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U duality and intersecting D-branes
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The spectrum of elementary string states in type II string theory compactified on a torus contains short
multiplets which are invariant under only one-quarter of the space-time supersymmetry generators.
U-duality transformation converts these states into bound states of Dirichlet branes which wrap around inter-
secting cycles of the internal torus. We study a class of these bound states that are dual to the elementary string
states at the first excited level, and argue that the degeneracy of these bound states is in agreement with th
U-duality prediction.
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The spectrum of type IIA or IIB string theory compacti
fied on a torus contains single particle states in the ultrash
~256-dimensional! multiplet. These states carry an equa
amount of left- and right-moving charges and are in th
ground state ofboth the left- and the right-moving oscilla-
tors. As a result they always have unit multiplicity. There a
also states in the short multiplet@of dimension (16)3# which
can carry different amounts of left- and right-movin
charges, and are in the ground state ofeither the left-or the
right-moving oscillators. For definiteness we shall assum
from now on that the right-moving oscillators are in the
ground state. The degeneracy of these states depends on
level of the left-moving oscillator state. IfQW R andQW L denote
the right- and the left-moving charge vectors, andNL denotes
the level of the left-moving part of the state, then, with sui
able normalization, the mass of the state@in the Ramond-
Ramond~RR! sector# is given by
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A similar formula exists in the Neveu-Schwarz~NS! sector,
but we do not need to write it down. We shall take Eq.~1! to
be the defining equation forNL for givenQW L , QW R . The total
degeneracyd(NL) of such states for given values ofQW L and
QW R , can be computed from the formula
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In order to find the number of short multiplets one needs
divide the value ofd(NL) obtained this way by (16)

3, which
is the dimension of the supermultiplet. The degeneracies
some of the low-lying states ared(1)5(16)3,
d(2)593(16)3, etc.

The chargesQW R andQW L referred to above couple to the
U~1! gauge fields arising in the NS-NS sector of the theor
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SinceU duality @1# transforms the states carrying NS-NS
charges to states carrying RR charges in general, and sinc
the latter states have been shown to arise from Dirichlet
branes (D-branes! @2# wrapped around various internal
cycles, we expect that we should be able to reproduce the
values ofd(NL) quoted above by working out the degenera-
cies of the states ofD-branes. This analysis has been made
possible by the recent discovery of Witten@3# that the dy-
namics of collective coordinates ofn parallel D-branes is
described by a supersymmetric U(n) gauge theory.1 Using
this collective coordinate description we have argued in a
previous paper@5# that for ultrashort multiplets, the degen-
eracy ofD-brane states agrees with the prediction ofU du-
ality. In a recent paper@6# Bershadsky, Sadov, and Vafa have
generalized Witten’s result to the case of intersecting
D-branes. In this Rapid Communication we shall use this
result to analyze the degeneracy of short multiplets. In par-
ticular we shall work out the degeneracy ofD-brane states
dual to theNL51 states and argue that the number is indeed
equal tod(1), in agreement with the prediction ofU duality.

In order to be more specific, let us consider type IIA string
theory compactified on a four torusT4, with each of the four
internal circles having self-dual radius. We shall denote the
compact directions byxm for (6<m<9) and the noncom-
pact directions byxm̄ for (0<m̄<5). The indexm will run
over all values. This six-dimensional theory has eight U~1!
gauge fields coming from the NS-NS sector and eight U~1!
gauge fields coming from the RR sector. TheU-duality
group of this theory has a specificZ2 element, which
changes all the NS-NS gauge fields to RR gauge fields and
vice versa, and acts as a triality rotation on theT-duality
group SO(4,4;Z) @7#. We shall use thisZ2 element to convert
a state carrying purely NS-NS charge to a state carrying
purely RR charge.

In order to be more specific about the action of thisZ2
element on various charges we need to choose a basis for th
charge vector. A suitable choice of basis will be as follows. If
pi andwi denote the momentum and winding number asso-
ciated with the internal directionsxi , then we represent the
charge vector as

e-
ad- 1Another approach to analyzing bound states ofD-brane states
has been given in@4#.
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In this basis the inner product of two charge vectors is com
puted from the metric:

L5S s1

s1

s1

s1

D , s15S 0 1

1 0D . ~4!

In particular,QW L andQW R will denote the projection of the
charge vector to the subspace withL eigenvalues21 and
11, respectively. Also,

QW R
22QW L

25QTLQ. ~5!

