PHYSICAL REVIEW D VOLUME 53, NUMBER 8 15 APRIL 1996

Multi-black-hole geometries in (2+1)-dimensional gravity

Dieter R. Brill
Department of Physics, University of Maryland, College Park, Maryland 20742
(Received 28 November 1995

Generalizations of the black hole geometry of Bdos, Teitelboim, and ZanelBTZ) are presented. The
theory is three-dimensional vacuum Einstein theory with a negative cosmological constantbldek-hole
solution hasn asymptotically anti—de Sitter “exterior” regions that join in one “interior” region. The geom-
etry of each exterior region is identical to that of a BTZ geometry; in particular, each contains a black hole
horizon that surround@s judged from that exteripall the other horizons. The interior region acts as a closed
universe containing black holes. The initial state and its time development are discussed in some detail for
the simple case when the angular momentum parameters of all the black holes vanish. A procedure to construct
n black holes with angular momentu¢for n=4) is also given.

PACS numbs(s): 04.70.Bw, 04.20.Gz, 04.20.Jb, 04.60.Kz

I. INTRODUCTION tures, as determined by the apparent horiZah8]; for ex-
ample, two black holes may initially exhibit only the appar-
Since the discovery by Bauos, Teitelboim, and Zanelli ent horizon of each hole, or they may have three horizons,
(BTZ) [1,2] of black holes in(2+1)-dimensional Einstein with the extra one surrounding both holes. I 2 dimen-
theory there has been considerable interest in finding solusions we obtain only the latter scenario with regular initial
tions that describe several black holes. Such solutions existalues and asymptotically anti—de Sitter exterior regions.
in (3+1)-dimensional general relativity under special cir- This is to be expected because the exterior regions are static
cumstances. The best-known solution of this type is probablgnd therefore cannot contain more than one regular black
the static configuration oh charged black holes whose hole[9].
gravitational and electromagnetic forces balaf@ke Time- In Sec. Il we recall the single BTZ black hole and show
dependent multi-black-hole(MBH) solutions are also how its initial geometry can be represented in the case of
known, for instance the MBH cosmologies of Kastor andvanishing angular momentudn Section Il gives a construc-
Traschen[4]. The essential requirement for simple, closed-tion of initial data for MBH's without angular momentum
form MBH solutions appears to be absence of specific inter(J=0). The time development of these MBH'’s is discussed
actions between the black holes, due to some special balante Sec. IV. Section V shows how to construct MBH'’s with

condition, for example on the charge/mass ratio(2rr1)-  nonvanishing angular momentum.

dimensional Einstein theory, where spacetime curvature is

uniquely determined by the cosmological constAntthere Il. BTZ INITIAL VALUES

can be no specific interaction between bodies. One would

therefore expect such MBH solutions to exist it 2 dimen- In three dimensions the Ricci tensor determines algebra-
sions. ically the full Riemann tensor. A three-dimensional Einstein

For positive or vanishing\ the global structure of space- space therefore has constant curvature proportionak .to
time is too rigidly determined by the curvature to admit evenThe BTZ solution is of this type and takes the form, in
single black holes. For negative the BTZ solution[1] has ~ Schwarzschild coordinatg4,5],
all the expected properties of a black hole in a negative cur-
vature, asymptotically anti—de SittéadS environment; for ;2
a comprehensive review see RE5]. d<2=— (_2 -M ) dt2+

In this paper we shall construct MBH generalizations of |
the BTZ solution. We will find it convenient to approach the
solutions first from the pOint of view of the initial value Here |2:_1/A, ¢ is an angu|ar coordinate with period
problem. Existence of solutions of the initial value con-24; and
straints establishes existence of the corresponding spacetime,
at least for a finite interval in time. We will then discuss this
time development of the MBH?s. 2 ( re J?

dr?

2 +r2d¢?—Jddedt. (1)

In 3+1 dimensions the constraints are easier to solve than 7 Mta2
the full dynamics, and MBH initial values can be given for a
variety of masses, charges, and topologgee, for example,
Refs.[6] and[7]). There is also a variety of horizon struc-

