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Computational study of baryon number violation in high energy electroweak collisions
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We use semiclassical methods to study processes which give rise to change of topology and therefore to
baryon number violation in the standard model. We consider classically allowed processes, i.e., energies above
the sphaleron barrier. We develop a computational procedure that allows us to solve the Yang-Mills equations
of motion for spherically symmetric configurations and to identify the particle numbers of the in and out states.
A stochastic sampling technique is then used to map the region spanned by the topology changing solutions in
the energy versus incoming particle number plane and, in particular, to determine its lower boundary. A lower
boundary which approaches small particle number would be a strong indication that baryon number violation
would occur in high energy collisions, whereas a lower asymptote at large particle number would be evidence
of the contrary. With our method and the computational resources we have had at our disposal, we have been
able to determine the lower boundary up to energies approximately equal to one and a half times the sphaleron
energy and observed a 40% decrease in particle number with no sign of the particle humber leveling off.
However encouraging this may be, the decrease in incoming particle number is only from 50 particles down to
approximately 30. Nevertheless, the formalism we have established will make it possible to extend the scope
of this investigation and also to study processes in the classically forbidden region, which we plan to do in the
future.[S0556-282(96)02511-§

PACS numbg(s): 11.15.Ex, 11.15.Kc

[. INTRODUCTION to a compensation of the exponential suppression for ener-
gies approaching the energy of the barrier, i.e., the sphaleron
Since the pioneering work of 't Hooffl] it has been energyEgy,. Intuitively, one might expect suppression of
known that the axial vector anomaly implies that baryontunneling to become much less severe as the energy ap-
number is not conserved in processes which change the tgroaches the energy of the barrier, in particular, one might
pology of the gauge fields. Baryon number violating ampli-expect it to disappear altogether f&>Egy,, i.e., in the
tudes are nonperturbative and viable methods of calculatiofegion where the topology changing processes are classically
are scarce. The two primary methods of obtaining nonpertura”OWGd. Investigations have indeed confirmed that this is
bative information in quantum field theory are either semi-precisely what happens in high temperature electroweak pro-
classical techniques or direct lattice simulations of the quancesseg5]: as the temperature approachgg, (which is in
tum fluctuations. Theories with small coupling constants ardact temperature dependent for a thermal plgsntae
not suited for the latter, so the electroweak sector of thdarrier-penetration suppression factor becomes progressively
standard model lies beyond the reach of direct lattice calculess pronounced, and electroweak baryon number violation
lations. This means that semiclassical methods presently obecomes unsuppressed altogether above the critical tempera-
fer the only way to study baryon number violating elec-ture. The situation is, however, much less clear for high en-
troweak processes. ergy collisions and it would be premature to conclude that
Electroweak baryon number violation is associated withbaryon number violation can occur with a non-negligible
topology change of the gauge fields. Classically, gauge fiel@mplitude. Phase space considerations are more subtle and
configurations with different topologyi.e., differing by a  simply because one has enough energy to pass over the bar-
topologically nontrivial gauge transformatipare separated rier does not guarantee that one does so. The problem is that
by an energy barrier. Théunstable static solution of the in high energy collisions the incident state is an exclusive
classical equations of motion which lies at the top of thetwo-particle state, which is difficult to incorporate in a semi-
energy barrier is called the sphalerd]. At energies lower classical treatment of the transition amplitude.
than the sphaleron energy, topology changing transitions, A possible remedy to this situation has recently been pro-
and hence baryon number violation, can only occur via quanPosed by Rubakov, Son, and Tinyakp® who suggested
tum mechanical tunneling. At zero temperature and low enthat one consider incident coherent states, but constrained so
ergy the tunneling rate can be reliably calculated and is exthat energy and particle number take fixed average values
ponentially small. A few years ago, however, Ringwgi
and Espinosd4] noticed that a summation of the semiclas-
sical amplitudes over final states gives rise to factors which E= iz (1.1
increase very rapidly with increasing energy. This may lead g
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In the limit g— 0, with € and » held fixed, the path integrals tions. In terms of the frequenciaes, and amplitudes,, of

giving the transition amplitudes are then dominated by dhese oscillators the energy and particle numbefldl) are

saddle point configuration which solves the classical equagiven by

tions of motion. This permits a semiclassical calculation of

the transition rates. Information on high energy collision pro- e= 2 PRENES (1.29

cesses with small numbers of incident particles can then be

obtained from the limitv—0. While this limit does not

strictly reproduce the exclusive two-particle incoming state, V=E ENE (1.2H

under some reasonable assumptions of continuity it can be roo

argued that the corresponding transition rates will be equally

suppressed or unsuppressed. and we see.that for typical classical evolution the. energy
When the energy is below the sphaleron barrier the sem@nd the particle numbeng and v, of the asymptotic incom-

classical paths that dominate the functional integral in Refind and outgoing states are well defingtle energy is of

[6] must be complex fof1.1) to be satisfied. Finding such course conserved and WeII_ defined even in th_e_ nonh_near re-

solutions is a formidable analytic problem, but one that isdiMe: although no longer given g.2a]. In addition, since

well suited to numerical study. The numerical evolution::]emﬂbmcrjs a;)?;oarc;r;nvau#ém V;’:llu?ans t%:f:c’rtht? \;]vmdlrng |
naturally divides into two regimes. There is a purely Euclid- umbers of incoming and outgoing contigurations are aiso

ean evolution, corresponding to tunneling under the barrierwe” defined. Because of the sphaleron barvier, the energy

and a Minkowski evolution corresponding to classical mo—O]c al th(_a classical solutions with a net change of winding
tion before and after the tunneling event. The desired semIJLImber 'S bounded_ below by the sphaleron eneLgy. The .

. . Co ._problem we would like to solve then is whether the incoming
classical paths may be obtained by appropriately matCh'nEarticle numbew; of these solutions can be arbitrarily small,

the Euclidean and Minkowski solutions onto one anotherDr more generally, we would like to map the region spanned

and the transition amplitude may then be calculated. _ by all possible values of and v, for topology changing
When the energy is greater than the sphaleron barriegjassical evolution.

transitions are classically allowed and solutions that saturate one could easily parametrize an initial configuration of

the functional integral are real. This is the regime examineqhe System Consisting of incoming waves in the linear re-
in this paper. When chiral fermions are coupled to gauge angime; however, it would be extremely difficult to adjust the
Higgs fields which undergo topological transitions, R&fl  parameters to ensure that a change of winding number occurs
shows that the anomalous fermion number violation is giverin the course of the subsequent evolution. For this reason we
by the change in Higgs winding number of the classical syswill instead parametrize the configuration of the system at
tem. This paper is primarily an investigation of whether andthe moment when a change of topology occlhss will be
to what extent topology change occurs in classical evolutiorur starting configurationand we will then evolve the equa-
with low particle number in the incident state. Sincetions of motion backward in time. Following the time re-
Minkowski evolution is also required for the analysis below versed evolution until the system reaches the asymptotic lin-
the sphaleron, the techniques developed in the present inve@ar regime allows us to identify the incident particle number
tigation will be useful there as well. v; . By varying the parameters of the starting configuration
The primary impediment for rapid baryon number viola- with a suitable stochastic pro_cedure we will then bg able to
tion is the phase space mismatch between incoming states BfaP the boundary of the region of topology changing solu-
low multiplicity and outgoing states of many particles. The tions in thee-v plane. o
authors of Ref[8] look at simplified models and observe Note that the problem of baryon number violation above

that, classically, it is difficult to transfer energy from a small the barrier may roughly be divided into two parts. One must

number of hard modes to a large number of soft modesf.'nd the set of incoming coherent states which give rise to a

However, the investigations in Refig] find that for pure ¢change in topology of the fields, and one must calculate the

v Mills th i wo di . th i b overlap between the incident two-particle scattering state and
dang-t_l S" e‘g.yt'f‘b \;VOd |rr|1f]n3|or?s fe tmon:eln "’;hcaf‘ ©such coherent states. Both are very challenging. The problem
ramatically redistributed, although untortunatély the InCl- ., qiqered in this paper is the more fundamental of the two,

dent pa.rticle' .number seems to be rather large in their QOma% the sense that if topology change cannot occur for coher-
of applicability. Reference{10] studies the Yang-Mills- on¢ states with small average particle number, the overlap
Higgs system in a two-dimensional wave-packet ansatz angffect with a two-particle beam is a moot point. On the other
again finds that momentum can be efficiently redistributed. lhang, if a change of topology can be induced with arbitrarily
is the purpose of our investigation to shed further light on thgow particle number in the incoming state, one is at the very
situation in four dimensions in the presence of a Higgs fieldeast assured that exponential suppression, which is a re-
and to investigate the relation between incoming particlesidual of the barrier penetration, will be absent.
number and topology change. In summary, then, our strategy is the following. We start
Given a typical classical solution, because of the disperwith a (not necessarily smalperturbation about the sphale-
sion of the energy, the fields will asymptotically approachron with some energy. We evolve the configuration until it
vacuum values. Consequently, at sufficiently early and latgéeaches the linear regime, at which time we extract the nor-
times the field equations will reduce to linearized equationgnal mode amplitudea,, and compute the asymptotic particle
describing small oscillations about the vacuum and the fielchumberv. The time reversed solution will have an incident
evolution will be a superposition of normal mode oscilla- particle numberv and will typically undergo topology
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change, since by construction it will pass over the sphaleron Imé Imo Imo
barrier. There is of course the possibility that the system will

go back over the sphaleron barrier and return to the original /T\ m
Re¢ Re¢ \\J Re¢

topological sector, but we check against this occurrence by \\_\J

evolving the starting configuration in the opposite direction
in time and measuring the winding number of the asymptotic
state. We can then explore the space of topology changing @ (b) ©
solutions by varying the parameters of the starting configu-
ration using suitable stochastic techniques. This permits us to
map the allowede-v plane in an attempt to place a reliable
lower bound on the incident particle number. If this bound is
comparable with two particles in the incoming state, it would
be an indication that the time reversed solution, which passes @
over the sphaleron barrier, can be excited in a high energy ) . . )
collision. Hence, this would be a signal that baryon number FIG. 1. Example of two inequivalent vacuum configuratiéas
violation becomes unsuppressed. Likewise, if the bound i&nd (¢) and a field configuration at the top of the energy barrier
large this would indicate that high energy baryon numberSeParating thentb). (a)—(c) trace the field in the complex plane
violation is unobservable in a two-particle scattering experi-2S the spatial coordinate spans the entire axis. A three-dimensional
ment. perspective has been ado_led(dj—(Q to illustrate the detailed de-

In what follows we put meat on the bones of the abovependence off on the spatial coordinate.
discussion and present our numerical results. The structure of 1
this paper is as follows. In Sec. Il we illustrate the general _ 2] * v * _ 2 a2
properties of sequences of topology changing field configu- S_J dx : 4F””FM +D,¢"D 4 Mgl -1) ]
rations, not necessarily solutions to the equations of motion. (2.1
For simplicity we first consider the two-dimensional Abelian
Higgs model. We then examine the four-dimensional3U  where the indices run over 0 andR,,=4J,A,—4d,A,, and
Higgs model, but restricted to the spherical ansatz to obtain B ,¢=3,¢—iA,¢. We have set the coupling constant
computationally tractable system. In Sec. Ill we examine they=1 and several inessential constants have been eliminated
classical evolution in the continuum. Since the field equaby a suitable choice of units.
tions are coupled nonlinear partial differential equations, in - The most important feature of this system is that the
Sec. IV we solve them by numerical techniques. In Sec. Wacuum, i.e., the configuration of minimum energy, occurs
we describe the starting configurations at the moment of tofor nonvanishinge, indeed, in our units fot¢|=1. Since
pology change, i.e., our parametrization of the initial statethis does not specify the phase ¢f there is not a unique
and in Sec. VI we solve the normal mode problem necessaryacuum state, but rather multiple vacua. Still, because of
for extracting the particle number in the linear regime. Ingauge invariance one must be careful in regard to the physi-
Sec. VIl we explain the stochastic sampling technique usegal significance of the phase @f. A local variation in the
to probe the initial configuration space and we present Ouphase Ofd) can a|Ways be undone by a suitable gauge trans-
numerical results concerning the region spanned inethe  formation, and since gauge equivalent configurations must
plane by topology changing solutions. In Sec. VIII we be considered physically indistinguishable, local variations
present concluding remarks and directions for future reof the phase of the scalar field do not lead to different vacua.
search. The reader who is familiar with the basic properties{owever, variations of the phase ¢fby multiples of 27 (as
of the SU2) Higgs system and of topology changing solu- the coordinatex! spans the entire spatial axisannot be
tions, and is impatient to learn about our results, may skiundone by a local gauge transformation, and thus define to-
directly to Sec. VII. However, in our opinion, much of the pologically distinct vacuum states. These vacua differ by the
value of the research we present here is to be found in thglobal topological properties of the field configuration. The
formalism we have established to parametrize, evolve, angondition|¢|=1 restricts the values of the scalar field to the
analyze classical solutions of the GWHiggs system in the ynit circle (in the complex plane In theA,=0 gauge, which
spherical ansatz. This formalism, which is illustrated in Secsye yse throughout this paper, the values assumee tay
[I-VI, has not only been crucial for obtaining our current y1_ + stay constant in time. If we demand thattakes
results, but we are confident it will be invaluable for further fiyed identical values ag!— + o (a condition we later re-

investigation into the problem of collision-induced baryon lax), then the number of times winds around the unit circle
number violation both above and below the sphaleron barggy! spans the entire real axis is a topological invariane
ner. winding numbey which characterizes different topologically
inequivalent vacuum states.

