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Focusing and the holographic hypothesis
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The ‘‘screen mapping’’ introduced by Susskind to implement ’t Hooft’s holographic hypothesis is stud
For a single screen time, there are an infinite number of images of a black-hole event horizon, almost
which have a smaller area on the screen than the horizon area. This is consistent with the focusing e
because of the existence of focal points. However, theboundaryof the past~or future! of the screen obeys the
area theorem, and so always gives an expanding map to the screen, as required by the holographic hyp
These considerations are illustrated with several axisymmetric static black-hole spacetimes.
@S0556-2821~96!50312-7#

PACS number~s!: 04.70.Bw, 04.70.Dy
lso
n,
aps

e
or
le

t
l of

of
ral
ast
lly
st

o-
ike

or
ot
si-

ey

rue

so

n.

the
a-
ot
I. INTRODUCTION

The generalized second law of thermodynamics@1# is the
statement that the entropy outside event horizons plus
Bekenstein-Hawking entropyA/4 ~in Planck units! of all
event horizons cannot decrease. The law seems to be cor
at least in quasistationary processes@2#. If it is true, it must
be thatA/4 is the most entropy that could possibly be co
tained in a region bounded by an areaA @1,3,4#. There has
been much debate over the past 20 years about whethe
not this bound really holds, and part of the problem in pro
ing it is that it is not precisely clear what the stateme
means. Nevertheless, there are many reasonable argum
in support of it.

If the A/4 bound is indeed valid, then the number of stat
is vastly overestimated by any ordinary flat space density
states in three dimensions. The reason is that almost al
those states would, because of gravity, create a black h
whose entropy is fixed atA/4. One is thus led to theholo-
graphic hypothesis@3–6#, according to which the true de-
grees of freedom are enumerated on a surface enclosing
volume of interest, at an information density less than
equal to one bit per Planck area.

Susskind proposed to implement ’t Hooft’s holograph
hypothesis by mapping all the points of space, by light ra
that impinge perpendicularly, onto a flat two-dimension
screenS in a distant asymptotically flat region. We call thi
mapping thescreen map. This particular idea was partly mo-
tivated by properties of string theory in the light cone gaug
but the mapping between surface and volume degrees
freedom is not really specified in Susskind’s proposal. T
proposal seems more intended to get some kind of picture
the table so one can begin thinking about it. The first test
which Susskind subjected the screen map was to ask whe
the horizons of any black holes that are present are neces
ily mapped onto sets oflarger area on the screen. This is
required by the holographic hypothesis since the black h
has the maximal bit density of one per unit area. We cal
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screen map with this property anexpanding map. Susskind
argued that his screen map is indeed expanding. He a
noted that it is a one to many map from horizon to scree
and suggested that at the quantum level one should perh
superpose all of the images.

In this Rapid Communication we take a closer look at th
definition and properties of the screen map. We find that, f
a single screen time, there are an infinite number of multip
images, corresponding todifferenthorizon times. Since they
arise from different time slices of the horizon, it does no
seem appropriate to superpose them. Moreover, almost al
these single image maps arecontractingrather than expand-
ing, which is allowed by the focusing equation on account
the presence of focal points. However, we prove in gene
and illustrate in several examples that there is always at le
one expanding image of the horizon. This proof is essentia
Hawking’s area theorem, applied to the boundary of the pa
~or future! of the screen.

II. THE SCREEN MAP

We are interested in light rays that hit the screen orthog
nally at one screen time, that is, at one particular spacel
slice S of the screen’s history. The first thing to clarify is
whether the light rays leave the screen towards the future
towards the past. Lacking the holographic theory, we do n
have a way to decide this, so we shall consider both pos
bilities. If the rays from the screen arepast directed, then
they never actually cross the future black-hole horizon. Th
can however cross the ‘‘stretched horizon’’@7,8#, which in
any case might be argued to be more relevant than the t
event horizon. If the rays from the screen arefuture directed,
then they can indeed cross the future black-hole horizon,
we get a precise map from a subset ofS to the horizon by
following the rays.

We define thefuture screen mapto be the past directed
congruence of null rays orthogonal toS. A point on a given
ray is mapped to the point where the ray hits the scree
Similarly we define thepast screen mapas reversing the
roles of past and future. In a static spacetime, such as
maximally extended Schwarzschild metric, these are equiv
lent. In particular, although the future screen map does n
R6720 © 1996 The American Physical Society
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53 R6721FOCUSING AND THE HOLOGRAPHIC HYPOTHESIS
intersect the future horizon, it does intersect the past horiz
In such cases the past horizon can serve as a surrogate fo
stretched horizon. Of particular interest will be the part
this congruence that lies on theboundary I˙2@S# of the past
of S. We refer to this part as theprimary future screen map,
and similarly for the past screen map.

The definition of the past screen map is illustrated in F
1 for the case in which a single black hole is present. T
intersection of the screen map with the horizon is show
The multiple coverings of the horizon come from rays th
orbit the hole before crossing the horizon. Only the first co
ering lies in the primary screen map.

