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Multi-black-hole geometries in „211…-dimensional gravity
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Generalizations of the black hole geometry of Ban˜ados, Teitelboim, and Zanelli~BTZ! are presented. The
theory is three-dimensional vacuum Einstein theory with a negative cosmological constant. Then-black-hole
solution hasn asymptotically anti–de Sitter ‘‘exterior’’ regions that join in one ‘‘interior’’ region. The geom
etry of each exterior region is identical to that of a BTZ geometry; in particular, each contains a black
horizon that surrounds~as judged from that exterior! all the other horizons. The interior region acts as a close
universe containingn black holes. The initial state and its time development are discussed in some detai
the simple case when the angular momentum parameters of all the black holes vanish. A procedure to co
n black holes with angular momentum~for n>4) is also given.

PACS number~s!: 04.70.Bw, 04.20.Gz, 04.20.Jb, 04.60.Kz
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I. INTRODUCTION

Since the discovery by Ban˜ados, Teitelboim, and Zanelli
~BTZ! @1,2# of black holes in~211!-dimensional Einstein
theory there has been considerable interest in finding so
tions that describe several black holes. Such solutions e
in ~311!-dimensional general relativity under special ci
cumstances. The best-known solution of this type is proba
the static configuration ofn charged black holes whose
gravitational and electromagnetic forces balance@3#. Time-
dependent multi-black-hole~MBH! solutions are also
known, for instance the MBH cosmologies of Kastor an
Traschen@4#. The essential requirement for simple, close
form MBH solutions appears to be absence of specific int
actions between the black holes, due to some special bala
condition, for example on the charge/mass ratio. In~211!-
dimensional Einstein theory, where spacetime curvature
uniquely determined by the cosmological constantL, there
can be no specific interaction between bodies. One wo
therefore expect such MBH solutions to exist in 211 dimen-
sions.

For positive or vanishingL the global structure of space
time is too rigidly determined by the curvature to admit eve
single black holes. For negativeL the BTZ solution@1# has
all the expected properties of a black hole in a negative c
vature, asymptotically anti–de Sitter~adS! environment; for
a comprehensive review see Ref.@5#.

In this paper we shall construct MBH generalizations
the BTZ solution. We will find it convenient to approach th
solutions first from the point of view of the initial value
problem. Existence of solutions of the initial value con
straints establishes existence of the corresponding spacet
at least for a finite interval in time. We will then discuss th
time development of the MBH’s.

In 311 dimensions the constraints are easier to solve th
the full dynamics, and MBH initial values can be given for
variety of masses, charges, and topologies~see, for example,
Refs. @6# and @7#!. There is also a variety of horizon struc
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tures, as determined by the apparent horizons@7,8#; for ex-
ample, two black holes may initially exhibit only the appar
ent horizon of each hole, or they may have three horizon
with the extra one surrounding both holes. In 211 dimen-
sions we obtain only the latter scenario with regular initia
values and asymptotically anti–de Sitter exterior region
This is to be expected because the exterior regions are sta
and therefore cannot contain more than one regular bla
hole @9#.

In Sec. II we recall the single BTZ black hole and show
how its initial geometry can be represented in the case
vanishing angular momentumJ. Section III gives a construc-
tion of initial data for MBH’s without angular momentum
(J50). The time development of these MBH’s is discusse
in Sec. IV. Section V shows how to construct MBH’s with
nonvanishing angular momentum.

II. BTZ INITIAL VALUES

In three dimensions the Ricci tensor determines algebr
ically the full Riemann tensor. A three-dimensional Einstei
space therefore has constant curvature proportional toL.
The BTZ solution is of this type and takes the form, in
Schwarzschild coordinates@1,5#,

ds252S r 2l 2 2M Ddt21 dr2

f 2
1r 2df22Jdfdt. ~1!

Here l 2521/L, f is an angular coordinate with period
2p, and

f 25S r 2l 2 2M1
J2

4r 2D .
The zeros off 2 are denoted byr1 and r2 , so that

M5
r1
2 1r2

2

l 2
and J5

2r1r2

l
.
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When J50 the BTZ geometry is time symmetric abou
t5const, so this initial two-dimensional spacelike surfa
must also have constant negative curvature. Its univer
covering is therefore two-dimensional hyperbolic space,H.
Most of the subsequent discussion will concern the geome
of H and the identifications implied by the periodicity o
f, rather than coordinate expressions such as~1!.

We shall find it convenient to use two representations
H. One is its isometric embedding in three-dimension
Minkowski space, for example as the past spacelike hyp
boloid of constant spacetime distance from the origin. T
isometries ofH are the boosts and rotations of the thre
dimensional homogeneous Lorentz group. As applied toH,
the boosts are calledtransvections. Each transvection leaves
one geodesic invariant. In the embedding this geodesic is
intersection of the hyperboloid with the plane through th
origin orthogonal to the boost’s axis. Conversely, any~di-
rected! geodesic segment determines a transvection.