Figures 1a)—1(c) illustrate three possible contours traced
in the complex plane by the field variabi(x') as the co-
ordinatex! spans the entire space axis. Inequivalent vacuum

We start our investigation with th€l+1)-dimensional configurations with winding numbers 0 and 1, respectively,
Abelian Higgs system, which is defined in terms of a com-are depicted in Figs.(&) and Xc). In the contour of Fig. (&)
plex scalar field¢(x) and an Abelian gauge potential the phase of¢ stays fixed at zero as! ranges between
A, (x) with action —o0 and + o, whereas it goes once around the unit circle in

Il. TOPOLOGY CHANGING SEQUENCES OF
CONFIGURATIONS
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precisely spanning the contours of FigaRand Fig. Zc),

Imé mo Imé respec_:tively(as x! ranges from—x to +«). The corre- _
sponding values of\; are chosen to make the gauge covari-
ant derivative ofp vanish, thus ensuring vacuum. We should

Re¢ Re¢ Re¢ point out, however, thaf2.3) does not represent the solution
\‘/ \\J_/ W of any particular set of equations of motigguclidean or
Minkowski). It is merely a compact parametrization of inter-

@ ®) © polating configurations, in terms of two variablesand ,
which might be useful in studying sphaleron transitions
FIG. 2. A different gauge equivalent representation of the conhased on the method of collective coordinates.
figurations illustrated in Fig. 1. Classical solutions of the two-dimensional Abelian Higgs
) ) ~model can exhibit topology change in much the same way as
Fig. 1(c). Consequently, the corresponding vacuum configuthe vacuum-to-vacuum paths described above. If one couples
rations have winding numbers 0 and 1. The detailed variaghjra| fermions to the system, the fermionic current has an
tion of the phase is immaterial since it can always beznomaly which leads to fermion number violation in the
changed locally by a gauge transformation. Thus, in Fi@. 1 presence of topology changing classical solutions. Therefore,
for example, ax varies from—o to + the field does not  this model would appear to be a very convenient system for
have to stay fixed, but could wander continuously on the unig simplified study of baryon number violation in high energy
circle provided the net change in phase is zero. However, thgrocesses. However, as we will discuss in a future section, a
configuration of Fig. a) cannot be continuously deformed crycjal component of the computational investigation is the
to that of Fig. Ic) without leaving the vacuum manifold. apjjity to identify numerically the normal mode amplitudes
Therefore a continuous path of configurations connecting the fields in the asymptotic linear regime. No matter how
neighboring vacua must pass over an energy barrier, a CORpnlinear the system may be at any given point in its classi-
figuration which has the property thétvanishes at a point, ¢a| evolution, typically the energy will disperse and bring the
rendering its phase there undefined. The smallest such eBystem to a regime where the fields undergo small oscilla-
ergy barrier is called the sphalerg®], and its Higgs field tions about a vacuum configuration. This dispersion is ex-
component is illustrated in Fig.(). Figures 1d)-1(f) add  pected to occur in any field theoretical system, unless pre-
the additional peI’SpeCtive Of Spatia| dependence fOI’ the ﬁe|9ented by Conservation |a.WS Such as those under'ying So|it0n
¢(x*). Figures 18)-1(c) can be viewed as projections onto phenomena. Now, while the two-dimensional Abelian Higgs
the complex plane orthogonal to thé axis of the curves in model does not possess soliton solutions, we have observed
Figs. Xd) and Xe). computationally that the decay of the sphaleron in this sys-
One should note that the periodic boundary conditions ofem nevertheless gives origin to persistent, localized, large
¢ atx'=+o0 can be relaxed. Sometimes it is convenient togscillations with an extremely small damping rdtais ob-
use the freedom of performing a time independent gauggervation was also made by Arnold and McLerran in Ref.
transformation to make(c) and(—) differ while keep-  [11]). These oscillations, illustrated in Fig. 3, make the sys-
ing both fixed in time[for solutions, the Constancy in time of tem quite unwie|dy for a Computationa| investigation of
¢(+ =) follows from the equations of motion in t&=0  baryon number violation based on semiclassical techniques.
gaugd. Thus, the configurations of Figs(al-1(c) can be  Consequently we turn our attention to the more realistic four-
gauge transformed into the configurations shown in Figsdimensional S(P) Higgs system.
2(8)-2(c). In Fig. 2a) the phase ol changes by-7 as Throughout this paper we will ignore both the1) hy-
x* goes from—o to +, while in Fig. Ac) it rotates by  percharge and the back reaction of the fermions on the dy-
m. As in Fig. 1, the two vacuum configurations differ by a namics of the gauge and Higgs fields. We shall examine the
phase rotation of #, i.e., by a unit change of winding num- 3+1-dimensional S(2) Higgs system, which is defined in
ber. In the intermediate configuratigfig. 2(b)] the scalar terms of a complex doubledb(x) and a gauge potential
field takes only imaginary values. In this gauge the sphalerom\#(x) with action
configuration takes a very simple form

1
p(xH=itanf Y\ (x'~¢c)], A,=0, (2.2 S=fdX“[—§TrF,wF"”+(DMCD)*D”“CD—)\UDWD—1)2].
(2.4

wherec specifies the location of the sphaleron.
A possible parametrization for the entire evolution illus- where the indices run from 0 to 3 and where
trated in Fig. 2 can be conveniently written as _
. F}LV:(?MAV—(?VAM_I[AﬂlAV]’ (25)
1—exdir—2\(xt—0)]
i

1 =
) 1+exgir—2\(x'=c)]"

(2.39 D, ®=(3,—iA,)® (2.6

with A#=A20'a/2. We wuse the standard metric
_ 4r\ n.,=diag(1~1,—1,—1), and we have eliminated several
A= 23 7~ ; . . ;
mcosh2 N (xt—¢c)]’ inessential constants by a suitable choice of units. We have
also set the coupling constagt 1, but shall restore it when
with Ap=0. As the reader can easily verify, for=— /2  explicitly needed using the standard model vaie0.652.
and 7= 7/2 the field¢ reduces to a number of unit modulus For our numerical investigation we shall take the Higgs self-
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3.26525

FIG. 3. Sphaleron decay in the two-
dimensional Abelian Higgs model: classical evo-
lution of the ¢ field. The values of the phase of
the complex field are coded by shades of gray,
and the modulus of the field by the height of the
surface. The sphaleron decays rather quickly, but
leaves behind a quasistable oscillating remnant.
For a full color figure see http://cthulu.bu.edu/
~bobs/bviolate.html.

-0.126454

coupling\ =0.1, which corresponds tmy =110 GeV. This whereX is the unit three-vector in the radial direction and
value of\ is small enough that Higgs-field dynamics is non- £ is an arbitrary two-component complex unit vector. For the
trivial, but large enough to allow many lattice sites to fall four-dimensional fields to be regular at the origay,, «,
within a single Higgs Compton wavelength. a,—alr, (1+B)/r, andv must vanish like some appropri-
Because of the larger dimensionality of space one expectste power ofr asr—0.
the energy to disperse much more readily in this system than Note that configurations in the spherical ansatz remain in
in the (1+1)-dimensional Abelian Higgs model, an expecta-the spherical ansatz under gauge transformations of the form
tion borne out by results of Hellmund and Kripfgafi2]

who observed the onset of a linear regime following the A,—A,+iU,U, u=0,...3 2.9
sphaleron’s decay. For a computationally manageable prob-
lem, we focus on the spherically symmetric configurations of P—-UD, (2.9

Ratra and Yaffd13], which reduce the system to an effec-
tive two-dimensional theory. This effective theory, however,
still has much in common vyith the full fpur-dimensional U=exdiQ(r,t)o-%/2]. (2.10
theory, such as possessing similar topological structure. Fur-

thermore, despite its lower dimenSiona”ty, we shall see thap\/e require{)(olt) =0 to ensure that gauge transformed con-
the effective system still linearizes because of explicit kinefigurations of regular fields remain regular at the origin. This
matic factors ofr in the equations of motiofthese factors  spherical gauge degree of freedom induces a resid(®l U

are lacking for the (1+1)-dimensional Abelian Higgs gauge invariance in an effective two-dimensional theory.

model. The ease of linearization in this effective two- The action of this effective theory can be obtained by insert-
dimensional theory is physically reasonable since solutionghg (2.7) into (2.4), from which one finds

within the spherical ansatz can have their energy distributed
over expanding spherical shells. * 1., . .

Explicitly, the spherical ansatz is given by expressing the 5247Tf dtfo dr| — Zrof#f,,+D¥x* D ux
gauge and Higgs fields in terms of six real functiamg
a,, a, B, u, andv of r andt:

where the gauge function is given by

1 1
+r’D ¢*D , p— ?(|X|2—1)2— §(|X|2+ 1)|¢)?

1 N
Ao(X,)= (1) o X, (2.79
—Reix* ¢?)— \r2(|¢|2—1)?, (2.12)
1 oa(rt)y L . .
Ai(x,t)= > a(r,t)o xx'+ (o' —o-xXX') where the indices now run from 0 to 1 and in contrast to Ref.
[13] are raised and lowered withy,,=diag(1-1), and
1+8(r,t) .. .. where
+#e'lkxlak , (2.7b
f,=d,a,—d,a,, (2.12

d(x,t)y=[u(r,t)+iv(r,t)o-X]¢, (2.70 x=a+tip, (2.13
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d=pu+iv, (2.149 As will become apparent shortly, it is often convenient to
relax the condition that three-space be compactified. We may
D.x=(d,—ia,)x, (2.15  then consider vacug.18 for which ) does not become an

even multiple of = at large r. In particular, when

[ QO —(2n+1), then yy,c—i and ¢yoc— =i asr—o. Then
Dud’:(‘;u_ 58 2 (218 the gauge functiold — *+io-X and becomes direction de-
pendent, and as expected, space cannot be compactified.
The action(2.1)) is indeed invariant under the(l) gauge As in the Abelian Higgs model a continuous path in the
transformation space of all field configurations which interpolates between
two inequivalent vacua must necessarily leave the manifold
a,—a,+d,Q, (2.179 of vacuum configurations and pass over an energy barrier.
0 On such a path there will be a configuration of maximum
x—evyx, (2.17h energy, and of all these maximal energy configurations the
- sphaleron has the lowest energy and represents a saddle point
¢—e""9, (2.179 along the energy ridge separating inequivalent vd@jaln

the spherical ansatz we can work in a gauge in which the

and we see that the spherical ansatz effectively yields a Sy%‘phaleron takes a particularly simple form, with=0 and

tem very similar to the Abelian Higgs model considered
above. In this reduced system the variablegr,t) and
a,(r,t) play the role of the two-dimensional gauge field. The Xspr 1) =i[2f(r)—1],
variablesy(r,t) and ¢(r,t), which parametrize the residual
components of the four-dimensional gauge field and the )
four-dimensional Higgs field, respectively, both behave as bsp ) =1h(r), (219
two-dimensional Higgs fields. Note thgthas a W1) charge
of one while® has charge one-half. Of course, the presenc
of metric factors(powers ofr) in the action(2.11) is a re-
minder that we are really dealing with a four-dimensional
system.

We shall work in theag=0 (or Ag=0) gauge throughout.

