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E(7) symmetric area of the black hole horizon
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Extreme black holes with 1/8 of unbrokéh=8 supersymmetry are characterized by the nonvanishing area
of the horizon. The central charge matrix has four generic eigenvalues. The area is proportional to the square
root of the invariant quartic form of fz,. It vanishes in all cases when 1/4 or 1/2 of supersymmetry is
unbroken. The supergravity nonrenormalization theorem for the area of the horizonNr-tBecase protects
the uniqueU-duality invariant.[S0556-282(96)50210-9

PACS numbgs): 11.25.Mj, 04.65+€, 04.70.Dy, 11.30.Pb

N =8 supergravity has a hidden symmetry of equations of M=|zi|=|z5|=|z5|=|za|, A=0. 2
motion under the group4z, as was discovered by Cremmer
and Julia[1]. It was shown by Duff and Ly2] that this
hidden symmetry has its origin in supermembrane dualitybf
which in turn implies the string duality by simultaneous di-
mensional reduction. More recently Hull and Towns¢atl
provided some arguments that the discrete subgroug®f E M=|z,|, M>|z,)|, |zs]=|z4=0, )
may be an exact symmetry of the string theory. The corre-
sponding discrete subgroup is calledZ) and the symmetry i
is calledU duality. It has been also emphasized by Wittenth® Ex7) Symmetric formula should reproduce the re$&le]

[4] that the nonperturbative string dynamics has its deep ori-
gin in 11-dimensional supergravity, which is known to be the A=41(|z4]2—|2,]?). (4)
source of the hidden symmetry in four dimensions.

The purpose of this Rapid Communication is to show that
the area of the horizon of the extreme black holes with un- It should of course vanish when two moduli of the eigen-
broken supersymmetry can be studied from the perspectivéalues of the central charge matrix coincide,
of N=8 supergravity. It was understood some time ago that
the supersymmetric bounds on the Arnowitt-Deser-Misner M=|z,|=|z,], A=0 (5)
(ADM) massM as well as the charge quantization are e '

U-duality invariant[3]. However ifU duality is indeed the

symmetry of the theory, we may be able to establish thelhis example shows that whem,|=|z,| and the unbroken
connection of this symmetry with the area of the extremesupersymmetry is thanks the area shrinks to zero. The corre-
black hole horizons. The basic reason to look for such &ponding two-dimensional diamondlike picture was pre-
connection comes from the fact that the canonical geometrgented in Fig. 1 ifi5]. Inside the diamond the black holes are
of the black hole does not change undef,Etransforma- not extreme and do not have an unbroken supersymmetry. At
tions. They affect only the scalars and the vectors of theeach edge of the diamond there is 1/4 of supersymmetry
theory. Thus one may guess that a simple formula for thainbroken(a different part ofN=4 for each sidg At the

area of the extreme black hole horizon may exist which hasertices of a diamond the unbroken supersymmetry is always
the following properties. doubled, since each vertex has the supersymmetry of each

(i) In a generic case when all four values of the moduli ofadjoining edge of the diamond that enters into a given vertex.
the eigenvalues of the central charge malzik are different ~ The original picture was drawn for the real values of central

(iii) For the particular case df) studied earlier with 1/4
N=4 supersymmetry unbroken,

one has 1/8 oN=8 supersymmetry unbroken, charges. Subsequently we found that the same picture ap-
pears to be valid upon $2,Z) rotation: the area as a func-
M=|z|, M>|z,|, M>|zs|, M>|z, A#0, 1) tion of the moduli of two central charges given in E4) is

SL(2,Z) symmetric(see[6]).

