origin. The particle numbers of the in an
out states are about the same and of order 50 in physic
units (n i /4p51.747 andno /4p51.750, respectively!. Fig-
ure 9 shows that after many Monte Carlo iterations we hav
managed to filter initial configurationscn so that the in-state
particle numbers are about 40% lower (n i /4p;1.10), and
from Fig. 10 it is apparent that the in states are now muc
different from the out states. The former are narrow with the
spectrum shifted towards shorter wavelengths, while the ou
going states still display the broad long-range waves seen
both ends of the evolution in Fig. 6. Indeed, the particle
number in the out state remains high.

More details of the configurations selected by our sam
pling procedure are revealed by Figs. 11 and 12. Figure 1
illustrates the behavior of the particle numbers associate
with the four normal modes for the initial configurationcn

of

ation
ties
by
V,
to

FIG. 10. Topology changing transition obtained after many
Monte Carlo iterations: behavior of thex field. For a full color
figure see http://cthulu.bu.edu/;bobs/bviolate.html.

FIG. 11. Behavior of the in-state particle number in the four
normal modes. The initial state was obtained after many Mont
Carlo iterations, and soon linearizes. Note, however, that mode
remains about 10% nonlinear.
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used to generate Fig. 10. The asymptotic particle numbers
Fig. 11 are associated with the in state of the physica
relevant time reversed solution of Fig. 10. Figure 12 illus
trates the mode distribution of this in state. These figur
should be contrasted with Figs. 7 and 8 which display th
same quantities at the beginning of our search. The chang
again very impressive. In particular, it is clear that the st
chastic sampling procedure has selected classical soluti
where the mode distribution in the in states is shifted towar
higher frequencies and shorter wavelengths. Of course, t
is necessary for a reduction of the ration/e.

Although our results show a marked decrease in the p
ticle number of the incoming state, nowhere in the energ
range we have explored doesn drop below 4p, or in physi-
cal unitsNphys*30 forE& 15 TeV. This is a far cry from the
valueNphys52 which would be needed to argue that baryo
number violation can occur in a high energy collision. From
this point of view our present results are limited and shou
be pushed to much higher values ofe. In the next section we
will make some comments about our future plans to explo
higher energies and discuss other investigations which c
shed further light on the properties of the system. As of no
the computational resources at our disposal, together with
rather ambitious number of points we have used for our n
merical study, have not permitted us to go beyond the ener
range we have explored. We believe that our results, as w
as the formalism we have established, are nevertheless in
esting enough to warrant publication. In some respect, t
choice of a number of points as large as our curre
N52239 has been an error of strategy. In a preliminary i
vestigation, described in@16#, we had usedN5256. The

FIG. 12. Mode distribution of the asymptotic in state of Fig. 11
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number of points in the lattice determines of course the u
traviolet cutoff and this in turn implies a minimum value fo
the ration/e. This quantity is indeed minimized by placing
all the weight in the highest modeNmode, giving
(n/e)min51/vmode;L/Nmodep. With N5256 points we saw
the onset of this constraint, and we decided to choose a
tice size that would push the lower limit onn/e to a much
smaller value closer to the physically relevant domain. Wi
the parameters of our present calculation, the minimu
would occur at (n/e)min;0.15. However, the increased com
putational burden, together with the fact that the stochas
sampling moved in thee-n plane at a much slower rate than
we had anticipated, prevented us from saturating this low
bound.

It is still interesting to extrapolate our results to obtai
information about the possible behavior of the boundary
the e-n plane of topology changing solutions. For this pur
pose we binned all our data into subintervals of widt
De50.005. Within every bin we selected the point with low
estn. We then fitted these points to the hyperbola

~n2ae2c1!~n2n`!5c2 , ~7.5!

wherea andn` are the free parameters of the fit. The quan
tities c1 and c2 ~which are constants with respect ton and
e but depend on a and n`) are given by
c152nsph2aesph2n` and c252(nsph2n`)

2, where
esph52.5447 andnsph51.7478 are the energy and particle
number in the limiting case in which the configuration ap
proaches the sphaleron itself~in practice thee andn of the
configuration from which we started the Monte Carl
search!.