In the four-dimensional theory, if one compactifies three- _ . ! , ; ,
3 . e - S B vanishes and the fieldg and ¢» are pure imaginary, is con-
Epace t?hst% identifying the pon:jtst att;]nﬂrtnty, Ilt IS V\Ille”. venient for numerical calculations. Nevertheless, it is slightly
nO\.an ‘? € v?cua cgrregsp?n S 02 Nesgogzoglfﬁa y In'peculiar in the following sense. Finite energy configurations,
equivalent ways of mappin§* into U( ) [14]. These ike (2.19, asymptote to pure gauge at spatial infinibyote
maps are characterized by the third homotopy group o hatixzph¢§ph_>_l asr— ). Typically a gauge is chosen

SU(2) and a vacuum can be labeled by an integer called thgo that the appropriate gauge function is unity at spatial in-

homotopy index or winding number. The effective two- _. . e
dimensional theory inherits a corresponding vacuum structm'ty’ and then space can be compactified to the three-

ture. From(2.11) it is apparent that the vacuum states areﬁgcgrgéfnmi(g'tlhgé ?jli\éiigssipg:;oﬁg\?viﬁ%pag)I’cov:rr:ghoﬁj;vteo
characterized byy|=|¢|=1, with the additional constraint ' P

that iy* b= —1 (as well asD,y=D,$=0). Convenient the direction dependent gauge functibh—io-x. So the

L . _ ~ . sphaleron(2.19 is in a gauge in which three-space cannot be
zero-winding vacua are given bigac |, uac=*1 with compactified. Note that an arbitrary element of(3ltan be

a1ya= 0. There are in fact other vacua with constant fields . . i .
- . . parametrized by,l+io-b wherel is the two-by-two unit
(and hence zero windingbut from (2.7) they yield singular matrix andb2+b2=1. Hence S)~S?, and defining the

four-dimensional fields. Nontrivial vacua can be obtained ;
north and south poles by 1, we see thato b with b®>=1

from the trivial vacua via the gauge transformati@il?): ! . .
gaug @ parametrizes the equatorial sphere. Thus the gauge function

Svheref andh vary between 0 and 1 aschanges from O to
© and are chosen to minimize the energy functional. Note
that the ¢ field vanishes at the origin and that thefield
vanishes at some nonzero valuerof

This form of the sphaleron, in which the gauge field

Avac= 9,0, (2.189 U maps thg sphere at infinity onto th_e equatqr?al sphere of
SU(2). In this gauge, a topology changing transition proceed-

Xvac= —ie'?, (2.18b ing over the sphaleron corresponds to a transition where the
fields wind over the lower hemisphere of &) before the

yac= =2, (2.180 transition and over the upper hemisphere after the transition,

with a net change in winding number still equal to one. The
When three-space is compactifi€él—2n7 asr—o (for  behavior of they field in a topological transition is then very
nonzero integers). Since{) has been set to zero at the similar to the behavior of the Higgs field in the two-
origin, the winding numbers of such vacua are simply thedimensional model, already illustrated in Fig. 2. The behav-
integersn. Note that y,,c winds n times around the unit ior of the ¢ field is illustrated in Fig. 4. We could of course,
circle while ¢, only winds byn/2. This is because th¢  and sometimes will, work in a gauge consistent with spatial
field has half a unit of 1) charge whiley has a full unit.  compactification where topological transitions interpolate be-
Hence, the phase change pfis more dramatic in a topo- tween vacua of definite winding, as in Fig. 1, but the sphale-
logical transition, and for this reason we will often concen-ron would look more complicated. The advantagg2xfL9
trate our attention upoly rather thang, even though the from a computational perspective is that perturbations about
Higgs field is more fundamental for topology chari@g the sphaleron can be more easily parametrized.
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mé Imo Imo To solve these equations given an initial configuration, we
must specify the appropriate boundary conditions. Boundary
conditions for the fields at=0 can be derived from the

m Reo /T\ Reod /’\ Reo requirement that the four-dimensional configurations they
W W W parametrize be regular at the origin. One finds that the be-
havior asr —0 must be

(@) (b) ©

ap=ag sl +apa 3+ -, (3.29
FIG. 4. Topological transition in the four-dimensional @Y 5 4
Higgs model: behavior of the field. They field behaves as in Fig. y=a otagF a4+, (3.2b
2.
a=aqr +ag3+agr®+- - -, (3.20
Ill. CLASSICAL EVOLUTION IN THE CONTINUUM
: : B=—1+Br%+- -, (3.20
So far we have only examined topology changing paths
that interpolate between inequivalent vacua. We are now in- W= ot ol 24 (3.20
terested in examining the topological structure of solutions to
the equations of motion. For vacuum to vacuum sequences it v=pir+ g3+ - (3.2f)

is clear what we mean by topology change: this is simply the

change in winding number between the initial and finalwhere the coefficients of the expansion are undetermined
vacua. For solutions, however, the situation is not quite sdunctions of time. Ther behavior of the various fields is
straightforward. Nevertheless, topology change can be predetermined by the requirement that (x>+ y?+ z%)? have
cisely defined for solutions whose energy density dissipatethe appropriate power to render four-dimensional fields ana-
to zero uniformly in the distant past and future, which is thelytic in x, y, andz. For example, sincé is proportional to
generic case for classical evolution. In the asymptotic regim@gyo-x=(ay/r) o-x, ag must be odd irr. In terms ofy and

the uniform dissipation of energy renders the system lineat, the boundary conditions at=0 become

and the waves can be expressed as small oscillations about

vacua of definite winding numbers. By the topology change ap(0t)=0, (3.39
of such a solution, we simply mean the difference in the ,
winding number between these two asymptotic vacua. This x(0)=—i, (3.30

difference in winding is in fact just given by the change in

Higgs winding number, and hence is characterized by zeros
of the Higgs field(although in the spherical ansatz it is char- _
acterized by zeros of botkh and y). The most important Im(0,)=0. (3.30

physical consequence of this topology change is that Whegn o) (1 t) vanishes at the origin, one can check that these
c.h|rall fermions are c_oupled to the system, ferm|qn n.um.be[)oundary conditions are gauge invariant under spherical
violation occurs and is proportional to the change in winding :
: X gauge transformations.

of the H|_ggS field(see Ref[7]). There is an additional=0 boundary condition given by

We wish to study whether topology change, and hence
fermion number violation, can occur in the course of classi- a, o= a1, (3.9
cal evolution with small gauge or Higgs particle number in ’
the incoming state. Since the system we are studying lineawhich is obtained by requiring that the two terms(th7b
izes in the past, the incident particle number is defined angroportional too- X cancel ag — 0. Note that thes=0 com-
our question is well posed. However, the field equations ar@onent of(3.13 is Gauss’ law constraint, and once imposed
coupled nonlinear partial differential equations which weon the initial data it remains satisfied at subsequent times.
cannot solve in closed form. Our approach, then, is to solv&ubstituting (3.2) into Gauss’ law givesd,(a; g— a;)=0.
the equations numerically with a discretizedxis and dis- Therefore, if the boundary conditicay o= «; is satisfied by
cretized time steps, but first it is useful to examine the conihe initial data it remains satisfied.

Red, $(0t) =0, (3.30

tinuum system. We turn now to large-boundary conditions. Since we are
The equations of motion obtained from the acti@ill) interested in finite energy solutions, we require that the fields
are go to pure gauge at large. Hence, from (2.18),

. a,—d,Q, x——iexdiQ], and ¢— +exdi/2] asr—ce,
I . . . . .
(2 V=i[D x* x—x*D x|+ =rD .d* b— d*D . b]. where Q(r,t) is the spherical gauge function defined in
(1) =1DX X=X Dux] 2 [D.¢7¢=¢"D,¢] (2.10. We can choose a gauge in whithat spatial infinity
(318  becomes a constant, independent ahdt, so thata,—0 as
1 1 i r—o. When we compactify three-space and require
D24+ = (|y[2=1)+ = 2} E— 3.1b QO—2nm at large r for integer n, then y——i and
r2(|X| ) 2|¢| X 2 ¢ (3.1n ¢— *+1 asr—o. But as discussed in the previous section
this is inconvenient for parametrizing the sphaleron, and in-
1 . stead we will takeQ)— (2n+ 1)« for integern. Then the
) Z ]2 20| 412 iy bk .
DAr*D,+ 5 (IxI*+ 1) + 21 (| 4| 1)}925 Ix¢™. four-dimensional gauge functids maps spatial infinity onto
(3.10 the equatorial sphere of $2), and we cannot compactify
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space. In this case, howevgr—i and¢— =i asr—o. We o i

will choose the plus sign fo#, and in summary we take the GE=i(myx—x"m)+ 5 (mgd—¢*my). (3.9
larget boundary conditions to be

Note that this is also the=0 component 0f3.13. This is

a,(r,H)—0, (3.59 not a dynamical equation just ag is not a dynamical vari-

(r.0)—i (3.5b able. In fact, the Hamiltonian formulation makes it clear that
X ' ' this equation is a constraint equation aagl is the corre-

(r ) —i (3.50 sponding Lagrange multiplier. If the initial data are chosen to
o(r,t)—1, ' satisfy Gauss’ law, it will continue to be satisfied at subse-

; : - PRI . quent times.
asr—oo, There will be times in which it is convenient, .
In the ay=0 gauge, the variables

mostly for purposes of illustration, to take the boundary con-
ditionsa,—0, y— —i, and¢p—1 asr—o consistent with
S A X . a(r), r), r 3.9
spatial compactification, however, unless otherwise speci- (M) x(), (1) 3.9
fied, we will use the boundary conditio8.5). ~_ form a set of canonical coordinates conjugate to the mo-
One can now solve the equations of motion for initial enta
configurations and investigate to what extent topology

changing transitions occur. Since one cannot obtain analytic E(r)=r2%dpa,,

solutions, we will exploit computational methods. These nu-

merical techniques, which are presented in the next section, ()= dox, (3.10
are based on a Hamiltonian formulation, so we close this

section with a brief exposition of the Hamiltonian approach 7T¢(r):r2070¢_

to the continuous system.
Central to this approach are the conjugate momenta to th€he evolution of these variables is generated by the Hamil-
fields, defined by tonian (3.7a. Gauss' law,(3.8), expresses the residual in-
variance of the system under time independent local gauge
5 transformations and is imposed as a constraint on the initial
=r“(doa;—d180), (3.68  configuration. It is subsequently conserved by the equations

4 98y of motion. Given initial data also satisfying the regularity
boundary conditior; o= «;, and using the boundary condi-
- Ei 9L ~Dyx (3.6b tions (3.3) and (3.5), a regular solution is uniquely deter-
X AT gy ot ' mined. We now turn to approximating this solution numeri-
cally.
1 9
To= 2m pye =r“Doé, (3.60 IV. CLASSICAL EVOLUTION ON THE LATTICE

To solve the equations of motion numerically the system
where £ is the Lagrangian density for the actid@.11).  must be discretized. For this purpose we subdivide tgis
Sincea, does not appear if2.11), it has no corresponding into N equal subintervals of lengtiAr with finite length
conjugate momentum and is not considered a dynamical =NAr. Thus, the lattice sites have spatial coordinates

variable. Upon inverting3.6) for the time derivatives of the . =jAr with i=0, ... N (for our numerical simulations we
dynamical fields, the Hamiltonian of the system is found tosha|| takeN=2239 andAr=0.04, giving a lattice of size
beH+Hc where L=89.56). It is convenient to use the formalism of lattice
. 5 gauge theories in assigning the space components of the
H:47TJ dr EZ+|77X|2+|7T¢|2+|DrX|2+r2|Dr¢|2 gauge fields tp Fhe oriented links bgtween_ neighboring sites
0 2r and in the definition of gauge-covariant finite difference op-

1 1 erators. For simplicity, we will identify the lattice links via
T (Iv2=1)2+ = (Iv2+1 24 Reiv* &2 the midpoints between lattice sites, which have coordinates
22 (D= D7 S (T DI @+ Reti™ 67) is1o=(i+ 1/2)Ar with =0, ... N—1,
The variables for the discretized system will now be de-
(3.79 fined as follows. The zero-component gauge degrees of free-

+Ar?(|g2-1)? ; . .
dom are defined over the lattice sites, and are given by

and ag;(t) for i=1,...N-1 (4.2)

with apg=a9ny=0. The spatial components of the gauge
field are defined over the links of the lattice. We will use the
notationa,;, or simply a;, to represent the gauge variable
defined over the link between andr;,,. This gives the
variables

HC:47TI drao

. —E+i(myx—x*my)

-I-IE('JT;;(b—d)* me) |- (3.7b

Variation with respect t@, gives Gauss’ law aj(t)y=ayi(t) for i=0,... N—1 (4.2
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As we show momentarily, boundary conditions for the spa-ay;—ag;+ 4, i=0.... N (4.63
tial variablesa; are not required to determine the evolution 5 . 5.4+ (0, ,—Q,)/Ar, i=0,...N—1, (4.6b
of the system. However, just as in the continuum, we will i=0 N (4.60
impose an initial data boundary condition ag correspond- a2y 0 N, (4.6
ing to (3.4) to ensure the regularity of the four-dimensional bi—e€ i, ! :
fields at the origin(this condition will be discussed shortly

xi— €%y,

The other field variables become The discretized gauge functidm;(t) with i=0,... N is de-
fined over the lattice sites, and satisfiég(t) =0 to maintain
xi(t) for i=1,...N-1, 4.3 the regularity of the corresponding four-dimensional gauge
transformed fields.
with yo=—1i, xy=1 and Before we continue, however, we must derive the bound-
. ary condition for¢ ati=0. This is obtained fron(3.3¢ and
¢i(t) for i=1,... N—-1 (4.9