Now we would like to have an analogous picture in terms
and the area of the horizoh has to be 7 symmetric, or,  of the moduli of the four eigenvalues of the central charge
with an account taken of black hole charge quantizationmatrix for N=8 supersymmetry with various vertices of co-
E/(Z) symmetric. inciding two or four central charges corresponding to the

(it) When all four moduli of the eigenvalues of the central shrinking area of the black hole horizon. It is rather difficult
charge matrix coincide, 1/2 dl=8 supersymmetry is un- to visualize this multidimensional figure with vertices de-
broken, and the area of the horizdnshould vanish: scribing the pattern of restoring double and/or quartic super-

symmetry relative to edges.

Fortunately, the hidden symmetry 6f=8 supergravity

*Electronic address: kallosh@physics.stanford.edu helps to find the solution. There are actually not so many
"Electronic address: barak@leland.Stanford. EDU possibilities to verify: there exists exactly one quartig/E
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invariant that can be built from oheentral charge matrix 72,=2,=23=2,=IM, (14)
Zag- To support our conjecture about this “generalized dia-

mond” function we have to show that the area of the blackand since the invariant is quartic in central charges, we get
hole horizon is proportional to the square root of this invari-the same result: a vanishing area for the solutions with 1/2 of

ant. unbrokenN=8 supersymmetry.

The quartic invarianf1] can be represented in the simple ~ To verify the condition(iii) we will use the fact that for
form? this case we may consid&k,=z,, Z3,=z,, and have other
— — — elements ofZ,z vanishing. This leads to

O =Tr(ZZ)*— 3(TrZ2)*+4(PfZ+P1iZ). (7) — —
THZZ)*=2(|zs*+|23l"), TrZZ=2(|zy|*+|2,|%),
Here . PZ=PIZ=0.
Zng= (0" +ipap) (I, (8 )
In this case
and 25 are the SCB) matrices. The 28 electrig?® and
€ ) ® v 0 =2|z*+ |z~ F12(|2:/2+ 2D 2= (|2) 2~ [22])2

28 magneticp,, charges are given in terms of the compo-
nents of 2< 28 vectorZ=V 2. HereV is the constant value
of the E(Z)-valued fieldV, and Z is the 2<28 vector of Thus we have learned that the ar@aof the SL(2;Z)-
quantized electric and magnetic charges. The Pfaffian Pf afymmetric axion-dilaton horizof®,6] in terms of the quartic
the antisymmetric complex matrixZ,g is defined as invariant of E(Z) is given by

(15

PfZ=e"PCPEFCNZ 67 pZerZih- T~T
The group E acts onZ,g as A=4m\| O], (16)
0Zpg=ASZcgt ASZac, 9) This shows again that the-duality symmetric formula
—ep for the area indeed covers previously known solutions. The
0Zpg=2pgcDZ" ", (100 area is proportional to the square root of the quartic invari-

c . . ant. This is in complete agreement with the fact thaZ
where A5 are 63 anti-Hermitian generators of @) and  pag SI(2:7) as a subgroup:

3 ascp are totally antisymmetric and self-dual generators of
E; orthogonal to SI(B), E,(Z)DSL(2;Z)xS06,6.7). 17

3 ABCD= 25 €ABCDEFGIE T O (11 It is interesting to check the area formula on more general
solutions with all four central charges nonvanishing. For ex-
Only the discrete subgroup of;g& is compatible with the ample, we can consider the truncationNf 8 supergravity
quantization condition on dyon black hole charges. The quarto the form describingN=4 supergravity interacting with
tic invariant of B is also anU-duality invariant. Thus we vector multiplets. We consider the action in the forf}
satisfy condition(i) by construction.
We may now check our conditiofii). For example we - j 4 ( _ - 2 2 2
may consider am=+/3 extreme black hole, embedded into S 167G d X\/_ R [((?77) *(90)"+(9p)]
N=28 supergravity. For an electrically charged solution with -

real positive central charges we have — eT[e‘”‘P(F1)2+ e TtP(F,)2
21:ZZZZ3ZZ4ZM. (12)
The quartic invariant can be calculated using +e7 " P(Fg)?+ e“P(F4)2]>. (18

