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Using a key observation due to Thiemann, a generalized Wick transform is introduced to map the constraint
functionals of Riemannian general relativity to those of the Lorentzian theory, including matter sources. This
opens up a new avenue within ‘‘connection dynamics’’ where one can work, throughout, only with real
variables. The resulting quantum theory would then be free of complicated reality conditions. The ramifications
of this development to the canonical quantization program are discussed.
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This work is motivated by two related but independe
considerations. The primary motivation comes from canon
cal quantum gravity. The approach based on self-dual co
nections has the advantage that all equations are low or
polynomials. However, to ensure that one recovers re
Lorentzian general relativity one has to impose rather co
plicated ‘‘reality conditions’’ on the basic canonical vari
ables.~See, e.g.,@1,2#.! Quantization would be significantly
easier if one could work entirely with real variables and y
have manageable constraints. Within connection dynam
this is indeed possible in the Riemannian~i.e., positive defi-
nite! signature because, in this case, self-dual connections
real @3#. Therefore, one way to achieve the desired go
would be to try to define a generalized Wick transform whic
would map the Riemannian constraint functionals to th
Lorentzian ones. To be useful, the transform has, of cour
to be sufficiently simple. The purpose of this communicatio
is to show that a recent result of Thiemann’s@4# implies that
a transform with desired features exists and, furthermore,
rather well with recent developments in quantum connecti
dynamics@5–10#. I should emphasize that the Riemannia
theory plays only a mathematical role in our description. Th
philosophy is the same as the one that underlies exac
soluble models: The physical, Lorentzian, theory is comp
cated but can be tackled by mapping it to a mathematica
530556-2821/96/53~6!/2865~5!/$10.00
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simpler theory. It just happens that the simpler theory can b
identified with Riemannian general relativity.

Our secondary motivation comes from the fact that the
availability of such a transform would also be useful in other
approaches to quantum gravity, notably the ones based o
path integrals. In Minkowskian field theories, one often
works with a Euclidean framework based on the
Osterwalder-Schrader axioms, constructs the theory, and th
recovers the Wightman functions from the Schwinger one
by a Wick rotation of the time coordinate. This simple route
is not available in theories of gravity. The question therefore
arises if there is a more general transform which will map the
Riemannian action to the Lorentzian. We will answer this
question affirmatively using the phase space form of the ac
tion. However, whether this result can be used to develop
full fledged path integral approach is still unclear.

Let us begin by specifying the phase space. Fix an orien
able, smooth three-manifoldS. The ADM phase space con-
sists of pairs (Ei

a ,Ka
i ) of real fields onS whereEi

a are the
~nondegenerate! triads of density weight one andKa

i , the
conjugate momenta. Thus, the three-metricqab is defined via
Ei
aEbi5qqab whereq is the determinant ofqab and the ex-

trinsic curvatureKab is defined byKab5(1/Aq)Ka
i Ei

cqbc .
The Gauss and the vector constraints

G i :5e i jkKa
j Eak50
R2865 © 1996 The American Physical Society
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and

V b :52Ei
aD @aKb]

i 50, ~1!

whereD is defined byDaEi
b50, are independent of the sig

nature. The scalar~or Hamiltonian! constraint, on the other
hand, does depend on the signature:

S L52qR12Ei
@aEj

b]Ka
j Kb

i 50

and

S R52qR22Ei
@aEj

b]Ka
j Kb

i 50, ~2!

whereR is the scalar curvature of the metricqab defined by
Ei
a and where the subscriptsL andR stand for ‘‘Lorentzian’’

and ‘‘Riemannian.’’
To pass to connection dynamics one can make a canon

transformation@3,1#

~Ei
a ,Ka

i !°~Aa
i :5Ga

i 1Ka
i ,Ei

a!, ~3!

whereGa
i is the SU~2! spin connection determined by th

triadEi
a . Note that the new configuration variableAa

i is real;
it is again an SU~2! connection onS. It is easy to verify that
the Gauss and the vector constraints~1! can be expressed a

G i5DaEi
a50 and V b'Ei

aFab
i 50, ~4!

whereD is the gauge covariant operator defined byA and
where' stands for ‘‘equals, modulo Gauss constraint.’’ No
incidentally that these are the simplest equations one
write down without reference to background fields: Amon
the nontrivial gauge covariant expressions, the left side
the first equation is the only one which is at most linear
E andA and that of the second is the only one which is
most linear inE and quadratic inA. The next simplest equa
tion one can write is

S R8 :5e i jkEi
aEj

bFabk50. ~5!

