PHYSICAL REVIEW D

PARTICLES AND FIELDS

THIRD SERIES, VOLUME 53, NUMBER 9 1 MAY 1996

RAPID COMMUNICATIONS

Rapid Communications are intended for important new results which deserve accelerated publication, and are therefore given priority
in the editorial office and in production. A Rapid CommunicatiorPiysical Review Dshould be no longer than five printed pages and
must be accompanied by an abstract. Page proofs are sent to authors, but because of the accelerated schedule, publication is generally
not delayed for receipt of corrections unless requested by the author.

Generalized moments and cumulants for samples of fixed multiplicity

P. Lipa, H. C.“Egger§,and B. Buschbeck
Institut fir Hochenergiephysik, Serreichische Akademie der Wissenschaften,
Nikolsdorfergasse 18,-AL050 Vienna, Austria
(Received 11 December 1995

Factorial moments and cumulants are usually defined with respect to the unconditioned Poisson process.
Conditioning a sample by selecting events of a given overall multipldityecessarily introduces correlations.
By means of Edgeworth expansions, we derive generalized cumulants which define correlations with respect to
an arbitrary process rather than just the Poisson case. The results are applied to correlation measurements at
fixed N, to redefining short-range versus long-range correlations and to normalization issues.

PACS numbes): 13.85.Hd, 02.50-r, 05.40+j, 25.75.Gz

In high-energy multiparticle production, the variation of natural strategy for separating nontrivial fixBldeorrelations
correlations with overall multiplicityN is most sensitive to  from overall multiplicity conditioning effects. Generalized
the underlying dynamicgl—5]. This sensitivity provides a cumulants will hence also be useful in the study of pion
good opportunity to test and discriminate between variougnterferometry as a function ¢ and other situations requir-

models. However, with the notable exceptions of RE§s7],  ing conditioning. .
little attention has so far been devoted to a systematic treat- Multiparticle final states are best understood in terms of
ment of N-dependent correlation measures. point processe$8,9]. The concept of correlation in point

Selecting events by fixed values Bf is an example of Processes is usually based on the fundamemoéson pro-
conditioning One of the merits of this type of conditioning is C€S$ Which is characterized by the factorial moment gener-
the separation of so-called “short-range” from “long- &ting functional(FMGF)
range” correlations. The latter arise from non-Poissonian
overall muIt_ipIicity d_istributions as WeII_ as the depender_lce Q. [N(X)]= exp{ _ f A (%) p(x)dx
of the conditional single particle densip(x|N) (wherex is 4
any phase space variable of intejest

Every conditioning, however, introduces new correlationswhere p(x)=(1/o|)doj,q/dx is the differential inclusive
which can be regarded as “unphysical” since they arecross section at point. Equivalently, for the Poisson pro-
merely a consequence of the selection procedure. Conseess every finite-dimensionabunting distribution i.e., the
quently, the very concept of a correlation must be rethoughjoint probability of the particle counta=(n,, ... ,ny) in
and generalized for the case of conditioned samples. an arbitrary finite partition of an overall phase space domain

Ir_1 this Rap!d Communication, we seek to clarify and gen-(, . into M nonoverlapping subdomains(“bins” )
eralize factorial moments and cumulants for the case 05:(91 Q,), factorizes into a product ¥ Poisso-

fixed-multiplicity samples. This generalization suggests dians:
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where y(Np; ) = exp(= v viWng! with mean multiplicity — with  x=(xy, ... X;) and X(X)=\(xy)---A(xy). The
vm=Ja_p(x)dx. univariate expansion of the overall multiplicity distribution
m . . . .
Particles created in a Poisson process are completely uh{N) in terms of the Poissonian is
correlated in the sense that all factorial cumulant densities of

orderg>1 vanish: J

f(N)=exr{<K£—N)<—V)+ ZZ%—W Y(NiN),
q= .
(@)

3) where V is the discrete difference operator such that
Vy(nv)=y(n;v)—y(n—1;v).
while x1(x)=p(x). The extension to a multivariate expansion for the joint
By contrast, thenultinomial processs defined by placing counting distributions in arbitrary finite partitions @,
a fixed numbem of particlesindependentlyof each other then reads
into the domain(),, according to a probability density
p(x|N)=p(x|N)/N; it has a FMGF

:O,
A=0

-6
koxas - Xq) =11 ( &(Xi))any[x(x)]

=1

M
f<ﬁ>:exp[ El [k (M) = vl (— Vi)

N m=
1—f dx\(x) p()’(\kN)

QRTA(0]= L@ = (—1)d

and its finite-dimensional counting distributions are multino-

mials. (8)
Despite the fact that the particles are placed independently . . R

of each other, the standard factorial cumulants of the multiwhere V., y(n;v)=vy(n;v)—Iv(Ny — Svm;v), and

nomial process are nevertheless nonzero, thereby indicatir}q](rﬁ) is the g-fold integral of K;()'(’) over the domains

purely “external” correlations: Q.. Qo
q It can be verified easily that the coefficienté in these
Kg“‘"(xl, XN =(g=1)! (- N)L T p(xi|N). expansions are identical with tlggh order multivariate fac-
i=1 torial cumulants of the proceds Therefore standard cumu-

5 lants can balefinedas the coefficient functions of the Edge-
worth expansion around the Poisson process.

