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We examine variations in the equation of state of the cosmic string portion of the cosmological fluid which
lead to perturbations of the background matter density. These fluctuations in the equation of state are due to
variations in the local density of cosmic string loops and gravitational radiation. Constructing a crude model of
the distribution of entropy perturbations, we obtain the resulting fluctuation spectrum using a gauge-invariant
formalism. We compute the resulting cosmic microwave background anisotropy, and estimate the effect of
these perturbations on the cosmic string structure formation scef86656-282(196)50110-4

PACS numbses): 98.80.Cq, 11.27:d, 98.65.Dx, 98.70.Vc

[. INTRODUCTION total cosmological fluid is due to statistical fluctuations in the
density of long cosmic strings, from which the distribution of

Cosmic strings are topological defects which may havesmall loops and gravitational radiation follow. Below a co-
formed in a grand unified theory era phase transition. Cosmiberence scalé, the equation of state of the loops and radia-
strings may play an important role in cosmolddy, induc-  tion is uniform. The loops and radiation act together as a
ing temperature anisotropies in the cosmic microwave backdilute gas, shifting the expansion rate within a volugte
ground(CMB), and seeding perturbations for the formation Above &, the equation of state varies as rms statistical fluc-
of large scale structur@d.S9). tuations, oscillating with wavelengths longer than the coher-

In past work, Veeraraghavan and StebHiBkdeveloped ence scale.
a formalism for the analysis of linearized perturbations to the The reason why these effects have not been explicitly
cosmological fluid induced by cosmic strings. These techireated in past work are the following. First, no simulation
nigues have been applied to the simulation of CMB temperahas included the gravitational radiation emitted by loops and
ture anisotropy3], and to the analysis of string perturbations strings in the cosmic string stress-energy tensor, for the pur-
in cold dark matter for the formation of LSRI. In both  poses of CMB or LSS calculations. The effect of gravita-
applications, the effects of the strings on the linear densityional wave, tensor perturbations on the scalar, gravitational
field were computed by convolving the string stress-energyotential is a second-order effect. However, variations in the
tensor with the appropriate Green’s function. As well, den-equation of state, as considered in this paper, result in a
sity perturbations, anticorrelated with the cosmic stringsfirst-order effect in linearized gravity. Second, the perturba-
were included to compensate for perturbations induced byions resulting from the variations in the equation of state,
strings at formation. although not genuine fluctuations in the total density, have

We propose to compute the effects of an additional sourcaot been modeled by the compensations employed to date
of cosmic string-generated perturbations, not explicitly in-[2]. The compensations included in CMB and LSS analyses
cluded in previous analyses. These are entropy perturbationsave simply accounted for the initial distribution of strings
caused by the inhomogeneous shifting of energy betweeand loops, not the subsequent shift in the form of matter,
cosmic string loops and gravitational radiation emitted byfrom loops and long strings to gravitational radiation.
loops. The spatial variation in the equation of state of the Our goal in this paper is to estimate the importance of
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entropy perturbations for the formation of large-scale strucBecause the gravitational radiation is free streamed at the
tures and CMB anisotropy, prior to carrying out a more de-speed of light, we estimate that the coherence scale is given
tailed investigation(Some preliminary work has been car- by the Hubble lengthé="{"*. Hence, decomposing the per-
ried out in [5].) In the following, we present a simple turbing energy density field in terms of an amplitude and
analysis of the effects of these perturbations from cosmispatial distribution, we write

strings. In Sec. Il we present a model of the variations in the

cosmic string equation of state. In Sec. Il we give explicit 1

solutions for the gauge-invariant potential, characterizing the T8S(7,X) = 3Fgpof (7.X). 2.9
density fluctuations induced by the entropy perturbations.

