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Dyonic BPS saturated black holes of heterotic string on a six-torus

Mirjam Cvetič* and Donam Youm†

Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
~Received 25 July 1995!

Within effective heterotic superstring theory compactified on a six-torus we derive minimum energy~super-
symmetric!, static, spherically symmetric solutions, which are manifestly invariant under the target space
O~6,22! and the strong-weak coupling SL~2! duality symmetries with 28 electric and 28 magnetic charges
subject to one constraint. The class of solutions with a constant axion corresponds to dyonic configurations
subject to two charge constraints, with purely electric~or purely magnetic! and dyonic configurations preserv-
ing 1

2 and 1
4 of N54 supersymmetry, respectively. General dyonic configurations in this class have a space-time

of extreme Reissner-Nordstro¨m black holes while configurations with more constrained charges have a null or
a naked singularity.

PACS number~s!: 04.50.1h, 04.20.Jb, 04.70.Bw, 11.25.Mj
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There has been accumulating evidence for the stro
weak coupling duality~referred to as theS duality! in string
theory ~see, for example, Refs.@1,2#!, which relates super
symmetric vacua of a strongly coupled theory to supersy
metric vacua of a dual, weakly coupled, theory. A dee
understanding of these duality symmetries would provide
with a handle on the nonperturbative nature of superst
theory.

In four dimensions, string vacua withN54 low energy
supersymmetry are conjectured to be self-dual, i.e., the st
vacua of the heterotic string compactified on a six-to
transform into each other under the SL(2,Z)
transformations.1 The SL(2,Z) symmetry acts on charges
the axion, and the four-dimensional dilaton field, who
value determines the string loop expansion parameter
parametrizes the strength of the string coupling. In additi
the string world-sheet action can be cast in a manife
O~6,22! symmetric form@5,6#, referred to as the target spac
T duality symmetry.

Evidence for theS duality conjecture ofN54 supersym-
metric string vacua has been provided by demonstrating
S duality invariance of quantities which are not believed
be modified by string quantum corrections, e.g., the low
ergy effective field theory@7,6#, allowed spectrum of electric
and magnetic charges, Yukawa couplings between mas
scalars and massive charged states as well as
Bogomol’nyi-Prasad-Sommerfeld~BPS! saturated mass
spectrum of the corresponding nontrivial configurations
the effective theory@8,9#.

The BPS saturated states within the effective theory co
pactified on a six-torus have been addressed for states
special charge configurations~see, for example, Refs.@8,10–
13#!, which in turn prevented one from establishing the f
symmetry structure of such configurations as well as the
nature of their singularity structure. In this paper we sh

*Electronic address: cvetic@cvetic.hep.upenn.edu
†Electronic address: youm@cvetic.hep.upenn.edu
1The heterotic string compactified on a six-torus is conjectured

be dual to the type IIA string compactified on aT23K3 surface; this
duality has its origin in the string-string duality conjecture@1–4# of
the heterotic and the type IIA string theory in six dimensions.
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present the explicit form of general BPS saturated~super-
symmetric!, spherically symmetric, static configurations
the effective heterotic string theory compactified on a s
torus at generic points of moduli space, which can be
tained from the generating solution with, among scalar fie
only diagonal internal metric and the dilaton turned on. T
BPS saturated spectrum is both O~6,22! and SL(2,R)
invariant.2 In addition, the explicit form of these configura
tions allows for a synthetic analysis of their singularity stru
tures and their thermal properties within the class of so
tions.

The effective field theory of massless bosonic fields
heterotic string on a Narain torus@14# can be obtained by
compactifying the ten-dimensionalN51 supergravity theory
coupled toN51 super-Maxwell theory on a six-torus@6,15#.
The ten-dimensional bosonic fields are given byĜMN ,
B̂MN , ÂM

I , andF (0<M , N<9, 1<I<16), which corre-
spond to ten-dimensional metric, two-form field, gauge fie
of U~1! 16, and the dilaton field, respectively. The fie
strengths of ÂM

I and B̂MN are defined as

F̂MN
I 5]MÂN

I 2]NÂM
I and ĤMNP5]MB̂NP2 1

2 ÂM
I F̂NP

I 1c.p.,
respectively.

