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Focusing and the holographic hypothesis
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The “screen mapping” introduced by Susskind to implement 't Hooft's holographic hypothesis is studied.
For a single screen time, there are an infinite number of images of a black-hole event horizon, almost all of
which have a smaller area on the screen than the horizon area. This is consistent with the focusing equation
because of the existence of focal points. However pitnendaryof the pastor future of the screen obeys the
area theorem, and so always gives an expanding map to the screen, as required by the holographic hypothesis.
These considerations are illustrated with several axisymmetric static black-hole spacetimes.
[S0556-282(96)50312-1

PACS numbds): 04.70.Bw, 04.70.Dy

I. INTRODUCTION screen map with this property axpanding mapSusskind
argued that his screen map is indeed expanding. He also
The generalized second law of thermodynanfiidsis the  noted that it is a one to many map from horizon to screen,
statement that the entropy outside event horizons plus thand suggested that at the quantum level one should perhaps
Bekenstein-Hawking entropy/4 (in Planck unit3 of all ~ superpose all of the images.
event horizons cannot decrease. The law seems to be correct, In this Rapid Communication we take a closer look at the
at least in quasistationary proces$gk If it is true, it must ~ definition and properties of the screen map. We find that, for
be thatA/4 is the most entropy that could possibly be con-a single screen time, there are an infinite number of multiple
tained in a region bounded by an ar&d1,3,4. There has images, corresponding tiifferenthorizon times. Since they
been much debate over the past 20 years about whether @fise from different time slices of the horizon, it does not
not this bound really holds, and part of the problem in prov-seem appropriate to superpose them. Moreover, aimost all of
ing it is that it is not precisely clear what the statementthese single image maps arentractingrather than expand-
means. Nevertheless, there are many reasonable argumeiftg, which is allowed by the focusing equation on account of
in support of it. the presence of focal points. However, we prove in general
If the A/4 bound is indeed valid, then the number of statestnd illustrate in several examples that there is always at least
is vastly overestimated by any ordinary flat space density opne expanding image of the horizon. This proof is essentially
states in three dimensions. The reason is that almost all dfawking’s area theorem, applied to the boundary of the past
those states would, because of gravity, create a black hol@r future of the screen.
whose entropy is fixed a&d/4. One is thus led to thkolo-
graphic hypothesig3—6], according to which the true de-
grees of freedom are enumerated on a surface enclosing the
volume of interest, at an information density less than or We are interested in light rays that hit the screen orthogo-
equal to one bit per Planck area. nally at one screen time, that is, at one particular spacelike
Susskind proposed to implement 't Hooft's holographicslice S of the screen’s history. The first thing to clarify is
hypothesis by mapping all the points of space, by light raysvhether the light rays leave the screen towards the future or
that impinge perpendicularly, onto a flat two-dimensionaltowards the past. Lacking the holographic theory, we do not
screenS in a distant asymptotically flat region. We call this have a way to decide this, so we shall consider both possi-
mapping thescreen mapThis particular idea was partly mo- bilities. If the rays from the screen apast directed then
tivated by properties of string theory in the light cone gaugethey never actually cross the future black-hole horizon. They
but the mapping between surface and volume degrees a@fn however cross the “stretched horizofi7,8], which in
freedom is not really specified in Susskind’s proposal. Theany case might be argued to be more relevant than the true
proposal seems more intended to get some kind of picture oavent horizon. If the rays from the screen araire directed
the table so one can begin thinking about it. The first test tadhen they can indeed cross the future black-hole horizon, so
which Susskind subjected the screen map was to ask whethee get a precise map from a subset$fo the horizon by
the horizons of any black holes that are present are necessdollowing the rays.
ily mapped onto sets dirger areaon the screen. This is We define thedfuture screen mapo be the past directed
required by the holographic hypothesis since the black holeongruence of null rays orthogonal & A point on a given
has the maximal bit density of one per unit area. We call aay is mapped to the point where the ray hits the screen.
Similarly we define thepast screen mags reversing the
roles of past and future. In a static spacetime, such as the
*Electronic address: corley@umdhep.umd.edu maximally extended Schwarzschild metric, these are equiva-
TElectronic address: jacobson@umdhep.umd.edu lent. In particular, although the future screen map does not
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after that, but that is of no help in establishing the expanding
character of the map. A point whegeis infinite is afocal
point (also often called a “caustic” or a “conjugate point”

to the screen To be sure of the expanding character of the
map one must show that there are no focal points between
the screen and the horizon.

primary

ap - B. Primary screen map and the area theorem

AVAY,

The boundaryof the past of the scredn’[S] is what we
have called the primary screen map. This boundary is similar
to a black-hole event horizon, and shares with such a horizon
the property that the area of its cross sections cannot de-
crease toward the futuf@®]. This property follows from the

