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Generalized moments and cumulants for samples of fixed multiplicity
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Factorial moments and cumulants are usually defined with respect to the unconditioned Poisson process.
Conditioning a sample by selecting events of a given overall multiplicityN necessarily introduces correlations.
By means of Edgeworth expansions, we derive generalized cumulants which define correlations with respect to
an arbitrary process rather than just the Poisson case. The results are applied to correlation measurements at
fixed N, to redefining short-range versus long-range correlations and to normalization issues.
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In high-energy multiparticle production, the variation o
correlations with overall multiplicityN is most sensitive to
the underlying dynamics@1–5#. This sensitivity provides a
good opportunity to test and discriminate between vario
models. However, with the notable exceptions of Refs.@6,7#,
little attention has so far been devoted to a systematic tre
ment ofN-dependent correlation measures.

Selecting events by fixed values ofN is an example of
conditioning. One of the merits of this type of conditioning is
the separation of so-called ‘‘short-range’’ from ‘‘long
range’’ correlations. The latter arise from non-Poissoni
overall multiplicity distributions as well as theN dependence
of the conditional single particle densityr(xuN) ~wherex is
any phase space variable of interest!.

Every conditioning, however, introduces new correlatio
which can be regarded as ‘‘unphysical’’ since they a
merely a consequence of the selection procedure. Con
quently, the very concept of a correlation must be rethoug
and generalized for the case of conditioned samples.

In this Rapid Communication, we seek to clarify and ge
eralize factorial moments and cumulants for the case
fixed-multiplicity samples. This generalization suggests
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natural strategy for separating nontrivial fixed-N correlations
from overall multiplicity conditioning effects. Generalized
cumulants will hence also be useful in the study of pion
interferometry as a function ofN and other situations requir-
ing conditioning.

Multiparticle final states are best understood in terms o
point processes@8,9#. The concept of correlation in point
processes is usually based on the fundamentalPoisson pro-
cess, which is characterized by the factorial moment gener
ating functional~FMGF!

Qg@l~x!#5expF2E l~x!r~x!dxG , ~1!

where r(x)5(1/s I)ds incl /dx is the differential inclusive
cross section at pointx. Equivalently, for the Poisson pro-
cess every finite-dimensionalcounting distribution, i.e., the
joint probability of the particle countsnW 5(n1 , . . . ,nM) in
an arbitrary finite partition of an overall phase space domai
V tot into M nonoverlapping subdomains~‘‘bins’’ !

VW 5(V1 , . . . ,VM), factorizes into a product ofM Poisso-
nians:

g~nW ;nW !5 )
m51

M

g~nm ;nm!, ~2!en-
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whereg(nm ;nm)5exp(2nm)nm
nm/nm! with mean multiplicity

nm5*Vm
r(x)dx.

Particles created in a Poisson process are completely
correlated in the sense that all factorial cumulant densities
orderq.1 vanish:

kq~x1 , . . . ,xq![)
i51

q S 2d

dl~xi !
D lnQg@l~x!# U

l50

50,

~3!

while k1(x)5r(x).
By contrast, themultinomial processis defined by placing

a fixed numberN of particles independentlyof each other
into the domainV tot according to a probability density
p(xuN)5r(xuN)/N; it has a FMGF

QN
mult@l~x!#5F12E dxl~x!

r~xuN!

N GN, ~4!

and its finite-dimensional counting distributions are multin
mials.

Despite the fact that the particles are placed independe
of each other, the standard factorial cumulants of the mu
nomial process are nevertheless nonzero, thereby indica
purely ‘‘external’’ correlations:

kq
mult~x1 , . . . ,xquN!5~q21!! ~2N!12q)

i51

q

r~xi uN!.

~5!

In other words, standard cumulants measure not only
‘‘internal’’ correlations between particles but also the devi
tion of the overall multiplicityN from the Poisson distribu-
tion g(N;N̄)5exp(2N̄)N̄N/N!.