Consider now the charge vector

S m

n
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D . ~6!

For thisQTLQ52mn. Using Eq.~1! we see that for a short
multiplet, a state carrying this charge vector ha
NL5QTLQ/25mn. One can compute the degeneracy o
such states in the elementary string spectrum from Eq.~2!.
Also the mass of this state@which we shall refer to as
(m,n) state# is given by

M ~m,n!5
1

A2
uQW Ru5

1

2
~ umu1unu!. ~7!

This shows that these states are only marginally stable.
particular, an (m,n) state can decay into an (m,0) state and a
(0,n) state at rest. We shall come back to this point later.

What will be the dual of these states under theZ2 trans-
formation mentioned above? The gauge fields in the RR se
tor come from the componentsCmnm̄ of the rank three anti-
symmetric tensor fields in the IIA theory, as well as th
gauge fieldAm̄ and the dualC̃m̄ of Cm̄n̄r̄ . In this basis, the
inner product matrix for the RR charges is given as follows
It pairs Am̄ charge withC̃m̄ charge. ForCmnm̄ charge the
inner product matrix is simply the intersection matrix of the
corresponding two cycles on the torus. TheZ2 transforma-
tion mapping the RR gauge fields to NS-NS gauge field
-
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must preserve the inner product matrix. Thus we can choose
theZ2 to induce the following map between the gauge fields
~up to sign!:

C89m̄↔G6m̄ , C67m̄↔B6m̄ ,

C78m̄↔G7m̄ , C96m̄↔B7m̄ ,

C68m̄↔G8m̄ , C79m̄↔B8m̄ ,

Am̄↔G9m̄ , C̃m̄↔B9m̄ . ~8!

In particular, the momentump6 that couples toG6m̄ will be
mapped toC89m̄ charge and the windingw6 that couples to
B6m̄ will be mapped toC67m̄ charge. Thus the (m,n) state
will be mapped to a state withm units ofC89m̄ charge and
n units ofC67m̄ charge. As shown in Ref.@2#, such a state can
arise from a state with (m1n) Dirichlet membranes, with
m of them wrapping around the 8-9 cycle of the torus, and
n of them wrapping around the 6-7 cycle of the torus. In
order to prove the invariance of the spectrum underU dual-
ity, one needs to show that this system contains supersym-
metric bound states with degeneracyd(mn).

We shall analyze the (1,1) case in detail and show that the
degeneracy of states of theD-membranes agree withd(1)
computed from elementary string spectrum. But before we
proceed we need to resolve the usual problem with margin-
ally stable states. Since a (1,1) state can decay into a (1,0)
state and a (0,1) state at rest, there is no energy barrier
against pulling the twoD-membranes away from each other.
This makes the analysis difficult.2 To get around this problem
we use the trick used in Ref.@5#. Namely, we compactify one
more direction~say x1) so that the momentum alongx1 is
quantized, and look at the sector carrying odd units of mo-
mentum in this direction. If a marginally stable bound state
of twoD-membranes of the type discussed above exist in the
six-dimensional theory, then the Kaluza-Klein modes of this
state, carrying odd units of momentum along thex1 direc-
tion, will be absolutely stable in the resulting five-
dimensional theory. We shall look for these absolutely stable
states in the spectrum.

As in Ref. @5# we shall simplify the analysis by perform-
ing a T-duality transformation involving the coordinatex1.
Let us denote the coordinates in this new theory byym. This
duality transformation will convert the momentum alongx1

into winding number3 along y1, and convert a membrane
wrapped aroundm-n plane into a three brane wrapped
around them-n-1 plane. Thus the problem that we have is

2Although in principle one can directly study the question of ex-
istence of these marginally stable bound states by mapping this
problem to a supersymmetric quantum mechanics problem, it has
been pointed out by Vafa that naive computation of Witten index in
these models might not always agree with the predictions ofU
duality @8#. This could be related to subtleties that might be present
at large separation. For this purpose we shall find it much more
convenient to work with the absolutely stable bound states de-
scribed below.
3Throughout this paper, winding number will refer to the winding

number of an elementary string that couples to theBmn field.



e

of
eir

r

e

e

s

-

.

