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Master formula approach to chiral symmetry breaking and s scattering
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A master formula approach to chiral symmetry breaking is used to derive a general on-shell formula for
mar scattering. Comparison with experiment shows that Fheave 77 scattering amplitude is strongly
constrained by the electroproduction data in pheegion.

PACS numbds): 11.30.Rd, 11.30.Qc, 13.75.Lb

At low energies, chiral symmetry offers a powerful where m_ is the pion mass. We will assume that
method for dealing with hadronic processes involving pions¢=(vi ,a‘z ,S,p?) are smooth functions that fall off rapidly
In the past, various approaches have been formulated tat infinity.
implement its structures. Apart from a few exceptions how- Currents and densities=(V,A,f .o,f .7) may be intro-
ever, most of them have relied either on off-shell extrapoladuced as®(x)=dl/5¢(x) which obey the Veltman-Bell
tion (the soft pion limit[1]), or an expansion starting from equationg5]
the chiral limit (chiral perturbation theorj2—4]).

In this Rapid Communication we show that such refer- VAV, +aA,+fpm=0, 2
ences to unphysical limits are not necessary. We derive a set u 5 B
of exact identities for pionic processes on shell, which natu- VAR, + &V — T (mi+s)m+f.po=0, ©)

rally yields threshold theorems as well as corrections tq Wh _ is th . derivati
them. In fact we find that all low energy theorems of current ere Vu=dult v, Is the vector covarrant erivative,
o= abca pac— €*p®, and f_ is the pion decay con-

algebra are just variants of a single master formula. stant. In the above we have used the fact that the Bardeen

Our strategy is to start from the gauge-covariant VerSior}momaly [6] and the Wess-Zumino terrfi7] vanish for
of the PCAC (partial conservation of axial vector currgent SUL(2)X SUx(2). Introducing the extende® matrix .,

equation pion_eered by _\/eltman a”O! BE“_H' and convert it holding the incoming fields fixed, and using the Schwinger
into an equation of motion for the pion field by a change of 3tion principle[8] implies

variables. Integration then yields a condition on the extended
S matrix, which is the desired master formula. It has the (B in|6/a iny=i(B in.78l|a in). (4)
structure of a reduction formula, and iteration allows an ex-
act rewriting of scattering amplitudes in terms of correlationThis result together with asymptotic completeness, yield the
functions and form factors, some of which are measurable.Peierls-Dyson formul§9]
Our general results allow tests of new hypotheses far be-
yond the threshold region. An example in pointrsr scat- Ax)=—is
tering where we find that th@-wave amplitude in the Op(X)’
region is strongly constrained by electroproduction data and It follows from the Veltman-Bell equationé?) and (3)
other sources. that
Consider an action whose kinetic part is invariant under
chiral SU| (2)Xx SUg(2) with a scalar-isoscalar mass term in
the (2,2) representation. Examples are two-flavor QCD or (
sigma models. The symmetry properties of the theory may be
expressed by gauging the kinetic part watmumber external
fields vz and a‘;, and extending the mass term to include =(X3(x)+pa°(x)
couplings with scalar and pseudoscalar fieddsnd p2. For N
two-flavor QCD, the relevant part of the action reads
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where X,, and X, are the generators of local (_D_mi—_K)GRA:lv (17

SU, (2) X SUx(2). Wefurther require '

. K=2v#g , +(d*v,)t+Vv*v, —aa, +s 18

OIAL =) =if e P @ O LT 1D
where we have adopted a condensed matrix notation. We

In the absence of stable axial vector or other pseudoscalgfave the Yang-Feldman-Kallen-type equatiphe]
mesons, this is equivalent to the asymptotic conditions

(X0—>IOO) ’7T:(1+GRK)7Tm_GRJ"‘GR(V#a#_J/fTr)(}

a i a 1
AUC)= =1 0T, ol ) ~ - Gr(VHi a2y,

IrA2 +fm2ad 9 5
W)= F M Tin, 0ufX), ® = (14 GpK) oy Gad+ Ga(V¥a,— I/t )&

where m;, and 7y, are free incoming and outgoing pion 1

fields. Comparison of9) with (3) shows thatr is a normal- — f—GA(V“j AnT &y, (19

ized interpolating field. -

To incorporate(9) into (6) and (7) we introduce a modi- Noting that g, = & Trm/ and using(12) we arrive at

