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The time-dependent quantum variational principle is emerging as an important means of studying quantum
dynamics, particularly in early universe scenarios. To date all investigations have worked within a Gaussian
framework. Here we present an improved method which is demonstrated to be superior to the Gaussian
approach.
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[. INTRODUCTION beginning of the phase transition is quantum mechanical in
nature, yet the late time evolution of the scalar field is de-
Early universe scenarios tend to be based on the evolutioscribed by classical equations of motion. This assertion
of scalar fields, either through their role as inflaton fields omeeds to be justified, as first addressedllih Analyzing an
as topological defects forming fields. A detailed understandexactly soluble linearized model, both in one-dimensional
ing of the quantum evolution of these fields is important inquantum mechanics and in quantum field theory of a single
order to fully describe their behavior during phase transitionscalar field, it was discovered that the large-time behavior of
This has recently been the focus of a great deal of attentiorthe field in an unstable upside down harmonic oscillator po-
Its study relies on analyzing the quantum dynamics in reatential is accurately described by “classical physics.” In the
time. Guth and P[1] in one of the landmark papers in the one-dimensional quantum-mechanical model the evolution
field of inflation investigated the quantum mechanics of theof the wave function describing the particle in the potential is
scalar field in the new inflationary universe, looking in detail determined by the exactly solvable Sdtirmer equation.
at the “slow rollover” transition. The idea of a “slow roll- The solution for the wave function is, not surprisingly, that of
over” arises because the transition involves a scalar #eld a Gaussian. The harmonic oscillator potential maintains the
which evolves slowly down its potential starting from some form of the initial Gaussian wave function.
initial position where it is described by a well-defined wave |n [2] the time-dependent variational method developed
function. The phase transition can be thought of as oney Jackiw and Kermaf] is used in the investigation of the
where at very high temperatures the potential has a minimurbehavior of a particle moving in a one-dimensional quantum
at ¢=0, which becomes unstable as the temperature demechanical with more realistic potentidise., a double well
creases, with the stable minima moving to a new larger valugotentia), which have analogues both in the inflationary uni-
of ¢==* o, say. As the universe cools the field remains closeverse scenario and in models for the formation of topological
to ¢=0, slowly evolving towards its true vacuum value. The defects. The important point that needs to be raised, and the
motivation for this paper, is that in that work, and most sub-
sequent work, the analysis is performed using a Gaussian
*Electronic address: E.J.Copeland@sussex.ac.uk trial wave function. The resultant equations of motion ob-
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tained through the variation of the effective action are thewhered,= d/ it andH is the Hamiltonian operatoF. is then

time-dependent Hartree-Fo¢kF) equations. If2] the au-  made stationarysI'=0 against variations of the statey|

thors argue that by comparison with the exguimerical  subject to the constrairt)|¢)=1. Approximaté dynamics

solution the variational HF approximation accurately de-are obtained by positing a variational ansatz for the wave

scribes the process, and that the late time behavior of thinction that is a function of a small number of variables.

evolution is approximately classical if described interms of a  Central to the approach is the assumption that the ansatz

suitably chosen small dimensionless coupling constant. Weor the variational wave function is “close” to the exact one;

argue in this paper that it is straightforward to go beyond thig.e., there are sufficient degrees of freedom for the wave

Gaussian ansatz by expanding the wave function in a confunction to accurately track the evolution of the system.

plete set of Hermite polynomials. In particular we find that  To date investigations have been restricted to the use of

just keeping the first and second order terms in the expansioBaussian ansze since these are calculationally easy to

leads to a dramatic improvement in the accuracy of the variahandle. However, we shall argue that the Gaussian approach

tional approach. is of limited applicability and that results gained from it have
There are many reasons why it would be advantageous tg limited range of reliability.

go beyond the Gaussian approximation. If we have a poten-

tial which has degenerate minima, then it is impossible for a |, 1,z \ARIATIONAL PROCEDURE IN GENERALITY