This fit is motivated by simple physical considerations
We would expect the lower boundary of the region of topo
ogy changing transitions to saturate either atn50 or at some
finite value of n. The boundary of the domain must go
through the sphaleron and should have an infinite slo
there. Indeed, since the topology changing classical solutio
become complex whene decreases belowesph, one would
expect the boundary curven5n(e) to have a square root
singularity ate5esph. Finally, although the upper boundary
of the region is of little interest to us, it is not unreasonab
to parametrize it in terms of a straight line of constant slop
This is the line one would find if the upper bound wer
obtained by putting all the energy in a single mode of fre
quencyv ~in which case the slopea51/v), or since this is
unrealistic, if the the mode distribution could be well ap
proximated in terms of some effective frequencyveff51/a.
The hyperbola of~7.5! is the simplest curve with all these
properties.

The results of our fits are shown in Figs. 13 and 14.
Fig. 13 all the data points have been used, and the solid l
represents the unconstrained fit while the dashed line is
tained by requiringn`50. Since one can argue that wha
ought to be fit is the lower boundary of the region, and th
insofar as our points display a slight discontinuity and cann
all belong to this boundary, we have repeated the fit remo
ing all the points which lie above the unconstrained fit in Fig
13. The results of this second fit are reproduced in Fig. 1
For Fig. 13, the unconstrained fit has parametersa50.257
and n`520.294 while the constrained fit hasa50.319.



t
n
u

i

n

n

ly

ts
e
e

t
-
-

-

e

r
e

0,

e

.
al

d

l-
y
.
r
-
,
le-

s

e

l

54 1041COMPUTATIONAL STUDY OF BARYON NUMBER VIOLATION . . .
Figure 14 has the parametersa50.238,n`520.530 and
a50.341, respectively, for the unconstrained and co
strained fits.

It is interesting to observe that the unconstrained fits le
to an asymptotic value forn smaller than zero, which shows
that one cannot read any indication of a lower bound on
particle number in our present data. Our results cover a ra
of energies which is too small to derive any reliable concl
sion about whether and when the particle number cou
reach the value two. One can nevertheless insert phys
units in the results of our fits and see at what energy valu
the incident particle number would become equal to tw
This simple exercise gives energies of 110.37 TeV a
447.20 TeV, respectively, for the unconstrained and co
strained fits of Fig. 13, and energies of 75.06 TeV a
418.61 TeV for the corresponding fits of Fig. 14.

We conclude this section with a few technical remark
Since our entire procedure is based on the calculation of
particle number after the system has reached the linear
gime, we should make sure this quantity is evaluated in
reliable manner. Now, it is clear from the graphs of Figs.

FIG. 13. Hyperbolic fits to full data set. The asymptotic partic
number is constrained to vanish for the dashed line, while it rema
unconstrained for the solid line.

FIG. 14. Same as Fig. 13, except the data set was reduced
those points lying above the previous unconstrained fit.
n-

ad

he
ge
-
ld
cal
es
o.
d
n-
d

s.
the
re-
a
7

and 11 that, while the particle number becomes reasonab
constant towards the end of the evolution, it still exhibits
oscillations possibly as large as 10%. This might cast doub
on the validity of our stochastic sampling technique, wher
the steps in initial parameter space induce variations of th
particle number as small as 1024. The solution we have
adopted is to define a ‘‘computational particle number’’nc
~which is the quantity represented in Fig. 9!. With a lattice of
infinite spatial extent, even in the presence of an ultraviole
cutoff arising from finite lattice spacing, and barring the ex
istence of conservation laws giving rise to particle phenom
ena, the system will eventually linearize fully and the true
particle numbern will be well defined and constant to any
degree of precision. Since we begin with an initial state lo
calized around the origin, we may conceptually think of this
as being defined over an infinite lattice, although in practic
we use a lattice of finite extent. Thus, every initial configu-
ration cn conceptually determines a unique particle numbe
n. This may not be accessible to us, but it exists. We defin
a quantitync which we can measure as follows: we evolve
the system for a definite amount of timeT0 and then for an
additional timeDT ~in our calculationT0560 andDT58).
Over the intervalT0 ,T01DT we measure the particle num-
ber at timesTi5T0 , . . . ,Tm chosen at random~in our calcu-
lation we takem510 and chooseT1 throughT10 to be 61.55,
62.51, 63.27, 63.70, 64.77, 65.25, 65.33, 65.71, 66.59, 68.0
respectively!, but fixed for the entire calculation. The com-
putational particle numbernc is defined as the average of the
particle numbers measured atTi . Again,nc is a well-defined
function of the parameterscn , and uniquely determined by
this initial configuration. The crucial point is thatnc tracks.
The quantitiesn and nc may differ by as much as 10%;
however, if we reducenc by a certain factor, we can be
confident that the true particle numbern has also been re-
duced by the same factor, up to a relative error given by th
approximation by whichnc tracks n. Finally, we should
make sure thatnc is, computationally, a well-behaved func-
tion of the parameterscn , i.e., that the functional relation
between the chosencn and the measured value ofnc is not
spoiled by numerical errors. This we have verified explicitly
On a sample configuration we have stepped every individu
parametercn by values an order of magnitude smaller than
the typical steps in our stochastic sampling procedure an
have verified that the corresponding changes innc are regu-
lar and well accounted for by the first few terms of a Taylor
series expansion inDcn .