(3.30), in which the continuum fieldp atr=0 is real with
vanishing spatial derivative. Since a statement about the

tivated by (3.5). These boundary conditions do not admit “derivative” is not gauge covaria_nt, we pre_fer to state that
spatial compactification and are chosen so that perturbatiorjr'lé'_('lhreﬁ1| part qf the covariant denvatnﬁg(ﬁh— 'afb tc?hgthgr
about the sphaleron may be parametrized more convenientl ith t Ie |magén§ry pzrt303f¢, must vanis Iat __'0 BIS IS
Occasionally we will take the boundary conditiopg= — i quivalent to(3.39 and(3.3d since4 is real atr =0. But it

and =1 consistent with spatial compactification: how- has the advantage that it translates into the following bound-

ever, unless otherwise specified we will use the aforemer@"y conditions for the discretized case:

tioned larger boundary conditions.

with ¢y=i. We are using boundary conditionsrat L mo-

The value of¢ atr =0 has so far not been specified. We Re{ exr{ —iapAr b1— do|=0 (4.79
will return to this in a moment, but first we consider the 2 Lo ’
discretized covariant derivative. The timelike covariant de-
rivatives need no modification, but the continuum covariant Ime¢o=0, (4.7
spatial derivatives are replaced by covariant finite differ-
ences, e.g., whereay is the value ofa;; ati=0 and should not be con-
ext— iaiAr Txie1— Xi fused with the timelike vector field. Thus, we write the
D, x— lAr 1 A j=0,...N-1, boundary condition as
(4.5 —iagAr
. . . ho= R% exl{ o1, (4.9
and like the gauge fields they are to be thought of as being 2

defined on the links between lattice sites. The rest of the

discretization is straightforward, and one obtains a diswhich allows us to eliminateb, from the list of dynamical
cretized actiorSy expressed in terms of a finite set of vari- variables.

ables which still possess an exact local gauge invariance:  The discretized Lagrangian becomes

N-1

2 i 2
expl—ia;Ar)xi+1— Xi
_| of A1) Xi+ 1~ xil Ar+ 47721 {|((70_iao,i)Xi|2

Ar?

N—-1 2
livae Qpj+1— Ao
L—4’7TZO [ 2 ((?oai_ Ar

2 - 2
lexp(—iajAri2) ¢ 11— ¢il* 1 .
+r? ~rfi 1 : Ar2 - : _§(|Xi|2+1)|¢i|2_Re('Xi*¢i2)

ia i
do— TO) b

1 Im[exp(—iagAr/2) 2
—z—ri2<|xi|2—1)2—Mi2(|¢i|z_1)z]Ar_477@2{ [expl % oul)?

4.9

This Lagrangian was obtained by discretizing the system as previously explained and by replabinthe right-hand side

of (4.8). One might think this induces an additional contribution to the kinetic ternp,ofrom the time derivative of4.9).

However, the term proportional t¢, vanishes since it is multiplied txyS:O, and hencé4.9) is the complete Lagrangian.
We define conjugate momentthe factor 1/4rAr is introduced so as to have Poisson brackets with a continuumlike

normalization{" ,¢;} = &; j/Ar, etc)

1 dL Aoj+1— Ao
_ 7= 2 el B U S —
ST amar aga) | rue| Yo% ar ) TN (4108
1 JL ,
Pi:mmzo, |—0,...,N, (4lob
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1 oL _ .
p‘:47rAr a(aox;*)zﬁo)(i—lao,ixi. i=0,... N, (4.100
T AmAT (gp9F) I\ 0P 2T %) ... N. _

Equation(4.10b is a primary constraint equation, in the sense of Dirac. F(dr8) and (4.10 we obtain the Hamiltonian
H+H¢, with

N—-1

H=4m >

< | 2re, . Ar?

E2 exp(—ia;Ar)xis1— xil? e i |? exp(—ia;Ar/2) ¢i.1— di|?
i +| o iAT) Xi+ 1 xil Ar+477i21 |pi|2+|r|2| +ri2+1/2| o |Ar2)¢|+1 il

1 1 | —iagAr/2 2
S DRt 8+ =N 217 -+ e [T R EIT,

(4.113

and

N-1
He=4m 2, Ao —
=

Ei—

E_, |
TlJF'(pi*Xi_Xi*pi)JfE(ﬂ'i*d’i_(ﬁi*ﬂi)]Ar- (4.11b

Upon commuting(or more precisely, taking the Poisson braghbe constraint4.10h with H+H one obtains as a further
constraint Gauss’ law

Ei_Ei_l_- * * i * * i ;
T_|(pi Xi— Xi pi)+§(77i di— o m)=];, i=1,...N-1 (4.12

We impose the second-class constraigt=0 fori=1,... N—1. The equations of evolution that follow frokh are then

da_ B 0,...N—1 (4.133
—_= , 1=0,...N—1, :

dt ri2+1/2

dy; .

St =P 1=l N1 (4.13b
d¢y m .

il i=1,...N—-1 (4.130

and

E—i Xir18Xp(iaiAr) xi— xi expl —ia;Ar) xi 41 i (21 b 1eXpiaiAr/2) ¢ — bF exp(—iaiAr/2) iy
dt Ar 2 Ar ’

i=0,...N—1, (4.143

dpi  exp—iaiAn)xici—xi  expiaiAnNxi1—xi  xileilP+igf 1 5 _
dt Ar? + Ar2 - 2 _F)(i(l)(”_l): i=1,...N-1,

dar; exp(—ia;Ar/2) ¢, 1— b, expliai_1Ar/2)i_1— ¢ di(lxil?+1)
d_tlzrizu/z IArz = 1 : Ar2 : - — |2 +ixigr —2nrigi(| il 1),

i=1,...N—1, (4.140
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where ¢ is given by(4.8), ¢n=1i, xo=—1i, andyy=i (or  canonical variablésIn a second step one evolves the coor-
xn=—1 and¢y=1, if as we will occasionally do, boundary dinates from their initial valug;=q; to their value at the
conditions consistent with spatial compactification are used end of the interval
The momenta ofy and ¢ vanish ati=0 andi=N.

In summary, we have the following table of independent pi—pi=pi,
dynamical variables and their respective conjugate momenta:

af —ai =0/ +gi(p')At. (4.17

Variable Momentum Index range Number Finally, the momenta are evolved from their value at the
a; E i=0,...N—1 N midpoint to the final value
Xi pi i=1,...N-1 2(N-1) At
bi g i=1,...N-1  2(N-1) pi—pi"=pi +fi(d") 5,

Since we have sed; to zero, the number of dynamical g'—aq{"=q; . (4.18
variables and moment@xcluding boundary fields at=0 ) . ]
andr=L) are 2(:N—4). Note that(4.13 and (4.14 give One can easily verify that these equations reproduce the

2(5N—4) equations, so the system is uniquely determinedforrect continuum evolution fromto t+At upto errors of
given the initial values of the fields and ¢ and their mo-  order (At)®. Moreover, the algorithm has the very nice prop-
menta(note that boundary conditions for the spatial gaugee'ty that all three steps above constitute a canonical transfor-
field a; are not required The initial data must be chosen to mation and that it is reversiblgn the sense that starting from
be consistent with Gauss’ lag.12. We will also impose di » —P; , up to roundoff errors one would end up exactly
the boundary conditioa,=Re(y;— xo)/Ar, which approxi- ~ With d;, —p;). Because the physical solutions of interest are
mates the continuum relatiof8.4). [This relation, which the time reversed processes of the ones we numerically
would be conserved in the continuum limit, will remain sat- €volve, it is important that we use an algorithm that is re-
isfied toO(Ar) in the evolution of the discretized systgm. versible. Another very nice feature of the algorithm is that,
The restriction to uniform spacing of the subintervals onalthough the evolution of the variables is affected by errors
ther axis is not fundamental and we have also implemente@®f order (At)*, the energy of a harmonic oscillator, and
a discretization in which\r increases as one moves out on therefore of any system which can be decomposed into a
ther axis. In this manner one can effectively make the syslinear superposition of harmonic oscillatc_)rs, is conserved ex-
tem larger and delay the effects of the impact of the wave&ctly (always up to roundoff errors, but if one works as we
with the boundary without worsening the spatial resolutiondo in double precision, these are very smalince extract-
nearr =0, where most of the nonlinear dynamics takes placeind the asymptotic normal mode amplitudes is the heart of
We have found, however, that the advantages one gairfaur numerical approach, it is also important to have an algo-

hardly warrant the additional complications introduced byfithm that is well behaved in the linear regime. One final
the nonuniform spacing. comment is in order. In a sequence of several iterations of

For the numerical integration of the time evolution we the algorithm, after the momenta have been evolved by the

have used the leapfrog algorithm. Since this algorithm coninitial At/2, the first and third steps4.16 and (4.18), re-
stitutes one of the fundamental techniques for the integratiofiP€ctively, can be combined into a single step, whereby the
of ordinary differential equations of the Hamiltonian type Momenta are evolved from the midpoint of one interval to
and as such is textbook material, we will not discuss it inthe midpoint of the next one “hopping over” the coordi-
depth. Essentially, given conjugate canonical varialges nates, which are evolved from end point to end point. This

and p; which obey equations motivates the name assigned to the algorithm.
do; _ V. THE INITIAL CONFIGURATION: PERTURBATION
ar %P, ABOUT THE SPHALERON

With a good grasp on numerical solutions of the equations

%:f,(q) (4.15 of motion, we can turn now to the second crucial component

dat " of the computation, namely, the parametrization of the initial

configuration. One could easily construct an initial state con-

one evolves the values a@f and p from some initialt to  sjsting of an incoming wave in the linear regime; however, it

t+ At as follows. In a first step; is evolved to the midpoint  would be very difficult to ensure that such a configuration
of the time interval by underwent a topology change during its subsequent evolu-
tion. Instead, it is much more convenient to parametrize the
initial state at or near the instant of topology change. The
system is then allowed to evolve until the linear regime is
reached, at which point the particle number can be extracted
gi—ai =q;, (4.16 in the manner explained in the next section. The physical

process of interest is then the time reversed solution, which

(althoughg; is left unchanged, it is convenient to consider starts in the linear regime with a known particle number and

the step formally as a transformation of the entire set ofundergoes a change of topology at subsequent tithefact,

, At
Pi— p; :pi+fi(Q)?,
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it must be explicitly checked that the winding number of ther —0 can be used to parametrize a perturbation of the sphale-
outgoing configuration is different from the incoming one, ron localized in the neighborhood of the origin.

ensuring that the topology has changed, since the system Recall that we must impose the boundary condition
could pass back over the sphaleron barrier and into the origia; o= a; on the initial data(using continuum notation We

nal topological sector. We have found however that topologyare working in theay=0 gauge, but we still have the free-

change does typically occir.

dom to impose a time independent gauge transformation on

Topology changing transitions within the spherical ansatzhe starting configuration to set=0. Therefore(3.2b) gives

are characterized by the vanishinggfatr =0 and the van-
ishing of y at nonzera. The zero ofy is reminiscent of the

a,(r)~r? at smallr, and hencea,(r) is expanded only in
terms of j,(x). We are thus led to parametrize the initial

zero which characterizes the sphaleron of the Abelian Higgsonfiguration by

model. However, as shown in Réf7], it is the zero of the
Higgs field (i.e., the zero of¢) which carries a deeper sig-
nificance and should be associated with the actual occurrence
of the topological transition. For a sequence of configura-
tions that pass directly through the sphaleron these two zeros
occur at the same time. Nonetheless, this is not the most
general case and the zerosdfand y need not occur simul-
taneously(although for a topological transitiomgoth fields

will vanish sometime during their evolutiprf15]. We are

free then to parametrize initial topology changing configura-
tions imposing that eithep vanish at the origin or thgt has

a zero at some nonzem It is convenient to choose the
latter, in which we parametrize the initial configuration in
terms of coefficientx, of some suitable expansion of the
fields and their conjugate momenta, constrained only by the
boundary conditions and the requirement that the fielths

a zero at some nonzero Furthermore, we can use the re-

Nsph
X(1)=XspH 1)+ 2, Cami (1), (5.29
Nsph Nsph
d(r)= d’sph(r)‘l'mzzl CijOm(r)'l'imE:l Camj 1m(T),
(5.2b