We also compute the power spectrum, and comment on the

effects on large-scale structure formation. In Sec. IV we esHere: 7 is the conformal timep, is the background fluid

timate the effect of these perturbations on the CMB. weenergy densityF is the rms amplitude of the statistical fluc-
conclude in Sec. V. tuations in the energy density as a fraction of the back-

ground, andf(#,X) is a normalized distribution describing

the spatial variation of the entropy perturbations. In the dust-

dominated erafg~4mAGu(1-2(v%)~Gu. In this ex-
Entropy perturbations to the cosmological fluid arisepressionA, defined by

when there is an inhomogeneous shift in energy from one

form of matter to another. Consider a pert_urblng component A= ((pgc—<poc))§)t2,u’1, (2.5

of the fluid 6p with pressuredp. The resulting perturbation

to the entropy density is

Il. MODEL OF ENTROPY PERTURBATIONS

is the amplitude of the statistical fluctuations in the long
5S=T"Y 5p—c§5p), (2.1) string densityp.,, averaged on a length scaje wheret is

physical time. The squared, average velocity along the string
wherecy is the speed of sound in the background medium ais (v*)=0.37 in the dust-dominated ef@i]. We caution that
temperaturdl. Hence, the presence of an additional form ofthe decompositiori2.4) is a simplification. A more realistic
matter for whichdp+c2dp, that is the perturbing matter analysis would use the stress-energy tensor of the cosmic
does not obey the equation of state of the background fluictrings, as determined by a numerical simulation, to compute
leads to a perturbation of the entropy density. In the cosmi S.

string scenario, the long cosmic strings, loops, and emitted 1he functionf(#,X) describes how the perturbations to
gravitational radiation the equation of state vary with position and time. We decom-

pose this function in terms of Fourier harmonics:
Op= Pt Ploopst Pgr 2.2

serve as the perturbing component of the cosmological fluid, f(ﬁ,i):(ZTF)*Sf d*ke*Xf(9,k),
driving the entropy perturbations {2.1). More formally, we 2.6

write ~ ~ AN ~
(k0 f(n' . K))=(2m)38(k—Kk")[f(n.K)f(7' k)],
T6S=—-30,,0""+3(1-3c)0 ,,u"u’, (2.3 N N

wheref(#5,k)=|f(7,k)|e'’%. The fluctuations in the density
where ® ,,(7,X) is the cosmic string stress-energy tensor,of long strings lead to statistically homogeneous, isotropic
including the gravitational radiation, ang, is a unit timelike  variations in the density of loops and gravitational radiation.
four-vector orthogonal to the time-constant spatial hypersurBecause the long cosmic strings make a statistically random
faces. Given the sourd@.3), we may carry out a procedure walk on scales larger than the string correlation length, the
similar to that in[2—4]: convolve the source with the appro- variations in the equation of state, and hence the phases
priate Green’s function to obtain the gravitational potential.g;, are randomly distributed. The product of the Fourier
While it may be straightforward to adapt a cosmic stringcoefficients,f(5,k)f(#’,k)|, plays a role similar to that of
simulation to this task, in the present work we will constructihe structure function used by Albrecht and Stebljifisto
an analytic model describing the cosmic string entropy peryescribe the matter perturbations directly induced by cosmic

turbations. o _ strings and loops. We normalize this distribution by smooth-
Treating the cosmic string network as a dilute gas, Wang the variance over a time scaje

may compute the pressure contributed by the strings. In the

dust-dominated era, only the gravitational radiation contrib- ¢

utes to the entropy perturbationsS in Eq. (2.1). Loops 0?5571f de{f(n,X)f(n',X)=1. 2.7

evolve as collisionless dust, so they do not contribute. 0

Hence, it is the shifting of energy from cosmic strings into

gravitational radiation that drives the entropy perturbations.The reason for smoothing in time is that the cosmological
Based on a crude model of network evolution in whichfluid can only react to changes in the local equation of state

the strings rapidly approach a scaling solution, the energgue to the cosmic string loops and gravitational radiation on

injected into gravitational radiation, in the dust-dominatedtime scales greater than the coherence time scale. Hence we

era, in a time interval given by the coherence time séake  need only restrict the variance of the distributibron the

a constant fraction,F, of the background energy density. time scales which will lead to entropy perturbations.
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We expect that the distribution does not vary on length 2
scales smaller than the tinge so thaff(7,k>¢"1)=0. As a o= §H72(V2¢—3H¢'—3H2¢)- (3.3
general distribution we writé as a power law in wave num-
berk, on scales above: For modes well within the horizork>", the density con-

—~ 32 trast is dominated by the gradient term. Thus, we have the
[f(n,K)|=2m(a+5/2)(a+3/2)E4ké) @(1—k§2é 9 relationship

4
where &/ »= const. The numerical coefficients and depen- pﬁzﬂ‘l% for k>H (3.9
OH '

dence on¢ follow as a result of the normalization, in Eq.