FIG. 1. Past screen map in black-hole spacetime, showing intefocusing equation, the null energy condition, and a key prop-
section with horizon. The multiple coverings of the horizon comeerty of all past boundaries: each point lies on a null geodesic
from rays that orbit the hole before crossing the horizon. Only thethat runs all the way up the boundary &with no focal
first covering lies in the primary screen map. points along the way. The proof assumes that no “naked

singularities,” i.e., singularities visible from the screen, are
intersect the future horizon, it does intersect the past horizorencountered along the way up &
In such cases the past horizon can serve as a surrogate for theThus one has an “area theorem” for the primary screen
stretched horizon. Of particular interest will be the part ofmap, which guarantees that this map is expanding. In par-
this congruence that lies on tiundary I'[S] of the past ticular, if the null rays cross a stretched horizon, then the
of S. We refer to this part as therimary future screen map, stretched horizon will necessarily be mapped to a larger area
and similarly for the past screen map. on the screen.

The definition of the past screen map is illustrated in Fig. All of the above applies equally well to the boundary of a
1 for the case in which a single black hole is present. Thepast screen map, with the roles of future and past inter-
intersection of the screen map with the horizon is shownchanged. The boundary has an area that rdasteaseto-

The multiple coverings of the horizon come from rays thatward the future, but stilincreasestoward the screen, so
orbit the hole before crossing the horizon. Only the first cov-again one obtains an expanding map to the sctagsuming
ering lies in the primary screen map. now that no singularities are encountered on the way from

Rather than taking the screen to be planar, it might béhe screen
natural to think of it as a large sphere in an asymptotically
flat spacetime, which can be taken all the way out to future ll. STATIC AXISYMMETRIC EXAMPLES
or past null infinity. The distinction between planar and . ) »
spherical screens makes no difference for our general argu- ' this section we look at a number of specific examples
ments(as long as the rays orthogonal to the screen are ndhat illustrate the general principles already discussed. In

diverging, but the specific examples considered below will SOMe Of the examples we can actually calculate the areas of
refer to a planar screen at infinity. the screen images of the black-hole horizon and show that a

finite number(often only ong are greater but the remaining
infinite number are less than the horizon area. We explain
this fact by identifying the focal points. We also identify the
In [5] it was argued that the screen map is necessarilprimary screen map in all the examples and show explicitly

|

A. Focal points and expanding maps

expanding as a consequence of theusing equation that it has no focal points. Since these are static spacetimes
L ab aLb the future and past screen maps are equivalent. For definite-
p'=p 2+ 04507+ Rapk®k®, D ness, we adopt here the past screen map, which intersects the

. , ) future black-hole horizon.
which governs the rate of change with respect to affine pa-

rameter of the convergengeof a nontwisting congruence of )
null geodesicso, is the shear tensoR,y, is the Ricci ten- A. Single black hole
sor, andk? is the tangent vector to the congruence. Accord- For a single spherically symmetric black hole we can eas-
ing to the Einstein equation one has ily analyze the screen map explicitly by use of the integrated
Rapk®kP=8mGT,,k?P, so the rate of change’ is positive  geodesic equation. Three orbits from the screen to a
as long as the null energy conditidn k®k”=0 holds. Thus, Schwarzschild hole are shown in Fig. 2. The orbits can be
assuming the null energy condition, one knows that if thelabeled by the angle at which they hit the horizon, measured
light rays have vanishing convergence at the scrpemust  from the perpendicular from the screen to the hole. The or-
be non-negative everywhere from screen to horigeith bits with angles between O and cover the horizon once,
affine parameter increasing from screen to horjzeo the when rotated around the axis. Those with angles between
screen map is expanding. 7 and 2r give a second covering, and so on. There are an
There is a serious flaw in this reasoning, however, sincénfinite number of coverings of the horizon. There is an up-
p may become infinite somewhere, after which point it canper bound for the impact parameter for capture by the hole,
be negative The focusing equation still says it must increaseso the areas of the coverings on the screen must converge to
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FIG. 2. Three orbits from screen to a Schwarzschild black hole,
drawn in (,¢) plane.

zero. These coverings are illustrated in Fig. 3, which is

drawn approximately to scale for the case of a Schwarzschild

black-hole. The primary cover has areal.24A, greater

than the horizon area, but all the rest have lesser area. In fact

the sum of all the rest has lesser area, A5 FIG. 4. Focal point for the second cover of the screen map to a
Since the higher-order covers are not expanding, thergchwarzschild horizon.

must be at least one focal point somewhere on each of the

corresponding null congruences. This focal point is shown irhoth the primary and the second cover are expanding, but the

Fig. 4 for the second cover in the Schwarzschild case. All theest are not.