c-

it

r-

on

of

R2876 53ASHOKE SEN
that of a three braneD1 wrapped around the 8-9-1 plan
interacting with a three braneD2 wrapped around the 6-7-1
plane. We want to look for supersymmetric ground states
this system carryingk units of winding along they1 direc-
tion, wherek is odd. The dynamics of collective coordinate
of this system has been given in Ref.@6#. Since the con-
figuration described above has translation invariance o
along they0 and y1 direction, it is described by a~111!-
dimensional field theory with base space labeled by
coordinatesy0 and y1. The theory is anN54 supersym-
metric gauge theory~which can be regarded as the dime
sional reduction of anN52 theory in four dimensions! with
an U~1! 13U~1! 2 gauge group. Besides the U~1! vector
multiplets which we shall denote byA1 andA2 , the theory
contains a pair of gauge neutral hypermultipletsF1 and
F2 , and a hypermultipletQ of charge~11,21! under the
U~1! 13U~1! 2 gauge group. For our purpose it will be con
venient to work with the diagonal sum and difference
the two U~1! groups which we shall denote by U~1! c and
U~1! r . The corresponding vector multiplets will be denote
by Ac andAr . ~Herec stands for center of mass andr for
relative coordinates, for reasons that will be explained soo!
Then the gauge group is@U(1)c3U(1)r #/Z2 and the hyper-
multipletQ has charge (0,2) under U(1)c3U(1)r . Of these
set of fields, the gauge multipletAc and the hypermultiplets
F1 andF2 have no interactions, the only interaction of th
theory comes from the standard gauge coupling between
vector multipletAr and the charged hypermultipletQ.

Before we proceed further, let us give a physical interp
tation of the various bosonic fields, at least in the regi
where the two three branesD1 andD2 are well separated in
the physical space. We start with the neutral hypermultiple
Of the four scalars in the hypermultipletF1 , two denote the
y6 and y7 coordinates of the three braneD1 lying in the
8-9-1 plane. The other two are coordinates conjugate to
winding number along the 8 and the 9 directions. Similar
of the four scalars in the hypermultipletF2 , two correspond
to they8 andy9 coordinates of the three braneD2 lying in
the 6-7-1 plane, and two are conjugate to the winding nu
ber carried byD2 alongy

6 andy7. Since the winding as well
as momenta along they6, . . . ,y9 directions are quantized
we see that we should interpret the scalar fields in both
hypermultipletsF1 andF2 as compact coordinates in th
field space.

A vector multiplet in two dimensions has four scalars a
one vector field. The four scalars in the U(1)1 vector mul-
tiplet correspond to the coordinates (y2,y3,y4,y5) of the
three braneD1 . The total electric flux associated with th
U(1)1 gauge field alongy

1 may be interpreted as the wind
ing number carried byD1 alongy

1—this situation is identi-
cal to the one described in Ref.@3#. Similarly the four scalars
in the U(1)2 vector multiplet correspond to the coordinate
(y2,y3,y4,y5) of the three braneD2 , and the total electric
flux associated with the U(1)2 gauge field alongy1 may be
interpreted as the winding number carried byD2 alongy

1. In
terms of the vector multipletsAc andAr this means that the
scalar fields inAc denote the center-of-mass coordinates
D1 andD2 along y

2, . . . ,y5, the scalar fields inAr denote
the relative coordinates alongy2, . . . ,y5, the U(1)c electric
flux alongy1 denotes the total winding number of the syste
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alongy1, and the electric flux of U(1)r alongy
1 measures

the difference between the winding numbers carried by th
two Dirichlet three branes.

Finally we turn to the hypermultipletQ. These fields do
not have a simple interpretation as space-time coordinates
the three branes, as can be seen from the fact that due to th
coupling toAr , they become very heavy when the relative
separation betweenD1 andD2 is large. These correspond to
open string states that start onD1 and end onD2 or vice
versa.4

Let us now turn to the quantization of this system. First
we discuss the free part of the theory, the one involving
Ac , F1 , andF2 . Since we are looking for states that do not
carry any momentum or winding along any of the directions
y6, . . . ,y9, we can take the momenta conjugate to the scala
components ofF1 andF2 to be zero. This gives a unique
state from this sector. Similarly if we are considering the
system at rest we can take the total momenta, which ar
conjugate to the four scalar components ofAc , to vanish.
Finally we can take the system to be in the eigenstate of th
electric flux of U(1)c gauge field with eigenvaluek, where
k is the required winding number alongy1. For reasons that
has been explained before, we shall takek to be odd. Thus
the quantization of the bosonic part of the free system give
a unique state for every value ofk.