Gaussian wave packet to accurately describe the evolution of

a scalar field during a phase transition. This is particularly In order to elucidate our later calculations it is useful to

relevant for calculations involving the formation of topologi- consider this construction in generality. Consider the varia-

cal defects. For example, imagine we wish to understand thitonal effective action

circumstances under which defects can be said to have

formed and their distribution at formation. Recently in the . ~

context of vortices, there has been considerableyattention F:f d(ylid—Hly). 2

paid to understanding the evolution of the scalar field respon-

sible for their formation just after the quench transit{an. Let us suppose the variational state to be a functiom @fal

One of the limitations of this interesting calculation is that it parameters; :

cannot accurately probe the nonlinear regions of the poten-

tial, hence it is only strictly valid just after the quench. In [ gy (Y| . -

order to fully describe the formation process it is important F:f dt§(<¢|(g_vi_ Tvi| ¢>)Ui_<¢|H|¢>- 3

to be able to probe the true vacuum of the potential.

In the context of our simple one-dimensional quantumwhen the action is made stationary with respect to variation

mechanical system we hope to demonstrate that by extending these parameters we obtain the induced equations of mo-
the ansatz of the wave function to include the Hermite poly+ion

nomials, then at little extra cost in complexity we can probe

the nonlinear region of the potential in far greater detail than Jolwl aly)y .

has previously been possible. '[— —— —(i<])
Another area where the nonlinearities of the theory need

to be probed, is in the reheating calculations associated Wit@chematically, this expression is of the form

inflation. As the inflaton field evolves down its potential,

eventually it moves out of the “slow roll” regime as it de- A vi—b=0 (5)

scends into the true minima of the potential. The traditional wen

picture is that in this region as the field oscillates about thigmplying that in order that we are able to extract the equa-
minima then it decays through coherent oscillations and regons of motion for the parameter; , the matrixA must be

heats the universe, restoring the radiation-dominated Unkonsingular throughout the evolution of the system.
verse. Recently though, this picture has been questioned

[5—7]. In order to fully probe this region of the potential, it is
important that the ansatz adopted for the scalar field is valid
in this region. It is our belief that the usual Hartree-Fock Before we give the expression for the improved wave
approximations are not sufficient here and need to be imfynction let us make the definition
proved.

Use of the time-dependent variational principle of quan- o 172 55
tum mechanics is becoming more widespread. The method, Un(X)Z=(W Ho(ax)e **72  a=(2G) 12
first given by Dirac, involves the construction of an “effec- ' (6)
tive action™

. d -
Ui_&_v]_<':b|H|¢>:0- 4

lll. IMPROVED WAVE FUNCTION

where G(t) is real andH,, is the nth Hermite polynomial.

. ~ We see that thel,, are a one parameter set of orthonormal-
F:J dt(ylig—Hly), @ ized functions "

The connection of which to the usual effective action, or Gibbs 2t is not actually clear in what way the dynamics so obtained are
free energy, is given if3]. approximate, an issue we will address in a later paper.
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f Un(X)Un(X)dX= Spm (7)

independent of the value &. We may thus use the, as a
basis for our variational wave function:

Lp(x,t)zNe‘HXZZO apUn(X,t). (8)

Here thea, are time-dependent complex numbers, the other
real variational parameters beih§ and G which implicitly
appear in the definition of the,. Normalization is achieved
by the inclusion of a time-dependent

As it stands this represents no simplification. Our plan of
action is therefore to truncate the expansion at some finite
order and work consistently to that order. The zeroth-order
approximation is simply the Gaussian, Hartree-Fock approxi-
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mation.

As a test bed for our method we will consider the case of

a particle moving in the potential considered by Coagteal.

[2], as this illustrates well the shortfalls of the Gaussian ap-

proach.
The potential we consider is of a double well,

V(X)= %(xz—az)z, 9)

with Gaussian initial condition§,=\3/2\a?, anda is the
symmetry-breaking value for.
To demonstrate the power of the method we will only

Time
FIG. 1. Comparison of the methods far=5.

wheres=sind and c=cosd. The increase in complexity of
the result over that of the Gaussian approach is more than
compensated for by the increase in the accuracy of the re-
sults.

