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Master formula approach to chiral symmetry breaking and pp scattering
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A master formula approach to chiral symmetry breaking is used to derive a general on-shell formula
pp scattering. Comparison with experiment shows that theP-wave pp scattering amplitude is strongly
constrained by the electroproduction data in ther region.

PACS number~s!: 11.30.Rd, 11.30.Qc, 13.75.Lb
At low energies, chiral symmetry offers a powerfu
method for dealing with hadronic processes involving pion
In the past, various approaches have been formulated
implement its structures. Apart from a few exceptions ho
ever, most of them have relied either on off-shell extrapo
tion ~the soft pion limit@1#!, or an expansion starting from
the chiral limit ~chiral perturbation theory@2–4#!.

In this Rapid Communication we show that such refe
ences to unphysical limits are not necessary. We derive a
of exact identities for pionic processes on shell, which na
rally yields threshold theorems as well as corrections
them. In fact we find that all low energy theorems of curre
algebra are just variants of a single master formula.

Our strategy is to start from the gauge-covariant vers
of the PCAC ~partial conservation of axial vector curren!
equation pioneered by Veltman and Bell@5#, and convert it
into an equation of motion for the pion field by a change
variables. Integration then yields a condition on the extend
S matrix, which is the desired master formula. It has t
structure of a reduction formula, and iteration allows an e
act rewriting of scattering amplitudes in terms of correlatio
functions and form factors, some of which are measurab

Our general results allow tests of new hypotheses far
yond the threshold region. An example in point ispp scat-
tering where we find that theP-wave amplitude in ther
region is strongly constrained by electroproduction data a
other sources.

Consider an action whose kinetic part is invariant und
chiral SUL(2)3SUR(2) with a scalar-isoscalar mass term
the (2,2) representation. Examples are two-flavor QCD
sigma models. The symmetry properties of the theory may
expressed by gauging the kinetic part withc-number external
fields vm

a and am
a , and extending the mass term to includ

couplings with scalar and pseudoscalar fieldss andpa. For
two-flavor QCD, the relevant part of the action reads

I51E d4x q̄gmS i ]m1Gm1vm
a ta

2
1am

a ta

2
g5Dq

2
m̂

mp
2 E d4x q̄~mp

21s2 ig5t
apa!q, ~1!
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where mp is the pion mass. We will assume that
f5(vm

a ,am
a ,s,pa) are smooth functions that fall off rapidly

at infinity.
Currents and densitiesO5(V,A, f ps, f pp) may be intro-

duced asO (x)5dI /df(x) which obey the Veltman-Bell
equations@5#

¹mVm1amAm1 f ppp50, ~2!

¹mAm1amVm2 f p~mp
21s!p1 f pps50, ~3!

where ¹m5]m11 vm is the vector covariant derivative,
am
ac5eabcam

b , pac5eabcpb, and fp is the pion decay con-
stant. In the above we have used the fact that the Bardeen
anomaly @6# and the Wess-Zumino term@7# vanish for
SUL(2)3SUR(2). Introducing the extendedS matrix S ,
holding the incoming fields fixed, and using the Schwinger
action principle@8# implies

^b inudS ua in&5 i ^b inuS dI ua in&. ~4!

This result together with asymptotic completeness, yield the
Peierls-Dyson formula@9#

O ~x!52 iS †
dS

df~x!
. ~5!

It follows from the Veltman-Bell equations~2! and ~3!
that

S ¹m
ac d

dvm
c ~x!

1am
ac~x!

d

dam
c ~x!

1pac~x!
d

dpc~x! DS
5SXV

a~x!1pac~x!
d

dpc~x! DS 50, ~6!

S ¹m
ac d

dam
c ~x!

1am
ac~x!

d

dvm
c ~x!

2@mp
21s~x!#

d

dpa~x!

1pa~x!
d

ds~x! DS 5SXA
a~x!2@mp

21s~x!#
d

dpa~x!

