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Dyonic BPS saturated black holes of heterotic string on a six-torus
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Within effective heterotic superstring theory compactified on a six-torus we derive minimum €repgy-
symmetrig, static, spherically symmetric solutions, which are manifestly invariant under the target space
0(6,22 and the strong-weak coupling &) duality symmetries with 28 electric and 28 magnetic charges
subject to one constraint. The class of solutions with a constant axion corresponds to dyonic configurations
subject to two charge constraints, with purely electdcpurely magneticand dyonic configurations preserv-
ing % and;l1 of N=4 supersymmetry, respectively. General dyonic configurations in this class have a space-time
of extreme Reissner-Nordstroblack holes while configurations with more constrained charges have a null or
a naked singularity.

PACS numbds): 04.50+h, 04.20.Jb, 04.70.Bw, 11.25.Mj

There has been accumulating evidence for the strongpresent the explicit form of general BPS saturatedper-
weak coupling dualityreferred to as th& duality) in string  symmetrig, spherically symmetric, static configurations in
theory (see, for example, Ref$l,2]), which relates super- the effective heterotic string theory compactified on a six-
symmetric vacua of a strongly coupled theory to supersymtorus at generic points of moduli space, which can be ob-
metric vacua of a dual, weakly coupled, theory. A deepettained from the generating solution with, among scalar fields,
understanding of these duality symmetries would provide usnly diagonal internal metric and the dilaton turned on. The
with a handle on the nonperturbative nature of superstrin@PS saturated spectrum is both(622 and SL(2R)
theory. invariant? In addition, the explicit form of these configura-

In four dimensions, string vacua witN=4 low energy tions allows for a synthetic analysis of their singularity struc-
supersymmetry are conjectured to be self-dual, i.e., the stringyres and their thermal properties within the class of solu-
vacua of the heterotic string compactified on a six-torusjgns.
transform into each other under the SI4p, The effective field theory of massless bosonic fields for
transformations. The SL(2Z) symmetry acts on charges, heterotic string on a Narain torj44] can be obtained by
the aXion, and the four-dimensional dilaton fleld, Whosecompactifying the ten-dimensionil=1 Supergravity theory
value determines the string loop expansion parameter angbupled toN=1 super-Maxwell theory on a six-tor(i§, 15].
paramt_atrizes the strength (_)f the string coupl!ng. In ad(_alition;rhe ten-dimensional bosonic fields are given %N’
the string world-sheet action can be cast in a manlfestI)éMN' Al and® (0=M, N<9, 1<I=<16), which corre-
0(6,22 symmetric form(5,6], referred to as the target space spond to ten-dimensional metric, two-form field, gauge fields

T duality symmetry. 16 : , : i
Evidence for thes duality conjecture oN=4 supersym- of U™, and tAh,e dilaton field, respectlvely: The field
atrengths of Ay and Byy are defined as

metric string vacua has been provided by demonstrating th - - A A
S duality invariance of quantities which are not believed toFMn=dmAN— InAY andHynp=duByp— 5 AyFyp+c.p.,

be modified by string quantum corrections, e.g., the low en¥espectively.

ergy effective field theory7,6], allowed spectrum of electric The Kaluza-Klein compactificatiofil6] of the original
and magnetic charges, Yukawa couplings between massletgn-dimensional action on a six-torus is obtained with the
scalars and massive charged states as well as the g Albmga

) . oA eze” m
Bogomol'nyi-Prasad-Sommerfeld(BPS saturated mass following ansatz for the zehnbeirEy=(y,* & ),

spectrum of the corresponding nontrivial configurations inyphere oMM (m=1 6) areKaluza-Klein L(l)m gauge
" e

the effective theory8,9]. fi _ 2 : . .
- . ields and¢=® —In det, is the four-dimensional dilaton
The BPS saturated states within the effective theory com ¢ m

pactified on a six—tqrus h.ave been addressed for states Wi{hel-(lj-he four-dimensional actiof6,15] for massless bosonic
special (_:har_ge configuratiofsee, for example, _Re_fE«B,lO— fields contains the following fields: the gravitay,,, the
13]), which in turn prevented one from establishing the full ilat 28 U(1) fields.Z =(AMM AR AGH e
symmetry structure of such configurations as well as the fulfjI aton ¢, ) gauge helds- = (A, oA ) e
nature of their singularity structure. In this paper we shallfined as AQ =B, +By A"+ za, AY', A=A}
—apAD™ with the field strengths7,,=d,.#4,—d,. 7%,
the two-form field B,, with the field strength given by
*Electronic address: cvetic@cvetic.hep.upenn.edu
TElectronic address: youm@cvetic.hep.upenn.edu
The heterotic string compactified on a six-torus is conjectured to At the quantum level, these symmetries are integer valued.
be dual to the type IIA string compactified ofTAx K 5 surface; this 3The four-dimensional two-form field is equivalent to a pseudo-
duality has its origin in the string-string duality conjectiite-4] of scalar (the axion V¥ through the duality transformation