(2.7). The step function is defined &(x)=1 for x=0 and

0O (x)=0 for x=0. The parameter determines how scales relating t_he power spectrum in the potential to the power in
above the coherence scaleontribute to the distribution. As  the density contrast.

a—®, In the dust-dominated era, the scale factor behaves as
_ ax5? and the speed of sourd] for the cold, collisionless
lim |f(2,k)|=2m&326(1—ké), (2.9  dust vanishes so that the evolution equation for the gauge-
a—o invariant potential simplifies greatly. We may solve the dif-

o ) ) . ferential equation as
so that the distribution is characterized by a single, comoving

scale. For finite, decreasing valuesagfthe range of comov- » '

ing scales contributing t increases. In the limitr— 0, the q’(?]ﬁ)Z"ﬂTGJ dn’ ﬂ'_GJ dn"n"%a*(7")
distribution has support on all wavelengths above the co- eq Teq

moving scale£. Because the network of long strings is dis- ><[6p(n”,)?)—c§5p(77”,>2’)]+(77— Teq)
tributed as a random walk on large scales, we expect the

entropy perturbations to similarly have support on scales X D' (7 eq,X) + P(7eq,X). (3.9

aboveé. Hence, we expeat— 0 to be more physically rea-

sonable thanr—o. However, in the following calculations Hence, given the boundary terrds and ®’ at 7, at the

we will take a— in order to simplify the calculations, onset of the dust-dominated era, it is straightforward to ob-
noting that for other values af, the results are not strongly tain the potentiatb at any later time.

affected. Having specified the properties of the entropy per- The source of the entropy perturbations is the gravita-
turbations, we may proceed to determine the resulting fluctional radiation emitted by oscillating cosmic string loops.

tuation spectrum. Using (2.4), we may obtain the dust-era solution for We
will make the simplification that the boundary terms are un-
Il. EVOLUTION OF PERTURBATIONS important. This is reasonable provided we are interested in

length scales due to perturbations that enter the horizon after
To describe the perturbations of the background cosmoradiation-matter equality. Hence, we find
logical fluid, we use a gauge-invariant formali$®8]. We

must supply an expression for the density perturbation rela- AF Sr

n ! 2
tive to the hypersurface which represents the local rest fram&q(7,K) = (2m)3 dn'(n")78 |7 dy" () F (5" k)| .

of the cosmological fluid; this prescription gives as close as Teq Teq 3.6
possible a “Newtonian” time slicing. For an entropy pertur- @
bation, that is a perturbation to the equation of state, we f|nﬁin the casen— oo, the power is

the evolution of the gauge-invariant potentilis given by
_ 2F %

lim Py (7,k)= Ek*[l—x—f’r@(x—1)@(1—xeq).
=47Ga?(Sp—Ccidp). (3.1) o 37

H=a'l/a. The coordinates #,X) are dimensionless, as the Here x=ke. Forpgther values of the_ power spectrum also
behaves a®q k™~ for modes well within the horizon, gen-

expansion scale facta carries units of length. ; . o :
. erating a scale-invariant isocurvature spectrum. Fluctuations
We will also compute the power spectrum of the gauge- 9 P

invariant potential generated by the entropy perturbations jgenerated during the dust-dominated era will have wave-

— 72 . . . _
the dust-dominated era. We define the correlation function Olrﬁg?t?rsefrara?lit l?Jh to,\'flhp:’ trger:]?r;]z;?chﬁaslia?é r?ﬂ?;:)?luc-
the potential to be the second momentdaf q Y, up P '

tuations will contribute to the large angle CMB anisotropy

®"+3(1+C2)HD' +[2H' + (1+ 3c2) H?]D — c2V2d

Here we work with conformal time;, where'=4d/d#n, and

sin(kr) and the formation of the largest structures.
§(77,I‘)E<CI)(7],)?)@(77,)?’)>=4Wf k?dk i Po(7,K). We may compare the power in entropy-generated density
(3.2 fluctuations with the power due to the perturbations induced