It thus seems natural to ask for quantities that are sensi
not to such ‘‘external’’ deviations from the overall Poisso
nian but only to ‘‘internal’’ correlations, i.e., deviations from
the multinomial.

The answer, we believe, lies in the use ofgeneralized
cumulantswhich successfully separate the two. To justif
their existence and form, we turn to the alternative definiti
of cumulants as coefficient functions in an Edgeworth expa
sion. In most of the literature, the latter is understood as
expansion of a continuous univariate distributionP(x)
around the Gaussian~cf. @10#!. For integer counts, it is more
natural to define a multivariatediscrete Edgeworth expan-
sion around the Poisson process. In its most general for
the discrete Edgeworth expansion of a point processf with
respect to the Poisson processg reads, in terms of their
FMGF’s,

Qf@lW #5expF2E dx@k1
f ~x!2r~x!#l~x!

1 (
q52

`
~21!q

q! E dxWkq
f ~xW !lW ~xW !GQg@lW #

5expF (
q51

`
~21!q

q! E dxWkq
f ~xW !lW ~xW !G , ~6!
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with xW5(x1 , . . . ,xq) and lW (xW )5l(x1)•••l(xq). The
univariate expansion of the overall multiplicity distribution
f (N) in terms of the Poissonian is

f ~N!5expF ~k1
f 2N̄!~2¹!1 (

q52

` kq
f

q!
~2¹!qGg~N;N̄!,

~7!

where ¹ is the discrete difference operator such th
¹g(n;n)[g(n;n)2g(n21;n).

The extension to a multivariate expansion for the join
counting distributions in arbitrary finite partitions ofV tot
then reads

f ~nW !5expF (
m51

M

@k1
f ~m!2nm#~2¹m!

1 (
q52

`
~21!q

q! (
m1 , . . . ,mq

kq
f ~mW !¹m1

•••¹mqGg~nW ;nW !,

~8!

where ¹mg(nW ;nW )[g(nW ;nW )2)m8g(nm82dm8m ;n
W ), and

kq
f (mW ) is the q-fold integral of kq

f (xW ) over the domains
Vm1

, . . . ,Vmq
.

It can be verified easily that the coefficientskq
f in these

expansions are identical with theqth order multivariate fac-
torial cumulants of the processf . Therefore standard cumu-
lants can bedefinedas the coefficient functions of the Edge
worth expansion around the Poisson process.

This definition can be generalized in an obvious wa
From Eq.~6!, it is easy to show that the generating functiona
Qf of a processf can be expanded in terms of the FMGF o
any otherprocess1 h:

Qf@lW #5expF (
q51

`
~21!q

q! E dxW @kq
f ~xW !2kq

h~xW !#lW ~xW !GQh@lW #,

~9!

where againkq
f and kq

h represent the standard factorial cu
mulants off andh.

It is quite natural, then, to definegeneralized cumulantsas
the coefficients in the expansion off in terms ofh,

kq
f /h[kq

f 2kq
h , ~10!

for q>2, while for q51, we set by conventionk1
f /h[k1

f . If
h is the Poisson process, these generalized cumulants red
to the standard cumulants.

The generalized cumulants can be found as functional d
rivatives of theratio of generating functionals:

kq
f /h5)

i51

q S 2d

dl~xi !
D lnSQfQg

Qh
D U

l50

, ~11!

1It is understood that such relations are valid only for process
having well-defined cumulants of all orders.
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where the Poisson generating functionalQg has to satisfy
(dQg /dl)ul505k1

h . This ensures that the above conventio
for k1

f /h is satisfied.2 Note thatkq
f /h is generally a standard

cumulant to some well-defined process only if the proce
f is divisible by h in the sense that the ratioQf /Qh itself
again satisfies all requirements for a FMGL.

The general validity of Eq.~9! means that generalized
cumulants will work for any type of conditioning, i.e., they
will show up the real correlations of a processf with respect
to a given conditioned reference processh.

We now apply the concept of generalized cumulants
fixed-N multiplicity samples. The discussion will range from
the definition of internal cumulants for fixed-N measure-
ments to resulting cumulant formulas for fixed-bin and co
relation integral measurements, followed by a short disc
sion of improved short-range vs long-range correlatio
formulas, summing over windows inN, internal moments,
and normalization.