the heterotic and the type IIA string theory in six dimensions. Heve=— (|J—g) 1e?Perrrog W,
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przeZe;Vaegl‘EyégE;;ﬂMsz 9,B,,— %E/ZLLLH-’//"J'VPJFC-D-' )[/t\:hich Ipresefrve t(lj‘;et supersymmetry trta_nsforr?ati(ﬂ)t_s[S], "

and a symmetric ®,22 matrix M of scalar fields, which K'ﬁ's aiso reterre tp as surﬁ)_e[]symmeb?c_ codn l;gura tl'?nS.th €

can be expressed in terms of th€6(22 matrix ting spinor equations, which areé obtained by setting the
supersymmetry transformationg) to zero, provide con-

V! E-l1 —_glc —g 137 straints on the Killing spinorg and a set of coupled first-
I order differential equations for the supersymmetric bosonic
v={ VI |=| O E 0 @ backgrounds.
vt 0 a l16 Our aim is to obtain general supersymmetric, spherically

o symmetric, static configurations with a general allowed
as M=V'V, where E=[e]], C=[3A,Al+BnJ, and charge content associated with the 2@\ jauge fields. The
aE[A'm]_ V plays a role of a vielbein in the 6,22 target four-dimensional space-time metric is chosen to be of the

space. form
The four-dimensional4D) effective action is invariant oy 5 1.2 . )
under the ©6,22 transformation$6,15| gupdxtdx’=N\ dt*—\"1dr?—R(d¢?+sir?6 d¢?),

®

— T /! i A — . ' :
M=OMQS 2, =0ty GO, ¢ 6 2 and the scalar field$1, ¢, and ¥ depend on the radial
coordinater, only. The Maxwell's equations and Bianchi

Here,Q e 06,22, i.e., QTLO=L, whereL is an 06,22- identities determine the (@) field strengths to be
invariant matrix. In addition, the corresponding equations of ot

motion and Bianchi identities have the invariance under the -ﬂr:—[MijéjﬁL‘I’(M L) P;1, ';,zi%: P.sing, (6)
SL(2R) transformation§17,15): R

aS+b whereP;’s correspond to the physical magnetic charges and
S—>S’=Cs+d, M—M, 9,,— 0., the physical electric charges[18] are given by
Qi=e”[M;j.Q;+W.(ML);j-.P;].
One can show that with the above static, spherically
symmetric ansatz the Killing spinors are invariant
I ~ _ - under the @6,22 transformations and transform as
= ¢ Fiuv— 1 [Zq) lgkreo 7 "
where S_\If+!e , TH=3(N=g) e, and e—[cos(A/2)+iy’sin(A/2)]e under the SL(Z). Here,
a,b,c,deR satisfyad—bc=1. _ tamA=—ce ?/(c¥+d). The first-order differential equa-
The ten-dimensional supersymmetry trzlansformanons for &ons are thus invariant under both transformations and there-
gravitino ¢y , dilatino A, and 16 gauginog' are expressed fore one can generate a new class of supersymmetric solu-
in terms of the four-dimensional fields as tions by imposing ©,22 and SL(2R) transformations on
the known supersymmetric solution. One can bring the arbi-
trary asymptotic values of the scalar fields to the forms
—la—¢H et lieNg e —e"9 e )l @0 M.=I and S.=i by imposing the following ©,22 and
8 pr¥"76 5 (€0, 8ne €cdynp) © SL(2,R) transformations:

A i 7 - A
T T 1= (c¥ +d).7, +ce” ¥ ML).7,,,  (3)

5{/’;&: de+ %wﬂﬁyyﬁys + %e;’jna[ﬁe;]&yd)yﬂys

— e (VL)L +H(VLIG1A,, v eT %, S ; _
M,—M,=0M.Q"=1, S,—S,=(aS,+b)/d=i,

Othg=— %67 ¢/2[e?auemb+ e[)na,uemd_ e?eg( auan (@)
+%a'm%aL—%akﬁﬂa'm)]Y”S@Fbs—%e_d’[(VL)Idi where Qe 0(6,22, ad=1, and in the quantized theory the
N charge lattice vectors live in the new transformed lattice.
= (VL) 417, v" ", Then, the subsets of (6,22 and SL(2R) transformations

that preserve the above new asymptotic valueMoénd S
h=e 929, dyte—ge 3?H,, yPe—3e %49 By,  are Q6)x0O(22) and SA2), respectively. To obtain solutions
with arbitrary asymptotic values dfi and S, one has to
undo the above transformations.