In other words, standard cumulants measure not only the This definition can be generalized in an obvious way.
“internal” correlations between particles but also the devia-From Eq.(6), it is easy to show that the generating functional
tion of the overall multiplicityN from the Poisson distribu- Q; of a procesd can be expanded in terms of the FMGF of
tion y(N;N)=exp(—N)N/N. any otherprocess h:

It thus seems natural to ask for quantities that are sensitive
not to such “external” deviations from the overall Poisso- ) = (—1) ) ) o )
nian but only to “internal” correlations, i.e., deviations from Qf[)\]:ex;{ —— | dx k{(X)— kh()IN(X) | Qp[X],
the multinomial. =1 9

The answer, we believe, lies in the use g¥neralized ©)
cumulantswhich successfully separate the two. To justify . h )
their existence and form, we turn to the alternative definitionVhere againkg and «q represent the standard factorial cu-
of cumulants as coefficient functions in an Edgeworth expanmulants off andh. . _
sion. In most of the literature, the latter is understood as the Itis quite natural, then, to defirgeneralized cumulantss
expansion of a continuous univariate distributigh(x)  the coefficients in the expansion bfin terms ofh,
around the Gaussidef. [10]). For integer counts, it is more ot on
natural to define a multivariatdiscrete Edgeworth expan- Kq =Kq~ Kq» (10
sion around the Poisson process. In its most general form,
the discrete Edgeworth expansion of a point prodessth  for g=2, while forq=1, we set by conventior}"= «}. If
respect to the Poisson procegsreads, in terms of their h is the Poisson process, these generalized cumulants reduce
FMGF's, to the standard cumulants.

The generalized cumulants can be found as functional de-
rivatives of theratio of generating functionals:

Qf[i]=exr{— f dx{ <5 (x) — p(X) IN(X)

q
-0
. k=T n| 22| (12)
(-1 2 NS > iz L ON(X) Qn _
+ 2~ | dxig(X)X(x)|Q,[X] A=
=2 ¢
* (=1)d
=ex E ﬁf d)_ZKf()_())K()_()) (6) 4t is understood that such relations are valid only for processes
=1 9! d ' having well-defined cumulants of all orders.
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where the Poisson generating functioi@g) has to satisfy | 2] 2]
(8Q,/8N)|y—o= 1. This ensures that the above convention r3(€|N)= < Z [ = (b )y—2a(b)y
for «!'" is satisfied® Note thatx" is generally a standard
cumulant to some well-defined process only if the process
f is divisible by h in the sense t[;at the rat%f/Qh itspelf +2(1-N 2)<b>ﬁ]> ' (14
again satisfies all requirements for a FMGL. N

The general validity of Eq(9) means that generalized znq s on: the same (N™~9) factors appear as coefficients
cumulants will work for any type of conditioning, i.e., they qf the |ast termgb) ! for higher-order internal cumulants.
will show up the real correlations of a procefswith respect  again, these internal correlation integrals vanish for dis-
to a given conditioned reference procéss tancese large enough to encompass the full doméip, .
~ We now apply the concept of generalized cumulants 10 cjearly, the multinomial correction will be most impor-
fixed-N multiplicity samples. The discussion will range from {5t for smallN and lowest order. The correction may or

the definition of internal cumulants for fixed-measure- may not be substantial, depending on the numerical size of
ments to resulting cumulant formulas for fixed-bin and cor-a" uncorrected . .

relation integral measurements, followed by a short discus- \yhen experimental samples are not very large, fiXed-

sion of improved short-range vs long-range correlation.,re|ation measurements become problematic due to large
formulas, summing over windows iN, internal moments,

o sampling errors. Therefore one traditionally sums up all
and normalization.

. _ fixed-N cumulants[12,2,4 to yield what are(inaccurately
Internal cumulgnteare the generalized cumulants with re- .o “short-range correlations{SRC'S; in second order
spect to the multinomial proce$4):

AN =N -GN, az R = lelelNE= 2 P XN
15

; mult, ; v
with xg""(x|N) given by EQ'(5) and xq(x|N) the_ standard Inclusive cumulants are then split up into the SRC contribu-
cumulant measured for a fixed-process. These internal cu- 4, plus “long-range correlations({LRC’s):

mulants will vanish everywhere, even on a differential level,

if the N particles in the full domairf),,; are placed indepen- Ko(X1,%X2) ={K2(X1 X2 N)}+{Apn(X1) Apn(X2)},

dently of each other following the same probability density (16)

p(x|N), i.e., behave multinomially.

