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Using a key observation due to Thiemann, a generalized Wick transform is introduced to map the constraint
functionals of Riemannian general relativity to those of the Lorentzian theory, including matter sources. This
opens up a new avenue within “connection dynamics” where one can work, throughout, only with real
variables. The resulting quantum theory would then be free of complicated reality conditions. The ramifications
of this development to the canonical quantization program are discussed.

PACS numbse(s): 04.60.Ds, 04.20.Fy

This work is motivated by two related but independentsimpler theory. It just happens that the simpler theory can be
considerations. The primary motivation comes from canoniidentified with Riemannian general relativity.
cal quantum gravity. The approach based on self-dual con- Our secondary motivation comes from the fact that the
nections has the advantage that all equations are low ordévailability of such a transform would also be useful in other
polynomials. However, to ensure that one recovers reafPProaches to quantum gravity, notably the ones based on
Lorentzian general relativity one has to impose rather comPaih integrals. In_Minkowskian field theories, one often

licated “reality conditions” on the basic canonical vari- works with a Euclidean framework based on the
P Y Osterwalder-Schrader axioms, constructs the theory, and then

ables.(See, e.g.[1,2].) Quantization would be significantly (ocovers the Wightman functions from the Schwinger ones
easier if one could work entirely with real variables and yetby a Wick rotation of the time coordinate. This simple route
have manageable constraints. Within connection dynamicss not available in theories of gravity. The question therefore
this is indeed possible in the Riemanni@e., positive defi-  arises if there is a more general transform which will map the
nite) signature because, in this case, self-dual connections aRiemannian action to the Lorentzian. We will answer this
real [3]. Therefore, one way to achieve the desired goaluestion affirmatively using the phase space form of the ac-
would be to try to define a generalized Wick transform whichtion. However, whether this result can be used to develop a
would map the Riemannian constraint functionals to thefull fledged path integral approach is still unclear.
Lorentzian ones. To be useful, the transform has, of course, Let us begin by specifying the phase space. Fix an orient-
to be sufficiently simple. The purpose of this communicationdble, smooth three-manifold. The ADM phase space con-

is to show that a recent result of Thiemanf#g implies that ~ Sists of pairs Ef',K3) of real fields onX whereE? are the

a transform with desired features exists and, furthermore, fithondegenerajetriads of density weight one and;, the
rather well with recent developments in quantum connectiorgonjugate momenta. Thus, the three-metjg is defined via
dynamics[5-10. | should emphasize that the RiemannianE{E”'=qq?" whereq is the determinant ofj,, and the ex-
theory plays only a mathematical role in our description. Thetrinsic curvatureK,, is defined byK,,= (1/\/a)K;EiC%c-
philosophy is the same as the one that underlies exactlyhe Gauss and the vector constraints

soluble models: The physical, Lorentzian, theory is compli- B .

cated but can be tackled by mapping it to a mathematically ;1= eKLE®=0
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and the quantization of a wide class of theories, including general
4 relativity. This is achieved through the introduction of a
7 =2ED[aK}y =0, (1) “complexifier” which, in the classical theory, maps real con-
) ) b i _ nectionsA to complex oneé\". The resulting quantum com-
whereD is defined byDaEi_:O’, are mdependent of the sig- plexifier can be regarded as a nontrivial generalization of the
nature. The scalafor Hamﬂtomar) constraint, on the other .gnerent state transform f£2] and (modulo certain techni-
hand, does depend on the signature: cal issues that are being investigatethps the Hilbert space
o _ acblyivi of square-integrable functions &fto an appropriate Hilbert
/1= —QqR+2E| E; 'KiKp=0 space of holomorphic functions &". For the class of theo-

and ries in which the Hamiltoniakor the Hamiltonian constraint
is simpler in the holomorphic representation, Thiemann’s
S r= —qR—ZEi[aEf’]KgKL=O, (2)  complexifier should make dynamics as well as reality condi-
tions manageable in the quantum theory.
whereR is the scalar curvature of the metag,, defined by In this Rapid Communication, | will restrict myself to
E? and where the subscriptsandR stand for “Lorentzian”  general relativity but work entirely with real connections.
and “Riemannian.” The resulting framework seems to be technically simpler and
To pass to connection dynamics one can make a canonicabnceptually more transparent for the case under consider-
transformatior{ 3,1] ation. | will also present an extension of the generalized
: . : . Wick transform to the case when matter sources are present
(E} K= (Ay:=T,+K,,ED), (3  and discuss several ramifications of these resullts.