) directly by the cosmic strings. Referring (8.4), we find

Herer =|X—X'| is a conformal distance. Recall that the den- 288
sity contrasté due to the gauge-invariant potential is given 3 _ 2 4
byy gaug P 9 4mk*Py(k) = S F Gk, (3.9
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where k has UnitShZ/MpC andh is the Hubble parametel’ .7:9[«’\’4KG,M, so that forzfvzo these mu|tip0|e moments
normalized toHo=100 km/s/Mpc. Compare this to the are comparable to thEC,~400(Gu)? perturbations mea-
power spectrum due to cosmic strings in cold dark mattekyred in the numerical simulatiofi]. This is roughly con-
(CDM) (Eq. (8) of [4]): sistent with the result foA(~1.8) found in the previous
3 _ 2 4 2 section, in Eq(3.10), in order that the LSS power due to the
Amk*Ps(k)=4m(6.8(kh)(Gu)™. (3.9 entropy perturbations is comparable to the power due to the
Here we have used the | model of Albrecht and Stebpli)s  Perturbations induced directly by cosmic strings.

motivated by the string simulation results of Bennett and The effects of the entropy-gengrated pgrturbanons on
Bouchet, and Allen and Shellafé], on length scales well small-scale CMB anisotropy are estimated using the analytic

above the 8! Mpc normalization scale. Constructing a ra- techniques developed by Hu and Sugiyaith
tio of the LSS power due to the perturbations induced di- 2 dk

rectly in the cosmological fluid by cosmic strings, to those C,=—f —k3|6,(79,k)|?,
generated by entropy perturbations, we obtain ) K

Pairect! Pentropy~ 5 Gu)2F g2= 32A°2  (3.10 01(70,K) = (8o( ms ,K) = D(715,K))j 1 (K| 70— 715])

We see that forFy~7Gu or, using the estimate faF *01(ms k) (214 D)7 -2 (Kl 70~ mis])

preceding Eq.(2.5), for A~1.8 the power for large-scale —(+D)j 1Kl 70— ms)))
structures are comparable. As—0, such that the entropy ,
. . 0 o~ A
perturbations have support on a W|d§ range of length s_cales, _zf dn®' (7,K)]1(K| 70— 7). 4.3
the power due to entropy perturbations increases slightly, Ms

and the powers are comparable far-1.4. The reason for )

the increase is that entropy perturbations generated at a ranjethe above equatior(see Eqs(12) and(14) of [9]), 6, and

of times, rather than at a single time as with theso ) are the monopole and dlpo_le moments of the pert_urba-
model, now contribute to the power in a single mode, ont!oNs to the baryon-photon fluid. _The final term, the inte-

these scales. Numerical simulations indicate that the mea@fated Sachs-Wolfe effect, dominates on large angular
energy density in long strings during the dust-dominated erscales, as with isocurvature models. Modellng _only the dust-
is p..= (4= 1)u/t2, [6] obtained by averaging over multiple €2 entrppy perturbations, the resultlng. contrlbu.tlon' to the
realizations of the string simulation. If the quoted uncertaintycMB anisotropy due to monopole and dipole oscillations of
in p.. measures the amplitude of the statistical fluctuationsthe baryon-photon fluid is small. However, if we artificially

averaged on a scalg thenA~1. Modeling the long string eng;hetn dthe dﬁratmn of thfe ptrerglcor‘rlglnatltl)_g,_t m?tter—
network as a random walk on large scales, we expecﬂjor‘mnae epoch as a way of extending the vaidity of-our

~ ~ model to smaller scales and earlier times, we find that sig-
A~0.6[5]. Hence, we expedd~0.6—1 to be a reasonable

) . > nificant anisotropy may result on small angular scales. For
range for the amplitude of entropy perturbations. We cautio