Nsph Nsph
Wx<r>=m21 Cam] 1m(r>+imE:1 Csmiam(r),  (5.20

Nsph Nsph
7o(0)=| 2 Comiom(N)+i 2 Crmiam(r) |12,
m=1 m=1

(5.20

sidual time independent gauge invariance to mgkpure
imaginary at the initial time. The fielgh is only restricted to

Nsph

a1<r>=m§1 Cami 2m(T), (5.28

obey the boundary conditions and does not necessarily van-
ish at the originalthough it will vanish at the origin at some where s, =i(2f —1) and ¢gp=ih as in(2.19, and where

instant in its evolution if the topology is to change
To be more specific, we parametrize each field #scd

we have cut off the sums at soNg,<N. The most general
initial configuration is obtained witiNg,,= N, but to avoid

necessarily smallperturbation about the sphaleron given by exciting short wavelength modes which only correspond to
a linear combination of spherical Bessel functions with thelattice artifacts, we tak&ls,;<N/5 to N/10. This implies no

appropriate smalt-behavior of(3.2). We only need the first
three functions,

. Sinx
Jo(X)=——, (5.19
) Sink  cox
Jl(X):7—T, (5.1b
. 3 1) 3
Jz(X)=(F—;)smx—Pcos<, (5.10

sincejo(X)~1, j1(X)~X, andj,(x)~x2 at smallx. Moti-
vated by the boundary conditiori8.5), we require the per-

turbation to vanish at=L. We thus parametrize perturba-

tions about the sphaleron in terms pf(r)=j.(@mr/L)
with n=0, 1, or 2, wherex,,,, are the zeros of,(x), i.e.,
in(@nm) =0 withm=1,2,.... Thefunctionsj,(r) form a
complete set for every, and the small- behavior deter-

mines the appropriate value affor each field. The reader

limitations on the physical properties of the system other
than those coming from an ultraviolet cutdfinite Ar) any-
way, and as one expects this is borne out by numerical re-
sults in which typical solutions excite only modes with
wavelength substantially larger than the lattice spacing. As
the dimension of the initial configuration space N, and
since the lattice we work with is rather large, to improve the
efficiency of our stochastic search we have taken
Nspr~N/50 (Ngpr=50 for N=2239).

To obtain the correct smatl-behavior ofm,, we have
inserted an explicit factor ofr? in (5.2d because
my= r2d,¢. The profile functiond andh satisfy the bound-
ary conditionsf(0)=h(0)=0 andf(L)=h(L)=1, and will
be specified momentarily. For now it is sufficient to note that
sincex(0)=—i and y(L)=i, and sincey(r) is pure imagi-
nary, it will necessarily have a zero for some-0. Hence,
(5.2 specifies a configuration at the moment in whigh
vanishes. We should also point out that because of its large-
r behavior,(5.2) is expressed in a gauge in that is inconsis-
tent with spatial compactification.

We have so far used continuum notation, (p) is to be

should note that the expansion of the starting configuration ininderstood as determining the configuration at the lattice
terms of Bessel functions is largely a matter of conveniencesitesr =r; for (5.2a—(5.2d and atr=r;, 1, for (5.20, i.e.,

This expansion is not related to the expansion of the fields iry;= x(r;),

the linear regimgto be discussed in the next sectipand

pi=m(ri), ¢i=a(ri), m=myr;), and
a;=ay(ri; 1. We have not yet specified the electric field,

any complete set of functions with the correct behavior asut since the initial configuration must satisfy Gauss’ law we



1032

can determiné; by integrating(4.12) outward fromi =0 to
i=N-—1. The value ofE, must be given for this procedure
however. In the continuurg(r =0)=0, so one is tempted to
set Eo=0. But since Ey lives on the first link at
r=rqp=Ar/2, itis better to set
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and then subsequent valueskffori=1,... N—1 can be
obtained by integrating4.12.

The sphaleroryspn, ¢spn0f (2.19 is parametrized by pro-
file functions f(r) and h(r) and is a saddle point of the
potential energy functional with one unstable direction. This
direction involves an excitation of the two-dimensional

Ozﬂ Jo*ls gauge potentigh; . Hence the sphaleron is an absolute mini-
2 2 mum of the potential obtained frofd.113 by dropping the
AT (0 v — ¥ D) +i (7 e b 7m1)/2 a; terms(and all the momenjaUsing the method of conju-

= [i(Pix2a—Xx1Py) 7 (m1 b= ¢1m) ], gate gradients, with an initial guess fblandh that satisfies
the appropriate boundary conditions, we can obtain an ex-
(5.3 tremely accurate approximation to the sphaleron by minimiz-
ing
|
N—-1
|X' 1_X'|2 |¢' 1_¢"|2 1 .
Hepn/4m= 2 ( S Ty T (P DI P+ Relixt 6D +arf( 7= 1)7 Ar
+ 2 = (lxil>~1)%Ar (5.48
i=1 2[‘,
N—-1 N—-1
4(fi 12 (hiy1—hy)? 8
=2 { — a7ty 2= DN -1 Ar+ X ST f)2Ar,
i=0 i=1 1,
(5.4b

where we have used the boundary conditibg=Imd¢, to
extend the sum o in (4.113 to includei=0. In our units
and withg=1, the energy of the sphaleron is then given by
€spn/4m=2.5426 forn=0.1.

We are now in a position to numerically evolve perturba-
tions about the sphaleron. Figure 5 illustrates the behavior ¢
the y field for an initial configuration given by5.2) with
C4m=1=0.002 47 and all other parameters zero. This is in
fact the configuration from which we have chosen to seed th
stochastic sampling procedure which we will describe in Sec
VII. We have found it very convenient and informative to
use color to code the phase of the complex fields. Unfortu
nately the illustrations in these pages cannot be reproduce
in color and we have tried to render the variation of the phas:
with a gray scale. At some point a gauge transformation ha
been performed in Fig. 5 bringing the asymptotic linear state
into the sector of zero winding numbé@onsistent with spa-
tial compactification The gauge transformation is made
manifest by the sudden change of shading of the surface. W\
have performed this gauge transformation because event
ally we want to study the topology change of the time re-
versed solutior(cf. Fig. 6), and this is best done in a gauge
in which the asymptotic linear state has zero winding num-
ber. Moreover, the gauge transformation also serves to give
graphic illustration of the gauge invariance of our procedure

1.5708

r

a F|G. 5. Decay of a small perturbation about the sphaleron: evo-
lution of the y field. The values of the phase of the complex field

which is made manifest by the fact that although the shadingye coded by different shades of gray, and the modulus of the field

(or colon of the surface changes, there is no discontinuity in
the surface itself.

by the height of the surface. As explained in the next section, the

asymptotic linear system has a particle number of order 53. The

From Fig. 5 it is clear that the energy, which is concen-jattice parameters ard=2239 andAr=0.04 with a Higgs cou-
trated in the neighborhood of=0, disperses and gives rise pling of A=0.1. The initial configuration is given bg5.2) with
to a pattern of outgoing waves. The waves soon become,,=0.002 47 being the only nonzero parameter. For a full color
linear and possess a definite particle number, in this case difjure see http://cthulu.bu.edubobs/bviolate.html.
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marker of the change of topology of the evolving fields.

It is important to keep in mind that an arbitrary configu-
ration (5.2) does not necessarily produce a topology chang-
ing solution, in the sense that at late times the out state might
evolve back into the original topological sector. With our
parametrizatior(5.2), however, we have found that the sys-
tem does in fact typically change topology. Nonetheless, us-
ing the time reversed procedure above we can always verify
whether the in and out states have the same topology, and if
so the initial configuration that produced them can be re-
jected[or equivalently, and more efficiently, we can evolve
the initial configuration(5.2) both forward and backward in
time and compare the asymptotic states obtained in this
way].

We now have a procedure for constructing solutions
which, in the course of their evolution, undergo changes of
topology. By varying the values of the parametersve will
be able to study the properties of such field evolution and, in
particular, explore the domain of permissible values éor
) N ) ] and v. Before we can implement this procedure, however,
FIG. 6. Topology changing transition: behavior of thefield  \ye myst devise a way to calculate the particle number in the

obtained from Fig. 5 by the time reversal procedure described inth‘ésymptotic linear regime. In the next section we describe
text. The various shades of gray code the phase of the compleﬁOW this can be done '

field. The field starts as an excitation about the trivial vacuum,
passes over the sphaleron and then emerges as an excitation about

the vacuum of unit winding. Note the persistent strip ef phase VI. NORMAL MODES
change near=0 after the wave bounces off the origin. For a full . L . . . .
color figure see http://cthulu.bu.edubobs/bviolate.html. Given an initial configuration parametrized by the coeffi-

cientsc,, we evolve the system until the linear regime is
order 53 physical particledusing units appropriate to the reached, Wh(_ere th(_e fields undergo small osciII_ations about a
standard model, which we will refer to as physical upits ~ Yacuum configuration. The normal mode amplitudgsnay
The physical process of interest is then the time reversethen be extracted and the particle number computed using
solution which starts in the linear regime with known particle (1.20. We turn now to the problem of identifying the normal
number, proceeds through the nonlinear sphaleron perturb&odes.
tion (5.2 at intermediate times and finally linearizes once Since we have put the field theoretic system of interest on
again at late times. Because of time invariance of the equad spatial lattice, to be entirely consistent we should also solve
tions of motion, this process can be obtained by first evolvthe normal mode problem on the lattice. The discrete prob-
ing the perturbatiorf5.2) until the linear regime is reached, lem, however, cannot be solved analytically and one must
and then reversing the momenta and evo|ving that Conﬁgu[esort to numerical methods. On the other hand, the normal
ration forward in time. The resulting solution retraces themodes of the continuum system, even restricted to a box of
evolution of the sphaleron decay, and then proceeds over tH#ite size L=NAr, can be found analytically. We have
barrier into another topological sector. Since our numericafolved the problem both numerically on the lattice and ana-
strategy for obtaining asymptotica”y linear topo|ogy Chang_|ytica”y in the continuum limit. The lattice we consider
ing solutions relies upon first evolving the sphaleron pertur{N=2239 withAr=0.04) is big enough that there is excel-
bation, we shall refer t¢6.2) as the “initial” state, while the lent numerical agreement between the normal modes found

asymptotic linear states of the physical process will be calle®y the two methodsthe difference between the normalized

the “in” and “out” states. modes never exceeds 19, so we will present here only the
Figure 6 represents a physical process obtained from Figontinuum solution.

5 in the above manner, and it illustrates the evolution of the Following Ref.[15], we work in terms of gauge invariant

x field for a topology changing solution. The “initial” state Vvariables. We write the fieldg and ¢ in polar form

in Fig. 6, determined front5.2) by the coefficients,,, cor-

responds to the time-slice half-way through the depicted evo- x=—ipe'’ (6.139
lution. We have reverted to a gauge in which the boundary
conditions areyn=—1 and ¢y=1, consistent with spatial b=ae. (6.1b

compactification, and in which the in state has no winding

and the out state has unit winding number. This process rep- . . .
}he variablesp and ¢ are gauge invariant. We can also

resents an imploding spherical energy shell that converges . .
P g sp 9y 9efine the gauge invariant angle

on the origin, where a change of topology takes place. Th
topology change is indicated by the strip of rapidly varying
tonality which persists in the neighborhood of the origin and §=06-27. (6.2
codes the variation of thes2phase change gf. With color,

this strip would appear as a vivid rainbow, left over as aFinally, in (1+1) dimensions we can write
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r2f,,=—2e,,, 6.3 1/4)r 29 ,é—€,,0"
S O et )[ T g P G
whereeg;=+1 andu, v run over 0 and 1. The variablgis P ) 20
gauge invariant. Rather than working with the six gauge- +2\r%(0°~1)o—pocost=0, (6.4b
variant degrees of freedom, ¢, anda, we use the four 3 - pPe, I 5
gauge-invariant variableg, o, ¢, and &. These variables EY VP Cp & + =0 6.4
; ) 2 22 z4=0, (6.40
satisfy the equationgl5] pt(Uhro r
2 2 2
p[(Udr<o°d,é+€,,0" ]
P[(1/4)I’20'207 &+ 6/“,5 l//]2 9" ( 2+(1/4)r20.2 + ZPO' Sln§ 0,

a,u,a'up [p2+(1/4)r2 2]2 2(P _1)P (64C[)

where the indices run over 0 and 1 and are raised and low-
ered Wlth the metrit n,,=diag(l-1), so that