. ) ) ) The idea is to construct a Poisson bracket preserving au-
whereT’, is the SU2) spin connection determined by the o morphism on the algebra of functions on the phase space
triad EF'. Note that the new configuration varia is real;  which maps the Riemannian constraints to the Lorentzian
it is again an S(R) connection or¥. It is easy to verify that  ones(modulo constant rescalingsRecall first that, given a
the Gauss and the vector constraififscan be expressed as real function T on the classical phase space, the one-

o . i parameter family of diffeomorphisms generated by its
Zi=7.E'=0 and 7,~ElFy,=0, @ Hamiltonian vector fieldX; induces the ma(t) on the

where & is the gauge covariant operator definedAyand algebra of functions on the phase space:

where~ stands for “equals, modulo Gauss constraint.” Note 2

incidentally that these are the simplest equations one can o f— hl

write down without reference to background fields: Among P W(T)e F=FHHf T+ 2! HETHTHF

the nontrivial gauge covariant expressions, the left side of % n

the first equation is the only one which is at most linear in _ 2 t_{f ) @)
E and A and that of the second is the only one which is at “ontt

most linear inE and quadratic iA. The next simplest equa-

tion one can write Is where{,} denotes the Poisson brackets. For each value of the

1 — JIKEREPE . — () ) real parametet, W(t) preserves the-algebra structure as

< R i=j T abkT well as the Poisson brackets on the space of functions on the

phase space. Now, if we l&t be complex valued, the vector

OF’eld X1 becomes complex and no longer generates motions
on the phase space. Howev@ssuming the series con-
verge$ the mapW(t) of (7) continues to be a Poisson
bracket-preserving automorphism on the algebra of complex-
valued functions on the phase spdefthough it no longer
Jreserves the relation. Following [4] let us set

When translated in terms ofE(K), ./% reduces to.”g
modulo the Gauss constraint. Note that while the left sides
(2) are nonpolynomial irE and K due to the presence of
R, the left side of(5) is at worst quadratic iE and quadratic
in A. These are the primary simplifications of connection
dynamics. Using the close similarity of; and.”| , one can
readily translate the Lorentzian scalar constraint to conne
tion dynamics[11]: .7 ~ —2qR— €*EPE}F 5,=0. How- .
ever, due to the presence Rfthe equation is again compli- T = '_Wj d3x KLE®2. (8)
cated and difficult to deal with in the quantum theory. 2 )s a

Now, if one uses a complex connectioAy =T" .
—iK} in place of the realA,, the Lorentzian scalar con- Then, regardings? andK. as(coordinatg¢ functions on the
straint does simplifyf1]: it takes the same form &$§), i.e.,  phase space, and settidg=W|;_,, we have
becomes

a_:ra oKl = K]

.VL%.V[:=e”kEf‘EFngk=0, ©) We Ef=iE] and We K,=—iK}. 9)
whereF" is the curvature oA“. However, now the connec- The automorphism property now impliesW¢ f)(E,K)
tion is complex and, to recover real general relativity, one=f(iE, —iK), so that the constraint functions transform via
has to impose reality conditions which also seem compli-
cated at first sight. However, recently Thiemddhhas pro- We Gi=%, WeZ7,=7}, andWo.Yg=-.7.
vided an approach to incorporate such reality conditions in (10



53 GENERALIZED WICK TRANSFORM FOR GRAVITY R2867
Thus, the automorphistw defined by the Thiemann gener- WherAe'AI' is an operator version of. Equation(7) implies
ating function T maps the Riemannian constraints to thethat.”| so defined will automatically have the correct clas-
Lorentzian ones. It will therefore be referred to as a “gener-sical limit. Physical quantum staté®), can now be ob-

alized Wick transform.” _ _ tained by Wick transforming the kernel of:
The quantization strategy for the Lorentzian theory is then
as follows. Begin with the real phase spaee of pairs AWY=0e.7 (W¥))=7|¥), =0. (12)