The Kaluza-Klein compactification@16# of the original
ten-dimensional action on a six-torus is obtained with

following ansatz for the zehnbein:ÊM
A 5(

0
e

f
2em

a

e
m
a

Am
(1)mem

a

),

where Am
(1)m (m51, . . . ,6) areKaluza-Klein U~1! gauge

fields andf[F2 ln detem
a is the four-dimensional dilaton

field.
The four-dimensional action@6,15# for massless bosonic

fields contains the following fields: the gravitongmn , the
dilatonf, 28 U~1! gauge fieldsAm

i [(Am
(1)m ,Amm

(2) ,Am
(3)I) de-

fined as Amm
(2)[B̂mm1B̂mnAm

(1)n1 1
2 am

I Am
(3)I , Am

(3)I[Âm
I

2am
I Am

(1)m with the field strengthsF mn
i 5]mAn

i 2]nAm
i ,

the two-form field3 Bmn with the field strength given by

o 2At the quantum level, these symmetries are integer valued.
3The four-dimensional two-form field is equivalent to a pseud

scalar ~the axion! C through the duality transformation
Hmnr52(A2g)21e2f«mnrs]sC.
R584 © 1996 The American Physical Society
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Hmnr5em
aen

ber
gÊa

MÊb
NEg

PĤMNP5]mBnr2 1
2 Am

i L i j F nr
j 1c.p.,

and a symmetric O~6,22! matrix M of scalar fields, which
can be expressed in terms of the O~6,22! matrix

V5S VI

VII

VIII
D 5S E21 2E21C 2E21aT

0 E 0

0 a I16

D ~1!

as M5VTV, where E[@em
a #, C[@ 1

2Âm
I Ân

I 1B̂mn], and
a[@Âm

I #. V plays a role of a vielbein in the O~6,22! target
space.

The four-dimensional~4D! effective action is invariant
under the O~6,22! transformations@6,15#

M→VMVT, Am
i →V i j Am

j , gmn→gmn , f→f.
~2!

Here,VP O~6,22!, i.e., VTLV5L, whereL is an O~6,22!-
invariant matrix. In addition, the corresponding equations
motion and Bianchi identities have the invariance under
SL(2,R) transformations@17,15#:

S→S85
aS1b

cS1d
, M→M , gmn→gmn ,

F mn
i →F mn8 i 5~cC1d!F mn

i 1ce2f~ML ! i j F̃ mn
j , ~3!

where S[C1 ie2f, F̃ imn5 1
2 (A2g)21«mnrsF rs

i , and
a,b,c,dPR satisfyad2bc51.

The ten-dimensional supersymmetry transformations fo
gravitino cM , dilatino l, and 16 gauginosx I are expressed
in terms of the four-dimensional fields as

dĉm5]m«1 1
4 vmbggbg«1 1

4 em
aha[beg

n
]]nfgbg«

2 1
8 e2fHmnrgnr«1 1

8 ~eb
n]menc2ec

n]menb!I ^ Gbc«

2 1
4 e2f/2@~VL!ci

I 1~VL!ci
II #F mn

i gn5
^ Gc«,

dcd52 1
4 e2f/2@ed

m]memb1eb
m]memd2ed

meb
n~]mBmn

1 1
2 am

I ]man
I 2 1

2 an
I ]mam

I !#gm5
^ Gb«2 1

8 e2f@~VL!di
I

2~VL!di
II #F mn

i gmn«,

dl5e2f/2]mFgm«2 1
6 e23/2fHmnrgmnr«2 1

2 e2f/2~]mBmn

1 1
2 am

I ]man
I 2 1

2 an
I ]mam

I !gm
^ Gmn«

2 1
2 e2f~VL!di

I
F mn

i gmn5
^ Gd«,

dx I52e2
f
2]mam

I gm5
^ Gm«1e2f~VL! I i

III
F mn

i gmn«,
~4!

wheredĉm[dcm2Am
(1)mdcm and dcd[ed

mdcm . Here,ga

andGa satisfy the O~1,3! and O~6! Clifford algebras, respec
tively. The gamma matrices with curved indices are defin
asgm[ea

mga andGm[ea
mGa.