Rather than taking the screen to be planar, it might
natural to think of it as a large sphere in an asymptotica
flat spacetime, which can be taken all the way out to futu
or past null infinity. The distinction between planar an
spherical screens makes no difference for our general ar
ments~as long as the rays orthogonal to the screen are
diverging!, but the specific examples considered below w
refer to a planar screen at infinity.

A. Focal points and expanding maps

In @5# it was argued that the screen map is necessa
expanding as a consequence of thefocusing equation

r85r2/21sabs
ab1Rabk

akb, ~1!

which governs the rate of change with respect to affine p
rameter of the convergencer of a nontwisting congruence of
null geodesics.sab is the shear tensor,Rab is the Ricci ten-
sor, andka is the tangent vector to the congruence. Accor
ing to the Einstein equation one ha
Rabk

akb58pGTabk
akb, so the rate of changer8 is positive

as long as the null energy conditionTabk
akb>0 holds. Thus,

assuming the null energy condition, one knows that if t
light rays have vanishing convergence at the screen,r must
be non-negative everywhere from screen to horizon~with
affine parameter increasing from screen to horizon!, so the
screen map is expanding.

There is a serious flaw in this reasoning, however, sin
r may become infinite somewhere, after which point it ca
benegative. The focusing equation still says it must increas

FIG. 1. Past screen map in black-hole spacetime, showing in
section with horizon. The multiple coverings of the horizon com
from rays that orbit the hole before crossing the horizon. Only t
first covering lies in the primary screen map.
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after that, but that is of no help in establishing the expandi
character of the map. A point wherer is infinite is a focal
point ~also often called a ‘‘caustic’’ or a ‘‘conjugate point’’
to the screen!. To be sure of the expanding character of th
map one must show that there are no focal points betwe
the screen and the horizon.

B. Primary screen map and the area theorem

Theboundaryof the past of the screenİ2@S# is what we
have called the primary screen map. This boundary is simi
to a black-hole event horizon, and shares with such a horiz
the property that the area of its cross sections cannot
crease toward the future@9#. This property follows from the
focusing equation, the null energy condition, and a key pro
erty of all past boundaries: each point lies on a null geode
that runs all the way up the boundary toS with no focal
points along the way. The proof assumes that no ‘‘nak
singularities,’’ i.e., singularities visible from the screen, ar
encountered along the way up toS.

Thus one has an ‘‘area theorem’’ for the primary scree
map, which guarantees that this map is expanding. In p
ticular, if the null rays cross a stretched horizon, then th
stretched horizon will necessarily be mapped to a larger a
on the screen.

All of the above applies equally well to the boundary of
past screen map, with the roles of future and past inte
changed. The boundary has an area that mustdecreaseto-
ward the future, but stillincreasestoward the screen, so
again one obtains an expanding map to the screen~assuming
now that no singularities are encountered on the way fro
the screen!.

III. STATIC AXISYMMETRIC EXAMPLES

In this section we look at a number of specific example
that illustrate the general principles already discussed.
some of the examples we can actually calculate the areas
the screen images of the black-hole horizon and show tha
finite number~often only one! are greater but the remaining
infinite number are less than the horizon area. We expla
this fact by identifying the focal points. We also identify the
primary screen map in all the examples and show explici
that it has no focal points. Since these are static spacetim
the future and past screen maps are equivalent. For defin
ness, we adopt here the past screen map, which intersects
future black-hole horizon.

A. Single black hole

For a single spherically symmetric black hole we can ea
ily analyze the screen map explicitly by use of the integrat
geodesic equation. Three orbits from the screen to
Schwarzschild hole are shown in Fig. 2. The orbits can
labeled by the angle at which they hit the horizon, measur
from the perpendicular from the screen to the hole. The o
bits with angles between 0 andp cover the horizon once,
when rotated around the axis. Those with angles betwe
p and 2p give a second covering, and so on. There are
infinite number of coverings of the horizon. There is an up
per bound for the impact parameter for capture by the ho
so the areas of the coverings on the screen must converg
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zero. These coverings are illustrated in Fig. 3, which
drawn approximately to scale for the case of a Schwarzsch
black-hole. The primary cover has area.1.24AH , greater
than the horizon area, but all the rest have lesser area. In
the sum of all the rest has lesser area, 0.45AH .

Since the higher-order covers are not expanding, th
must be at least one focal point somewhere on each of
corresponding null congruences. This focal point is shown
Fig. 4 for the second cover in the Schwarzschild case. All t
null rays will intersect at a point directly behind the black
hole ~as viewed from the screen!. At this point the conver-
gence goes to infinity and just past this point it is negati
~although in general the convergence may become posi
again and may even diverge again if the congruence g
through another focal point!. It is interesting to note that the
separation of the null rays in the transverse direction is lar
on the screen than on the horizon, so it is not the angu
focusing but the radial focusing that makes the map fail to
expanding, even though it is the angular focusing that p
duces the focal point.