(A, ,ED). The classical configuration space is theth.<, the

space of connections modulo gauge transformations and thEhus, the availability of the Wick transform could provide
quantum configuration space is a suitable completighs considerable technical simplification: the problem of finding
thereof[5]. By now, integral[5—8] and differential[9] cal-  solutions to all quantum constraints is reduced essentially to

culus on_7/ < is well developed and we can use it to definethalt gf ffjg“'?‘“”g rela:uvely S'mplﬁ opelratoj(;é aEdT' d
the Hilbert space of states and quantum operators. The heBb naeed, signimcant progress has aiready been made on

ristic requirement that the configuration and momentum op- th these problems. First, Jsing a key idea due to Roveli
eratorsA andE (when expressed as usual by multiplication and Smolin{17], the operator/” has been made well defined

by A and —i%8/5A, respectively be self-adjoint can be on diffeomorphism invariant states, i.e., on a dense subspace

made precise and essentially suffices to select a uniqud 7a [18] (Sincey itself is only diffeomorphism covari-

measureuo on .Z%. The resulting Hilbert space’, ant, the image of/ is also only diffeomorphism covariant.
O/ S 0 However, we are interested only in the kernel of this opera-

:=L%(.7]7,duo) serves as the space of kinematic states ofor) This regularization is not yet fully satisfactory. Nonethe-
quantum gravity, the quantum analogue of the full phasgegs it holds considerable promise; it is the first systematic
space””. (Using integration theory one can also define & l00pattempt at a nonperturbative regularization of the “Wheeler-
transform from 7, to a space of suitable functions of 100pS pe\wjitt equation.” As forT, note first that the classicalcan
and thus provide a rigorous basis for the Rovelli-Smolin loopy expressed a6= (i m/2){V,Hg} whereV is the total vol-
representatiofil3].) Using differential calculus onZ/ 2 one ;e of S and HEi=fd3X(i/\/a)»VE is the “Riemannian
can i?troduce ge(:mt?,\t/ric opferators @7'%’ e'?" corresFOPhd- Hamiltonian.” Hence, it is natural to sétz(l/ih)[(/,ﬁg].
ljr}%enosioirglafeg?o n§l f, f’&r ?chs a?s?j[lS}/.()) E:.?:;e ((:)an bréee Now, V hg\s already peen regularized rigorous_ly and the
shown to be self-adjoint with purely discrete spectra, showrgularization of/” provides an avenue to regulariek: . If
ing that quantum geometry is very different from what thethis last regula_rlzatlon can be completed one wpuld be able
continuum picture suggests. to extragt solutlons to all quantum cqnstralnts via B@). _
To tackle dynamics one has to solve the quantum con- T.he final step in the program is to m;roduce the appropri-
straints. Since we work onZ/ %, the Gauss constraint is ate inner product on the space of physmal states. If one uses
already taken care ofAlternatively, it could also be im- the analogue of the generallzed chk_transform_ for 5|mple
posed in the manner of Dirac; the final result is the same.mOdel systems one finds tha_t, to obtain interesting physical
The vector or diffeomorphism constraint can be soli/&d| thates, one has totall'ov“\llvﬁplﬁtlolnkzc (tofthe aga'logl,‘lf of tt]_e
using a “group averaging” techniqugl6]; there are no lemannian constraintwhich are far from being “tame;

anomalies. The space of solutions is naturally endowed witiflOr example, they may d_|verge at “infinityli.e., at the
a Hilbert space structurf10], which we will denote by boundary of the configuration spac&herefore, the problem

W of finding the correct inner product is, in general, quite non-
. ”/d .