Univariate internal cumulants are obtained from the mul-where Apy(X) = p1(XIN) ={p1(X|N)}. The SRC sum over

tivariate ones by integrating aif variablesx,, . . . X, over fixed-N cumulants is purported to represent an average over
; [ _ L™ g the standard fixett correlations, while the second term rep-

the same domaitly, Kq(m|N)_medXKq(X|N)’ yielding resents the LRC contributions resulting from the strong

variation of p(x|N) with overall multiplicity N.

ry(MIN) = (NN — (1= N1 (np)R As we have shown, it is preferable to replace the
Kq(XIN) with internal cumulantsc(x|N) to eliminate the
ka(MIN) = (nE3N = 3(nE2H (NN +2(1-N"2) ()3, fixed-N multinomial contributions from the short-range part.

We therefore propose that the traditional SRC-LRC formula
etc., withnl9=n!/(n—q)!. Event averages )y are taken Should be modified in favor of splitting the inclusive cumu-

over subsamples of fixe. These integrated internal cumu- lants intoN averages over “internal” and “external” corre-
lants differ from the inclusive ong4.1] by a correction fac- lations. In second order, this would be

tor (1—N*79) in the last term. i mult
Integrated internal cumulants of ordge=2 vanish for ea(X1,X2) = {ra(x0 XgN)} {2 (X1 X IN)

any fixed-N distributiorif the integration domaif, is en- +Apn(X) Apn(X)? (17)
larged to the full domain}y, in contrast to the standard
cumulants which integrate to1)4"1(q—1)!N. LRC or SRC formulas up to fourth order were catalogued in

The same procedure can be used in the correlation inteRef.[7]. In all cases, “internal” correlations would be given

gral method. In the notation of Re®], if a=2;0(e—Xjj)) by {kq(XIN)—«7""(x|N)}, while the “external” correla-
is the “sphere count” around particle in eventa and tions correspond to the formulas [id] plus the appropriate

<b>NE<zj(e—Xﬁb))N is the average of counts within multinomial cumulant.
other eventd, the lowest-order internal cumulants are cor-  For practical reason$\ averages of internal correlation

respondingly given by measures over limited multiplicity rangé#é,B] are of im-
portance:
kh(elN)={ 2 [a—(1-N"')(b)y]) , (13 . SB_APrL(XIN)
! N KIq(X|A,B)= — (18
2n=aPn

5 _ ) ) FixedN correlations are but one example of generalized
One can view the rati@Q,/Q, as thecentral momengenerating  cymylants. Equatiof®) shows that subtraction of cumulants
functional of the process. is appropriate wherany kind of reference distribution is
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given. Applications which come to mind immediately are the process were fully independent. Hence the normalization
subensembles characterized by a given number of jets arfdr fixed-N factorial moments over some domdit, would

any Monte Carlo—generated simulation. Differences betweehe
real data and the dynamics contained in a given Monte Carlo

code would be quantifiable again by a generalized cumulant Ja d)?pq(>?|N)

K= Kdata~ KMC -
Generalized moments,

rivatives of the ratio of generating functionals,

QQ
pa)= H [0l

f/h

; (19
A=0

for the fixedN case, the corresponding internal moments are

related to the standard moments by
p1(XIN) =1 (XIN)=p1(XIN), (20
ph(X1 X2 N) = kh(Xq,Xo|N) + k3 (X1|N) k3 (X2 N),

=pa(X1,%2|N)+ (1IN) p1(X1|N) p1(X2|N),

(21
and further, omitting the arguments for brevity,
| 3 2
P3=p3tp1p1P| T N2 (22)

| 1 5 6
Pa=pat N% P1P1P2~ P1P1P1P1| N2~ 1B (23

where the figure in parentheses under the sum indicates t
number of permutations. Internal moments have the property,

that when theneasurednomentpq(x|N) behaves multino-

mially, pq(xlN)—>(N[Q]/Nq)H . p1(xi|N), they factorize
without a prefactor:

mult 9

paxXIN) = 11 pa(xiIN). (24

are defined as functional de-

[9) -
q( m| f dxpmult X|N)

Nd fnmdipq(ﬂ N)
Nt med;(pl(XﬂN) ... p1(XgIN)

. (29

while the internal moment would be normalized according to
[ o, d%pg(X|IN)
med;(Pl(XﬂN) ‘e -P1(Xq|N) .

Both these definitions yielt ;= FL]E 1 for any(),, when the
measuredpq(>?|N) behaves multinomially within the total
window (.. For internal cumulants, the same normaliza-
tion (24) as for the internal moments would be appropriate.

Internal moments integrate under the total phase space
domainQ, to deXp (x) N9, while pq(X|N) integrates to
N9 so that both normalized moments become unity when
integrated ovef)y for any distribution:

FL(QtoJ N)=Fq(QN)=1.

Fo(QmIN)= (26)

(27)

The integral ovef),y of normalized internal cumulants will,

of course, be zero just as the unnormalized ones.

In summary, we have shown that generalized cumulants
e an improved measure of correlations in samples of fixed
ultiplicity. The latter are more sensitive in discriminating
between dynamical mechanisms and models than inclusive
quantities. The procedure outlined here can be applied to a
number of other conditioning problems within and beyond
high energy physics. Detailed applications to correlation
measurements such as pion interferometry are in progress.
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