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U duality and intersecting D-branes
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The spectrum of elementary string states in type Il string theory compactified on a torus contains short
multiplets which are invariant under only one-quarter of the space-time supersymmetry generators.
U-duality transformation converts these states into bound states of Dirichlet branes which wrap around inter-
secting cycles of the internal torus. We study a class of these bound states that are dual to the elementary string
states at the first excited level, and argue that the degeneracy of these bound states is in agreement with the
U-duality prediction.

PACS numbsdis): 11.25.Mj

The spectrum of type IlIA or IIB string theory compacti- Since U duality [1] transforms the states carrying NS-NS
fied on a torus contains single particle states in the ultrashortharges to states carrying RR charges in general, and since
(256-dimensional multiplet. These states carry an equal the latter states have been shown to arise from Dirichlet
amount of left- and right-moving charges and are in thebranes D-braneg [2] wrapped around various internal
ground state oboth the left- and the right-moving oscilla- cycles, we expect that we should be able to reproduce the
tors. As a result they always have unit multiplicity. There arevalues ofd(N,) quoted above by working out the degenera-
also states in the short multiplgdf dimension (16§] which  cies of the states db-branes. This analysis has been made
can carry different amounts of left- and right-moving Possible by the recent discovery of Wittg8] that the dy-
charges, and are in the ground stateihier the left-or the ~ hamics of collective coordlnat_es of parallel D—brane_s is
right-moving oscillators. For definiteness we shall assum&l€scribed by a supersymmetric ij(gauge theory. Using.
from now on that the right-moving oscillators are in their this collective coordinate description we have argued in a

ground state. The degeneracy of these states depends on fHgVious papef5] that for ultrashort multiplets, the degen-

level of the left-moving oscillator state. @z andQ, denote elr_acy ofD-brane states agreis (\leIt(h the dpredmt:jortk;m:]-
the right- and the left-moving charge vectors, &hddenotes ality. In a recent papd6] Bershadsky, Sadov, and Vafa have

the level of the left-moving part of the state, then, with Suit_generallzed Witten's result to the case of intersecting

able normalization, the mass of the stgite the Ramond- D-branes. In this Rapid Communication we shall use this
Ramond(RR) sectof is given by result to analyze the degeneracy of short multiplets. In par-

ticular we shall work out the degeneracy Dfbrane states
dual to theN| =1 states and argue that the number is indeed
+N, . (1) equal tod(1), in agreement_vyith the prediqtion Of duality. .
In order to be more specific, let us consider type A string
o o theory compactified on a four tord¥, with each of the four
A similar formula exists in the Neveu-SchwalfdS) sector, internal circles having self-dual radius. We shall denote the
but we do not need to write it down. We shall take Et}to Compact directions bym for (6g m< 9) and the noncom-
be the defining equation foM, for givenQ, , Qg. The total  pact directions by* for (0=<u<5). The indexu will run
degeneracyl(N,) of such states for given values @f and  over all values. This six-dimensional theory has eiglit)U

QR, can be computed from the formula gauge fi_elds comir_lg from the NS-NS sector and eig[_it)U
gauge fields coming from the RR sector. Thieduality
* * [1+q"\® group of this theory has a specifié, element, which
2 d(N ) gNt=256 (—n) ) 2 changes all the NS-NS gauge fields to RR gauge fields and
N =0 n=111-9 vice versa, and acts as a triality rotation on fhaluality
. ] group SO(4,47) [7]. We shall use thiZ, element to convert
In order to find the number of short multiplets one needs tQ; state carrying purely NS-NS charge to a state carrying
divide the value ofi(N,) obtained this way by (16) which purely RR charge.
is the dimension of the supermultiplet. The degeneracies of |, order to be more specific about the action of tHis
some of the low-lying states ared(1)=(16)’,  element on various charges we need to choose a basis for the
d(2)=9x (16)3,»etc. A charge vector. A suitable choice of basis will be as follows. If
The chargeQg andQ, referred to above couple to the p; andw; denote the momentum and winding number asso-
U(1) gauge fields arising in the NS-NS sector of the theoryciated with the internal directions, then we represent the
charge vector as

o
2

N

M?=

2
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Pe must preserve the inner product matrix. Thus we can choose
w the Z, to induce the following map between the gauge fields
6 (up to sign:
-Q=| . |. ®) Cogu=Geu»  Coru—Bepu
Po Crgu=Grz,  CogeBry,
Wg