The other representation is Poincare´’s disk model. This
can be regarded as a ‘‘stereographic’’ projection of t
Minkowski hyperboloid on its tangent plane, the projectio
center being the point diametrically opposite to the tange
plane’s point of tangency. The map is conformal~like the
stereographic projection of the sphere!, the boundary of the
disk represents ideal points at infinity, circles look lik
circles, and geodesics are represented by circles that mee
boundary orthogonally. Two geodesics that meet at infin
are said to be parallel, and two geodesics that do not inters
are called ultraparallel. Two ultraparallel geodesics det
mine a unique geodesic segment that is normal to both a
represents the shortest distance between them. The segm
transvection moves one of the geodesics into the other.

The initial state of black holes withJ50 can now be
described in terms of the geometry ofH: any two ultrapar-
allels represent at50 surface of a BTZ black hole, cut open
along a geodesicf5const. Namely, the common normal to
the two ultraparallels determines a one-parameter family
transvections corresponding tof displacement in the BTZ
metric. The BTZ initial geometry itself corresponds to th
region between the ultraparallels.~These should be identified
in order to reassemble the uncut BTZ geometry.! Because the
r5const curves of BTZ space are metrically circles, they a
also ~parts of! circles on the Poincare´ disk, and they are
orthogonal to the ultraparallels. The unique circle~or straight
line! of this set that is a geodesic corresponds to the bla
hole horizon. So the horizon defines the transvection
which f50 andf52p are identified. These features ar
illustrated in Fig. 1.~It is worth noting that such diagrams on

FIG. 1. The BTZ black hole~region between the thick circular
arcs!, cut alongf50, as part of the Poincare´ disk ~dotted!.
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the Poincare´ disk are not cartoons, but represent geometr
relationships as precise as those shown by diagrams in
clidean geometry.!

By means of a suitable isometry almost anyJ50 black
hole can be put in the symmetrical position of Fig. 1. It i
clear that the only remaining difference betweenJ50 black
holes is then the ‘‘width’’ of the region between the ultrapa
allels, which can be measured by the length of the horizo
2pr152pAM /uLu, or by the black-hole massM . The ex-
ceptional case occurs when the two geodesics are para
Since they meet at infinity, their minimum distance, and th
parameterM , is zero. Thus the horizon of this ‘‘massles
black hole’’ may be said to be at infinity, corresponding to a
infinitely long ~and infinitely thin! throat.

III. MBH INITIAL VALUES

Instead of cutting the BTZ space along one radial geod
sic (f50), we can cut it alongf50 andf5p. The result-
ing ‘‘strips’’ on the Poincare´ disk are congruent. We can
imagine them laid one on top of the other, and sewn togeth
at the radial boundaries, thus restoring the BTZ geomet
~The identification is smooth because the extrinsic and intr
sic geometries of these boundaries agree.! We denote bydou-
bling this procedure whereby two congruent copies of a r
gion are identified along totally geodesic boundaries.

This suggests a simple way to construct MBH geometrie
Take any set of mutually ultraparallel geodesics that bound
region inH, such as the thick arcs in Fig. 2~a!, and double it
@Fig. 2~b!#. The figure has threefold symmetry, so we obta
an initial geometry with three black holes having equ
masses. In general the masses can have arbitrary values
cluding zero.@If all three masses are zero, Fig. 2~a! is an
‘‘ideal triangle’’ with vertices on the boundary of the Poin
carédisk.# If it is understood that any figure is to be doubled
we can take a picture like Fig. 2~a! as a representation of the
MBH geometry. We shall call such a picture, showing th
n ultraparallels, adiagram for the n-BH geometry. The
unique orthogonal geodesics to adjacent ultraparallel geo
sics of a diagram determine the horizon between those g
desics.

The region outside of each horizon is isometric to that
a BTZ black hole—one needs only to eliminate all but th
two geodesics bounding that region in order to obtain th
‘‘single’’ BTZ black-hole initial state. Thus the exterior re-
gions have all the properties of single black holes, in partic
lar the mass of each region is well defined. The interior r
gion, between the horizons, is a new type of initial value fo
211 Einstein theory. It can be interpreted as a
n-black-hole universe that is closed except for the throats
the black holes~with n53 in the example above!. The dia-
gram of the interior region is a polygon with 2n sides that
meet at right angles. We call this thepolygonof the diagram
@Fig. 3~a! gives an example#. Alternate sides of the polygon
represent the lengths of the black-hole horizons, and the d
tances between adjacent horizons.