We are going to find the general solution for configura-
tions where, from the scalar fields, only the diagonal internal
¢ ‘ metric and the dilaton field are nonzero. We shall refer to

Sx'=2e"29,a,y"*@I e +e” Y(VL)}|' 7, ¥, such configurations as generating ones, since all the other
(4) configurations in this class can be obtained by performing a
R subset of @)X0(22)C0O(6,22) and SO(2LSL(2,R)
where 8y, = 81, — AV Sy, and Syg=e]'dy,. Here,y*  transformations on the generating ones. Note, that configu-
andI'? satisfy the @1,3) and Q6) Clifford algebras, respec- rations obtained in that manner have the same four-
tively. The gamma matrices with curved indices are definedlimensional space-time structure and thus the same singular-
as y*=eky* andI'M=elT?. ity and thermal properties as the generating solution.

Static configurations, which saturate the Bogomol'nyi The Killing spinor equations for the configuration with
bound for their masses, i.e., the minimum energy configuraenly nonzero scalar fields given by the diagonal internal met-
tions in their class, correspond to bosonic backgroundsic (e]'= &h'e,) and the dilaton take the form

+3apd,a,— 3a,d,an) y eI

—3e (VL) 7, v eT %,
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6 =—1 and 7osgn@SV+Q%Y)=—1, thus yielding non-
\/XR[arlm”L‘?r‘ﬁ]su/:igl (QV+QI %,y negative BPS saturated ADM mass of the form
Mgps=| P+ P+ QM+ Q%P)|. In order to have regular
6 BH solution with singularity behind or on the horizon, one
VAR[G N\ — g, d]e, =i 21 (PY+P)r3e, |, has to choose the relative signs of two magnetic and two
“

electric charges to be the sam@&hus, the solution haal-

waysnonzero BPS saturated Arnowitt-Deser-Misg&bM
2R, Ine,I" s, =[+(QL— Q) Ny 0D

+i(P(l)—P(2))]s A general class of solutions with zero axion can be ob-
a a Zau tained from the generating ones by performing a subset of
_ To_ 0O(6)X 0O(22)C O(6,22) transformations which generate new

a=1....6, 4VAR=0, ® types of solutions from the generating one. These transfor-
where (1) = g#/2eMG , ()= g#/2g2 ¢ , p(1) mations correspond to $6)/S0O4) transformations with
2 aQa aQTg)_ 9;/2 m mQ6+m a (6X5—4x3)/2=9 parameters and $22)/SO(20) transfor-
=€ "%enPm, and Pr=e 7€ Poim. ANd from o ions with (2% 21— 20x 19)/2=41 parameters, which
8x'=0, one hasP(P=0=Q® . It can be showr19] that '

, ; along with the original 4 charges provide a configuration
out of 2x28 dyonic charges, only two magnetic and two

. ! ) with 56—2=54 charges; namely, those are configurations
electric charges can be nonzero with electric and magnetic. = = .
charges arising from different () factors, with one set of with 28 electricQ and 28 magneti® charges subject to the

electric and magnetic charges arising from the Kaluza-KIeirIOHOWIng two constraintdin the basis where the asymptotic

sector and the other set arising from the two-form gaugé’alue ofM takes an arbitrary valje

fields with the same corresponding indices. Without loss of

g((alr;eratlzl}y (\l/\)/e (Zcihoose the nonzero charges to be ﬁT'//ZR’L(jZO [ Zri=(LML),FL]. (10)
P, PI,Q57, Q.

The uppere, and lowere, two-component spinors are . ] ]
subject to the constraintss, ,=inpe, , if P{"+0 and/or The SO(2)-SL(2.}) transforrggtmn provides one with
P(lz)qéo, andl“zsu,/:Ian/,u if Q(zl)qﬁo and/orQ(zz)a&O. olne motrhe ptarameterttalri—ge 4§]cw+d)éLwh|ch red-
Here, »p and 5o are = 1. Note, that nonzero magnetic and gfgg‘;‘) in\(/aari\;vr?t ccc?nnssirz}lnnt iln )chV:r esone (2k) an
electric charges each brealof the remaining supersymme- ' ges.
tries. Thus, purely electrior magneti¢ configurations pre-
serves, while dyonic solutions preservg of N=4 super- BT 2,010 Z0— BT #eP]+(RL)=0. (11)
symmetry in four dimensions. The first and the second sets
of configurations fall into vector- and hypersupermultiplets,