1
Z g2 =
o'cog=0, (643 d,0"= at—a The energy takes the form

- 2_
T3P0t 5

” 2 2, .2 2, .2 2, ( 2a?p? 2 2 1 2
6=47Tf0 dr[(&tp) +(9p) +T1(00) +r(d,0)°+ W[(&tf) +(3,6)°]+ W[ )2+ (0, 9)%]
24% 1 2, 1 )
+r—2+ 2r2(p —1)°+ (p +1)0?— polcot+Ar?(o?—1)2 (6.5

and we see that the vacuum is given py.=1, oy,c=1, takeh, y, and¢ to vanish(consistent withy and ¢ taking

Pvac=0, and§,,=0. their vacuum values thereTher =L boundary condition on
We wish to consider small fluctuations about the vacuumyj is thatg, ¢ is zero (/ cannot vanish at large since it is
It is convenient to define shifted fieldgsandh by proportional to the time derivative of the gauge fjeltVe
wish to solve(6.7) subject to these boundary conditions, and
p(r,)=1+y(r,1), (6.68  then extract the corresponding amplitudes.
Let us examine the four types of modes in turn. They can
o(rt)=1+ (r t) (6.6b) all be expressed in terms of the spherical Bessel functions

(5.1). Equation(6.7a produces an eigenmode whose non-

) ) vanishing components are of the form
Then to linear order i, y, , and¢, (6.4) becomes hn(r,t) = h,(r)cosws,t, with

d,0*+4N)h=0, 6.7 .
( . ) (6.79 hn(r)=N1nljo(XN1al )N1p, (6.9

L. 12
B+ 5+

y=0, 6.70  wherew;,= (4N +A2) 2 and\y,=na/L for n=1,2,. ...
The parametera ;, have been chosen so that(L,t)=0,

a,—e€,,0"E)] 2 and the normalization constariis, are taken to be
s M—Wz] + = ¢=0, (6.79
1+ (1/dr r 21112
Ny =|— (6.9
IR T S 6.79 o
1+ (1/4)r? 7¢=0. '

so that theh,,(r) are orthonormal over the intervidd,L]. To
Equation(6.7a corresponds to a pure Higgs field excita- extract these modes from a given solution we expand the
tion characterized by mass, =2\, while (6.70—(6.7d  Higgs excitation as
are the three gauge modes of masg=1/y2.% To imple-
ment the boundary condition€3.3), we take the gauge-

invariant fieldsh, y, ¢, and¢ to vanish atr =0. Atr=L we h(r.t)= ; Anhn(r)cos st (6.10
1 . . o . . wit
The sign convention of the metric in this paper is opposite to that

of Ref. [15]. 2y 12
2Upon restoring the factors af and the Higgs field vacuum ex- ”j drh(r, t)hn(r) {f drh r t)hn(r)} ] ,

pectation value v, these masses take the standard form

my=v2\v andmy,= (1/2)go. (6.1
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where the dot denotes the time derivative. To find the asso- L
ciated amplitudes, we consider the energy of a puexci- Hy:477f dr{(ayy)?~ydiy} (6.20a
tation. Using(6.5), and the boundary conditions dn the 0
guadratic energy is

—4772 B2w2,, (6.20D

L
Hh=j dr{(a;h)?+ (9,h)?+4x\h?}. (6.12
0 Hence, the modulus squared of the amplitudes for the second

mode is
Integrating the second term by parts and using the equation
of motion (6.7a we find |agn|?=47B2wyy, (6.21)
L — 2711/2 H ; it
_ 2 a2 where w,,=[1/2+ (x5, /L)*]*4, with x,, being the positive
Hh_47Tfo dr{(a:h)*—hdih} (6.133 solutions of tam,,=x,,, and where theB, are given by
(6.18.
The remaining two modes are more involved siK8€0
—4772 Arws,. (6.130  and(6.7d are two coupled equations fgrand&. To disen-
tangle these modes, we first rewrite these equations as
Hence, the modulus squared of the amplitudes for this first y 2¢ 2y
H 2 2
mode is drp— o+ §+ 4+r2[ﬁ Y+ 9. £]1=0,
|asn?=47A%0 1, (6.14 (6.223
_ 27112 _ : _ & 2¢ 8
where wip=[4N+ (X1,/L)°]74 X3p=nm with n=1,2, ... a?§_§r2§+_+ —— ———[d,&+d,4]=0.
and theA, are given by(6.11). 2 1% r(4+r9)
Equation (6.70 produces an eigenmode whose nonvan- (6.22h

ishing components are of the forgy,(r,t) =y, (r)coswyt, We now defineZ =r (3, -+ 4,£)/(4+12), so that(6.22 may

with be rewritten as
Yn(r)=Nanl 1(A2nl)N2p, (6.19 v 20
2 2
ﬁtlﬁ—ﬂr¢+§+—2—+2§=0, (6233
where won= (1/2+\3,)Y? and A ;=X /L, with x,, being r
the positive solutions to tam,= x,, (with this set of modes ¢ 2
and those that follow, we will label the normal modes start- P¢— 9%+ 2+ — =0. (6.23b
ing from n=1). The parameters,, have been chosen so r
:gsér{“tg'k’)tgzo’ and the normalization constant, are Equation(6.233 follows directly from (6.223 and the defi-
nition of £, while (6.23b is derived as follows. First, take a
2 112 time derivative of (6.220. This gives a&fz/; term in the
Ny, = Tordrs (6.16 square brackets, which may be eliminated usi@@33a to
2n give
so that they,(r) are orthonormal overO,L]. To extract the : :

. ) : X i . . & 2¢ 8 . 4y
amplitudes from a given solution we first expand yhexci- (925— azg+ —+ 5 ———— [, £+ 0,4 —2{]+ —5=0,
tation as e re r(4+ro r

(6.29
y(r,t)=2> B,yn(r)coswynt (6.17  Where t.he dot and prime d.enotze_ time and spa%e deriv,atives,

respectively. We have writted; ¢ rather thand;é, d,¢

, rather thamf«//, etc., for future convenience. Taking a spa-

with tial derivative of(6.233 gives
2\ 1/2
! 2 ’ 4

:”j dry(r t)yn(r) “ dry(r,t)yn(r) ] : afw’—a$¢'+%+r—l§—r—f+2§’=o. (6.25

(6.18 .
Adding (6.24 and (6.25, and usingé+ ¢’ =(4+r?)¢/r
Using (6.5, the quadratic energy of a puyeexcitation is gives (6.23H.
) 2 o2 These normal modes fall into two classes, one in which
y y ¢=0 and another in whicl§ is nonvanishing. In the former
= 24 2+ :
f dr{ (Gy)"+(9ry) 2 ] .19 case, (6.233 may be solved foryy. We may then use
d:é+ d,4=0 to solve foré. Thus, mode three takes the form
Integrating the second term by parts and using the equatioz,(r,t) = ¢3n(r)Sinws,t and &z,(r,t) = &3,(r)coswst, and
of motion (6.7b we find after some algebra we find
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Pan(F)=Nanlj 1(A3nf)Nzp, (6.268  Where ws,=(1/2+7\3,)Y2 and A yn=x4n /L, With x,, being
the positive solutions to tan,=Xx,,. The parameters ,,
have been chosen so thét,(L,t)=0 and g, ,,(L,t)=0,

Nan .. . and the normalization constarits,, will be chosen below.

§3n(r) = w_3n[zj 1()\3nr) - )\BHrJ 2()\3nr)]N3n ’ We expand theﬂ--g excitation as

(6.26b

where wg,= (1/2+\3,)Y? and A3, =x3,/L, with x5, being 3 .
the positive solutions to tag,=xg,/(1—x3,). The param- 'p(r't)_j:“ Z Cintin(r)sinwjnt, (6.283
eters A3, have been chosen so th&j,(L,t)=0 [since ¢
vanishes, this automatically ensures thatss,(L,t)=0].
The normalization constantds, will be chosen below to
ensure a convenient orthonormality relation for theg,(r) g(r,t)=_2 > Cjn&jn(r)COwjqt. (6.28h
and &3n(r). j=34n

We turn now to the other class of modes in whighs
nonvanishing. We can first solvé.23h for £, and then
solve (6.233 for ¢ treating{ as a source. Then, using the
definition of ¢, we can solve for&. Again, writing
Pan(r,1) = an(r)sinwgt and E4n(r,t) = €an(r)coswgt, we ] 3
find (2-x5,)SiMPXan  Xgo—X5,—2] M2

s 2Lx3, * 2Lx3, ’

Choosing the normalization constants

r (6.293
an(r)= ;121_[21' 1(Nanl) = Nanlj o(Nanl ) N4y,
) 6.273

3

L3(2x5,+L?)siPx,, L3(x3,—1)] 2
4n— 8 + 6
Xan X4n
(6.29h

€an(1) = 37——[ = 2\anlfoNanh) + 4(1=N3)j1(Nanl)
anW4n
—2N 40l 2(Agnl ) IN4p, (6.27  the modes satisfy the orthonormality relations
|
L r2 4 2
fo dr mwjngjn(r)wkmgkm(r)+ m5r¢jn(r)ar¢km(r)+ r_zlﬁjn(r)‘pkm(r) = 5nm5jk ) (6-303
L 4 r2 1
fo dr mwjn'r/fjn(r)wkm‘//km(r)+ margjn(r)argkm(r)+ Egjn(r)gkm(r) = 5nm5jk . (6.30b
Using (6.30 in (6.28), the overlap coefficient€;, become
L r? 4 2 2
Cjn: fo dr( - wjnm(gtg(rvt)gjn(r)_F mar¢(rat)ﬁr¢jn(r)+ r—zlﬁ(f,t)lﬂjn(r)”
L 4 rZ 1 2) 1/2
+ jo dl’( wjnmatw(rat)wjn(r)'i_ mgrg(rvt)ﬁrfjn(r)"_ zf(rvt)fjn(r))} } . (631)
To extract the amplitudes, consider a pyr& excitation. Using(6.5), the quadratic energy is given by
L r2 . 4 . 2(//2 52
— 2 12 2 12 o2
=47 >, > CZ, (6.32b

j=34 n
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the four normal modes of oscillation as function of time. The
initial state is the small perturbation about the sphaleron in
Fig. 5, which gives rise to outgoing spherical waves as the
configuration decays. This is the state from which we start
the stochastic sampling procedure described in the next sec-
tion. Since the energy density is distributed over an expand-
ing shell, the system quickly approaches the linear regime.
This is apparent from Fig. 7 where, after an initial transition
period in which the particle numbers of the four modes are
not constant, they settle to values which are reasonably con-
stant in time. We take this as evidence that the system has
I ! indeed reached an asymptotic linear regime where one can
0 i ‘ ' define a conserved particle number.

There are two additional quantities that are useful in mea-
suring the extent of linearity, namely, the spectral energy

FIG. 7. Decay of a small perturbation about the sphaleron: be<spec and the linearized energyji, . The spectral energy is

havior of the particle number in the four normal modes of oscilla—deInEd as the sum over normal mode energies,
tion of the linearized system as function of time for lattice param- Nimode
eters N=2239, Ar=0.04, and N ,,q=200 with A=0.1. The _ 2 2 2 2

. : ; L = a1p|*+ @an|@gn|*+ w3p|azn|*+ wanl@sn| )
physical particle numbers are obtained by multiplying the asymp--SPe¢ n§=:1 {@1n] @10l "+ @zn|@zn] *+ @30| @30 "+ wan[2an
totic values in the graph by#/g>~ 30, which givesNpgqs~ 8 and (6.39
Ngaugs~ 45, for a total physical particle number b, o~ 53.

v (units of 4 1)

while the linearized energy is defined by integrating the en-
hence ergy density in(6.5) expanded to second order in a pertur-

) bation about the vacuum,

Cjn .
lajp[?=47—, j=34. (6.33 . 292 2
@in elin:477f dr[(aty)2+(‘9rY)2+r_2+§+(07th)2
Even though we have solved the normal mode problem °
analytically in the continuum, the amplitudés,|* will be 5 ,  r? ) . &
extracted using discrete numerical solutions. This is justified +(0h) AN+ 5 [(06) "+ (0, )71+ 5
by the large size of our latticeN=2239, Ar =0.04 (with
A=0.1). 4 ) . 297
For computational purposes it is important to note that, R (U T Dl b S

strictly speaking, completeness sums involve all normal

modes, but in a physically meaningful situation they will be Both the spectral and linear energies are gauge invariant
saturated well before the normal mode indices reach thgince they have been defined using gauge-invariant quanti-
maximum valueN. The highest normal modes indeed corre-ties. If the system linearizes, then bath,e.and €, should
spond to artifacts of the discretization. Thus, to avoid unnecbe close to the conserved total enekgywhich is given by
essary computational burdens, we will place a cutoffthe integral(6.5 [or in terms of gauge-variant variables by
Nmoge~ N/5 to N/10 on the number of normal modes and (3.7)]. The total energy of the configuration in Fig. 7 is given
calculate the Higgs and gauge boson particle numbers as by e/47=2.5447, while the asymptotic spectral and linear
energies are given by eged4m=2.5679 and

' _N§de|a 2 6349 6 l4w=2.5685, and we see that the system has linearized
VHiggs™ & 191l : to within one percent(We also see that the sum over the
energies of individual modes, although cut offNyf,,qe, €S-
Nmode sentially accounts for all the linearized enejgy.
Vgaugs 21 {lasn|?+|agn|?+]asml?.  (6.34b We can also investigate the mode distribution by examin-
A=

ing the amplitudesa;,|* as a function of mode number.