Internal cumulantsare the generalized cumulants with re
spect to the multinomial process~4!:

kq
I ~xW uN![kq~xW uN!2kq

mult~xW uN!, ~12!

with kq
mult(xW uN) given by Eq.~5! andkq(xW uN) the standard

cumulant measured for a fixed-N process. These internal cu
mulants will vanish everywhere, even on a differential leve
if the N particles in the full domainV tot are placed indepen-
dently of each other following the same probability densi
p(xuN), i.e., behave multinomially.

Univariate internal cumulants are obtained from the mu
tivariate ones by integrating allq variablesx1 , . . . ,xq over
the same domainVm , kq

I (muN)[*Vm
dxWkq

I (xW uN), yielding

k2
I ~muN!5^nm

@2#&N2~12N21!^nm&N
2 ,

k3
I ~muN!5^nm

@3#&N23^nm
@2#&N^nm&N12~12N22!^nm&N

3 ,

etc., withn@q#5n!/(n2q)!. Event averageŝ &N are taken
over subsamples of fixedN. These integrated internal cumu
lants differ from the inclusive ones@11# by a correction fac-
tor (12N12q) in the last term.

Integrated internal cumulants of orderq>2 vanish for
any fixed-N distributionif the integration domainVm is en-
larged to the full domainV tot , in contrast to the standard
cumulants which integrate to (21)q21(q21)!N.

The same procedure can be used in the correlation in
gral method. In the notation of Ref.@9#, if a[( jQ(e2Xi j )
is the ‘‘sphere count’’ around particlei in event a and
^b&N[^( jQ(e2Xi j

ab)&N is the average of counts within
other eventsb, the lowest-order internal cumulants are co
respondingly given by

k2
I ~euN!5K (

i
@a2~12N21!^b&N#L

N

, ~13!

2One can view the ratioQh /Qg as thecentral momentgenerating
functional of the processh.
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k3
I ~euN!5K (

i
@a@2#2^b@2#&N22a^b&N

12~12N22!^b&N
2 #L

N

, ~14!

and so on; the same (12N12q) factors appear as coefficients
of the last termŝb&N

q21 for higher-order internal cumulants.
Again, these internal correlation integrals vanish for dis
tancese large enough to encompass the full domainV tot .

Clearly, the multinomial correction will be most impor-
tant for smallN and lowest order. The correction may or
may not be substantial, depending on the numerical size
the uncorrectedkq .

When experimental samples are not very large, fixed-N
correlation measurements become problematic due to lar
sampling errors. Therefore one traditionally sums up a
fixed-N cumulants@12,2,4# to yield what are~inaccurately!
called ‘‘short-range correlations’’~SRC’s!; in second order

k2
SRC~x1 ,x2![$k2~x1 ,x2uN!%5(

N
PNk2~x1 ,x2uN!.

~15!

Inclusive cumulants are then split up into the SRC contribu
tion plus ‘‘long-range correlations’’~LRC’s!:

k2~x1 ,x2!5$k2~x1 ,x2uN!%1$DrN~x1!DrN~x2!%,
~16!

whereDrN(x)5r1(xuN)2$r1(xuN)%. The SRC sum over
fixed-N cumulants is purported to represent an average ov
the standard fixed-N correlations, while the second term rep-
resents the LRC contributions resulting from the stron
variation ofr(xuN) with overall multiplicity N.

As we have shown, it is preferable to replace th
kq(xW uN) with internal cumulantskq

I (xW uN) to eliminate the
fixed-N multinomial contributions from the short-range part
We therefore propose that the traditional SRC-LRC formu
should be modified in favor of splitting the inclusive cumu
lants intoN averages over ‘‘internal’’ and ‘‘external’’ corre-
lations. In second order, this would be

k2~x1 ,x2!5$k2
I ~x1 ,x2uN!%1$k2

mult~x1 ,x2uN!

