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The time-dependent quantum variational principle is emerging as an important means of studying quantum
dynamics, particularly in early universe scenarios. To date all investigations have worked within a Gaussian
framework. Here we present an improved method which is demonstrated to be superior to the Gaussian
approach.
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I. INTRODUCTION

Early universe scenarios tend to be based on the evolu
of scalar fields, either through their role as inflaton fields
as topological defects forming fields. A detailed understan
ing of the quantum evolution of these fields is important
order to fully describe their behavior during phase transitio
This has recently been the focus of a great deal of attenti
Its study relies on analyzing the quantum dynamics in re
time. Guth and Pi@1# in one of the landmark papers in the
field of inflation investigated the quantum mechanics of t
scalar field in the new inflationary universe, looking in deta
at the ‘‘slow rollover’’ transition. The idea of a ‘‘slow roll-
over’’ arises because the transition involves a scalar fieldf
which evolves slowly down its potential starting from som
initial position where it is described by a well-defined wav
function. The phase transition can be thought of as o
where at very high temperatures the potential has a minim
at f50, which becomes unstable as the temperature
creases, with the stable minima moving to a new larger va
of f56s, say. As the universe cools the field remains clo
to f50, slowly evolving towards its true vacuum value. Th
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beginning of the phase transition is quantum mechanical i
nature, yet the late time evolution of the scalar field is de
scribed by classical equations of motion. This assertio
needs to be justified, as first addressed in@1#. Analyzing an
exactly soluble linearized model, both in one-dimensiona
quantum mechanics and in quantum field theory of a singl
scalar field, it was discovered that the large-time behavior o
the field in an unstable upside down harmonic oscillator po
tential is accurately described by ‘‘classical physics.’’ In the
one-dimensional quantum-mechanical model the evolutio
of the wave function describing the particle in the potential is
determined by the exactly solvable Schro¨dinger equation.
The solution for the wave function is, not surprisingly, that of
a Gaussian. The harmonic oscillator potential maintains th
form of the initial Gaussian wave function.

In @2# the time-dependent variational method develope
by Jackiw and Kerman@3# is used in the investigation of the
behavior of a particle moving in a one-dimensional quantum
mechanical with more realistic potentials~i.e., a double well
potential!, which have analogues both in the inflationary uni-
verse scenario and in models for the formation of topologica
defects. The important point that needs to be raised, and t
motivation for this paper, is that in that work, and most sub
sequent work, the analysis is performed using a Gaussia
trial wave function. The resultant equations of motion ob-
R4125 © 1996 The American Physical Society
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tained through the variation of the effective action are t
time-dependent Hartree-Fock~HF! equations. In@2# the au-
thors argue that by comparison with the exact~numerical!
solution the variational HF approximation accurately d
scribes the process, and that the late time behavior of
evolution is approximately classical if described in terms o
suitably chosen small dimensionless coupling constant.
argue in this paper that it is straightforward to go beyond th
Gaussian ansatz by expanding the wave function in a co
plete set of Hermite polynomials. In particular we find th
just keeping the first and second order terms in the expans
leads to a dramatic improvement in the accuracy of the var
tional approach.

There are many reasons why it would be advantageou
go beyond the Gaussian approximation. If we have a pot
tial which has degenerate minima, then it is impossible fo
Gaussian wave packet to accurately describe the evolutio
a scalar field during a phase transition. This is particula
relevant for calculations involving the formation of topolog
cal defects. For example, imagine we wish to understand
circumstances under which defects can be said to h
formed and their distribution at formation. Recently in th
context of vortices, there has been considerable atten
paid to understanding the evolution of the scalar field resp
sible for their formation just after the quench transition@4#.
One of the limitations of this interesting calculation is that
cannot accurately probe the nonlinear regions of the pot
tial, hence it is only strictly valid just after the quench. I
order to fully describe the formation process it is importa
to be able to probe the true vacuum of the potential.