Static configurations, which saturate the Bogomol’n
bound for their masses, i.e., the minimum energy configu
tions in their class, correspond to bosonic backgrou
f
e

a

d

i
-
s

which preserve the supersymmetry transformations~4! @8#,
thus also referred to as supersymmetric configurations.
Killing spinor equations, which are obtained by setting t
supersymmetry transformations~4! to zero, provide con-
straints on the Killing spinors« and a set of coupled first
order differential equations for the supersymmetric boso
backgrounds.

Our aim is to obtain general supersymmetric, spherica
symmetric, static configurations with a general allow
charge content associated with the 28 U~1! gauge fields. The
four-dimensional space-time metric is chosen to be of
form

gmndxmdxn5l dt22l21dr22R~du21sin2u df2!,
~5!

and the scalar fieldsM , f, and C depend on the radia
coordinater , only. The Maxwell’s equations and Bianch
identities determine the U~1! field strengths to be

F tr
i 5

ef

R
@Mi j Q̃j1C~ML ! i j Pj #, F uf

i 5Pisinu, ~6!

wherePi ’s correspond to the physical magnetic charges a
the physical electric charges@18# are given by
Qi5ef`@Mi j `Q̃j1C`(ML) i j `Pj #.

One can show that with the above static, spherica
symmetric ansatz the Killing spinors are invaria
under the O~6,22! transformations and transform a
«→@cos(D/2)1 ig5sin(D/2)#« under the SL(2,R). Here,
tanD52ce2f/(cC1d!. The first-order differential equa
tions are thus invariant under both transformations and th
fore one can generate a new class of supersymmetric s
tions by imposing O~6,22! and SL(2,R) transformations on
the known supersymmetric solution. One can bring the a
trary asymptotic values of the scalar fields to the for
M`5I and S`5 i by imposing the following O~6,22! and
SL(2,R) transformations:

M`→M̂`5V̂M`V̂T5I , S`→S̆`5~aS̀ 1b!/d5 i ,
~7!

whereV̂PO~6,22!, ad51, and in the quantized theory th
charge lattice vectors live in the new transformed latti
Then, the subsets of O~6,22! and SL(2,R) transformations
that preserve the above new asymptotic values ofM and S
are O~6!3O~22! and SO~2!, respectively. To obtain solution
with arbitrary asymptotic values ofM and S, one has to
undo the above transformations.

We are going to find the general solution for configur
tions where, from the scalar fields, only the diagonal inter
metric and the dilaton field are nonzero. We shall refer
such configurations as generating ones, since all the o
configurations in this class can be obtained by performin
subset of O~6!3O(22),O(6,22) and SO(2),SL(2,R)
transformations on the generating ones. Note, that confi
rations obtained in that manner have the same fo
dimensional space-time structure and thus the same sing
ity and thermal properties as the generating solution.

The Killing spinor equations for the configuration wit
only nonzero scalar fields given by the diagonal internal m
ric (ea

m5da
mea) and the dilaton take the form
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AlR@] r lnl1] rf#«u,l 56 (
a51

6

~Qa
~1!1Qa

~2!!Ga« l ,u ,

AlR@] r lnl2] rf#«u,l 5 i (
a51

6

~Pa
~1!1Pa

~2!!Ga« l ,u ,

2AlR] r lneaGa«u,l 5@7~Qa
~1!2Qa

~2!!

1 i ~Pa
~1!2Pa

~2!!#« l ,u ,

a51, . . . ,6, ] rAlR50, ~8!

where Qa
(1)[ef/2ea

mQ̃m , Qa
(2)[ef/2em

a Q̃61m , Pa
(1)

[e2 f/2em
a Pm , and Pa

(2)[e2 f/2ea
mP61m . And from

dx I50, one hasPI
(3)505QI

(3) . It can be shown@19# that
out of 2328 dyonic charges, only two magnetic and tw
electric charges can be nonzero with electric and magn
charges arising from different U~1! factors, with one set of
electric and magnetic charges arising from the Kaluza-Kl
sector and the other set arising from the two-form gau
fields with the same corresponding indices. Without loss
generality we choose the nonzero charges to
P1

(1) ,P1
(2) ,Q2

(1) ,Q2
(2) .