1DrN~x1!DrN~x2!%. ~17!

LRC or SRC formulas up to fourth order were catalogued i
Ref. @7#. In all cases, ‘‘internal’’ correlations would be given
by $kq(xW uN)2kq

mult(xW uN)%, while the ‘‘external’’ correla-
tions correspond to the formulas in@7# plus the appropriate
multinomial cumulant.

For practical reasons,N averages of internal correlation
measures over limited multiplicity ranges@A,B# are of im-
portance:

kq
I ~xW uA,B!5

(N5A
B PNkq

I ~xW uN!

(N5A
B PN

. ~18!

Fixed-N correlations are but one example of generalize
cumulants. Equation~9! shows that subtraction of cumulants
is appropriate whenany kind of reference distribution is
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given. Applications which come to mind immediately ar
subensembles characterized by a given number of jets
any Monte Carlo–generated simulation. Differences betwe
real data and the dynamics contained in a given Monte Ca
code would be quantifiable again by a generalized cumul
k[kdata2kMC .

Generalized momentsrq
f /h are defined as functional de

rivatives of the ratio of generating functionals,

rq
f /h~xW !5)

i51

q S 2d

dl~xi !
D SQfQg

Qh
D U

l50

; ~19!

for the fixed-N case, the corresponding internal moments a
related to the standard moments by

r1
I ~xuN!5k1

I ~xuN!5r1~xuN!, ~20!

r2
I ~x1 ,x2uN!5k2

I ~x1 ,x2uN!1k1
I ~x1uN!k1

I ~x2uN!,

5r2~x1 ,x2uN!1~1/N!r1~x1uN!r1~x2uN!,

~21!

and further, omitting the arguments for brevity,

r3
I 5r31r1r1r1S 3N2

2

N2D , ~22!

r4
I 5r41

1

N(
~6!

r1r1r22r1r1r1r1S 5N2 2
6

N3D , ~23!

where the figure in parentheses under the sum indicates
number of permutations. Internal moments have the prope
that when themeasuredmomentrq(xW uN) behaves multino-

mially, rq(xW uN)→
mult

(N@q#/Nq)) i51
q r1(xi uN), they factorize

without a prefactor:

rq
I ~xW uN!→

mult

)
i51

q

r1~xi uN!. ~24!

For a subsample of fixedN, moments and cumulants a
fixed multiplicity can be normalized in two ways. The mos
natural normalization procedure is to use in the denomina
exactly that quantity which the numerator would default to
e
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the process were fully independent. Hence the normalizat
for fixed-N factorial moments over some domainVm would
be

Fq~VmuN!5
*Vm

dxWrq~xW uN!

*Vm
dxWrq

mult~xW uN!
,

5
Nq

N@q#

*Vm
dxWrq~xW uN!

*Vm
dxWr1~x1uN! . . . r1~xquN!

, ~25!

while the internal moment would be normalized according

Fq
I ~VmuN!5

*Vm
dxWrq

I ~xW uN!

*Vm
dxWr1~x1uN! . . . r1~xquN!

. ~26!

Both these definitions yieldFq5Fq
I [1 for anyVm when the

measuredrq(xW uN) behaves multinomially within the total
window V tot . For internal cumulants, the same normaliza
tion ~24! as for the internal moments would be appropriate

Internal moments integrate under the total phase spa
domainV tot to *VdxWrq

I (xW )5Nq, while rq(xW uN) integrates to
N@q#, so that both normalized moments become unity wh
integrated overV tot for anydistribution:

Fq
I ~V totuN!5Fq~V totuN!51. ~27!

The integral overV tot of normalized internal cumulants will,
of course, be zero just as the unnormalized ones.

In summary, we have shown that generalized cumulan
are an improved measure of correlations in samples of fix
multiplicity. The latter are more sensitive in discriminating
between dynamical mechanisms and models than inclus
quantities. The procedure outlined here can be applied to
number of other conditioning problems within and beyon
high energy physics. Detailed applications to correlatio
measurements such as pion interferometry are in progres
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