CesﬁHGsﬁ ) C79,I<—’ Bsﬁ )

In this basis the inner product of two charge vectors is com- A:Gg;, CieBgy. ®)
puted from the metric: R "

In particular, the momentump® that couples tdGg;, will be

%1 mapped toCgg, charge and the winding/® that couples to

o 0 1 Be;, Will be mapped toCg7, charge. Thus theng,n) state

L= o - ( ) (4) will be mapped to a state witm units of Cgq,; charge and
1 10 n units of Cq7, charge. As shown in Reff2], such a state can

o1 arise from a state withni+n) Dirichlet membranes, with
m of them wrapping around the 8-9 cycle of the torus, and
] R . o n of them wrapping around the 6-7 cycle of the torus. In
In particular,Q,_ and Qg will denote the projection of the orqer to prove the invariance of the spectrum uridedual-
charge vector to the subspace witheigenvalues-1 and ity one needs to show that this system contains supersym-
+1, respectively. Also, metric bound states with degeneraymn).
. We shall analyze the (1,1) case in detail and show that the
Q3—-Qf=Q'LQ. (5  degeneracy of states of tiiz-membranes agree witth(1)
computed from elementary string spectrum. But before we
Consider now the charge vector proceed we need to resolve the usual problem with margin-
ally stable states. Since a (1,1) state can decay into a (1,0)
m state and a (0,1) state at rest, there is no energy barrier
against pulling the tw®-membranes away from each other.
This makes the analysis difficfiffo get around this problem
0 we use the trick used in Rd&]. Namely, we compactify one
) 6) more direction(say x*) so that the momentum alongd is
quantized, and look at the sector carrying odd units of mo-
mentum in this direction. If a marginally stable bound state
0 of two D-membranes of the type discussed above exist in the
six-dimensional theory, then the Kaluza-Klein modes of this
For thisQ"LQ=2mn. Using Eq.(1) we see that for a short state, carrying odd units of momentum along tHedirec-
multiplet, a state carrying this charge vector hastion, will be absolutely stable in the resulting five-
N, =Q'LQ/2=mn. One can compute the degeneracy ofdimensional theory. We shall look for these absolutely stable
such states in the elementary string spectrum from(Ex. states in the spectrum.
Also the mass of this statwhich we shall refer to as As in Ref.[5] we shall simplify the analysis by perform-
(m,n) statg is given by ing a T-duality transformation involving the coordinaté.
Let us denote the coordinates in this new theoryBy This
duality transformation will convert the momentum aloxly
|QR| (|m|+|n| (7)  into winding numbet along y*, and convert a membrane
V2 wrapped aroundm-n plane into a three brane wrapped

around them-n-1 plane. Thus the problem that we have is

This shows that these states are only marginally stable. In
particular, an fn,n) state can decay into am(0) state and a
(0n) state at rest. We shall come back to this point later.  2aithough in principle one can directly study the question of ex-

What will be the dual of these states under Hetrans-  jsience of these marginally stable bound states by mapping this
formation mentioned above? The gauge fields in the RR segsroblem to a supersymmetric quantum mechanics problem, it has
tor come from the componen@,,,; of the rank three anti-  peen pointed out by Vafa that naive computation of Witten index in
symmetric tensor fields in_the A theory, as well as theihese models might not always agree with the predictiond of
gauge fieldA; and the dua[: of Cg;p- In this basis, the  duality [8]. This could be related to subtleties that might be present
inner product matrix for the RR charges is given as follows.at large separation. For this purpose we shall find it much more
It pairs A, charge WlthC charge. ForC,,,; charge the convenient to work with the absolutely stable bound states de-
inner product matrix is S|mply the intersection matrix of the scribed below.
corresponding two cycles on the torus. Thg transforma- 3Throughout this paper, winding number will refer to the winding
tion mapping the RR gauge fields to NS-NS gauge fieldsiumber of an elementary string that couples toBhg field.

n

M(m,n)=
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that of a three bran®, wrapped around the 8-9-1 plane alongy?, and the electric flux of U(,)alongy® measures
interacting with a three bran@, wrapped around the 6-7-1 the difference between the winding numbers carried by the
plane. We want to look for supersymmetric ground states ofwo Dirichlet three branes.