As the system linearizes and the particle number becomes

well defined, the mode distribution also becomes constant in
(6.35 time. Figure 8 illustrates the distribution of the asymptotic

linear state of Figs. 5 and 7. Note that the population of the
We have verified that our results are insensitive to this cutsystem is heavily weighted towards low lying modes. The
off, which means that short wavelength modes comparable tonode cutoff used in calculating the particle number was
the lattice spacing are not excited in any appreciable manneNm.qe=200, and we see that modes greater than about
One should also note that our procedure for calculating th&=150 are not populated to any appreciable extent. The
particle number is obviously gauge invaridas it should bp ~ mode distributions are heavily peaked negg~50, which
since it makes use of an expansion into normal modes oforresponds to a frequency @f,~nym/L~0.1. The per-
gauge-invariant variables. turbation about the sphaleron of Figs. 5 and 7 decays into

In Fig. 7 we display the behavior of the particle number inabout 50 rather soft particlés physical unity, each one of

The total particle number is given by

V= VhiggsT Vgauge
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0.02

dP=z"1[] dc,W(c,). (7.4)

0015 We will generate topology changing configurations distrib-

uted according td7.4). Clearly, by taking large values for
the parameters3 and u we will drive the distribution
strongly towards the lower boundary in the space of all to-
pology changing solutions. By using different ratj@§8 we
will be able to drive the distribution in a different direction
and thus follow the lower envelope of the region, while tem-
porarily lowering the values oft and/or g will allow us to
R ‘ anneal the distribution. We will typically tak@ between
0 50 100 150 200 50 and 1000 whilew will range between 1000 and 20 000.
mode number To generate the desired distribution we have used a me-
o ) ) tropolis Monte Carlo algorithm. Starting from a definite con-
FIG. 8. Mode distribution for the asymptotic state of Figs. 5 a”dfigurationcn , we randomly select one of the variablesand
7.. This distribution is gauge invarian.t, and shows that all the par'perform a variationc,—¢/ =c;+Ac; (in our computation,
ticle are rather soft and comparable in energy. the Ac; are Gaussian distributed with a mean of 0.000®ie
i i . system is evolved backward and forward in time and we
comparable energy. Finally, we point out that the mode disg3\cyiate the energy, in-state particle number, and change of

0.01

lal? (units of 4 m)

0.005 [

tribution is gauge invariant as well. winding number. If the winding number does not change, we
proceed to vary another of the variablgs. If the topology
VIl. STOCHASTIC SAMPLING OF INITIAL changes, we evaluattF=BAe+ uAv and the new value
CONFIGURATIONS c/ is accepted with  conditional probability

Min[ 1,exp(AF)]. Specifically, we generate a pseudo-
dom number uniformly distributed between 0 and 1,

and if r<exp(—AF) the change is accepted and the new
alue c; replaces the old one. Otherwise,rif>exp(—AF)

As we have discussed, our goal is to find the region in th{,:n
e-v plane spanned by all topology changing classical solu
tions. More specifically, we would like to find the lower

boundary of this region. The tools we have at our disposaj,e g value is kept and we select another of the variables
allow us to vary the coefficients, of (5.2), which dgfmes ¢, for a possible upgradéWe should note here that when
the system as it passes over the sphaleron barrier, and {Qg winding number changes, even if the trial valtjeis

calculate the corresponding energyand incoming particle  giacted, we still record its value and the corresponding val-

numberv. From the computational point of view, and»  yes ofe andw, since they do correspond to a possible topol-
can be considered as known functidatbeit laboriously ob-  ogy changing evolutiop.

tained of the variablesc,. We would then like to find It must be emphasized that although our algorithm gener-
o ates a distribution of topology changing solutions of the
Viowed €) =MiN(en, fixed &7 (7.3) equations of motion, this distribution represents only a com-

putational device and carries no special physical signifi-
cance. Indeed, the probability meas(red) is based on the

since it is a highly nonlinear function of the variables, . . ) .
) . L arbitrary choice of variables, and no Jacobian factor of any
and a straightforward constrained minimization procedure, . . . .
lﬁlnd has been introduced. It would be possible to define a

such as a conjygate gradient teghnlque, could fail to reVeaheasure which represents a physically meaningful distribu-
the absolute minimum of at a givene. We therefore de- . h ;
. . . . tion, and our notatio and u for the weights ofe andv has
cided to solve the problem using stochastic sampling. Sto: L : .
. . ; ) ) been inspired by the analogy with a grand canonical en-
chastic sampling methods, driven by suitable weight func-

. : L ; . . semble. But still, in the present context, there is no reason for
tions and in combination with annealing techniques, have

. L . defining any particular physically meaningful measure and
indeed proven very effective in exploring the overall struc-_~". =~ =~ - .
no justification for the attached computational costs.

ture O.f _compllcated surfaces and in approximating their glo Figure 9 illustrates the results of our Monte Carlo inves-
bal minima. o .
L o . ., tigation. It represents about 300 hours of CPU time on a
Our procedure consists in generating “configurations” of e :
the svstem weighted by a function 16-node partition of a CM-5. We generated approximately
y 9 y 30 000 configurations of which approximately 3000 repre-

The particle numbew may have several local minima

W=exp - F), (7.2) sentatives are plotted in the figure. We have chosen lattice

parametersN=2239 andAr=0.04, for a lattice of size

with L=89.56. We have used a cutdff,,,qe= 200 on the sums
over the modes, and the dimension of the initial configura-
F=Be—puv. (7.3  tion space over which we have sampled is determined by

Nspri=50. We have taken the Higgs self-coupling to be
By “configuration” we mean simply the collection of vari- \=0.1, which in lattice units corresponds to a mass of about
ablesc,,, which determine the whole evolution of the sys- my,=(40Ar) !, or a physical mass of;=110 GeV. As
tem. Sincee and v are functions ot,,, the weight given by one can see, our lattice is sufficiently dense that there are
(7.2 and (7.3 is also a function ot, and defines a prob- many lattice sites within a single Higgs Compton wave-
ability distribution length.
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FIG. 9. Monte Carlo results with lattice parameters of
N=2239,Ar =0.04 (giving L=89.58, Nypoge= 200, andNgy= 50,
and with a Higgs self-coupling of=0.1. The solid line marks the
sphaleron energyegp,=4m(2.5426), below which no topology
changing process can lie. The diamond represents the configuration
from which we seeded our Monte Carlo search. To obtain quantities FIG. 10. Topology changing transition obtained after many
in physical units, multiply the numbers along the axes byMonte Carlo iterations: behavior of the field. For a full color
47r/g%~30. The energy axis extends from about 10 TeV to 15 TeV,figure see http://cthulu.bu.edubobs/bviolate.html.
while the particle number axis ranges from about 30 particles to
60. trated about the origin. The particle numbers of the in and

out states are about the same and of order 50 in physical

It is apparent from Fig. 9 that our search procedure isunits (v; /47=1.747 andv,/4m=1.750, respectively Fig-
effective in reducing the particle number and in exploring theure 9 shows that after many Monte Carlo iterations we have
lower boundary of the space of topology changing classicaianaged to filter initial configuratiors, so that the in-state
solutions. The complex nature of this sp&oeat least of our  particle numbers are about 40% lower, f47~1.10), and
search proceduyeés also apparent from the figure, in that one from Fig. 10 it is apparent that the in states are now much
can clearly observe two breaks in the outline of the lowergifferent from the out states. The former are narrow with the
boundary ak/4m~3 ande/4m~3.4. The reason for the dis- spectrum shifted towards shorter wavelengths, while the out-
continuity is that in a first extended search we did not Verifygoing states still display the broad long-range waves seen at
that every individual solution changed topolo@erforming  both ends of the evolution in Fig. 6. Indeed, the particle
this check is costly in computer timearusting that topology number in the out state remains high.
change would be the typical outcome of an evolution which  More details of the configurations selected by our sam-
passes over the sphaleron barrier. A subsequent analysis figling procedure are revealed by Figs. 11 and 12. Figure 11
vealed however that for a whole subset of our configurationsjlustrates the behavior of the particle numbers associated
comprised betweer/47~3 and e/4m~3.4, the topology with the four normal modes for the initial configuratiaon
did not change: the system went over the sphaleron barrier a
second time in the reversed direction and returned to the
original topological sector. We discarded all these configu-
rations and verified that the topology changed in all the re-
maining ones. We then implemented the check for topology
change at every Monte Carlo step and restarted our samplingg
procedure by annealing a topology changing configuration <
obtained fore/47w~ 3. This second search produced the set of
configurations which stand out at slightly lowerbetween
eldm~3 ande/dm~3.4.

Our search procedure not only leads to classical solutions
with lower particle number, but is effective in selecting con-
figurations with special properties in the in statieese two
features of course go hand in hanth Fig. 10 we illustrate
the entire evolution for one of the topology changing pro- %
cesses with low particle number, corresponding to one of the t
points at the bottom-right corner of the plot in Fig. 9. Figure
10 should be contrasted with Fig. 6 in which the evolution of  FiG. 11. Behavior of the in-state particle number in the four
our Monte Carlo seed configuration is illustrated. The chang@&ormal modes. The initial state was obtained after many Monte
is dramatic. The in and out states in Fig. 6 look rather sym-<arlo iterations, and soon linearizes. Note, however, that mode 3
metric, up to the topology change of the out state concenremains about 10% nonlinear.

15

v (units of

0.5




1040 CLAUDIO REBBI AND ROBERT SINGLETON, JR. 54

0.008 number of points in the lattice determines of course the ul-
traviolet cutoff and this in turn implies a minimum value for
................. layl2 the ratiov/e. This quantity is indeed minimized by placing
lagl® all the weight in the highest modeN .4 giving
(v/ €) min= Lwmoge™ LI Nmogerr. With N= 256 points we saw
the onset of this constraint, and we decided to choose a lat-
tice size that would push the lower limit an'e to a much
smaller value closer to the physically relevant domain. With
the parameters of our present calculation, the minimum
would occur at ¢/ €) min—~0.15. However, the increased com-
putational burden, together with the fact that the stochastic
~ * sampling moved in the-v plane at a much slower rate than
0 50 100 150 200 . . . .
(@) mode number we had anticipated, prevented us from saturating this lower
bound.

0.008 It is still interesting to extrapolate our results to obtain
information about the possible behavior of the boundary in
lagl® the e-v plane of topology changing solutions. For this pur-
e e A lagf? pose we binned all our data into subintervals of width
A e=0.005. Within every bin we selected the point with low-
estv. We then fitted these points to the hyperbola

0.006

0.004 -

Jal2 (units of 4 m)

0.002

0.004 |

(v—ae—Cq)(v—v,)=Cy, (7.5

lal2 (units of 4 1)