Because the side lengths of a closed 90° polygon can
be assigned arbitrarily, there are three relations between
masses and distances of a MBH geometry so constructed
we give an orientation to the polygon we can regard the sid
as a sequence of transvections, or a sequence of bo
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$Li% in the Minkowski space embedding. The relation the
demands that successive application of all these boosts y
unity, ) i51

2n Li51.
If the lengths~or mass parameters! of two horizons are

equal we can identify two such horizons, rather than atta
ing the asymptotically adS region on the other side. Thus o
can also construct truly closed ‘‘wormhole’’ universes.~This
is just one set of the many identifications possible inH to
form closed spaces.! However, the initial data as constructe
by doubling are not the most generalJ50 MBH geometries.
For example, we can cut the four-hole diagram of Fig. 3~a!
along the dotted circle and reattach after turning throu
some angle@Fig. 3~b!#. It is conjectured that the genera
J50 MBH geometry can be obtained from a diagram typ
by rotations along such closed geodesics.

The black-hole or wormhole universes are related by
curious duality. The dual universe is obtained by exchang
the roles of the horizons and of the identification lines in th
polygon. ~A polygon with pairwise equal sides is its own
dual.!

IV. TIME DEVELOPMENT

Because the initial data of each exterior region are t
same as that of some single BTZ black hole, the exter
time development will also be the same. The Killing vect
of that development can be extended even beyond the h
zon, but it does not extend to a global symmetry. To discu

FIG. 2. Construction of a three-black-hole initial geometry b
doubling a region bounded by three geodesics in the Poincare´ disk.
~a! Half of the initial geometry is represented by the region bound
by the thick circular arcs. The horizon of one black hole regio
~minimal geodesic between the two geodesics on the right! is
shown. The other two horizons can be obtained by 120° rotatio
~b! Two disks are placed one above the other, and the thick bou
aries are identified vertically, as shown explicitly for the bounda
on the left. The result is an initial state with three asymptotica
adS regions and three horizons.
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the global time development it is therefore more appropriat
to choose a constant lapse,N51, Ni50 ~‘‘time orthogonal’’
development!. With this choice the diagram’s identification
lines develop into totally geodesic timelike surfaces. Thes
can therefore still be smoothly identified in the three-
dimensional time development.

Locally the time orthogonal development is the same a
that of adS space: successive spacelike surfaces have incre
ingly negative intrinsic curvature, and acquire increasing
spatially constant, extrinsic curvature~with normals converg-
ing in the advancing time direction!. Globally, then, the in-
trinsic geometry of the time surfaces is characterized by th
same diagram as the initial surface, but corresponding t
larger negative curvature. The total ‘‘volume’’ of the interior
region ~the area of the polygon! decreases, as does the dis-
tance between black-hole horizons. Physically the interio
MBH universe collapses, and the relative motion of the blac
holes is similar to that of test particles in a background ad
space.@The same behavior was found in~311!-dimensional
black-hole universes@4,10#.#

After a finite time the area tends to zero and the curva
tures of the time slices become infinite. In the adS univers
this is not a spacetime singularity, but in the BTZ and MBH
geometry there is a singularity of the Misner@11# type, where
the spacetime fails to be Hausdorff@2#. Physically we can
say that, in these time-orthogonal coordinates, each blac
hole horizon as well as the entire interior collapse simulta
neously. Just before the collapse the spacelike geomet
looks liken thin horns that flare out at infinity and are con-
nected on their thin ends. In this sense the singularity con
sists ofn lines meeting at a point.~This point is the end point
of the unstable geodesic between the black holes that avoi
falling into any of them.!

Because there is no global Killing vector that moves the
initial surface in the MBH spacetimes we constructed, this
initial surface is unique. In this respect the MBH spacetime
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FIG. 3. A diagram that allows rotation.~a! A diagram for four
black holes. Its polygon consists of the thick arcs. The thick dotte
line becomes a circle after the identifications. The resulting geom
etry is to be cut along the thick dotted line, rotated by some angle
and reassembled.~b! Three-dimensional picture to give an idea of
the result~cut off at the horizons!.
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differ from the BTZ black holes, where the time-symmetr
initial surfaces can be moved by the timelike Killing vecto

Instead of generating MBH spacetimes from initial value
and their time development, we can also obtain them from
identification of the three-dimensional adS spacetime. W
still choose an initial time-symmetric spacelike surface, a
a diagram in it. We construct the totally geodesic timelik
surfaces~identification surfaces! normal to the initial surface
and intersecting it along a diagram geodesic. We then dou
the spacetime between these surfaces by sewing along
surfaces@a three-dimensional version of the procedure
Fig. 2~b!#. The identification surfaces will intersect some
where in the future and past of the initial surface. This caus
the non-Hausdorff singularity mentioned above.