When translated in terms of (E,K), S R8 reduces toS R

modulo the Gauss constraint. Note that while the left sides
~2! are nonpolynomial inE and K due to the presence o
R, the left side of~5! is at worst quadratic inE and quadratic
in A. These are the primary simplifications of connectio
dynamics. Using the close similarity ofS R andS L , one can
readily translate the Lorentzian scalar constraint to conn
tion dynamics@11#: S L'22qR2e i jkEi

aEj
bFabk50. How-

ever, due to the presence ofR the equation is again compli-
cated and difficult to deal with in the quantum theory.

Now, if one uses a complex connectionAa
Ci5Ga

i

2 iK a
i in place of the realAa

i , the Lorentzian scalar con
straint does simplify@1#: it takes the same form as~5!, i.e.,
becomes

S L'S L8 :5e i jkEi
aEj

bFabk
C 50, ~6!

whereFC is the curvature ofAC. However, now the connec-
tion is complex and, to recover real general relativity, o
has to impose reality conditions which also seem comp
cated at first sight. However, recently Thiemann@4# has pro-
vided an approach to incorporate such reality conditions
-
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the quantization of a wide class of theories, including genera
relativity. This is achieved through the introduction of a
‘‘complexifier’’ which, in the classical theory, maps real con-
nectionsA to complex onesAC. The resulting quantum com-
plexifier can be regarded as a nontrivial generalization of the
coherent state transform of@12# and ~modulo certain techni-
cal issues that are being investigated! maps the Hilbert space
of square-integrable functions ofA to an appropriate Hilbert
space of holomorphic functions ofAC. For the class of theo-
ries in which the Hamiltonian~or the Hamiltonian constraint!
is simpler in the holomorphic representation, Thiemann’s
complexifier should make dynamics as well as reality condi-
tions manageable in the quantum theory.

In this Rapid Communication, I will restrict myself to
general relativity but work entirely with real connections.
The resulting framework seems to be technically simpler and
conceptually more transparent for the case under conside
ation. I will also present an extension of the generalized
Wick transform to the case when matter sources are presen
and discuss several ramifications of these results.

The idea is to construct a Poisson bracket preserving au
tomorphism on the algebra of functions on the phase spac
which maps the Riemannian constraints to the Lorentzian
ones~modulo constant rescalings!. Recall first that, given a
real function T on the classical phase space, the one-
parameter family of diffeomorphisms generated by its
Hamiltonian vector fieldXT induces the mapW(t) on the
algebra of functions on the phase space:

f°W~T!+ f5 f1t$ f ,T%1
t2

2!
$$ f ,T%,T%1•••

5 (
n50

`
tn

n!
$ f ,T%n , ~7!

where$,% denotes the Poisson brackets. For each value of th
real parametert, W(t) preserves the!-algebra structure as
well as the Poisson brackets on the space of functions on th
phase space. Now, if we letT be complex valued, the vector
field XT becomes complex and no longer generates motions
on the phase space. However~assuming the series con-
verges! the mapW(t) of ~7! continues to be a Poisson
bracket-preserving automorphism on the algebra of complex
valued functions on the phase space~although it no longer
preserves the! relation!. Following @4# let us set

T:5
ip

2 ES
d3x Ka

i Ei
a . ~8!

Then, regardingEi
a andKa

i as ~coordinate! functions on the
phase space, and settingW5Wu t51, we have

W+ Ei
a5 iEi

a and W+ Ka
i 52 iK a

i . ~9!

The automorphism property now implies (W+ f )(E,K)
5 f ( iE,2 iK ), so that the constraint functions transform via

W+ G i5G i , W+ V b5V b , and W+ S R52S L .
~10!
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53 R2867GENERALIZED WICK TRANSFORM FOR GRAVITY
Thus, the automorphismW defined by the Thiemann gener
ating functionT maps the Riemannian constraints to th
Lorentzian ones. It will therefore be referred to as a ‘‘gene
alized Wick transform.’’