1pa~x!
d

ds~x! DS 50, ~7!
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where XV and XA are the generators of loca
SUL(2)3SUR(2). We further require

^0uAm
a ~x!upb~p!&5 i f pdabpme

2 ip•x. ~8!

In the absence of stable axial vector or other pseudosca
mesons, this is equivalent to the asymptotic conditio
(x0→7`)

Am
a ~x!→2 f p]mp in, out

a ~x!,

]mAm
a ~x!→1 f pmp

2p in, out
a ~x!, ~9!

where p in and pout are free incoming and outgoing pion
fields. Comparison of~9! with ~3! shows thatp is a normal-
ized interpolating field.

To incorporate~9! into ~6! and ~7! we introduce a modi-
fied action

Î5I2 f p
2 E d4x@s~x!1 1

2a
m~x!•am~x!#, ~10!

the corresponding extendedSmatrix

Ŝ 5S expS 2 i f p
2 E d4x@s~x!1 1

2a
m~x!•am~x!# D , ~11!

and a change of variablep5J/ f p2¹mam . Taking
f̂5(vm

a ,am
a ,s,Ja) as independent variables, modified cu

rents, and densitiesÔ5( jV ,jA , f pŝ,p̂) may be defined as

Ô ~x!5
d Î

df̂
52 i Ŝ †

dŜ

df̂
. ~12!

The chain rule yields

Vm
a ~x!5 jVm

a ~x!1 f pam
ac~x!p̂c~x!,

Am
a ~x!5 jAm

a ~x!1 f p
2am

a ~x!2 f p~¹mp̂!a~x!,

s~x!5ŝ~x!1 f p ,

pa~x!5p̂a~x!. ~13!

Substitution into~2! gives

¹mjVm1amjAm1Jp50 ~14!

and therefore

SXV1J
d

dJD Ŝ 50. ~15!

On the other hand, substitution into~3! gives

¹mjAm1amjVm52 f p
2¹mam1 f p¹m¹mp2 f pa

mamp

1 f p~mp
21s!p2~J2 f p¹mam!~ŝ1 f p!.

~16!

This equation may be integrated by introducing the retard
and advanced Green’s functions
l

lar
ns

r-

ed

~2h2mp
22K !GR,A51, ~17!

K52vm]m1~]mvm!1vmvm2amam1s ~18!

where we have adopted a condensed matrix notation. W
have the Yang-Feldman-Kallen-type equations@10#

p5~11GRK !p in2GRJ1GR~¹mam2J/ f p!ŝ

2
1

f p
GR~¹mjAm1amjVm!

5~11GAK !pout2GAJ1GA~¹mam2J/ f p!ŝ

2
1

f p
GA~¹mjAm1amjVm!. ~19!

Noting thatpout5Ŝ †p inŜ , and using~12! we arrive at

d

dJ
Ŝ 52 iGRJŜ 1 i Ŝ ~11GRK !p in1

1

f p
GR~¹mam

2J/ f p!
dŜ

ds
2

1

f p
GRXAŜ

52 iGAJŜ 1 i ~11GAK !p inŜ

1
1

f p
GA~¹mam2J/ f p!

dŜ

ds
2

1

f p
GAXAŜ . ~20!

Evidently, any result which is a consequence of~9! and
symmetry~6! and ~7! must be contained in~15! and ~20!.
Since ~15! simply represents local isospin invariance, the
nontrivial results of current algebra must be basically con-
tained in~20!.

To show that this is the case and that~20! is the desired
master formula, we note that

GR,A5DR,A1DR,AKGR,A

5DR,A1GR,AKDR,A , ~21!

whereDR,A are the Green’s functions for free fields. Multi-
plying ~20! by (11GAK )

21512DAK and Fourier decom-
posing yield

@ain
a ~k!,Ŝ #5E d4y d4z eik•y~11KGR!ac~y,z!

3S 2 i Ŝ ~Kp in!
c~z!1 i Ŝ Jc~z!2

1

f p
~¹mam

2J/ f p!c~z!
dŜ

ds~z!
1

1

f p
XA
c ~z!Ŝ D , ~22!