Tr(ZZ)2=8M*, TrZZ=8M?, PiZ=PiZ=M*. _ .
(22) One can use various versions of the known double dyon

This gives solutions with 1/4 of unbroken supersymmetry WNf=4
onnd 4 4 4 theory[9,7]. These solutions are described by two different
¢ =8M"-16M"+4M"+4M"=0. 13 central charges. The detailed description of the correspond-

ing two central charges from the heterotic point of view as
well as from the point of view of the type Il theory compac-
tified on K2 is given in Ref[8]. The simplest solution with
1/8 of unbrokerN=8 supersymmetry characterized by four
different central charges is

For the pure magnetic case

!In the case of two central charges there exists a symplectic in-
variant for E, that was already used by Hull and Towns¢8ito

verify that the quantization of charges for two dyon black holes is ds?=—e?Vdt?+e 2Ydx%, e*V=y ox1x2,
U-duality symmetric.

2- . . . e .

The detailed form in which it is presented|ib] is o 27— s oo 1/11X4 o 1x2

’ e e ’
e X2X4 Xaths' UaXa
<> =ZABZBCZCDZDA_ _ZABZABZCDZCD _
o F,==+dy,/\dt, F,==xdy,/\dt,
+ 35 enpcperaiZ P ZCOZF 70N + ABCOEFCNY, 7 7 7). == 2t

© Fa=+dys/\dt, F,==dy,/\dt, (19
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where are singular when free. One may satisfy the condition of the
g],) 2 Ipl,) absencg of naked s_ingularities if one assumes that four of
¢1=(1+ —) , X2=(1+ —) , these singular constituents, electropole H electropole F
M1 ra monopole, andH monopole may be confined inside the non-
1 1 singular black hole. Each of the elementary black hole solu-
Wa= ( 1+ %) = ( 1+ @) (200  tions carries the central charges as follows. The first one has
3 v Xa )
rs r z,=2,=23=12,, the second one hag =2z,=—2z3=—2,,
the third one hag, = —z,=z;= —2z, and finally the last one
hasz,= —z,= —z3=2,. Each of the elementary constituents
eaks 1/2 of theN=8 supersymmetry, however, each one
eaks a different part of it. Four of them can be placed in

and magnetic  potentials  correspond toEm
=e 7*(-o*P)E%, where the asterisk denotes the Hodge
dual. Charges in each gauge group could be placed either E{r

various places r(;#r,#rz#r,) or in just one place . o
b WA 127 1571s) J b four different points in space. When all charges are placed at

(ri=r,=r3=r,4). The signs of all charges could take any o \ . )
values, without correlation between various gauge groupsc.)ne point in space we have a configuration described by the

The resulting configuration is characterized by four differentgeometry of the Reissner-Nordstnatype with the singular-

: oy . ity protected by the horizon, whose area is given by the
central chargeswith 4G=1) : unique formulaA=4] ¢ |. The unbroken supersymmetry
2;=(qy+03) + (P2t Pa), of all four elementary co_nsti_tuents forr_ns only 1/8 of the

N=8 supersymmetry, which is the maximum common part

Z;=(d1+d3) — (P2t Pa), of the unbroken supersymmetry of all four constituents. As

long as all four elementary black holes are at one point, we

23=(01=03) + (P2~ Pa), have a configuration with the singularity covered by the ho-

N rizon. If we take one of the= /3 solutions outside this
_ 24= (017 A3) = (P2~ Pa). _ (21)_ area, we would have a naked singularity. Thus, if one really
The mass is equal to the largest of the moduli of the eigenwants to avoid the violation of the cosmic censorsfwiich

values of the central charge matfk=maxz], i=1,2,3,4. may not be necessary in application to stringy solijanse

The area is proportional to the square root of the absolutenay conjecture thal=8 supersymmetry has to be broken

value of the product of electric and magnetic charges, spontaneously down to 1/8. The elementary black holes have
A=47q,p,0spa| Y2 (22) to be confined inside the horizon for this purpose. This pic-