this system carrying units of winding along they* direc- Finally we turn to the hypermultiple®. These fields do
tion, wherek is odd. The dynamics of collective coordinates not have a simple interpretation as space-time coordinates of
of this system has been given in Rg6]. Since the con- the three branes, as can be seen from the fact that due to their
figuration described above has translation invariance onlgoupling toA,, they become very heavy when the relative
along they® andy?! direction, it is described by &1+1)-  separation betweeR; andD, is large. These correspond to
dimensional field theory with base space labeled by th@pen string states that start @y and end onD, or vice
coordinatesy® and y!. The theory is arlN=4 supersym- versa’

metric gauge theoryWhich can be regarded as the dimen- Let us now turn to the quantization of this SyStem. First
sional reduction of alN=2 theory in four dimensionswith ~ We discuss the free part of the theory, the one involving
an U1),xU(1), gauge group. Besides the(1) vector A;, ®,, andd,. Since we are looking for states that do not

multiplets which we shall denote by, andA,, the theory carry any momentum or winding along any of the directions

6 9 H
contains a pair of gauge neutral hypermultiplés and y°, ...y°, we can take the momenta conjugate to the scalar

®,, and a hypermultiple® of charge(+1,—1) under the components ofp; and ®, to be zero. This gives a unique

L state from this sector. Similarly if we are considering the
U(1) ;X U(1), gauge group. For our purpose it will be con- :
. ) : : system at rest we can take the total momenta, which are
venient to work with the diagonal sum and difference of

: conjugate to the four scalar componentsAqf, to vanish.
the two hL(l) groups V(\;h'Ch we shall lo!elrlote bﬁ/(t])') Cdand dFinally we can take the system to be in the eigenstate of the
g(l'ir' Tdt;corrﬁspon '?g ;ecftor mutt|p etfs will be ;note electric flux of U(1), gauge field with eigenvaluk, where
Y Ac anda, . (Herec stands for cen er of mass andor k is the required winding number along. For reasons that
relative coordinates, for reasons that will be explained goon

‘has been explained before, we shall t&k® be odd. Thus
Then the gauge group [8J(1).<U(1),]/Z; and the hyper- tizati fth ; t of the f t .
multiplet O has charge (0.2) under U(2} U(1), . Of these ¢ duantization of the bosonic part of the free system gives

i . . a unigque state for every value kf
set of fields, the gauge multiplét; and the hypermultiplets What about the fermionic part? Each neutral hypermultip-

qr)]l and @, ha\;e no |hnteractg)n(sj, the only mttla_rac'gon of the ot contains eight real fermionic coordinates, and the U(1)
theory comes from the standard gauge coupling between e, . muyltiplet also contains eight real fermionic coordi-

vector multipletA, and the charged hypermultipl_@. . nates. This gives rise to 24 fermionic zero modes in total.
Before we proceed further, let us give a physical 'nterpreQuantization of this gives rise to a2=(16)3-fold degen-
tation of the various bosonic fields, at least in the region

2 ~eracy.
where the two three bran&;, andD, are well separated in 4

the phvsical We start with th tral h ltilet Thus if K denotes the number of supersymmetric ground
€ physical space. We start wi € neutral Nypermullipl®tSsiates of the interacting system, involving the vector multip-
Of the four scalars in the hypermultiplét; , two denote the

let A, and the ch dh ltipl€}, then the total de-
y® and y” coordinates of the three brari, lying in the et A, and the charged hypermultipl@l, then the total de

eneracy of this state will be given b
8-9-1 plane. The other two are coordinates conjugate to thg y g y
winding number along the 8 and the 9 directions. Similarly, (16)%K. (9)
of the four scalars in the hypermultiplét,, two correspond

to they® andy® coordinates of the three brai®, lying in  This number then needs to be compared with). Wehave

the 6-7-1 plane, and two are conjugate to the winding Numg|ready stated that(1)=(16)%; thus we see that the predic-
ber carried byD, alongy® andy’. Since the winding as well tjon of U duality is

as momenta along thg®, ... y° directions are quantized,

we see that we should interpret the scalar fields in both the K=1. (10)

hypermultiplets®, and ®, as compact coordinates in the

field space. We shall now proceed to verify this prediction. The approach
A vector multiplet in two dimensions has four scalars andthat we shall use is identical to the one taken in [R&f. The

one vector field. The four scalars in the U¢IJector mul-  interacting system can be viewed as the dimensional reduc-

tiplet correspond to the coordinateg?(y®,y*y®) of the  tion of a four-dimensional theory, containing ah=2 U(1)

three braneD;. The total electric flux associated with the vector supermultiplet interacting with as=2 hypermultip-