What about the fermionic part? Each neutral hypermultip
let contains eight real fermionic coordinates, and the U(1)c
vector multiplet also contains eight real fermionic coordi-
nates. This gives rise to 24 fermionic zero modes in total
Quantization of this gives rise to a 2125(16)3-fold degen-
eracy.

Thus if K denotes the number of supersymmetric ground
states of the interacting system, involving the vector multip-
let Ar and the charged hypermultipletQ, then the total de-
generacy of this state will be given by

~16!3K. ~9!

This number then needs to be compared withd(1). Wehave
already stated thatd(1)5(16)3; thus we see that the predic-
tion of U duality is

K51 . ~10!

We shall now proceed to verify this prediction. The approach
that we shall use is identical to the one taken in Ref.@3#. The
interacting system can be viewed as the dimensional redu
tion of a four-dimensional theory, containing anN52 U~1!
vector supermultiplet interacting with anN52 hypermultip-
let of U~1! charge two. We are looking for a supersymmetric
ground state in this theory in the sector that carries odd un

4Physically, the absence of coupling between the neutral hype
multipletsF1 , F2 and the charged hypermultipletQ may be un-
derstood as follows. Mass ofQ should vanish whenever the two
D-branes intersect. This happens whenever the spatial separati
between the twoD-branes alongy2, . . . ,y5 directions vanish. Since
these spatial separations are represented by scalar components
the vector multipletAr , the mass ofQ cannot depend on the
vacuum expectation values of the hypermultipletsF1 andF2 .
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of U(1)r flux along y1; this requirement comes from th
fact that the gauge group is really@ U(1)c3U(1)r #/Z2 , and
hence the presence of an odd unit of U(1)c flux forces us to
have an odd unit of U(1)r flux as well. Viewed as an
N51 supersymmetric theory, this corresponds to anN51
supersymmetric U~1! gauge theory, with a U~1! neutral chiral
superfieldF, and a pair of chiral superfieldsL, L̄ with U~1!
charge62, interacting through the superpotential

W05FLL̄. ~11!

The classical theory has a flat direction, since^F& is unde-
termined. However, for largêF& the fieldsL, L̄ become
heavy, and the resulting low energy theory is that of a sup
symmetric U~1! gauge theory with no matter. The U(1)r
electric flux along they1 direction is not screened, and as
result this field configuration has nonzero energy and bre
supersymmetry. This shows that there is a finite energy b
rier against takingF to be large. As in Ref.@3# we shall
assume that due to the presence of the energy barrier, we
add mass terms for various fields in the superpotential w
out changing the number of supersymmetric ground sta
Thus we work with the modified superpotential

W5FLL̄1 1
2 eF21hLL̄. ~12!

Possible supersymmetric ground states of this system co
sponding to the critical points ofW are obtained by solving
the equations

eF1L̄L50 , ~F1h!L505~F1h!L̄. ~13!
er-

a
aks
ar-

can
ith-
tes.

rre-

For the trivial solution, given byF5L5L̄50, the fields
F, L, andL̄ are all massive, and U~1! is unbroken. Thus the
background electric field remains unscreened, costing a fin
energy, and hence supersymmetry is broken in this vacuu
The nontrivial solution, up to~complexified! U~1! gauge
transformation, is given by

F52h, L5L̄5Aeh. ~14!

In this vacuum the U~1! gauge symmetry is broken, and al
fields are massive. Thus the electric flux alongy1 is
screened, and we get a supersymmetric ground state. He
we have a unique supersymmetric ground state, showing t
the numberK is indeed 1, as predicted byU duality.

The U dual of more general (m,n) state described be-
fore is given by bound states ofm D-membranes lying in
the 8-9 plane, andn D-membranes lying in the 6-7 plane
The collective coordinate dynamics of this system has be
described in Ref.@6#, and the interacting part of the theory
is now given by anN54 supersymmetric U~1!3 SU(m)
3SU(n) theory in two dimensions, with a hypermultiple
each in the adjoint representations of SU(m) and SU(n),
and a charged hypermultiplet that carries U~1! charge, and
belongs to the fundamental representations of both, SU(m)
and SU(n). It will be extremely interesting to count the
number of supersymmetric ground states of this system a
see if this agrees with the corresponding numb
d(mn)/(16)3, which is the number of short multiplets in the
elementary string spectrum forNL5mn.
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