@ Ŝ ,ain
a†~k!#5E d4y d4z e2 ik•y~11KGR!ac~y,z!

3S 2 i Ŝ ~Kp in!
c~z!1 i Ŝ Jc~z!Ŝ 2

1

f p
~¹mam

2J/ f p!c~z!
dŜ

ds~z!
1

1

f p
XA
c ~z!Ŝ D , ~23!
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where ain
a (k) and ain

a†(k) are the annihilation and creation
operators of incoming pions with momentumk and isospin
a. Iterations give the two and higher pion reduction form
las, e.g., up to orderf̂:

†ain
b ~k2!,@ Ŝ ,a in

a†~k1!#‡5E d4y e2 ik1•y
1

f p
XA
a~y!

3@ain
b ~k2!,Ŝ #. ~24!

The Bogoliubov causality condition@11# implies that

T* @Ô ~x1!•••Ô ~xn!#5~2 i !nŜ †
dn

df̂~x1!•••df̂~xn!
Ŝ .

~25!

With this in mind, using~22!–~24!, sandwiching between
nucleon states, and switching off the external fields, give
familiar pN scattering formula@12#

^N~p2!u†ain
b ~k2!,@S,a in

a†~k1!#‡uN~p1!&

52
i

f p
mp
2dabE d4y e2 i ~k12k2!•y^N~p2!uŝ~y!uN~p1!&

2
1

f p
2 k1

ak2
bE d4y1d

4y2e
2 ik1•y11 ik2•y1

3^N~p2!uT* @ jAa
a ~y1!jAb

b ~y2!#uN~p1!&

1
1

f p
2 k1

aE d4y e2 i ~k12k2!•yeabe^N~p2!uVa
e~y!uN~p1!&,

~26!

whereS5Ŝ uf50 is the on-shellSmatrix. The disconnected
part in ~26! can be checked to cancel. At threshold,~26!
yields the Tomozawa-Weinberg relation@13#.

The extension topp scattering is straightforward in prin-
ciple, although lengthy in practice. We find that the transiti
amplitudeiT (p2d,k2b←k1a,p1c) is a sum of four contri-
butions

iT tree5
i

f p
2 ~s2mp

2 !dacdbd12 perm, ~27!

iT vector5
i

f p
2 eabeecde~s2u!S FV~ t !212

t

4 f p
2 PV~ t ! D

12 perm, ~28!

iT scalar52
2imp

2

f p
dabdcdS FS~ t !1

1

f p
2

1

2 f p
2 ^0uŝu0& D

1
mp
4

f p
2 dabdcdE d4y e2 i ~k12k2!•y

3^0uT* @ŝ~y!ŝ~0!#u0&conn12 perm, ~29!
u-

the

on

iT rest51
1

f p
4 k1

ak2
bp1

gp2
dE d4y1d

4y2d
4y3

3e2 ik1•y11 ik2•y22 ip1•y3

3^0uT* @ jAa
a ~y1!jAb

b ~y2!jAg
c ~y3!jAd

d ~0!#u0&conn,

~30!

wheres,t,u are the Mandelstam variables,

^0uain
d ~p2!Va

e~y!ain
c†~p1!u0&conn

5 i edec~p11p2!aFV~ t !e2 i ~p12p2!•y ~31!

is the pion electromagnetic form factor,

i E d4x eiq•x^0uT* @Va
a~x!Vb

b~0!#u0&

5dab~2gabq
21qaqb!PV~q2! ~32!

is the isovector correlation function, and

^0uain
d ~p2!s~y!ain

c†~p1!u0&conn5dcdFS~ t !e
2 i ~p12p2!•y

~33!

is the scalar form factor.
So far we have made use of only chiral symmetry and

general principles. The appearance of the vector quantitie
~31! and ~32! is a direct manifestation of the
SUL(2)3SUR(2) structure. Fortunately, these quantities
~modulo subtraction constants! are experimentally acces-
sible, and are well described byr dominance. The scalar
contributions~29! have the wrong quantum numbers forr to
be significant. The remainder~30! is unknown, but sincejA is
one-pion reduced, we assume it has no strong resonant b
havior. Hence, near ther peak, we expect thepp scattering
amplitude to be dominated by~27! and ~28!.