) ture is consistent with the idea of black holes as elementary
and in terms oN=8 central charges we have found the areaparticles, suggested by Holzhey and WilcZ2R] in the con-
to be equal to text of \/3 extreme black holes.
4 - 12 The second comment is about the difference between
A=4m Z z _22 zizj+821252324| . (23)  plack hole solutions ilN=8 andN=4 theories. If all four
. supersymmetric positivity bounds &f=8 supersymmetry
Again we see that foz;=2z,=0 our formula is reduced are respected for the black hole solutions, there are no non-
nicely to A=4m(|z;|°~|z,%). The crucial check comes trivial massless solutions, since the mass has to be larger
here: Will the diamond formuld?7) reproduce this expres- than all four eigenvalues of the central charge matrix. How-
sion? Yes, it does. One can verify that E@) in the case ever, inN=4 supersymmetry we have only two positivity
Z219=21, Z34=2y, Zsg=23, Z75=2Z, reproduces Eq23). bounds to respect, and some combination of chathgt
We would like to make two comments on the black holehanded in the heterotic theory or some specific combination
solutions inN=8. The first one is related to the cosmic cen-in type Il string onK?®) do not enter the central charge matrix
sorship conjecture. It says that naked singularities cannot agmymore. Therefore they do not have to vanish simulta-
pear as a result of gravitational collapse. This does not helpeously with the vanishing ADM mass, and the massless
much for charged stringy black holes since there are no elsolitons become availabld 1].
ementary particles that would carry the corresponding It is interesting to note that the quartic invariant g
charges, and therefore these black holes cannot appear asvas constructed by Cartda2,1] in a form that is different
result of gravitational collapse anyway. Supersymmetryfrom the one that was found later by Cremmer and Julia and
which leads to the Bogomol'ni bound, sometimes implies thehat we used here. It is believed that these two forms are
absence of naked singulariti¢§]. However, the link be- proportional to each other, however, to the best of our
tween supersymmetry and cosmic censorship is not univeknowledge, no proof of this is available. Cartan’s quartic
sal, it does not exist, e.g., far= /3 black holes. It is inter- form is
esting that for N=8 supersymmetry broken down - -
spontaneously all the way to 1/8 of supersymmetry plays the J=x"yjkxk'y” - %x”yijxk'yk,
role of a cosmic censor. Indeed, as long as one keeps away - .
from all the vertices where unbroken supersymmetry is + 55 (EI]kImnOpyijyklymnyop+ 6ijk|mnopX”Xk|anX°p)-
doubled or quadrupled, the singularities in canonical geom- (24)
etry are protected by the horizon, exactly as was observed in
Ref.[5] in N=4 theory. One may try to develop the idea of  This alternative quartic form suggests a very nice inter-
Rahmfeld [7] that the nonsingular black holes of the pretation of the fact that the area is a product of four charges
Reissner-Nordstm-type can be build out of the elementary in Eq. (22). For this purpose we have to perform the dual
constituents(for example from foura=+/3 solutions that  transformation from S(8) version of theN=8 supergravity
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to SQ8) version. This type of double analysis was used toE(7) symmetry requires at least four electric or four magnetic
study extreme black holes in R¢E] where we used in par- charges in S(B) version to be nonvanishing to get a nonva-
allel the SUW4) and the S@4) version ofN=4 supergravity. nishing area simultaneous with 1/8 of the unbroken super-
The electric and magnetic charges in the first theory becomsymmetry. This reflects the fact that the on-shell superfields
either two electric or two magnetic charges in the other oneof N=8 supergravity are &) symmetric.