fied action
8o 1 .
='—fif dhx[S(x) + ha(x) -2, (x)], (10 5/——IGRJ(/+L/(1+GRK)77m+EGR(V a,
. : 87 1 .
the corresponding extend&lmatrix —JIf ) —— f—GRXAV‘"
.&:y/exp( —ifif d*x[s(x) + 2a*(x)-a,(x)] ], (11) = —iG AL +i(14+GaK) T
. . 1 87 1 .
and a change of variablep=J/f.—V*a,. Taking + f—GA(V“aM—J/fﬂ)ﬁ—— f—GAXA% (20
¢=(vi,ai,s,\]a) as independent variables, modified cur- m S m
rents, and densitieS=(jy ,ja.f 0, m) may be defined as Evidently, any result which is a consequence(®f and
- A symmetry(6) and (7) must be contained if15) and (20).
Z(x)= ﬂ__l/ t5/ 12 Since (15) simply represents local isospin invariance, the
)= 5S¢ B by nontrivial results of current algebra must be basically con-
tained in(20).
The chain rule yields To show that this is the case and tha6) is the desired
master formula, we note that
V(X)) =[5, (%) + f & (x) 7¢(x),
g Gra=AratAraKGRrA
— 2 -
AZ(X)_JZ‘\M(X)—’_fwaZ(X)_fﬂn’(Vp,W)a(X)i ZAR,A+GR,AKAR,A7 (21)
o(x)=a(x)+f,, whereAg 5 are the Green’s functions for free fields. Multi-
A plying (20) by (1+G,K) '=1—A,K and Fourier decom-
m(X) = 7%(X). (13 posing yield

Substitution into(2) gives - )
J [af;,(k),ﬂzf d*y d*z éY(1+KGR)3%y,2z)

VMjV#‘FE_iMjAM‘F\_]’IT:O (14
R A 1
and therefore X| —i.AAKm)(2)+i.73%z) — f—(V“aﬂ
Xyt 32| =0 (15) 55/“ 1
ViEsd) : —JIf)%(2) 55(2) XZ(Z)/ (22

On the other hand, substitution int8) gives
7,adl(k fd“ d*z e *Y(1+KGRr)2(yY,z

VA9t &y, = —f2 SVia,+f VAV o—f aa,m s (k1= y ( RITY2)

+fﬂ.(mﬂ_+8)77—(\]—fﬂ.V”'a’u)(O'-l-fﬂ.).

(16)

. . .1
x| —IAK ) (2) +1.73%2) 7~ (VM3

This equation may be integrated by introducing the retarded —JIf.)%(2) 7
and advanced Green’s functions 0s(2)

+ ixﬁ\(z) /) (23)
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where af (k) and aﬁj(k) are the annihilation and creation . 1, boys [ o a4
operators of incoming pions with momentumand isospin 1.7 rest= + f_4klk2p1/p2f d%y,d%y,d%s
a. lterations give the two and higher pion reduction formu- T
las, e.g., up to ordesp: X @ K1y1tika:y2=ipa-ys
. o X(OIT* [JAa(YDIAS(Y2)iAy(Y8)iA5(0)110)conn
[a%(kZ)a[»V:aai‘:(kl)]]:f dy e_'kl'yf—xi(Y) (30
x[aﬂ(kz)ﬁ]. (29 wheres,t,u are the Mandelstam variables,
The Bogoliubov causality conditiofi1] implies that (0laf(p2)VE(Y)ag (p1)|0)conn
s =i€°qpy+p,) Fy(t)e ! (PLP2)Y (31
*T 2 O _(_iynipot b
o)) 1=(=1)07 5(})()(1)...5(}5()(”)"/' is the pion electromagnetic form factor,

(25)
; 4y, AIO-X *\/a b
With this in mind, using(22)—(24), sandwiching between If d*x e9X0[T [V”(X)Vﬁ(o)]|0>
nucleon states, and switching off the external fields, give the

_ sab _ 2 2
familiar 7N scattering formuld12] = 0"~ 9ap0”+ 4alp) V(a7 (32

is the isovector correlation function, and
(N(py)l[ab(ky),[S.a%T (k) TIIN(pa))

i ) R <0|ai(|11(pz)a'(y)aich(pl)|o>conn: 5Cd|:s(t)e—i(p1—p2)»y
== mzo® J dy e ' YN(p,)|3(y)IN(P2)) (33
aB [ 4oy e amikeyitiksy is the scalar form factor.
- f_fk1k2f dy,d%y,e M1t So far we have made use of only chiral symmetry and

general principles. The appearance of the vector quantities

><<N(p2)|T*[j;§a(y1)j,§B(y2)]|N(pl)) (3) and (32) is a direct manifestation of the

SU (2)XSUg(2) structure. Fortunately, these quantities

1 . i i
+ k| g4y e itki—ka)-y cabe e (modulo subtraction constantare experimentally acces-
ffrklf dye €PAN(P)[Va(y)N(po), sible, and are well described Iy dominance. The scalar
contributions(29) have the wrong quantum numbers foto