The upper«u and lower« l two-component spinors ar
subject to the constraints:G1«u,l 5 ihP« l ,u if P1

(1)Þ0 and/or
P1

(2)Þ0, andG2«u,l 57hQ« l ,u if Q2
(1)Þ0 and/orQ2

(2)Þ0.
Here,hP andhQ are 61. Note, that nonzero magnetic an
electric charges each break1

2 of the remaining supersymme
tries. Thus, purely electric~or magnetic! configurations pre-
serve 1

2, while dyonic solutions preserve14 of N54 super-
symmetry in four dimensions. The first and the second s
of configurations fall into vector- and hypersupermultiple
respectively.

The explicit form for the static, spherically symmetr
generating solution is given by4

l5r 2/@~r 2hPP1
~1!!~r 2hPP1

~2!!~r 2hQQ2
~1!!

3~r 2hQQ2
~2!!#1/2,

R5@~r 2hPP1
~1!!~r 2hPP1

~2!!~r 2hQQ2
~1!!~r 2hQQ2

~2!!#1/2,

ef5@~r 2hPP1
~1!!~r 2hPP1

~2!!/~r 2hQQ2
~1!!

3~r 2hQQ2
~2!!1/2,

g115S r 2hPP1
~2!

r 2hPP1
~1!D , g225S r 2hQQ2

~1!

r 2hQQ2
~2!D ,

gmm51 ~mÞ1,2!. ~9!

Here, the radial coordinate is chosen so that the horizon
r 50. The requirement that the ADM mass of the above c
figuration saturates the Bogomol’nyi bound restricts
choice of parametershP,Q such that hPsgn(P1

(1)1P1
(2))

4Such a solution is obtained along the similar lines as the ge
ating solution for the supersymmetric, spherically symmetric so
tions in Abelian Kaluza-Klein theory@19#.
tic

n
e
f
e

ts
,

at
-

e

521 and hQsgn(Q2
(1)1Q2

(2))521, thus yielding non-
negative BPS saturated ADM mass of the for
MBPS5uP1

(1)1P1
(2)u1uQ2

(1)1Q2
(2)u. In order to have regular

BH solution with singularity behind or on the horizon, on
has to choose the relative signs of two magnetic and
electric charges to be the same.5 Thus, the solution hasal-
waysnonzero BPS saturated Arnowitt-Deser-Misner~ADM !
mass.

A general class of solutions with zero axion can be o
tained from the generating ones by performing a subse
O(6)3O(22),O(6,22) transformations which generate ne
types of solutions from the generating one. These trans
mations correspond to SO~6!/SO~4! transformations with
(6352433)/259 parameters and SO~22!/SO~20! transfor-
mations with (22321220319)/2541 parameters, which
along with the original 4 charges provide a configurati
with 5622554 charges; namely, those are configuratio
with 28 electricQW and 28 magneticPW charges subject to the
following two constraints~in the basis where the asymptot
value ofM takes an arbitrary value!:

PW TMR,LQW 50 @MR,L[~LML !`7L#. ~10!

The SO(2),SL(2,R) transformation provides one with
one more parameter tanD52ce2f/(cC1d), which re-
places the two constraints~10! with one SL(2,R) and
O~6,22! invariant constraint on charges :

PW TMLQW @QW TMRQW 2PW TMRPW #1~R↔L !50. ~11!