The zeros off? are denoted by, andr_, so that

r2+r2 2r,r_
_|—2 and J= |
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J— ) the Poincaralisk are not cartoons, but represent geometric
6=2r relationships as precise as those shown by diagrams in Eu-
. . clidean geometry.
asympfotic region By means of a suitable isometry almost ahy 0 black
hole can be put in the symmetrical position of Fig. 1. It is
r = const clear that the only remaining difference betweken0 black
holes is then the “width” of the region between the ultrapar-
allels, which can be measured by the length of the horizon,
2ar . =2m\M/|A|, or by the black-hole massl. The ex-
ceptional case occurs when the two geodesics are parallel.
Since they meet at infinity, their minimum distance, and the
parameterM, is zero. Thus the horizon of this “massless
black hole” may be said to be at infinity, corresponding to an
When J=0 the BTZ geometry is time symmetric about infinitely long (and infinitely thin throat.
t=const, so this initial two-dimensional spacelike surface
must also have constant negative curvature. Its universal
covering is therefore two-dimensional hyperbolic spade,
Most of the subsequent discussion will concern the geometry Instead of cutting the BTZ space along one radial geode-
of H and the identifications implied by the periodicity of sic (¢=0), we can cut it alongh=0 and¢= 7. The result-
¢, rather than coordinate expressions suclilas ing “strips” on the Poincaredisk are congruent. We can
We shall find it convenient to use two representations ofimagine them laid one on top of the other, and sewn together
H. One is its isometric embedding in three-dimensionalat the radial boundaries, thus restoring the BTZ geometry.
Minkowski space, for example as the past spacelike hyperThe identification is smooth because the extrinsic and intrin-
boloid of constant spacetime distance from the origin. Thesic geometries of these boundaries agréé denote bylou-
isometries ofH are the boosts and rotations of the three-bling this procedure whereby two congruent copies of a re-
dimensional homogeneous Lorentz group. As applietito gion are identified along totally geodesic boundaries.
the boosts are callelansvectionsEach transvection leaves  This suggests a simple way to construct MBH geometries:
one geodesic invariant. In the embedding this geodesic is thEake any set of mutually ultraparallel geodesics that bound a
intersection of the hyperboloid with the plane through theregion inH, such as the thick arcs in Fig(&, and double it
origin orthogonal to the boost's axis. Conversely, ddix  [Fig. 2(b)]. The figure has threefold symmetry, so we obtain
rected geodesic segment determines a transvection. an initial geometry with three black holes having equal
The other representation is Poincardisk model. This masses. In general the masses can have arbitrary values, in-
can be regarded as a “stereographic” projection of thecluding zero.[If all three masses are zero, FigiaRis an
Minkowski hyperboloid on its tangent plane, the projection‘“ideal triangle” with vertices on the boundary of the Poin-
center being the point diametrically opposite to the tangentaredisk] If it is understood that any figure is to be doubled,
plane’s point of tangency. The map is conforniike the  we can take a picture like Fig(@ as a representation of the
stereographic projection of the spherthe boundary of the MBH geometry. We shall call such a picture, showing the
disk represents ideal points at infinity, circles look like n ultraparallels, adiagram for the n-BH geometry. The
circles, and geodesics are represented by circles that meet thrique orthogonal geodesics to adjacent ultraparallel geode-
boundary orthogonally. Two geodesics that meet at infinitysics of a diagram determine the horizon between those geo-
are said to be parallel, and two geodesics that do not intersedesics.
are called ultraparallel. Two ultraparallel geodesics deter- The region outside of each horizon is isometric to that of
mine a unique geodesic segment that is normal to both ana BTZ black hole—one needs only to eliminate all but the
represents the shortest distance between them. The segmerntt® geodesics bounding that region in order to obtain that
transvection moves one of the geodesics into the other.  “single” BTZ black-hole initial state. Thus the exterior re-
The initial state of black holes witd=0 can now be gions have all the properties of single black holes, in particu-
described in terms of the geometry idf any two ultrapar- lar the mass of each region is well defined. The interior re-
allels represent &=0 surface of a BTZ black hole, cut open gion, between the horizons, is a new type of initial value for
along a geodesi¢p=const. Namely, the common normal to 2+1 Einstein theory. It can be interpreted as an
the two ultraparallels determines a one-parameter family of-black-hole universe that is closed except for the throats of
transvections corresponding tb displacement in the BTZ the black holegwith n=3 in the example aboyeThe dia-
metric. The BTZ initial geometry itself corresponds to the gram of the interior region is a polygon withnzsides that
region between the ultraparalle(§hese should be identified meet at right angles. We call this tpelygonof the diagram
in order to reassemble the uncut BTZ geomgiBgcause the [Fig. 3@ gives an example Alternate sides of the polygon
r =const curves of BTZ space are metrically circles, they argepresent the lengths of the black-hole horizons, and the dis-
also (parts of circles on the Poincarelisk, and they are tances between adjacent horizons.
orthogonal to the ultraparallels. The unique cir@e straight Because the side lengths of a closed 90° polygon cannot
line) of this set that is a geodesic corresponds to the blackbe assigned arbitrarily, there are three relations between the
hole horizon. So the horizon defines the transvection bynasses and distances of a MBH geometry so constructed. If
which ¢=0 and ¢=27 are identified. These features are we give an orientation to the polygon we can regard the sides
illustrated in Fig. 1(It is worth noting that such diagrams on as a sequence of transvections, or a sequence of boosts

horizon
identify

FIG. 1. The BTZ black holdregion between the thick circular
arc9, cut alongé=0, as part of the Poincamisk (dotted.