. - ; e a— c model with a coherence scafe=H 1, a series of
that these results are intended as a preliminary eSt'mate;[?eaks develops, beginning nekr 200, before diffusion
more reliable calculation will use the string simulations di- i ;

| he eff ¢ bati damps out the perturbations. Smaller values of the coherence
rectly to compute the etlects of entropy perturbations. scale lead to a decrease in the peak amplitude and a shift in

the peak location to highdrvalues. It is important to note
IV. CMB ANISOTROPY that the location of the peak in the spectrum is sensitive to

The CMB anisotropies induced by the entropy-generated€ value of the comoving coherence scalier the entropy
perturbations may be computed from the gauge-invariant pot_)erturba'ltlons. Magueijet al.[10] have 'carned' out a §|m|lar
tential. The dominant contribution on large angular scales, a§a/culation of the small-angle anisotropies using the
is common for isocurvature perturbations, is due to the timé"|°récht-Stebbins LSS model as an effective source for fluc-
variation of the potentiab, integrated along the line of sight tUations in the baryon-photon fluid. There, they found that
to the surface of last scattering: the location of the peak shifts to larger valueslofs the

coherence length scale decreases. This behavior may be an

AT 70 R important tool for discriminating between inflationary and
7(n)=2f dy ®'(7,[no— 7|n). (4.1)  defect-based models. Furthermore, perturbations generated
s by scale-dependent variations in the equation of state, as

Here,n is a unit vector on the celestial sphere. The correla—ConSidered in this paper, may be a generic property of defect
tion f,unction is expressed in the usual form: ’ based cosmological scenarios. For global defects, however,
P ' the generation of entropy perturbations will be due to the
AT AT © o141 distribution of Goldstone, rather than gravitational, radiation.
c(9)5<_(ﬁ)_(ﬁ/)> => ——C,P/(cos9). (4.2 Similar calculations have been carried out for textures by
T T i=o 4m Crittenden and Turok11].

The amplitude of the multipole moments is given by
C,, andn-n’=cog. Evaluating the large-angle CMB an-
isotropy due to dust-era entropy perturbations only, in the In this paper we have analyzed the effects of entropy per-
a— case, we find?C,~6F gr for 10<1=<40. Recall that turbations in the cosmic string scenario. These perturbations

V. CONCLUSION
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arise from spatial variations in the density of cosmic stringeter «. For large-scale perturbations, the amplitude and
loops and gravitational radiation, leading to a field of ap-shape of the spectrum does not depend strongly on¢, as

proximately Gaussian fluctuations in the equation of state o scale-invariant isocurvature power spectrum results. For
the cosmological fluid. This source of anisotropy has notwhat we expect to be a reasonable range for the amplitude,

been explicitly considered in previous analyses, because tH&—0.6- 1, the entropy perturbations make a non-negligible
contribution to the cosmic string stress-energy tensor by:ontribution to the LSS and large-angle CMB spectrum. In
gravitational waves has not been included. By constructing gummary, we have crudely modeled the essential features: a
crude model of this source, we have been able to estimate thgatistically homogeneous, isotropic distribution of fluctua-
eﬁects. of the resulting p_erturbations on large-scale structurgons in the equation of state, varying on length scales above
formation and the cosmic microwave background. ~ the comoving horizon radius. It remains to compare this
Let us comment now on this analytic model. We claimmodel with the distribution observed in a realistic cosmic

that the distribution function used to describe the Variation%tring simulation. We p|an to carry out these advances in the
in the density of gravitational radiation and loops, and hencgear future.

the variations in the equation of state, is a reasonable first
approximation for the purposes of estimating the relative im-
portance of this effect. There are certain shortcomings of this
construction, among them the uncertainties in the amplitude We thank Paul Shellard and Albert Stebbins for useful
of the rms fluctuation®\, the size of the comoving coher- conversations. The work of P.P.A. was supported by JNICT.
ence scalet, and the dependence of the distributibron  The work of R.R.C. was supported by PPARC through Grant
wave numbek, which we have condensed into the param-No. GR/H71550.
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