We also analyzed the screen map for an extrema
charged Reissner-Nordstro¨m hole, where it turns out that

FIG. 2. Three orbits from screen to a Schwarzschild black ho
drawn in (r ,f) plane.

FIG. 3. Screen image of Schwarzschild horizon. The inner d
is the primary cover, and all the rest of the covers are annuli. T
higher-order covers accumulate at an impact parameter of 33/2M ,
the capture radius. Only the first and second covers are shown
plicitly. The rest are too narrow to show to scale. Even the seco
cover has smaller area~0.42AH) than the horizon.
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both the primary and the second cover are expanding, but t
rest are not.

B. Two distant black holes

It was pointed out in@5# that one black hole cannot be
hidden behind another, and that the screen map will still b
expanding for both horizons in this case. We investigate
this situation explicitly for the case where the two black
holes are very far from one another and the screen is perp
dicular to the axis joining them. In this case we could ap
proximate the capture orbits for the second hole analytical
by simply composing with the scattering by the first hole
The screen map pattern in this case is rather complicated
general orbit can alternate between the two holes, wrappi
any number of times around on each visit, before finall
crossing the horizon of one of the holes. The primary ma
for the second hole is given by the orbits that never cross t
axis ~see Fig. 5!, and it traces out an annulus on the scree
We estimated the area of this annulus for large separati
d, and found that it grows liked1/2: A;(M1d/M2

2)1/2A2 .
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FIG. 4. Focal point for the second cover of the screen map to
Schwarzschild horizon.

FIG. 5. Extreme rays of the primary cover of the second blac
hole. None of the rays in this cover cross the axis.
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HereM1 , M2 are the masses of the first and second hol
respectively,A2 is the horizon area of the second, and w
have assumed thatd@M2

2/M1 .

C. General static axisymmetric spacetime

For two nearby black holes one cannot just compose
asymptotic scatterings, and also one must decide what me
to take for the two black holes. In order to have a sta
situation, it is natural to consider a pair of extremal
charged black holes with like sign charges, one of t
Majumdar-Papapetrou solutions@10#. Generalizing this, one
can consider a linear array of any number of such bla
holes. We shall now show by explicit consideration of th
geodesics that the primary map has no focal points, so
map is expanding.

It is most natural to discuss this problem for an arbitra
static axisymmetric geometry with the screen perpendicu
to the axis. Because of the axisymmetry, focal points w
occur on any rays that cross the axis, so we restrict atten
to those rays that do not cross the axis. These can only h
focal points if they are focused to crossing points in th
radial direction. To establish the absence of such cross
points we adopt a technique from the analysis by Yurtsev
@11# of chaos in the orbits around a pair of extremal blac
holes.

Consider a line element of the form
g5 f dt22gdf22hi j dx

idxj , where i51,2, and f , g, and
hi j are functions only ofxi . The rays from the screen hav
constantf, and, since they are null geodesics, they are t
same as for the conformally rescaled three-dimensional l
element g̃5dt22h̃i j dx

idxj , where h̃i j5 f21hi j . The geo-
desics of g̃ project to geodesics of the Riemannia
metric h̃i j , and the arc length along the projection agre
with the affine parameter along the null geodesic. Compu
tion reveals that the curvature of the two-dimensional met
h̃ i j is negative everywhere outside the horizon of a gene
multi-extremal black-hole solution, as well as for a Reissne
Nordström black hole with any charge to mass ratio. Thus
all these cases the projected curves are receding from e
other. The spacetime null geodesics are therefore also re
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ing with respect tog̃. While this does not imply that they are
receding with respect to the physical metricg, it does at least
imply that they will not reach a focal point.

IV. REMARKS

The main lesson of this geometric exercise is the conc
sion that, to guarantee the expanding nature of the ho
graphic map from horizon to screen, one should restrict
the primary screen map, i.e., the boundary of the past~or
future! of the screen. This boundary generalizes the conce
of a black-hole event horizon and satisfies the area theore

Even the primary screen map is only guaranteed to
expanding if the null energy condition is satisfied. In th
presence of quantum fields this condition can be locally vi
lated by the expectation value of the stress-energy tensor
one should not rely on the null energy condition. Perhaps
averagednull energy condition would be sufficient to estab
lish the expanding nature of the primary screen map.~Sev-
eral recent works@12# have studied the extent to which av
eraged energy conditions hold in quantum field theory!
Alternatively, the expanding property may be lost, whic
may reveal something about the holographic principle.

Our proof of the expanding nature of the primary scree
map relies heavily on the assumption that the rays orthogo
to the screen are not diverging. This is guaranteed in asym
totically flat space by taking a flat or spherical screen
infinity. In a closed expanding universe it seems one mu
choose a future screen map rather than a past one in orde
have any chance of finding an expanding map from all poin
of space to a single screen. Strangely, if the universe rec
lapses, one must then switch to a past screen map. Perh
some insight into the holographic hypothesis can be glean
from an investigation of its compatibility with closed uni-
verses.
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