The last and the key step is to solve the Hamiltonianmv'al' However, if these concrete steps can be completed in

constraint. The presence of the generalized Wick transforr}whe case under consideration, one would have a consistent

suggests the following strategy. One can begin with the Rie[lonperturbatlve guantization of general relativity. The focus

mannian constraint’% of Eq. (5). (Since the Gauss con- will shift to developing approximation methods to extract

. . o physical predictions of the theory.
straint has already been imposedg and #z are on the The “real” strategy adopted here is of course closely re-

same footing. Because it has a simple expression in terms Ofated to the scomplex” strategy of Thiemann[g]. At the
A andE one can hope to regularize the corresponding quans

. ! . Classical level, the two are completely equivalent; only the
tum operator. For technical reasofassociated with regular- emphasis is different. Thus, in the complex approach, one

izatior), one is led to work not with/ itself but rather with  1otes that the generalized Wick transfomnhhas the action
its square root. Let” be the corresponding quantum opera-\y. Al = A% on connections and concludes thetsends Rie-
tor. The. idea now is to.explon the generallzeq Wick trans- 2nnian scalar constrairity, of Eq. (5) to the Lorentzian
form. SinceW is a Poisson-brackets preserving automor—yl of Eq. (6). SinceA® and.7{ are complex valued, in the

phism on the algebra of phase space functions, its quantu'ahantum theory, one is then naturally led to the holomorphic

analogueW would be an automorphism on the algebra of o resentation. In the real approach, by contrast, one works

quantum operators. In view of EGLO) we can simply define gy cysively with real phase space variables and real con-

the Lorentzian operator’ by straint functions(In particular, the classical Wick transform

could be useful also in geometrodynamids. the quantum

L L theory, the use of holomorphic representation is no longer

S T ~\ A essential. However, there is nothing that prevents one from
A=We TeW = exp( a ET)O'% ex;{ET>, constructing this representation us?ng tecphniques ffain

(11 Indeed, it is desirable to construct it because of its closeness
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to coherent states; it could, for example, play an important Now, let us consider the generalized Wick transfdivh
role in semiclassical considerations. In both approaches, then the Einstein-Maxwell-Klein-Gordon phase space gener-
issue of introducing the physically appropriate inner productated by the functio:
remains open, although a general direction for completing . .
this task has been suggested4n. o I
For general relativity, Thiemann introduced the generating T== 0% GapP**+ Tf dx AP, (17)
function T only in the source-free case. Can the strategy of
using a generalized Wick transform be extended consistentlit is then straightforward to compute the actionwfon the
to incorporate the presence of matter? The answer is in theanonical pairs, regarded @soordinat¢ functions on the
affirmative. Perhaps the most concise way to see this is tphase space. However, since the action functionals of Egs.
use the phase space action functional. Since this is in part@3) and (14) depend also on the Lagrange multipliers and
restatement of the main results, for the convenience of readoupling constants, we need to specify hdivacts on them.
ers who may be more familiar with the Arnowitt-Deser- Can we choose transformation properties of these nondy-
Misner (ADM) framework, | will use this opportunity to namical variables so that Riemannian action functional is
state these result using geometrodynamical variables. mapped to the Lorentzian one? Not only does such a choice
The space-time action for general relativity with a cosmo-exist but is in fact unique:
logical constant, coupled with a scalar and a Maxwell field, .
can be expressed in terms phase space variables. Modulo Wo (N,N3,4A-t)=(—N,N3e'™* A1),
surface terms, one obtains

Wo (A, u?)=(—iA,—iu?). (18
1
S§=§f d*X N[ F (ap0cd— daclbd— Haddnc) P2?P¢ (Note thatW has the same action on the Lagrange multiplier
4A-t as it has on the dynamical variatAe) With this speci-
+2q(R—2A)+(+ P2P*+B2B®)q,, fication, it is straightforward to verify that/o Sy=S, . Thus,
W serves as the generalized Wick transform. General consid-
-2 b 2
+(F7°+aq7DaDpd+ ua¢)], 13 erations outlined in the source-free case suggest that the cor-

responding quantum operatdy should send the kernel of
the Riemannian constraint operators to that of the Lorentzian
constraints. However, to make these heuristic considerations
precise, it is essential to regulate the Riemannian constraint
operators and the generafbr These problems are yet to be
investigated. Finally, note that the classical generatbas a
suggestive form:

where the superscript and the subscripR stand for
“Lorentzian” and “Riemannian,” respectively,q,, is the
three-metric andP?” its canonical momentumA, is the
Maxwell three-potential ané? its canonical conjugate mo-
mentum; ¢ is the Klein-Gordon field andr its canonically
conjugate momentur is the lapseR, the scalar curvature
of g,,, andA the cosmological constant. To see the explicit