I1l. MBH INITIAL VALUES
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identify

(®)

FIG. 3. A diagram that allows rotatioria) A diagram for four
(b) black holes. Its polygon consists of the thick arcs. The thick dotted
line becomes a circle after the identifications. The resulting geom-
etry is to be cut along the thick dotted line, rotated by some angle,
and reassembledb) Three-dimensional picture to give an idea of
dIhe result(cut off at the horizons

FIG. 2. Construction of a three-black-hole initial geometry by
doubling a region bounded by three geodesics in the Pdirntiske
(a) Half of the initial geometry is represented by the region bounde
by the thick circular arcs. The horizon of one black hole regionthe global time development it is therefore more appropriate
(minimal geodesic between the two geodesics on the yight to choose a constant lapse=1, N;=0 (“time orthogonal”
shown. The other two horizons can be obtained by 120° rotationsdevelopment With this choice the diagram’s identification
(b) Two disks are placed one above the other, and the thick boundines develop into totally geodesic timelike surfaces. These
aries are identified vertically, as shown explicitly for the boundarycan therefore still be smoothly identified in the three-
on the left. The result is an initial state with three asymptotically gimensional time development.
ads regions and three horizons. Locally the time orthogonal development is the same as

that of adS space: successive spacelike surfaces have increas-
{Li} in the Minkowski space embedding. The relation theningly negative intrinsic curvature, and acquire increasing,
demands that successive application of all these boosts yielshatially constant, extrinsic curvatugeith normals converg-
unity, 12", L;=1. ing in the advancing time directignGlobally, then, the in-

If the lengths(or mass parametersf two horizons are  trinsic geometry of the time surfaces is characterized by the
equal we can identify two such horizons, rather than attachsame diagram as the initial surface, but corresponding to
ing the asymptotically adS region on the other side. Thus onfarger negative curvature. The total “volume” of the interior
can also construct truly closed “wormhole” univers€Shis  region (the area of the polygordecreases, as does the dis-
is just one set of the many identifications possibleHirto  tance between black-hole horizons. Physically the interior
form closed spacesHowever, the initial data as constructed MBH universe collapses, and the relative motion of the black
by doubling are not the most genedat 0 MBH geometries. holes is similar to that of test particles in a background adS
For example, we can cut the four-hole diagram of Fig) 3 space|[The same behavior was found (@+1)-dimensional
along the dotted circle and reattach after turning througtblack-hole universef4,10].]
some anglglFig. 3b)]. It is conjectured that the general  After a finite time the area tends to zero and the curva-
J=0 MBH geometry can be obtained from a diagram typetures of the time slices become infinite. In the adS universe
by rotations along such closed geodesics. this is not a spacetime singularity, but in the BTZ and MBH

The black-hole or wormhole universes are related by ajeometry there is a singularity of the Misrjéd] type, where
curious duality. The dual universe is obtained by exchanginghe spacetime fails to be Hausdoff]. Physically we can
the roles of the horizons and of the identification lines in thesay that, in these time-orthogonal coordinates, each black-
polygon. (A polygon with pairwise equal sides is its own hole horizon as well as the entire interior collapse simulta-
dual) neously. Just before the collapse the spacelike geometry

looks like n thin horns that flare out at infinity and are con-
IV TIME DEVELOPMENT n_ected on their thir_l ends. In _this sense the singularity_ con-
sists ofn lines meeting at a poin{This point is the end point