The quantization strategy for the Lorentzian theory is th
as follows. Begin with the real phase spaceP of pairs
(Aa

i ,Ei
a). The classical configuration space is thenA/G , the

space of connections modulo gauge transformations and
quantum configuration space is a suitable completionA/G
thereof@5#. By now, integral@5–8# and differential@9# cal-

culus onA/G is well developed and we can use it to defin
the Hilbert space of states and quantum operators. The h
ristic requirement that the configuration and momentum o
eratorsÂ and Ê ~when expressed as usual by multiplicatio
by A and 2 i\d/dA, respectively! be self-adjoint can be
made precise and essentially suffices to select a uniq
measurem0 on A/G . The resulting Hilbert spaceH0

:5L2(A/G ,dm0) serves as the space of kinematic states
quantum gravity, the quantum analogue of the full pha
spaceP . ~Using integration theory one can also define a loo
transform fromH0 to a space of suitable functions of loop
and thus provide a rigorous basis for the Rovelli-Smolin loo
representation@13#.! Using differential calculus onA/G one
can introduce geometric operators onH0 , e.g., correspond-
ing to areas of two-surfaces and volumes of thre
dimensional regions@14,10#. ~See also@15#.! These can be
shown to be self-adjoint with purely discrete spectra, sho
ing that quantum geometry is very different from what th
continuum picture suggests.

To tackle dynamics one has to solve the quantum co
straints. Since we work onA/G , the Gauss constraint is
already taken care of.~Alternatively, it could also be im-
posed in the manner of Dirac; the final result is the sam!
The vector or diffeomorphism constraint can be solved@10#
using a ‘‘group averaging’’ technique@16#; there are no
anomalies. The space of solutions is naturally endowed w
a Hilbert space structure@10#, which we will denote by
Hd .

The last and the key step is to solve the Hamiltonia
constraint. The presence of the generalized Wick transfo
suggests the following strategy. One can begin with the R
mannian constraintS R8 of Eq. ~5!. ~Since the Gauss con-
straint has already been imposed,S R and S R8 are on the
same footing.! Because it has a simple expression in terms
A andE one can hope to regularize the corresponding qua
tum operator. For technical reasons~associated with regular-
ization!, one is led to work not withS R8 itself but rather with
its square root. LetŜ be the corresponding quantum opera
tor. The idea now is to exploit the generalized Wick tran
form. SinceW is a Poisson-brackets preserving automo
phism on the algebra of phase space functions, its quant
analogueŴ would be an automorphism on the algebra o
quantum operators. In view of Eq.~10! we can simply define
the Lorentzian operatorŜ L by

Ŝ L5Ŵ+ Ŝ + Ŵ21[ expS 2
1

i\
T̂D + Ŝ + expS 1i\ T̂D ,

~11!
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where T̂ is an operator version ofT. Equation~7! implies
that Ŝ L so defined will automatically have the correct clas-
sical limit. Physical quantum statesuC&L can now be ob-
tained by Wick transforming the kernel ofŜ :

Ŝ uC&50⇔Ŝ L~ŴuC&)[Ŝ LuC&L50. ~12!

Thus, the availability of the Wick transform could provide
considerable technical simplification: the problem of finding
solutions to all quantum constraints is reduced essentially t
that of regulating relatively simple operatorsŜ and T̂.

Indeed, significant progress has already been made o
both these problems. First, using a key idea due to Rovel
and Smolin@17#, the operatorŜ has been made well defined
on diffeomorphism invariant states, i.e., on a dense subspac
ofHd @18#. ~SinceS R8 itself is only diffeomorphism covari-
ant, the image ofŜ is also only diffeomorphism covariant.
However, we are interested only in the kernel of this opera
tor.! This regularization is not yet fully satisfactory. Nonethe-
less, it holds considerable promise; it is the first systematic
attempt at a nonperturbative regularization of the ‘‘Wheeler-
DeWitt equation.’’As forT̂, note first that the classicalT can
be expressed asT5( ip/2)$V,HE% whereV is the total vol-
ume of S and HE :5*d3x(1/Aq)S E8 is the ‘‘Riemannian
Hamiltonian.’’ Hence, it is natural to setT̂5(1/i\)@V̂,ĤE#.
Now, V̂ has already been regularized rigorously and the
regularization ofŜ provides an avenue to regularizeĤE . If
this last regularization can be completed one would be abl
to extract solutions to all quantum constraints via Eq.~12!.