In N=8 case this will lead us to reinterpret all four charges So far all checks on the extreme black holesNs-8

as either magnetic or electric. For example we will get eithettheory with 1/8 of unbroken supersymmetry completely con-
a pure electric solution withk'?>=q,, x3*=p,, x*®=qz, firm the area formuld16), (26). Hopefully, more elaborate
x*®=p,, or a pure magnetic one with;,=0q;, Yss=p,, solutions will lead us to all possible realizations of tbe
Ys6=03, Ys6=Pa. IN both cases the area is reproduced byduality.

Cartan’s quartic invariant. In the first pure electric case we The arguments in favor of the nonrenormalization theo-
have the contribution only from the fourth termdpwhile in ~ rem for the extreme black hole area of the horizon were
the pure magnetic case only the third term contributes. Ipresented in Ref5]. They were based on the fact that the

both cases we get the same result: unbroken supersymmetry of the bosonic solution of super-
J=Jmd —a 25 gravity is equivalent to the existence of the fermionic isom-
= Jer= Jmagri— # 1P203P4- (29 etries in the corresponding superspace. Therefore the calcu-

This makes it plausible that theB symmetric formulg16) ~ lation of the on-shell action cannot produce quantum
for the area is in addition proportional to the square root ofcorrections as long as the corrections come from the super-

the Cartan’s quartic invariant: symmetric invariants, be they local or nonlocal. Because of
the presence of the fermionic isometries all invariants given
A~]Jl. (26) by the full superspace integrals are guaranteed to vanish due

to Berezin's rules of integration over the anticommuting

The first two terms do not contribute {@5), since we have ; ; .
used a very simple solution. However, some more Comp”_vanables. Apart from possible supersymmetry anomalies

cated examples of solutions of the heterotic string theor)?WhiCh are not expected iN=8 §uper_gravit)/ and pqssible
were found recently by Cveétiand Tseytiin[9] where the integrals over the subsupermanifdighich were studied be-

area does not reduce to the product of four charges. It woul re and do not seem to challenge the .SOIU.“O”S with unbro-
be very interesting to promote this solutiono=8 theory €N 1/8 supersymmetyythe nonrenormalization theorem for
with 1/8 of unbroken supersymmetry and verify the area for_extrgme blaqk ho_les aréa seems t.o h_ave a pretFy solid basis.
mula for them. Various black hole solutions with a different " VIEW of th"_c’ Itis par'u_cu_larly _satlsfylng that this theorem
number of unbroken supersymmetry Nf=8 theory have protects a unique quartic invariant oﬁ(E). .
been studied also in Ref13]. Khuri and Ortn [14] have The main conclusion of this work |s_the followmg. The
: : B’;\rgest hidden symmetry of supergravity with 133 param-
N=8 theory of the knowra= 3, 1, 143, 0 extreme black eters becomes manifest if one looks into the structure of the
holes. This study suggests various possibilities for analyzin xtreme bl.aCk hole hor!zon._ 2(_) ()‘/ears ago Ramond_ gave a
our area formula. In particular, the puzzle of the existence o alk [15] with the folrl)owmg tile: "Is thgre an exceptional
the nonsupersymmetric dyon embedding can be understo oup 1n Xour future. .E.) and the trava!Is of the symmetry
from the H7) point of view? It is clear from (24) why the reaking.” This predmnon most certainly worked for ex-
treme supersymmetric black holes.
Stimulating discussions with A. Linde, A. Sen, A.
3The supersymmetric embedding of te=0 black hole in  Schwarz, L. Susskind, J. Rahmfeld, P. Ramond, and E. Wit-
N=4 theory that was performed in Ré¢B] is a particular case of ten are gratefully acknowledged. We are particularly grateful
the solution described above withQa=0q,+qs, 2Pr=p,+ P4, to A. Strominger for sharing with us the expectation that the
2Q,=0;—03=0, 2P, =p,—p,=0 and the area|QxPg|. Thusit  properties of the area of the horizon can be learned even
also required at least four vector fields, from the perspective obefore all black hole solutions are foufith]. This work was

SQ(8) theory, to be present in the solution. supported by NSF Grant No. PHY-9219345.
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