null rays will intersect at a point directly behind the black-

hole (as viewed from the scregnAt this point the conver- B. Two distant black holes

gence goes to infinity and just past this point it is negative i i

(although in general the convergence may become positive, |t Was pointed out 5] that one black hole cannot be

again and may even diverge again if the congruence godydden _behlnd another, _and that th_e screen map will §t|ll be

through another focal pointlt is interesting to note that the €xPanding for both horizons in this case. We investigated

separation of the null rays in the transverse direction is largefiS Situation explicitly for the case where the two black
on the screen than on the horizon, so it is not the angulafFC"eS are very far from one another and the screen is perpen-

focusing but the radial focusing that makes the map fail to b&licular to the axis joining them. In this case we could ap-

expanding, even though it is the angular focusing that proprOX|_mate the capt_ure OI_’bItS for the se_cond hole analytlcally

duces the focal point. by simply composing with the scattering by the first hole.
We also analyzed the screen map for an extremall;}rhe screen map pattern in this case is rather complicated. A

charged Reissner-Nordstohole, where it turns out that 9€neral orbit can alternate between the two holes, wrapping
any number of times around on each visit, before finally

crossing the horizon of one of the holes. The primary map
for the second hole is given by the orbits that never cross the
axis (see Fig. %, and it traces out an annulus on the screen.
We estimated the area of this annulus for large separation
d, and found that it grows lika*% A~(Md/M3)Y2A,.

0.42 A,

FIG. 3. Screen image of Schwarzschild horizon. The inner disc
is the primary cover, and all the rest of the covers are annuli. The|
higher-order covers accumulate at an impact parameter’&f3
the capture radius. Only the first and second covers are shown ex-
plicitly. The rest are too narrow to show to scale. Even the second FIG. 5. Extreme rays of the primary cover of the second black
cover has smaller arg@.42 Ay) than the horizon. hole. None of the rays in this cover cross the axis.
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HereM;, M, are the masses of the first and second holesing with respect t@. While this does not imply that they are
respectively,A, is the horizon area of the second, and wereceding with respect to the physical megicit does at least
have assumed that>M3/M ;. imply that they will not reach a focal point.

C. General static axisymmetric spacetime IV. REMARKS

For two nearby black holes one cannot just compose the The main lesson of this geometric exercise is the conclu-
asymptotic scatterings, and also one must decide what metriion that, to guarantee the expanding nature of the holo-
to take for the two black holes. In order to have a staticgraphic map from horizon to screen, one should restrict to
situation, it is natural to consider a pair of extremally the primary screen map, i.e., the boundary of the p@B‘[
charged black holes with like sign charges, one of theuture) of the screen. This boundary generalizes the concept
Majumdar-Papapetrou solutio$0]. Generalizing this, one of a black-hole event horizon and satisfies the area theorem.
can consider a linear array of any number of such black Even the primary screen map is on|y guaranteed to be
holes. We shall now show by explicit consideration of theexpanding if the null energy condition is satisfied. In the
geodesics that the primary map has no focal points, so thgresence of quantum fields this condition can be locally vio-
map is expanding. lated by the expectation value of the stress-energy tensor, so

It is most natural to discuss this problem for an arbitraryone should not rely on the null energy condition. Perhaps an
static axisymmetric geometry with the screen perpendiculagveragednull energy condition would be sufficient to estab-
to the axis. Because of the axisymmetry, focal points willlish the expanding nature of the primary screen m&ev-
occur on any rays that cross the axis, so we restrict attentiogral recent work$12] have studied the extent to which av-
to those rays that do not cross the axis. These can only havgaged energy conditions hold in quantum field theory.
focal points if they are focused to crossing points in thealternatively, the expanding property may be lost, which
radial direction. To establish the absence of such crossinghay reveal something about the holographic principle.
points we adopt a technique from the analysis by Yurtsever Qur proof of the expanding nature of the primary screen
[11] of chaos in the orbits around a pair of extremal black-map relies heavily on the assumption that the rays orthogonal
holes. to the screen are not diverging. This is guaranteed in asymp-

Consider ~a line element of the form totically flat space by taking a flat or spherical screen at
g=fdt*~gd¢*—h;dx'dx), wherei=1,2, andf, g, and infinity. In a closed expanding universe it seems one must
h;; are functions only ok'. The rays from the screen have choose a future screen map rather than a past one in order to
constanté, and, since they are null geodesics, they are théyave any chance of finding an expanding map from all points
same as for the conformally rescaled three-dimensional lingf space to a single screen. Strangely, if the universe recol-
element'§=dt2—hijdx'dx', where h;; :f‘lhij . The geo- lapses, one must then switch to a past screen map. Perhaps
desics _of ‘g project to geodesics of the Riemannian some insight into the holographic hypothesis can be gleaned
metric h;;, and the arc length along the projection agreefrom an investigation of its compatibility with closed uni-
with the affine parameter along the null geodesic. Computaverses.
tion reveals that the curvature of the two-dimensional metric

ﬁij is negative everywhere outside the horizon of a general

multi-extremal black-hole solution, as well as for a Reissner- ACKNOWLEDGMENTS
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