Therefore, the general configurations in this class h
232821555 charge degrees of freedom.6

The ADM mass for a general configuration in this cla
can be obtained from the one for the generating solutions
can be cast in the following O~6,22! and SL~2,R! invariant
form:7

r-
-

5Note, that the case of opposite relative signs for the two elec
charges~and two magnetic charges! and the equal magnitude of th
two electric ~and two magnetic charges! would yield zero ADM
mass as pointed out in a related context by Hull and Townsend@20#.
Such purely electrically~or purely magnetically! charged configu-
rations were found and studied in Refs.@21#, while dyonic ones and
their implications for enhanced symmetries@20# at special points of
moduli space were addressed in Ref.@22#. Such configurations are
not regular; they have a naked singularity.

6The constraint~11! on charges signals that the obtained class
configurations may not be the most general supersymmetric
This constraint is removed for the supersymmetric~nonextreme!
states by applying an additional subset of SO~8,24! transformations
@13,23# on the corresponding supersymmetric~nonextreme! gener-
ating solutions. O~8,24! is the symmetry of the effective three
dimensional action for the corresponding stationary solutions.
analogous procedure was used@24# to generate all the black holes i
Abelian Kaluza-Klein theory.

7We thank A. Sen for pointing out to us the procedure to der
such a mass.
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MBPS
2 5e2f`$PW TMRPW 1QW TMRQW

12@~PW TMRPW !~QW TMRQW !2~PW TMRQW !2#1/2%.

~12!

Note, that when the magneticPW and electricQW charges are
parallel in the SO~6,22! sense, this ADM mass is the boun
for configurations that preserve12 of N54 supersymmetry
@8,11–13,25,26#, i.e., the corresponding generating soluti
is either purely electric or purely magnetic. In the case wh
the magnetic and electric charges are not parallel, the ma
larger and the configurations preserve1

4 of N54 supersym-
metry.

We now turn to the discussion of the thermal and glo
space-time properties of such configurations, which can
classified according to the number of nonzero charges of
generating solutions.

~i! The case withall the four charges nonzero8 corre-
sponds to black holes~BH’s! with a horizon atr 50 and a
timelike singularity hidden behind the horizon, i.e., the g
bal space-time structure is that of the extreme Reiss

8Solutions with two electric~and two magnetic! charges equa
correspond to configurations with constantM. A class of such con-
figurations was obtained by Kalloshet al. @10#. For the case where
all the four charges are equal, all thye scalars are constant an
four-dimensional metric reduces to that of Reissner-Nordstr¨m
BH’s, which is also pointed out in Ref.@27#.
.

n,

B

s.
n
is

l
e
e

-
r-

Nordström BH’s. The corresponding Hawking temperatu
TH5] rlur 50 /(2p) is zero and the entropy~[1

4 of the area

of the event horizon! is finite S5pAuP1
(1)P1

(2)Q2
(1)Q2

(2)u.
~ii ! The case with three nonzero charges correspond

solutions with a singularity located at the horizon (r 50),
TH50, andS50.

~iii ! The case with two nonzero charges,9 say, P1
(1)Þ0

ÞP1
(2) , corresponds to singular solutions with the ho

zon and the singularity coinciding atr 50, TH

51/(4pAuP1
(1)P1

(2)u), andS50.
The case with one nonzero charge10 corresponds to BH’s

with a naked singularity,TH5` andS50.

The work was supported by U.S. DOE Grant No. DO
EY-76-02-3071, the NATO Collaborative Research Gra
No. CGR 940870, and the National Science Foundat
Grant No. PHY95-12732. M.C. would like to thank M. Duf
G. Gibbons, J. Harvey, C. Hull, D. Lu¨st, and especially A.
Sen for useful discussions and the Aspen Center for Th
retical Physics for hospitality during the completion of th
work.

9Configurations with two nonzero electric charges were c
structed by Sen@13#, and shown by Peet@26# to be supersymmetric
The supersymmetric configurations withP1

(1)Þ0 and Q2
(1)Þ0,

found by the authors@19#, correspond to configurations in th
Kaluza-Klein sector of the theory.

10P1
(1)Þ0 case corresponds to the Kaluza-Klein monopole so

tion of Gross and Perry, and Sorkin@28#, and were shown to be
supersymmetric by Gibbons and Perry@25#. The case whenP1

(2)

Þ0 corresponds to theH-monopole solution@12#.
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