Because the initial data of each exterior region are thef the unstable geodesic between the black holes that avoids
same as that of some single BTZ black hole, the exteriofalling into any of them.
time development will also be the same. The Killing vector Because there is no global Killing vector that moves the
of that development can be extended even beyond the hoiiritial surface in the MBH spacetimes we constructed, this
zon, but it does not extend to a global symmetry. To discus#nitial surface is unique. In this respect the MBH spacetimes
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differ from the BTZ black holes, where the time-symmetric We can again associate a diagram with these transforma-
initial surfaces can be moved by the timelike Killing vector. tions, consisting of mutually orthogonal geodesics that rep-
Instead of generating MBH spacetimes from initial valuesresent alternately the connections between horizons and the
and their time development, we can also obtain them from aRorizons themselves. The geodesics are the invariant geode-
identification of the three-dimensional adS spacetime. Wegics of the transvections; the boosts are measured by the
still choose an initial time-symmetric spacelike surface, andymount by which the directions of the connecting geodesics
a diagram in it. We construct the totally geodesic timelike ¢ the two ends of a horizon fail to be parallel, as judged by
surfaces(iden.tification surfaqe)snormal to thg initial surface parallel transport along the horizon. Thus such a diagram
and intersecting it along a diagram geodesic. We then doublgy ot jie in a plane, totally geodesic spacelike surface and is
the spacetime betyveen 'these surf_aces by sewing along tIﬂ‘?erefore harder to visualize. The identification surfaces are
surfaces[a three-dimensional version of the procedure ofthen generated by all the geodesics orthogonal to the hori-
Fig. 2(b)]. The identification surfaces will intersect some- : , :
. oo . zons at the horizons’ end§éThe same surface is generated
where in the future and past of the initial surface. This causes | cither of the horizons endin iEinally th i
the non-Hausdorff singularity mentioned above. . . g onji -inatly the space-
time region bounded by these surfaces is doubled by identi-
fying along the surfaces with a second, similar region. In
order that the twist not cancel when going all the way around
MBH’s with angular momentum can be constructed by aa horizon in the doubled spacetime, the second region should
similar identification of three-dimensional regions of adSbe identically constructed but with twists in the opposite di-
space. We imitate the construction of the BTZ “single” black rections.
hole[1,5]. We cut this geometry along=0 and embed the If there are three identification surfaces, the horizon lines
resulting three-dimensional “slab” in three-dimensional adSalways lie in the plane through the surfaces’ three centers, so
space. The ling =r is an extremum of distance between the diagram is planar and correspondslte0. For nonzero
the identification surface¢=0 and¢=27. We call it the  angular momenta we therefore need at least four black holes
horizon even in the three-dimensional context. We replacéin our construction. To show that such diagrams and identi-
the identification surfaces by new, totally geodesic identiﬁ-fication surfaces exist we give one examp|e_ Consider the
cation surf_aces that are generated by all geodesicg orfchogoraa,bgram of Fig. 8) embedded in three-dimensional adS
to the horizon. This transforms the general metfigwith  spacetime. Let four identification surfaces be generated by
J#0 into one withJ=0, massu, and coordinate®,¢,7 gl geodesics orthogonal to the horizons at their end points.
(and a different identification betweemn=0 and¢=2): Boost the part to the right of the thick dotted line by a Lor-
entz transformation that has this dotted line as its axis. The
_ _reer left identification surface and the two horizons on the left are
TN r2—r2’ not affected by this boost of the right part, and the top and
bottom identification surfaces are invariant under this boost;
; r however, the right identification surface and the two right
p=p— —1t, T=t——o. (2)  horizons move. Likewise, the geodesics connecting the hori-
rl s zons on the left with those on the right move. As a result
there is now a twist between the long and the short connect-
Consider the transvection whose invariant geodesiC is thﬁ]g geodesiCS, the diagram is no |0nger planar, and there is
horizon. It maps one newWp=cons} identification surface angular momentum associated with each horizon.
into the other, as for the cask=0. The BTZ casel+#0 is

different because the identification is not simply given by
this transvection. Rather, there is an additional “twist,” a
boost about the horizon. Let the boost take place in the sur-
facep=2m. According to Eq(2) it can be described in that We have seen that it is possible to construct out of pieces
surface as a time translation byr2_l/r .. Thus the BTZ of adS spacetime a spacetime that has many asymptotically
black hole with angular momentum can be obtained from adS regions containing many horizons. Each of these regions
J=0 BTZ black hole with the same horizon length by shift- is isometric to the corresponding region of a BTZ black hole.
ing theJ=0 BTZ time by this amount on the second iden- It is therefore appropriate to regard such spacetimes as MBH
tification surface. spacetimes. For the case of zero angular momentum our con-
To obtain an analogous MBH solution we must find sev-struction can be characterized by a polygon whose sides rep-
eral identification surfaces and horizons that can be consigesent the distances and masses involved. The closure condi-
tently doubled in the presence of twists, and in threedtion yields three relations between these parameters, but
dimensional adS spacetime. These surfaces and horizons cather, “nonpolygonal” arrangements can also be constructed.
again be specified by a series of isometries of adS spacetimi the casel# 0 we get six rather less transparent conditions
In addition to transvections that move one surface into thdetween masses, distances, and angular momenta, but more
next, and transvections along the geodesics adjoining adjgeneral MBH configurations, not obtained by simple dou-
cent horizons, there should now also be boosts about thaling, presumably exist.
horizons. Consistency demands that the product of all these Note addedAfter this paper was finished | heard from Dr.
transformations be unity, a set of six conditions among theAlan Steif of UC Davis that he has also found many of the
masses, distances, and angular momenta. results of the present paper’s Secs. Il anddbe Ref[12)).

V. MBH WITH ANGULAR MOMENTUM

2

VI. CONCLUSION
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