VIII. CONCLUSIONS

We have developed a computational procedure that a
lows us to explore the space of classically allowed topolog
changing transitions leading to baryon number violation
With our method we have been able to trace the lowe
boundary of the region spanned by topology changing evo
lution in the energy versus incoming particle number plane
up to energies approximately one and a half times the spha
ron energy and with a reduction of the incoming particle
number by approximately 40%. The corresponding solution
display dramatically different features in their incoming state
from the solution used to seed the Monte Carlo search~in
which there was just barely enough energy to cross th
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sphaleron barrier!, one of the most notable differences be
a marked shift of the in-state spectral mode distribution
wards higher frequencies and shorter wavelengths. W
the domain we have explored there is no indication o
emergent lower limit on the particle number of the incom
state. Indeed, a hyperbola fit to our data, motivated by
expected physical properties of the boundary of the dom
of topology changing evolution, is quite compatible with
zero lower bound on the incoming particle number.

Our results are unfortunately rather limited in the ex
of energy and particle number which we have been ab
explore. However impressive may be the change in the p
erties of the solutions spanned by our search, the fac
mains that the lowest particle number we have been ab
reach is, in physical units, approximately 30. An even m
serious shortcoming of our results is that our method
only establish an upper bound on the minimum particle n
ber at any given energy: when our search produces a t
ogy changing solution of givene and n, it establishes b
construction that the lower boundary of the classically
lowed transitions cannot lie above that point, but we ca
rule out that it might lie substantially below and that
stochastic search simply failed to come close to it.

However, the mere fact that the analytically intracta
nonlinear equations of motion are amenable to a reli
computational solution is, we believe, a very important
sult, perhaps the most important fact emerging from
analysis. By solution, we mean much more than just
implementation of a numerical integration algorithm of
evolution equations. Our study makes it clear that a w
range of detailed questions about the entire space of
tions can be tackled and solved by computational mean

The results we have established thus far naturally lea
further investigation. By investing more computational
sources it will be straightforward to extend the exploratio
substantially larger energies. However, one can do more
that. The detailed information obtained about the spe
composition of the incoming states with low particle num
suggests that one may explore the properties of such
directly. For instance, one could try to shift the mode dis
bution further towards shorter range, while verifying that
ensuing evolution still changes topology. This runs some
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against our original notion that it would be very difficult to
start from the selection of the incoming state and still obtai
a topology changing solution, but now we are no longer dea
ing with a blind sampling of incident states. From this poin
of view we find very inspiring some recent results obtained
by Farhi, Goldstone, Lue, and Rajagopal who, in a study o
collision induced soliton decay, were able to produce th
‘‘unwinding’’ of the soliton and its subsequent decay by di-
recting against it waves which carry a short range twist of th
phase of the complex field~we refer to the original work of
Ref. @17# for an elucidation of this possibly cryptic sentence!.
It is interesting that in computer animation which we gener
ated to clarify the properties of the evolution, we have see
analogous twists in the phase of the two-dimensional fiel
x in the asymptotic states. Of course one must be careful
defining effects which pertain to gauge-variant quantities
but a careful study of the properties of the asymptotic state
may provide important clues for understanding the mecha
nisms leading to classically allowed transitions with low in-
coming particle number.

Finally, a complementary approach to the study of class
cally allowed transitions consists in studying the classicall
forbidden processes. As we have already mentioned in th
Introduction, a very powerful formalism for the study of
such processes has been established in Ref.@6# and applied
recently in Ref.@18# to the study of collision induced decay
of the false vacuum. The method of Ref.@6# requires that one
solves analytically continued equations of motion along
suitable contour in the complex time plane and that one im
poses boundary conditions based on the normal mode expa
sion of the fields in the linearized domain. Thus a large pa
of the formalism we have developed in this paper will carry
over to the study of classically forbidden processes, and w
plan to make this the subject of a future investigation.
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