The final step in the program is to introduce the appropri-
ate inner product on the space of physical states. If one use
the analogue of the generalized Wick transform for simple
model systems one finds that, to obtain interesting physica
states, one has to allow solutionsuC& ~to the analogue of the
Riemannian constraint! which are far from being ‘‘tame’’;
for example, they may diverge at ‘‘infinity’’~i.e., at the
boundary of the configuration space!. Therefore, the problem
of finding the correct inner product is, in general, quite non-
trivial. However, if these concrete steps can be completed i
the case under consideration, one would have a consiste
nonperturbative quantization of general relativity. The focus
will shift to developing approximation methods to extract
physical predictions of the theory.

The ‘‘real’’ strategy adopted here is of course closely re-
lated to the ‘‘complex’’ strategy of Thiemann’s@4#. At the
classical level, the two are completely equivalent; only the
emphasis is different. Thus, in the complex approach, on
notes that the generalized Wick transformW has the action
W+ Aa

i 5Aa
Ci on connections and concludes thatW sends Rie-

mannian scalar constraintS R8 of Eq. ~5! to the Lorentzian
S L8 of Eq. ~6!. SinceAC andS L8 are complex valued, in the
quantum theory, one is then naturally led to the holomorphic
representation. In the real approach, by contrast, one work
exclusively with real phase space variables and real con
straint functions.~In particular, the classical Wick transform
could be useful also in geometrodynamics.! In the quantum
theory, the use of holomorphic representation is no longe
essential. However, there is nothing that prevents one from
constructing this representation using techniques from@4#.
Indeed, it is desirable to construct it because of its closenes
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to coherent states; it could, for example, play an import
role in semiclassical considerations. In both approaches,
issue of introducing the physically appropriate inner prod
remains open, although a general direction for complet
this task has been suggested in@4#.

For general relativity, Thiemann introduced the generat
function T only in the source-free case. Can the strategy
using a generalized Wick transform be extended consiste
to incorporate the presence of matter? The answer is in
affirmative. Perhaps the most concise way to see this is
use the phase space action functional. Since this is in pa
restatement of the main results, for the convenience of re
ers who may be more familiar with the Arnowitt-Dese
Misner ~ADM ! framework, I will use this opportunity to
state these result using geometrodynamical variables.

The space-time action for general relativity with a cosm
logical constant, coupled with a scalar and a Maxwell fie
can be expressed in terms phase space variables. Mo
surface terms, one obtains

SR
L5

1

2E d4x N@7~qabqcd2qacqbd2qadqbc!P
abPcd

12q~R22L!1~7PaPb1BaBb!qab

1~7p21qqabDaDbf1m2qf!#, ~13!

where the superscriptL and the subscriptR stand for
‘‘Lorentzian’’ and ‘‘Riemannian,’’ respectively;qab is the
three-metric andPab its canonical momentum;Aa is the
Maxwell three-potential andPa its canonical conjugate mo
mentum;f is the Klein-Gordon field andp̃ its canonically
conjugate momentum;N is the lapse;R, the scalar curvature
of qab , andL the cosmological constant. To see the expli
form of the constraints one can reexpress the action in
canonical phase space form as

SR
L5E dtE d3x Pabq̇ab1PaȦa1pḟ1NSR

L

12Na~VR
L !a1~4A•t !DaP

a, ~14!

whereN, Na, and 4A•t are the Lagrange multipliers repre
senting the lapse, the shift, and the Maxwell scalar poten
andS andVa are the scalar and vector constraints. These
given by

2SR
L56~qabqcd2qacqbd2qadqbc!P

abPcd

12q~R22L!1~6PaPb1BaBb!qab

1~6p21qqabDafDbf1m2qf2! ~15!

and

2~VR
L !a52qabDcP

bc2pDaf2PbFab , ~16!

whereBa5 1
2 habc]@bAc] is the magnetic field of the vecto

potentialAa . Note that the scalar constraint is a density
weight two and the vector potential, of weight one. The
fore, the lapseN in Eqs.~13! and ~14! is a scalar density of
weight21 while the shiftNa is just a vector field.
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Now, let us consider the generalized Wick transformW
on the Einstein-Maxwell-Klein-Gordon phase space gener
ated by the functionT:

T:5
ip

2 E d3x qabP
ab1

ip

4 E d3x AaP
a. ~17!

It is then straightforward to compute the action ofW on the
canonical pairs, regarded as~coordinate! functions on the
phase space. However, since the action functionals of Eq
~13! and ~14! depend also on the Lagrange multipliers and
coupling constants, we need to specify howW acts on them.
Can we choose transformation properties of these nondy
namical variables so that Riemannian action functional is
mapped to the Lorentzian one? Not only does such a choic
exist but is in fact unique:

W+ ~N,Na,4A•t !5~2N,Na,eip/4 4A•t !,

W+ ~L,m2!5~2 iL,2 im2!. ~18!