V. MBH WITH ANGULAR MOMENTUM

MBH’s with angular momentum can be constructed by
similar identification of three-dimensional regions of ad
space. We imitate the construction of the BTZ ‘‘single’’ blac
hole @1,5#. We cut this geometry alongf50 and embed the
resulting three-dimensional ‘‘slab’’ in three-dimensional ad
space. The liner5r1 is an extremum of distance betwee
the identification surfacesf50 andf52p. We call it the
horizon even in the three-dimensional context. We repla
the identification surfaces by new, totally geodesic identi
cation surfaces that are generated by all geodesics orthog
to the horizon. This transforms the general metric~1! with
JÞ0 into one withJ50, massm, and coordinatesr,w,t
~and a different identification betweenw50 andw52p):

m5
r1
2

l 2
,

r2

r1
2 5

r 22r2
2

r1
2 2r2

2 ,

w5f2
r2

r1l
t, t5t2

r2l

r1
f. ~2!

Consider the transvection whose invariant geodesic is
horizon. It maps one new~w5const! identification surface
into the other, as for the caseJ50. The BTZ caseJÞ0 is
different because the identification is not simply given b
this transvection. Rather, there is an additional ‘‘twist,’’
boost about the horizon. Let the boost take place in the s
facew52p. According to Eq.~2! it can be described in that
surface as a time translation by 2pr2l /r1 . Thus the BTZ
black hole with angular momentum can be obtained from
J50 BTZ black hole with the same horizon length by shif
ing theJ50 BTZ time by this amount on the second iden
tification surface.

To obtain an analogous MBH solution we must find se
eral identification surfaces and horizons that can be con
tently doubled in the presence of twists, and in thre
dimensional adS spacetime. These surfaces and horizons
again be specified by a series of isometries of adS spacet
In addition to transvections that move one surface into t
next, and transvections along the geodesics adjoining a
cent horizons, there should now also be boosts about
horizons. Consistency demands that the product of all th
transformations be unity, a set of six conditions among t
masses, distances, and angular momenta.
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We can again associate a diagram with these transform
tions, consisting of mutually orthogonal geodesics that re
resent alternately the connections between horizons and
horizons themselves. The geodesics are the invariant geo
sics of the transvections; the boosts are measured by
amount by which the directions of the connecting geodes
at the two ends of a horizon fail to be parallel, as judged b
parallel transport along the horizon. Thus such a diagra
cannot lie in a plane, totally geodesic spacelike surface and
therefore harder to visualize. The identification surfaces a
then generated by all the geodesics orthogonal to the ho
zons at the horizons’ ends.~The same surface is generate
from either of the horizons ending on it.! Finally the space-
time region bounded by these surfaces is doubled by iden
fying along the surfaces with a second, similar region.
order that the twist not cancel when going all the way arou
a horizon in the doubled spacetime, the second region sho
be identically constructed but with twists in the opposite d
rections.

If there are three identification surfaces, the horizon lin
always lie in the plane through the surfaces’ three centers,
the diagram is planar and corresponds toJ50. For nonzero
angular momenta we therefore need at least four black ho
in our construction. To show that such diagrams and iden
fication surfaces exist we give one example. Consider t
diagram of Fig. 3~a! embedded in three-dimensional adS
spacetime. Let four identification surfaces be generated
all geodesics orthogonal to the horizons at their end poin
Boost the part to the right of the thick dotted line by a Lor
entz transformation that has this dotted line as its axis. T
left identification surface and the two horizons on the left a
not affected by this boost of the right part, and the top an
bottom identification surfaces are invariant under this boo
however, the right identification surface and the two righ
horizons move. Likewise, the geodesics connecting the ho
zons on the left with those on the right move. As a resu
there is now a twist between the long and the short conne
ing geodesics, the diagram is no longer planar, and there
angular momentum associated with each horizon.

VI. CONCLUSION

We have seen that it is possible to construct out of piec
of adS spacetime a spacetime that has many asymptotic
adS regions containing many horizons. Each of these regio
is isometric to the corresponding region of a BTZ black hol
It is therefore appropriate to regard such spacetimes as M
spacetimes. For the case of zero angular momentum our c
struction can be characterized by a polygon whose sides r
resent the distances and masses involved. The closure co
tion yields three relations between these parameters,
other, ‘‘nonpolygonal’’ arrangements can also be constructe
In the caseJÞ0 we get six rather less transparent condition
between masses, distances, and angular momenta, but m
general MBH configurations, not obtained by simple dou
bling, presumably exist.

Note added.After this paper was finished I heard from Dr
Alan Steif of UC Davis that he has also found many of th
results of the present paper’s Secs. II and III~see Ref.@12#!.
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