respectively. Therefore, the general configurations in this class have
The explicit form for the static, spherically symmetric 2X28—1=55 charge degrees of freeddm.
generating solution is given By The ADM mass for a general configuration in this class
can be obtained from the one for the generating solutions and
N=r2/[(r—7pP{)(r — 7P (r — noQ5Y) can be cast in the following ®,22 and SL2,R) invariant
form:’
X (r= Q¥ 1M,
R=[(r— ﬂPP(ll))(r - 77PP(12))(r - WQQ(zl))(r - 77QQ(22))]1/2’ SNote, that the case of opposite relative signs for the two electric
chargeqand two magnetic chargeand the equal magnitude of the
e‘/’z[(r— ﬂPP(ll))(r_ 77PP(12))/(T_ 77QQ(21)) two electric (and two magnetic chargesvould yield zero ADM
S (f— (21 1/2 mass as pointed out in a related context by Hull and Towng2@id
(r 79Qz )5 Such purely electricallyor purely magneticallycharged configu-
2 1 rations were found and studied in Rdf21], while dyonic ones and
_ r—npPy _ r—n9Qz their implications for enhanced symmetr{@9] at special points of
u r— in(ll) r G2 r— nQQ(ZZ) ’ moduli space were addressed in R@2]. Such configurations are

not regular; they have a naked singularity.
Onm=1 (mM#1,2). 9 ®The constrain{11) on charges signals that the obtained class of
configurations may not be the most general supersymmetric one.
Here, the radial coordinate is chosen so that the horizon is athis constraint is removed for the supersymmefrionextremg
r=0. The requirement that the ADM mass of the above constates by applying an additional subset of(8@4 transformations
figuration saturates the Bogomol'nyi bound restricts theg13,23 on the corresponding supersymmetfimnextremg gener-
choice of parametersyp o such that ﬂpsgn(P(ll)-i- P(lz)) ating solutions. @8,24 is the symmetry of the effective three-
dimensional action for the corresponding stationary solutions. An
analogous procedure was uge@d] to generate all the black holes in
4Such a solution is obtained along the similar lines as the generAbelian Kaluza-Klein theory.
ating solution for the supersymmetric, spherically symmetric solu- “We thank A. Sen for pointing out to us the procedure to derive
tions in Abelian Kaluza-Klein theorj19]. such a mass.



MZps=e #={PT. 2P +Q". ZxQ

+2[(PT. ZgP)(QT. #:Q) — (PT. 75Q) 213,
(12

Note, that when the magnet}i and electricQ charges are
parallel in the S@6,22 sense, this ADM mass is the bound
for configurations that preservk of N=4 supersymmetry
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Nordstran BH's. The corresponding Hawking temperature
Tu=0d,\|,—o/(27) is zero and the entropf=; of the area
of the event horizonis finite S= 7/|P{PPQMQMP).

(i) The case with three nonzero charges corresponds to
solutions with a singularity located at the horizon=0),
Ty=0, andS=0.

(i) The case with two nonzero chargesay, P{"+0
#P{?, corresponds to singular solutions with the hori-
zon and the singularity coinciding atr=0, Ty
=1/(4m|PPPP)), ands=o0.

The case with one nonzero chatyeorresponds to BH’s

[8,11-13,25,2f i.e., the corresponding generating solutionwith a naked singularityT ;= and S=0.
is either purely electric or purely magnetic. In the case when

the magnetic and electric charges are not parallel, the mass is

larger and the configurations preservef N=4 supersym-
metry.

We now turn to the discussion of the thermal and global
space-time properties of such configurations, which can b
classified according to the number of nonzero charges of the.,

generating solutions.
(i) The case withall the four charges nonzefocorre-
sponds to black hole@BH's) with a horizon atr=0 and a

timelike singularity hidden behind the horizon, i.e., the glo-

The work was supported by U.S. DOE Grant No. DOE-
EY-76-02-3071, the NATO Collaborative Research Grant
No. CGR 940870, and the National Science Foundation
Grant No. PHY95-12732. M.C. would like to thank M. Duff,
G. Gibbons, J. Harvey, C. Hull, D. st and especially A.
8en for useful discussions and the Aspen Center for Theo-
ical Physics for hospitality during the completion of the
work.

bal space-time structure is that of the extreme Reissner-q ) . . .
Configurations with two nonzero electric charges were con-

8Solutions with two electricand two magnetic charges equal
correspond to configurations with constamt A class of such con-
figurations was obtained by Kallost al.[10]. For the case where

structed by Sefl3], and shown by Pe¢P6] to be supersymmetric.
The supersymmetric configurations with{Y#0 and Q{V+0,
found by the authorg19], correspond to configurations in the
Kaluza-Klein sector of the theory.

1pM=0 case corresponds to the Kaluza-Klein monopole solu-

all the four charges are equal, all thye scalars are constant and tiien of Gross and Perry, and Sorkj@8], and were shown to be

four-dimensional metric reduces to that of Reissner-Nordstro
BH'’s, which is also pointed out in Ref27].

supersymmetric by Gibbons and Pef5]. The case wherP{?
#0 corresponds to thel-monopole solutioff12].
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