In the context of our simple one-dimensional quantu
mechanical system we hope to demonstrate that by extend
the ansatz of the wave function to include the Hermite po
nomials, then at little extra cost in complexity we can prob
the nonlinear region of the potential in far greater detail th
has previously been possible.

Another area where the nonlinearities of the theory ne
to be probed, is in the reheating calculations associated w
inflation. As the inflaton field evolves down its potentia
eventually it moves out of the ‘‘slow roll’’ regime as it de-
scends into the true minima of the potential. The tradition
picture is that in this region as the field oscillates about th
minima then it decays through coherent oscillations and
heats the universe, restoring the radiation-dominated u
verse. Recently though, this picture has been questio
@5–7#. In order to fully probe this region of the potential, it is
important that the ansatz adopted for the scalar field is va
in this region. It is our belief that the usual Hartree-Foc
approximations are not sufficient here and need to be
proved.

Use of the time-dependent variational principle of qua
tum mechanics is becoming more widespread. The meth
first given by Dirac, involves the construction of an ‘‘effec
tive action’’1

G5E dt^cu i ] t2Ĥuc&, ~1!

1The connection of which to the usual effective action, or Gib
free energy, is given in@3#.
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where] t[]/]t andĤ is the Hamiltonian operator.G is then
made stationarydG50 against variations of the state^cu
subject to the constraint^cuc&51. Approximate2 dynamics
are obtained by positing a variational ansatz for the wav
function that is a function of a small number of variables.

Central to the approach is the assumption that the ansa
for the variational wave function is ‘‘close’’ to the exact one;
i.e., there are sufficient degrees of freedom for the wav
function to accurately track the evolution of the system.

To date investigations have been restricted to the use
Gaussian ansa¨tze since these are calculationally easy to
handle. However, we shall argue that the Gaussian approa
is of limited applicability and that results gained from it have
a limited range of reliability.

II. THE VARIATIONAL PROCEDURE IN GENERALITY

In order to elucidate our later calculations it is useful to
consider this construction in generality. Consider the varia
tional effective action

G5E dt^cu i ] t2Ĥuc&. ~2!

Let us suppose the variational state to be a function ofn real
parametersv i :

G5E dt
i

2 S ^cu
]uc&
]v i

2
]^cu
]v i

uc& D v̇ i2^cuĤuc&. ~3!

When the action is made stationary with respect to variatio
of these parameters we obtain the induced equations of m
tion

i F]^cu
]v j

]uc&
]v i

2~ i↔ j !G v̇ i2 ]

]v j
^cuĤuc&50. ~4!

Schematically, this expression is of the form

Ai j v̇ j2bi50 ~5!

implying that in order that we are able to extract the equa
tions of motion for the parameterv j , the matrixA must be
nonsingular throughout the evolution of the system.

III. IMPROVED WAVE FUNCTION

Before we give the expression for the improved wave
function let us make the definition

un~x!:5S a

p1/22nn! D
1/2

Hn~ax!e2a2x2/2 a5~2G!21/2,

~6!

whereG(t) is real andHn is the nth Hermite polynomial.
We see that theun are a one parameter set of orthonormal-
ized functions

bs 2It is not actually clear in what way the dynamics so obtained ar
approximate, an issue we will address in a later paper.
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E un~x!um~x!dx5dnm ~7!

independent of the value ofG. We may thus use theun as a
basis for our variational wave function:

c~x,t !5NeiPx2(
n50

`

anun~x,t !. ~8!

Here thean are time-dependent complex numbers, the oth
real variational parameters beingP andG which implicitly
appear in the definition of theun . Normalization is achieved
by the inclusion of a time-dependentN.

As it stands this represents no simplification. Our plan
action is therefore to truncate the expansion at some fin
order and work consistently to that order. The zeroth-ord
approximation is simply the Gaussian, Hartree-Fock appro
mation.

As a test bed for our method we will consider the case
a particle moving in the potential considered by Cooperet al.
@2#, as this illustrates well the shortfalls of the Gaussian a
proach.