We notice that the improved equations of motion have
within them terms familiar from the Gaussian approach.
However, the HF equations of motion are not obtainable as a

include the first nontrivial term in the expansion. Since theSimple limita,—0 as the improved equations are singular in
potential and initial conditions are symmetric, the first non-this limit. The origin of this singularity is as was outlined in

trivial term involvesu,:

:,//zNemxz[uo(x,t)+a2u2(x,t)]. (10

Sec. Il.
To assess the use of method we shall focus on the evolu-
tion of the quantity

Even to this order we shall see that the improvement in the

results over those of the Gaussian approach is impressive.
We shall compare the results obtained using the improved

equations of motion with the exact results obtained via nu
merical simulation.

IV. EQUATIONS OF MOTION

Working with a polar representation af,(t)=Rée?, the
equations of motion one obtains from E¢g) are

. V2G3s\
G:4HG—6—R, (11)
NaZ TGN \\2cG
_ 2,
n 8G? 21 12 12 24R (12
. c+R%c+2R\2+2R32
st)\GZ( 6{ 12 , (13)

ANG2(4R3\/2c+2¢?R?—2¢2+ 1— 6R\2c— 11R?)
B 12R?

(14

G(1+5R?+22Rc)
1+R?

(32)= (15)

<x?>1/2

Time

FIG. 2. Comparison of the methods far7.
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V. INITIAL CONDITIONS gions, suggesting that more information about the potential is
. . . . being taken into account. The Gaussian wave function leads
It is clear that the equations of motion are singular for the ) . 2 2 . .

e ) . e . .10 a turning point of(x“) at 2/3“ [2], which provides an
Gaussian initial conditions considered; since our aim is a

comparison of the results of the improved method with thoséndlcatlon of where the ansafz breaks down. With the im-

of Cooperet al, we shall adopt the same initial conditions proved ansatz we find the tu_rning PO"?t occurs_typically at
This apparent ’ roblem is easilv circumvented " (x?)~a?, demonstrating the significant increase in accuracy.
Theprpationalg is to start the >évolution of the. system som Moreover, this approximate solution clearly probes the non-

short time aftet=0. We solve the exact Schiimger equa- (ﬁn%arhr_egloa_ of the potennﬁl. ial ob ion that the i
tion to first order and may then extract the valuesRoénd edln ¢ |sfsucqess s the crugla Of Eervatlpn tbat t de Ilr_n-
0, using these as the initial conditions in the variationalp;?xfe vgg\rfetﬁir:wcgtlonn:t ?Se%a?c? tr?eOGa?Jios?:rTgang(t)z aTlr?is
equations of motion. In actuality the subsequent evolution o § !

. : L o o means that we have a method of investigating the field evo-
the system is rather insensitive to the initial conditions. Th|§ution during a defect-forming transition and a first-order
procedure leads us to take

transition. These cases are currently being analyzed.
The ideal goal would be to apply the technique we have

(16)  described to the field theofy] case. Currently the Hartree-

Fock approximation is generally adopted in variational cal-

culations applied to the early univerf®. Unfortunately the
VI. RESULTS AND CONCLUSIONS conversion from quantum mechanics to field theory is
lagued with technical difficulties, which has so far pre-
ented a successful implementation of the Hermite polyno-
mial approach for the field theory case.

St\2(6+1a%Gy) ™
Ro= 24 AR

The results of the above calculation are presented in Fig€
1 and 2. Plotted are the exact evolution (af) found by
numerical simulation(solid line), against the improved and
Gaussian resultgddashed and dotted lines, respectiyeigr
the two valuesa=5,7. It is clear that the improved method
furnishes us with a result considerably closer to the exact
evolution than does the Gaussian. Also we see that the im- We are grateful to T. Evans, T.W.B. Kibble, and M. Hind-
proved method samples regions of the potential much closenarsh for useful discussions. G.C. was partially funded by
to the minima than does the HF, the so-called spinodal rePPARC.
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