This point is confirmed by the data. Ignoring~29! and
~30!, and using a one-resonance fit toFV andPV

1 @14#, we
obtain the isospinI51 and angular momentuml51 ampli-
tude as shown in Fig. 1 for the real and imaginary parts. The
results are in excellent agreement with thepp data @15#,
justifying a posterioriour neglect of~29! and~30!. A similar
analysis can be carried out for theI50, l50 channel@16#.

It is also interesting to go to low energies, where the un-
known terms~29! and~30! can be estimated by expanding in
1/f p . The master equation~20! then truncates to

dŜ 0

dJ
52 i Ŝ 0GRJ1 i Ŝ 0~11GRK !p in

52 i Ŝ 0GAJ1 i ~11GAK !p inŜ 0 ~34!

corresponding to the quadratic action

1PV follows from e1e2 annihilation data via a once-subtracted
dispersion relation. The subtraction constant is fixed by the one-
loop analysis discussed below.
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IQ5
1

2E d4x@1~¹mp!a~¹mp!a2~amp!a~amp!a

2~mp
21s!papa#1E d4x Japa. ~35!

In ~34! and ~35!, s andam
a enter only through the combina-

tion ŝ5s12am a
m. If we take this to be true forŜ 0 , we

obtain a two-parameter fit to pionic data at one-loop leve
which reproduces the Kawarabayashi-Suzuki-Riazudd
Fayyazuddin~KSRF! relation @17#. Also, sinceŝ is isospin

FIG. 1. Real~Re! and imaginary~Im! parts of theP-wavepp
amplitude versusAs. The solid line is the result following from
~27! and ~28! using a one-resonance fit to the available data f
FV andPV from Ref. @14#. Thepp data are from Ref.@15#.
l,
in-

symmetric,~30! contributes only to the isospin 0 and 2 chan-
nels by ~25!, and the bulk of theP-wave amplitude comes
from ~28! as claimed.

We may also relax the condition ons andam . The result
then coincides with ordinary chiral perturbation theory@4#.
For theP-wave scattering lengths~in units ofmp

22) we have2

a1
1~ tree! 5 0.0300 ,

a1
1~vector! 5 0.0049 ,

a1
1~scalar! 5 0.0039 ,

a1
1~rest! 5 0.0000 , ~36!

which shows that~30! is again small at threshold.
To summarize, we have derived a master formula for chi-

ral symmetry breaking~20!, and in particular an exact on-
shell formula~27!–~30! for pp scattering. Our formula~20!
is strictly equivalent to the chiral symmetry equation~3! and
the one-particle formula~8!. Therefore any result of chiral
symmetry and~8! at low momenta, must be contained in
~20!. Indeed, we have explicitly checked that Weinberg’s
@12# on-shell pion-nucleon scattering formula~26! follows
from ~20! by iteration, and that chiral perturbation theory
follows also from~20! by expanding in inverse powers of the
pion decay constant. Empirically, we find that~30! is small at
r energies compared to resonant~vector! terms dictated by
chiral symmetry. Since~30! is small near threshold we con-
clude that the bulk of ther contribution topp scattering is
given by the vector term~28! in a model-independent way, a
question which has attracted some attention in the literature
@18#.

A comprehensive discussion of the present formulation,
further applications, and detailed comparison with previous
work by other authors will be given elsewhere@19#. Exten-
sion to SUL(3)3SUR(3) is currently under investigation.

This work was supported in part by the U.S. DOE Grant
No. DE-FG-88ER40388.

2The uncertainty in the evaluation of the scalar contribution is
large ~0.0051!. This uncertainty follows from the uncertainties as-
sociated with the various fitting parameters.
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