~Note thatW has the same action on the Lagrange multiplier
4A•t as it has on the dynamical variableA.) With this speci-
fication, it is straightforward to verify thatW+ SR5SL . Thus,
W serves as the generalized Wick transform. General consid
erations outlined in the source-free case suggest that the co
responding quantum operatorŴ should send the kernel of
the Riemannian constraint operators to that of the Lorentzia
constraints. However, to make these heuristic consideration
precise, it is essential to regulate the Riemannian constrain
operators and the generatorT. These problems are yet to be
investigated. Finally, note that the classical generatorT has a
suggestive form:

T5(
s50

s52 S ip4 D sE d3x Q+ P, ~19!

wheres is the spin of the field,Q its configuration variable,
andP its momentum variable. This form continues to hold
for spin 1

2 fields as well. It may well be a reflection of a
deeper structure underlying the generalized Wick transform

To conclude, let me summarize a few features of the clas
sical generalized Wick transformW. The fact thatW sends
the Riemannian action functional to the Lorentzian one may
tempt one to look for a simple space-time interpretation of
the transform. However, I believe that such an interpretation
does not exist. Note in particular that the lapse-shift pairs
transform in a way that is different from what a space-time
interpretation would suggest~i.e., from the common usage in
quantum cosmology!. The natural home for the transform
appears, rather, to be the phase space. However, care
needed even in this picture: As was already emphasized, b
cause the generating functionT is imaginary,W does not
arise from a canonical transform on the real phase space. W
could complexify the phase space and consider the Hami
tonian flow generated byT. As far as I can see, however, one
cannot interpretW as mapping a real subspace of this com-
plex phase space which can be called ‘‘the phase space of th
Riemann theory’’ to a real subspace which can be identified
with the ‘‘phase space of the Lorentzian theory.’’ Thus, the
interpretation ofW as a generalized Wick transform refers
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53 R2869GENERALIZED WICK TRANSFORM FOR GRAVITY
only to its role as an automorphism on the algebra of fu
tions on the common real phase space of the two theorie

Next, while the quantum operatorŴ sends solutions of
the Riemannian quantum constraints to solutions of
Lorentzian quantum constraints, there is no obvious sens
which the classicalW maps solutions to constraints of on
theory to those of the other again becauseW is not associ-
ated with a diffeomorphism of the phase space. However,
classicalW does have an interesting ‘‘dynamical’’ role. Fix
lapse shift pair (N,Na) and consider the ‘‘Hamiltonian’’
functionalHR :5*d3x@NSR1Na(VR)a# of the Riemannian
theory. Denote the corresponding Hamiltonian vector field
XN,NW
R . Since the vector fields can be regarded as derivati

on the ring of smooth functions, the automorphismW on the
algebra of smooth functions induces a map on the spac
vector fields which we will denote again byW. Now, be-
causeW sendsHR to HL :5*d3x@2NSL1Na(VL)a# and
because it preserves Poisson brackets, it follows t
W+ XN,NW 5X

2N,NW
L . Thus, the Riemannian dynamical traje

tories are sent to the Lorentzian dynamical trajectories.
nc-
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call however that only the integral curves of the Hamiltonian
vector fields which lie on the constraint surface can be iden
tified with physical solutions. Hence, in generalW does not
send four-dimensional Riemannian solutions to four
dimensional Lorentzian ones. On general grounds, one do
not expect any map with this stronger property to exist on th
full solution space. Indeed it is surprising that even a ma
that sendsXN,NW

R to X
2N,NW
L should exist. That this is achieved

by an explicit and relatively simple generatorT is very strik-
ing. It is quite possible that this fact will have some powerfu
applications already in classical gravity.

Finally, the ideas discussed here should be applicable al
to integrable models obtained by dimensional reduction o
general relativity@19#.
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