U(1); gauge field along* may be interpreted as the wind- et of U(1) charge two. We are looking for a supersymmetric

ing number carried by, alongy!—this situation is identi- ground state in this theory in the sector that carries odd unit

cal to the one described in R¢8]. Similarly the four scalars

in the U(1), vector multiplet correspond to the coordinates

(y%y®,y*.,y°) of the three brand®,, and the total electric  “physically, the absence of coupling between the neutral hyper-

flux associated with the U(%)gauge field along* may be  multiplets ®,, ®, and the charged hypermultipl€ may be un-

interpreted as the winding number carriedyalongy®. In derstood as follows. Mass & should vanish whenever the two

terms of the vector multipletd, andA, this means that the D-branes intersect. This happens whenever the spatial separation

scalar fields inA. denote the center-of-mass coordinates ofbetween the tw®-branes along?, . . . y° directions vanish. Since
D, andD, alongy?, ... y°, the scalar fields irA, denote these spatial separations are represented by scalar components of
the relative coordinates alonyg, . . . ,y°, the U(1), electric  the vector multipletA,, the mass ofQ cannot depend on the

flux alongy® denotes the total winding number of the systemvacuum expectation values of the hypermultipkts and ®., .
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of U(1), flux alongy?; this requirement comes from the For the trivial solution, given byb=A=A=0, the fields
fact that the gauge group is reaflyJ(1),xU(1),1/Z,, and &, A, andA are all massive, and() is unbroken. Thus the
hence the presence of an odd unit of U{1ljix forces us to  background electric field remains unscreened, costing a finite
have an odd unit of U(3)flux as well. Viewed as an energy, and hence supersymmetry is broken in this vacuum.
N=1 supersymmetric theory, this corresponds toNanl  The nontrivial solution, up tolcomplexified U(1) gauge
supersymmetric (1) gauge theory, with a (1) neutral chiral  transformation, is given by

superfieldd, and a pair of chiral superfields, A with U(1)

charge+ 2, interacting through the superpotential d=—7 A=A=en. (14)
WO=CI>AK (11) In this vacuum the () gauge symmetry is broken, and all

fields are massive. Thus the electric flux aloyg is
The classical theory has a flat direction, siqde) is unde-  screened, and we get a supersymmetric ground state. Hence
termined. However, for largéd) the fieldsA, A become We have a unique supersymmetric ground state, showing that
heavy, and the resulting low energy theory is that of a superthe numbei is indeed 1, as predicted by duality.
symmetric U1) gauge theory with no matter. The U(1)  The U dual of more generaln,n) state described be-
electric flux along they* direction is not screened, and as afore is given by bound states @ D-membranes lying in
result this field configuration has nonzero energy and breakéie 8-9 plane, anch D-membranes lying in the 6-7 plane.
supersymmetry. This shows that there is a finite energy barfhe collective coordinate dynamics of this system has been
rier against takingd to be large. As in Ref[3] we shall described in Ref[6], and the interacting part of the theory
assume that due to the presence of the energy barrier, we cnnow given by anN=4 supersymmetric 1)x SU(m)
add mass terms for various fields in the superpotential withxSU(n) theory in two dimensions, with a hypermultiplet
out changing the number of supersymmetric ground state€ach in the adjoint representations of &j(and SUq),

Thus we work with the modified superpotential and a charged hypermultiplet that carrie€llUcharge, and
_ _ belongs to the fundamental representations of both, n§U(
W=DPAA+1ed?+ pAA. (12 and SUq). It will be extremely interesting to count the

) ) _ number of supersymmetric ground states of this system and
Possible supersymmetric ground states of this system corr@ge jf this agrees with the corresponding number

sponding to the critical points &iV are obtained by solving d(mn)/(16)3, which is the number of short multiplets in the

the equations elementary string spectrum fof, =mn.
ed+AA=0 , (P+n)A=0=(D+ 7;)/? (13 | would like to thank C. Vafa for useful correspondence.
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