(26) be significant. The remaind€30) is unknown, but sincg, is

one-pion reduced, we assume it has no strong resonant be-

whereS=.7],_, is the on-shellS matrix. The disconnected havior. Hence, near the peak, we expect the-r scattering

part in (26) can be checked to cancel. At threshol@®)  amplitude to be dominated K27) and(28).

yields the Tomozawa-Weinberg relatiph]. This point is confirmed by the data. Ignoring9) and
The extension tarm scattering is straightforward in prin- (30), and using a one-resonance fitEg and Il * [14], we

Ciple, although Iengthy in praCtiCE. We find that the tranSitionobtain the isospin =1 and angu|ar momentuir= 1 amp”-

amplitudei.7(p,d,k,b—k;a,p;c) is a sum of four contri-  tude as shown in Fig. 1 for the real and imaginary parts. The

butions results are in excellent agreement with ther data[15],
justifying a posterioriour neglect 0f29) and(30). A similar

o i 2. ac<bd analysis can be carried out for the-0, | =0 channel16].
|~/tree:f_2(s_m7r)5a 6°"+2 perm, (27) It is also interesting to go to low energies, where the un-

7 known termg(29) and(30) can be estimated by expanding in

1/f .. The master equatiof20) then truncates to

. i t
|~7vector=f_25abef(:de(s_u)(FV(t)_l_ an(t)) 55/
a 7T - 0

+2 perm, (28 >
= —i.74GAd+i (14 GaK) min 7 (34)

= —i.74GrI+i.75(1+ GgK) i,

2im
fr

2
1 1
Y T cab scd = 5 . . .
1.7 scalar™ 506 (':S(")”L f_ 2f2 <O|‘7|O>) corresponding to the quadratic action

m? _
+ f_z"’bwabécdf d4y efl(klsz)-y

1, follows from eTe™ annihilation data via a once-subtracted

dispersion relation. The subtraction constant is fixed by the one-

X(0|T*[0(y)5(0)]|0)connt2 perm, (29 loop analysis discussed below.
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symmetric,(30) contributes only to the isospin 0 and 2 chan-
nels by (25), and the bulk of the?-wave amplitude comes
from (28) as claimed.

We may also relax the condition ananda,, . The result
then coincides with ordinary chiral perturbation thed#y.
For theP-wave scattering length# units ofm;z) we havé

al(tree) = 0.0300,

1.0

aj(vector) = 0.0049,

2500 250.0 650.0 850.0 aj(scalay = 0.0039
EMEV) al(resy = 0.0000 , (36)
' ' ’ which shows that30) is again small at threshold.

10 Im To summarize, we have derived a master formula for chi-
ral symmetry breakind20), and in particular an exact on-
shell formula(27)—(30) for 77 scattering. Our formulé20)
is strictly equivalent to the chiral symmetry equati@ and

o5 | the one-particle formul&8). Therefore any result of chiral

’ symmetry and(8) at low momenta, must be contained in
(20). Indeed, we have explicitly checked that Weinberg's
[12] on-shell pion-nucleon scattering formu(a6) follows
. . . from (20) by iteration, and that chiral perturbation theory
0'850_0 450.0 650.0 850.0 follows also from(20) by expanding in inverse powers of the
V5(MeV) pion decay constant. Empirically, we find tH80) is small at

p energies compared to resondméctop terms dictated by
chiral symmetry. Sincé€30) is small near threshold we con-
clude that the bulk of the contribution tomr# scattering is
given by the vector tern28) in a model-independent way, a
question which has attracted some attention in the literature
[18].

A comprehensive discussion of the present formulation,
further applications, and detailed comparison with previous
work by other authors will be given elsewhdrE]. Exten-
sion to SY(3)X SUg(3) is currently under investigation.

FIG. 1. Real(Re) and imaginary(lm) parts of theP-wave =7
amplitude versus/s. The solid line is the result following from
(27) and (28) using a one-resonance fit to the available data for
Fy andIly from Ref.[14]. The w7 data are from Ref.15].

|Q:%f d*X[+(VEm)A(V )%= (& m) (3, m)?

—(m2+s) w7+ f d*x JPml. (35

This work was supported in part by the U.S. DOE Grant
No. DE-FG-88ER40388.
In (34) and(35), s and ai enter only through the pombina-
tion s= sl—a,&". If we take this to be true for/,, we
obtain a two-parameter fit to pionic data at one-loop level, ?The uncertainty in the evaluation of the scalar contribution is
which reproduces the Kawarabayashi-Suzuki-Riazuddintarge (0.00512. This uncertainty follows from the uncertainties as-
Fayyazuddin(KSRP relation[17]. Also, sinces is isospin  sociated with the various fitting parameters.
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