The potential we consider is of a double well,

V~x!5
l

24
~x22a2!2, ~9!

with Gaussian initial conditionsG05A3/2la2, anda is the
symmetry-breaking value forx.

To demonstrate the power of the method we will on
include the first nontrivial term in the expansion. Since th
potential and initial conditions are symmetric, the first no
trivial term involvesu2:

c5NeiPx2@u0~x,t !1a2u2~x,t !#. ~10!

Even to this order we shall see that the improvement in t
results over those of the Gaussian approach is impress
We shall compare the results obtained using the improv
equations of motion with the exact results obtained via n
merical simulation.

IV. EQUATIONS OF MOTION

Working with a polar representation ofa2(t)5Reiu, the
equations of motion one obtains from Eq.~4! are

Ġ54PG2
A2G3sl

6R
, ~11!

Ṗ5
1

8G2 22P21
la2

12
2
7Gl

12
2

lA2cG
24R

, ~12!

Ṙ5slG2
~c1R2c12RA212R3A2!

6R
, ~13!

u̇52
lG2~4R3A2c12c2R222c21126RA2c211R2!

12R2

2
1

G
, ~14!
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wheres5sinu and c5cosu. The increase in complexity of
the result over that of the Gaussian approach is more th
compensated for by the increase in the accuracy of the
sults.

We notice that the improved equations of motion hav
within them terms familiar from the Gaussian approach
However, the HF equations of motion are not obtainable as
simple limita2→0 as the improved equations are singular i
this limit. The origin of this singularity is as was outlined in
Sec. II.

To assess the use of method we shall focus on the evo
tion of the quantity

^x̂2&5
G~115R212A2Rc!

11R2 . ~15!

FIG. 1. Comparison of the methods fora55.

FIG. 2. Comparison of the methods fora57.
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V. INITIAL CONDITIONS

It is clear that the equations of motion are singular for th
Gaussian initial conditions considered; since our aim is
comparison of the results of the improved method with tho
of Cooperet al., we shall adopt the same initial conditions
This apparent problem is easily circumvented.

The rationale is to start the evolution of the system som
short time aftert50. We solve the exact Schro¨dinger equa-
tion to first order and may then extract the values ofR and
u, using these as the initial conditions in the variation
equations of motion. In actuality the subsequent evolution
the system is rather insensitive to the initial conditions. Th
procedure leads us to take

R05
dtA2~61la4G0!

24
, u05

p

2
. ~16!

VI. RESULTS AND CONCLUSIONS

The results of the above calculation are presented in F
1 and 2. Plotted are the exact evolution of^x2& found by
numerical simulation~solid line!, against the improved and
Gaussian results~dashed and dotted lines, respectively! for
the two valuesa55,7. It is clear that the improved method
furnishes us with a result considerably closer to the ex
evolution than does the Gaussian. Also we see that the
proved method samples regions of the potential much clo
to the minima than does the HF, the so-called spinodal
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gions, suggesting that more information about the potentia
being taken into account. The Gaussian wave function lea
to a turning point of^x2& at 2/3a2 @2#, which provides an
indication of where the ansatz breaks down. With the im
proved ansatz we find the turning point occurs typically
^x2&;a2, demonstrating the significant increase in accurac
Moreover, this approximate solution clearly probes the no
linear region of the potential.

Behind this success is the crucial observation that the i
proved wave functions are capable of becoming bimodal
nature, something not open to the Gaussian ansatz. T
means that we have a method of investigating the field ev
lution during a defect-forming transition and a first-orde
transition. These cases are currently being analyzed.

The ideal goal would be to apply the technique we ha
described to the field theory@8# case. Currently the Hartree-
Fock approximation is generally adopted in variational ca
culations applied to the early universe@9#. Unfortunately the
conversion from quantum mechanics to field theory
plagued with technical difficulties, which has so far pre
vented a successful implementation of the Hermite polyn
mial approach for the field theory case.
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