0.002
wherea andwv,, are the free parameters of the fit. The quan-

tities ¢, andc, (which are constants with respect toand
py 00 € but depend on a« and v, are given by
(b) mode number C1= 2Vsph_ A €gph™ Vo and Cc=-— (Vsph_ Vw)21 where
€spri= 2.5447 andvg,,=1.7478 are the energy and particle
FIG. 12. Mode distribution of the asymptotic in state of Fig. 11. number in the limiting case in which the configuration ap-
proaches the sphaleron itséifi practice thee and v of the
used to generate Fig. 10. The asymptotic particle numbers iponfiguration from which we started the Monte Carlo
Fig. 11 are associated with the in state of the physicallysearch.
relevant time reversed solution of Fig. 10. Figure 12 illus- This fit is motivated by simple physical considerations.
trates the mode distribution of this in state. These figure$Ve would expect the lower boundary of the region of topol-
should be contrasted with Figs. 7 and 8 which display theogy changing transitions to saturate eitheratO or at some
same quantities at the beginning of our search. The changefinite value of v. The boundary of the domain must go
again very impressive. In particular, it is clear that the stothrough the sphaleron and should have an infinite slope
chastic sampling procedure has selected classical solutiotigere. Indeed, since the topology changing classical solutions
where the mode distribution in the in states is shifted toward$ecome complex whea decreases below,,, one would
higher frequencies and shorter wavelengths. Of course, thisxpect the boundary curve=v(e) to have a square root
is necessary for a reduction of the raiibe. singularity ate= eg,. Finally, although the upper boundary
Although our results show a marked decrease in the pamf the region is of little interest to us, it is not unreasonable
ticle number of the incoming state, nowhere in the energyto parametrize it in terms of a straight line of constant slope.
range we have explored doesdrop below 4r, or in physi-  This is the line one would find if the upper bound were
cal unitsNn,s=30 forE=< 15 TeV. This is a far cry from the ~ obtained by putting all the energy in a single mode of fre-
value Ny, <=2 which would be needed to argue that baryonquencyw (in which case the slope= 1/w), or since this is
number violation can occur in a high energy collision. Fromunrealistic, if the the mode distribution could be well ap-
this point of view our present results are limited and shouldproximated in terms of some effective frequency= 1/a.
be pushed to much higher valueseofin the next section we The hyperbola of(7.5) is the simplest curve with all these
will make some comments about our future plans to explorgroperties.
higher energies and discuss other investigations which can The results of our fits are shown in Figs. 13 and 14. In
shed further light on the properties of the system. As of nowFig. 13 all the data points have been used, and the solid line
the computational resources at our disposal, together with theepresents the unconstrained fit while the dashed line is ob-
rather ambitious number of points we have used for our nutained by requiringr,,=0. Since one can argue that what
merical study, have not permitted us to go beyond the energgught to be fit is the lower boundary of the region, and that
range we have explored. We believe that our results, as weihsofar as our points display a slight discontinuity and cannot
as the formalism we have established, are nevertheless inteall belong to this boundary, we have repeated the fit remov-
esting enough to warrant publication. In some respect, thang all the points which lie above the unconstrained fit in Fig.
choice of a number of points as large as our currentl3. The results of this second fit are reproduced in Fig. 14.
N=2239 has been an error of strategy. In a preliminary in+or Fig. 13, the unconstrained fit has parametets0.257
vestigation, described ifl6], we had usedN=256. The and v,=—0.294 while the constrained fit has=0.319.
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and 11 that, while the particle number becomes reasonably
constant towards the end of the evolution, it still exhibits
oscillations possibly as large as 10%. This might cast doubts
on the validity of our stochastic sampling technique, where
the steps in initial parameter space induce variations of the
particle number as small as 1 The solution we have
adopted is to define a “computational particle number’
(which is the quantity represented in Fig. With a lattice of
infinite spatial extent, even in the presence of an ultraviolet
cutoff arising from finite lattice spacing, and barring the ex-
istence of conservation laws giving rise to particle phenom-
ena, the system will eventually linearize fully and the true
particle numberv will be well defined and constant to any
degree of precision. Since we begin with an initial state lo-
calized around the origin, we may conceptually think of this

FIG. 13. Hyperbolic fits to full data set. The asymptotic particle @S being defined over an infinite lattice, although in practice
number is constrained to vanish for the dashed line, while it remain¥/€ use a lattice of finite extent. Thus, every initial configu-

unconstrained for the solid line.

Figure 14 has the parametets=0.238y,,=—0.530 and

ration c,, conceptually determines a unique particle number
v. This may not be accessible to us, but it exists. We define
a quantityv, which we can measure as follows: we evolve
the system for a definite amount of tinfig and then for an
additional timeAT (in our calculationT =60 andAT=8).

«=0.341, respectively, for the unconstrained and conOVver the intervally,To+ AT we measure the particle num-

strained fits.

ber at timesT; =Ty, ... ,T, chosen at randortin our calcu-

It is interesting to observe that the unconstrained fits leadtion we takem=10 and choos&, throughT,,to be 61.55,
to an asympto“c value for smaller than zero, which shows 6251, 6327, 6370, 6477, 6525, 6533, 6571, 6659, 6800,
that one cannot read any indication of a lower bound on théespectively, but fixed for the entire calculation. The com-
particle number in our present data. Our results cover a rang&utational particle number, is defined as the average of the
of energies which is too small to derive any reliable conclu-Particle numbers measuredgt Again, v is a well-defined
sion about whether and when the particle number couldunction of the parameters,, and uniquely determined by
reach the value two. One can nevertheless insert physic#lfis initial configuration. The crucial point is that tracks.
units in the results of our fits and see at what energy value§he quantitiesy and ». may differ by as much as 10%;
the incident particle number would become equal to twohowever, if we reducev. by a certain factor, we can be
This simple exercise gives energies of 110.37 TeV andonfident that the true particle numberhas also been re-
447.20 TeV, respectively, for the unconstrained and conduced by the same factor, up to a relative error given by the
strained fits of Fig. 13, and energies of 75.06 TeV andapproximation by whichv, tracks v. Finally, we should
418.61 TeV for the corresponding fits of Fig. 14.

We conclude this section with a few technical remarks.tion of the parameters,, i.e., that the functional relation
Since our entire procedure is based on the calculation of thketween the choser), and the measured value of is not
particle number after the system has reached the linear repoiled by numerical errors. This we have verified explicitly.
gime, we should make sure this quantity is evaluated in &n a sample configuration we have stepped every individual
reliable manner. Now, it is clear from the graphs of Figs. 7parameterc, by values an order of magnitude smaller than

v (units of 4m)

unconstrained
----- constrained

€ (units of 47)

make sure that, is, computationally, a well-behaved func-

the typical steps in our stochastic sampling procedure and
have verified that the corresponding changes rare regu-

lar and well accounted for by the first few terms of a Taylor
series expansion iAc,,.

VIIl. CONCLUSIONS

We have developed a computational procedure that al-
lows us to explore the space of classically allowed topology
changing transitions leading to baryon number violation.
With our method we have been able to trace the lower
boundary of the region spanned by topology changing evo-
lution in the energy versus incoming particle number plane,
up to energies approximately one and a half times the sphale-
ron energy and with a reduction of the incoming particle
number by approximately 40%. The corresponding solutions
display dramatically different features in their incoming state

FIG. 14. Same as Fig. 13, except the data set was reduced Hyom the solution used to seed the Monte Carlo sedirch
those points lying above the previous unconstrained fit.

which there was just barely enough energy to cross the
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sphaleron barrigr one of the most notable differences beingagainst our original notion that it would be very difficult to

a marked shift of the in-state spectral mode distribution to-start from the selection of the incoming state and still obtain
wards higher frequencies and shorter wavelengths. Withi@ topology changing solution, but now we are no longer deal-
the domain we have explored there is no indication of aring with a blind sampling of incident states. From this point
emergent lower limit on the particle number of the incomingof view we find very inspiring some recent results obtained
state. Indeed, a hyperbola fit to our data, motivated by th®y Farhi, Goldstone, Lue, and Rajagopal who, in a study of
expected physical properties of the boundary of the domaigollision induced soliton decay, were able to produce the

of topology changing evolution, is quite compatible with a unwinding” of the soliton and its subsequent decay by di-
zero lower bound on the incoming particle number. recting against it waves which carry a short range twist of the

Our results are unfortunately rather limited in the extent?Nase Of the complex fieldve refer to the original work of

of energy and particle number which we have been able t ef.[17] for an elucidation of this possibly cryptic sentejhce
t is interesting that in computer animation which we gener-

explore. However impressive may be the change in the pro 2ted to clarify th " f th luti h
erties of the solutions spanned by our search, the fact réited to canfy. € properties ot the evolution, we have seen
nalogous twists in the phase of the two-dimensional field

mains that the lowest particle number we have been able @ : .
in the asymptotic states. Of course one must be careful in

reach is, in physical units, approximately 30. An even moreX

serious shortcoming of our results is that our method Caﬁlefining effects which pertain to gauge-variant quantities,

only establish an upper bound on the minimum particle numput a careful study of the properties of the asymptotic states

ber at any given energy: when our search produces a topo||”[]ay provide important clues for understanding the mecha-

ogy changing solution of givers and v, it establishes by nisms leading to classically allowed transitions with low in-
construction that the lower boundary of the classically al-comng particle number.

lowed transitions cannot lie above that point, but we cannot Finally, a Comp'?me”‘aw a_ppro_ach to t_he study of c_Ia55|-
rule out that it might lie substantially below and that the cally allowed transitions consists in studying the. cIaSS|_caIIy
stochastic search simply failed to come close to it, forbidden processes. As we have already mentioned in the

However, the mere fact that the analytically intractablelmr?]ducnon’ a vhery Eowerfu: fg)lrrr;]alésm [g];bthg stulcjy dOf
nonlinear equations of motion are amenable to a reliapl§UC" Processes has been estabiished in hd applie

computational solution is, we believe, a very important re_recently in Ref[18] to the study of collision in_duced decay
sult, perhaps the most important fact emerging from oqu the false vacuum. The_ method of RES] requires that one
analysis. By solution, we mean much more than just the’so!ves analyncal!y continued equations of motion along a
implementation of a numerical integration algorithm of theswtable contour in the complex time plane and that one im-

evolution equations. Our study makes it clear that a whold05€S boundary conditions based on the normal mode expan-

range of detailed questions about the entire space of solfion of the fields in the linearized domain. Thus a large part

tions can be tackled and solved by computational means. of the formalism we have_developepl in this paper will carry
The results we have established thus far naturally lead tgver to the study of class!cally forb|dden_proce.ssels, and we
further investigation. By investing more computational re_plan to make this the subject of a future investigation.
sources it will be stralghtf_orward to extend the exploration to ACKNOWLEDGMENTS
substantially larger energies. However, one can do more than
that. The detailed information obtained about the spectral This research was supported in part under DOE Grant No.
composition of the incoming states with low particle numberDE-FG02-91ER40676 and NSF Grant No. ASC-940031. We
suggests that one may explore the properties of such statedsh to thank V. Rubakov for very interesting conversations
directly. For instance, one could try to shift the mode distri-which stimulated the investigation described here, A. Cohen,
bution further towards shorter range, while verifying that theK. Rajagopal, and P. Tinyakov for valuable discussions, and
ensuing evolution still changes topology. This runs somehow . Vaughan for participating in an early stage of this work.

[1] G. 't Hooft, Phys. Rev. D14, 3432(1976. [7] E. Farhi, J. Goldstone, S. Gutmann, K. Rajagopal, and R.
[2] N. Manton, Phys. Rev. 28, 2019(1983; F. Klinkhamer and Singleton, Jr., Phys. Rev. Bl, 4561(1995.
N. Manton,ibid. 30, 2212(1984. [8] K. Rajagopal and N. Turok, Nucl. PhyB375, 299(1992; H.
[3] A. Ringwald, Nucl. PhysB330, 1 (1990. Goldberg, D. Nash, and M. T. Vaughn, Phys. Rev) 2585
[4] O. Espinosa, Nucl. Phy&343 310(1990. (1992.

[5] V. Kuzmin, V. Rubakov, and M. Shaposhnikov, Phys. Lett. [9] C. Hu, S. Matinyan, B. Mller, A. Trayanov, T. Gould, S. Hsu,
155B, 36 (1989; see also P. Arnold and L. McLerran, Phys. and E. Poppitz, Phys. Rev. B2, 2402(1995.
Rev. D36, 581(1987; L. Carson, X. Li, L. McLerran, and R. [10] C. Hu, S. Matinyan, B. Mller, and D. Sweet, Phys. Rev. &3,
T. Wang, ibid. 42, 2127 (1990; D. Grigoriev, V. Rubakov, 3823(1996.
and M. Shaposhnikov, Phys. Lett. Bl6 172 (1989; Nucl. [11] P. Arnold and L. McLerran, Phys. Rev. 87, 1020(1988.
Phys.B342 381(1990; D. Grigoriev and V. Rubakovipid. [12] M. Hellmund and J. Kripfganz, Nucl. PhyB373 749(1991).
B299 67(1988; M. Dine, O. Lechtenfeld, and B. Sakitijd. [13] B. Ratra and L. Yaffe, Phys. Lett. BO5 57 (1988.
B342 381(1990. [14] R. Jackiw and C. Rebbi, Phys. Rev. L&, 172 (1976; C.
[6] V. Rubakov, D. Son, and P. Tinyakov, Phys. Lett287, 342 Callan, Jr., R. Dashen, and D. Gross, Phys. L&&B, 334
(1992. (1976.



54 COMPUTATIONAL STUDY OF BARYON NUMBER VIOLATION ... 1043

[15] E. Farhi, K. Rajagopal, and R. Singleton, Jr., Phys. Re82D [17] E. Farhi, J. Goldstone, A. Lue, and K. Rajagopal, Phys. Rev. D
2394(1995. (to be published

[16] C. Rebbi and R. Singleton, Jr., Report No. BUHEP-95-5, hep{18] A. Kuznetsov and P. Tinyakov, Report No. INR-1835-95, hep-
ph/9502370unpublished ph/9510310(unpublished