form of the constraints one can reexpress the action in the $=2 /.
canonical phase space form as T=> (T)Sf d*x Q- P, (19
s=0
ngf dtf d3x PaPQ,,+ P2A,+ e+ NSk wheres is the spin of the fieldQ its configuration variable,
and P its momentum variable. This form continues to hold
+2Na(V'F;)a+(4A-t)DaPa, (14) for spin 3 fields as well. It may well be a reflection of a

deeper structure underlying the generalized Wick transform.
whereN, N2, and “A-t are the Lagrange multipliers repre-  TO conclude, let me summarize a few features of the clas-
senting the lapse, the shift, and the Maxwell scalar potentialSical generalized Wick transfori. The fact thatW sends
andSandV, are the scalar and vector constraints. These arée Riemannian action functional to the Lorentzian one may

given by tempt one to look for a simple space-time interpretation of
the transform. However, | believe that such an interpretation
2§F}:i(%chd— Oaclbd— Uagdlpe) P22PCH does not exist. Note in particular that the lapse-shift pairs
transform in a way that is different from what a space-time

+2q(R—2A)+(+P?P°+BBP)qyy interpretation would suggeséite., from the common usage in

guantum cosmology The natural home for the transform
appears, rather, to be the phase space. However, care is
needed even in this picture: As was already emphasized, be-
cause the generating functidn is imaginary, W does not
arise from a canonical transform on the real phase space. We
could complexify the phase space and consider the Hamil-
tonian flow generated by. As far as | can see, however, one
whereB2= 3 729 ,A is the magnetic field of the vector cannot interpreW as mapping a real subspace of this com-
potential A,. Note that the scalar constraint is a density ofplex phase space which can be called “the phase space of the
weight two and the vector potential, of weight one. There-Riemann theory” to a real subspace which can be identified
fore, the lapseN in Egs.(13) and(14) is a scalar density of with the “phase space of the Lorentzian theory.” Thus, the
weight — 1 while the shiftN? is just a vector field. interpretation ofW as a generalized Wick transform refers

+ (=7 + 9D ,pDpd+ n2qd?) (15
and

2(V|F_e)a:2qachPbC_WDa‘i’_PbFaba (16)
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only to its role as an automorphism on the algebra of func<call however that only the integral curves of the Hamiltonian
tions on the common real phase space of the two theories.vector fields which lie on the constraint surface can be iden-
Next, while the quantum operata¥ sends solutions of tified with physical solutions. Hence, in genelal does not
the Riemannian quantum constraints to solutions of theend four-dimensional Riemannian solutions to four-
Lorentzian quantum constraints, there is no obvious sense i@imensional Lorentzian ones. On general grounds, one does
which the classicall maps solutions to constraints of one not expect any map with this stronger property to exist on the
theory to those of the other again becalfgds not associ- full solution space. Indeed it is surprising that even a map
ated with a diffeomorphism of the phase space. However, ththat sendsXE 5 to XEN § Should exist. That this is achieved
classicaW does have an interesting “dynamical” role. Fix a by an explici{ and rela’tively simple generaibiis very strik-
lapse shift pair §,N%) and consider the “Hamiltonian” ing. Itis quite possible that this fact will have some powerful
functional Hg : = fd3®X[NSz+N?(Vg),] of the Riemannian applications already in classical gravity.
theory. Denote the corresponding Hamiltonian vector field by  Finally, the ideas discussed here should be applicable also
XE «- Since the vector fields can be regarded as derivation® integrable models obtained by dimensional reduction of
on the ring of smooth functions, the automorphiéfion the ~ general relativity{19].
algebra of smooth functions induces a map on the space of | 5o grateful to Thomas Thiemann for sharing his results
vector fields which we will der;ote again BY. Now, be-  prior o publication. | have also benefited from discussions
causeW sendsHg to Hy:=[d*x[~NS +N*(V\)a] and  \ith Jerzy Lewandowski, Don Marolf, and Jose Moura
because |tL preserves Poisson brackets, it follows thainis research was supported in part by the NSF Grant No.
We Xy N=X_y - Thus, the Riemannian dynamical trajec- PHY93-96246 and by the Eberly research fund of Penn State
tories are sent to the Lorentzian dynamical trajectories. Redniversity.
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