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Exact solutions for null fluid collapse
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Exact nonstatic spherically symmetric solutions of the Einstein equations for a null fluid source with pres-
sureP and densityr related byP5kra are given. Thea51 metrics are asymptotically flat for 1/2,k<1 and
cosmological for 0,k,1/2. Thek51 metric is the known charged Vaidya solution. In general the metrics
have multiple apparent horizons. In the long time limit, the asymptotically flat metrics are hairy black hole
solutions that ‘‘fall between’’ the Schwarzschild and Reissner-Nordstro¨m metrics.

PACS number~s!: 04.20.Jb, 04.40.Nr
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The problem of gravitational collapse in general relativ
is of much interest. One would like to know whether, a
under what initial conditions, gravitational collapse results
black hole formation. In particular, one would like to know
there are physical collapse solutions that lead to naked
gularities. If found, such solutions would be countere
amples of the cosmic censorship hypothesis, which st
that curvature singularities in asymptotically flat spacetim
are always shrouded by event horizons.

Since the general problem appears intractable due to
complexity of the full Einstein equations, metrics with sp
cial symmetries are used to construct gravitational colla
models. One such case is the two-dimensional reductio
general relativity obtained by imposing spherical symme
Even with this reduction however, there are very few inh
mogeneous nonstatic exact solutions known. One examp
the Vaidya metric@1,2#. It describes the collapse of pressur
less null dust and is asymptotically flat. For the minima
coupled massless scalar field, the only inhomogeneous
static examples are cosmological solutions which have na
singularities@3,4#. For perfect fluids with equation of stat
relating pressureP and energy densityr given by P5kr,
self-similar solutions~which are not asymptotically flat! have
been studied@5#.

Recently there have been a number of numerical stu
of the spherically symmetric collapse problem@6–10#. The
initial data in these works are a compact ingoing pulse
was found that a black hole forms if any of the parameterc
in the initial data are above certain critical valuesc* , other-
wise the pulse scatters back out to infinity leaving flat spa
In particular, the black hole mass formu
MBH5k(c2c* )0.36 was discovered in Ref.@6#. This shows
that black holes initially form with zero mass—that is, n
mass gap is found.

There have been a number of attempts aimed at an
lytical understanding of these results@11–18#. One approach
is to look for exact collapse solutions and see what bl
hole mass formulas may be extracted from them.

In this Rapid Communication we give exact inhomog
neous and nonstatic spherically symmetric solutions of
Einstein equations for a collapsing null fluid. The equation

*Present address.
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state of the fluid isP5kra. As we will see, while these
collapse solutions do not have direct relevance for the crit
behavior mentioned above, they do have a number of in
esting features, including hair on black holes.

An inverted approach is used to find the solutions. F
the stress-energy tensor is determined from the metric. T
the equation of state and the dominant energy condition
imposedon its eigenvalues. This leads to an equation for
metric function, which is easily solved. The precise form
the stress-energy tensor is then displayed. Some intere
properties of the solutions are then discussed.

For the general spherically symmetric metric

ds252e2c~r ,v !F~r ,v !dv212ec~r ,v !dv dr1r 2dV2, ~1!

where 0<r<` is the proper radial coordinate,2`<v<`
is an advanced time coordinate, anddV2 is the metric on the
unit two sphere, the Einstein equationsGab58pTab give

m8[
]m

]r
524pr 2Tv

v , ~2!

ṁ[
]m

]v
54pr 2Tv

r , ~3!

c854prTrr . ~4!

The mass function m(r ,v) is defined by
F(r ,v)5122m(r ,v)/r , and is a measure of the mass co
tained within radiusr . We will consider the special cas
c(r ,v)50, which means from~4! that Trr 50.

The stress-energy tensor derived from the above me
may be diagonalized to give the energy density and the p
cipal pressures. The eigenvalue problem isTa

bUb5lUa .
The u-f part of Ta

b , which is determined fromGuu and
Gff5sin2u Guu , is already diagonal with pressure eigenva
ues

P[Tu
u5Tf

f52
m9

8pr
. ~5!

Since Trr 50 ~by choice!, we haveTv
v5Tr

r and Tr
v50.

Therefore thev-r part of the matrix to be diagonalized is
R1759 © 1996 The American Physical Society
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Ta
b5S Tv

v Tv
r

0 Tv
vD . ~6!

This has one eigenvaluel which gives the energy densit
r: namely,

2r[l5Tv
v52

m8

4pr 2 . ~7!

The corresponding eigenvector isva5(1,0,0,0) @ in the co-
ordinates (v,r ,u,f)#, and is lightlike. Therefore the stres
energy tensor,~which follows fromc50), is of Type II@19#.
Its nonvanishing components are

Tvv5rS 12
2m

r D1
ṁ

4pr 2 , Tvr52r, ~8!

Tuu5Pguu , Tff5Pgff .

These components may be succinctly written using the
linearly independent future pointing lightlike vecto
va5(1,0,0,0) andwa5(F/2,21,0,0) as

Tab5
ṁ~r ,v !

4pr 2 vavb1r~r ,v !~vawb1vbwa!

1P~r ,v !~gab1vawb1vbwa!. ~9!

@This tensor should be compared with the perfect fluid o
Tab5ruaub1P(gab1uaub), whereua is timelike.#

The stress-energy tensor~9! has support along both th
two future pointing lightlike vectorsva and wa , and as we
will see below, it is of precisely the form which gives th
charged Vaidya solution@2#. For P5r50, ~9! reduces to the
stress-energy tensor which gives the uncharged Vaidya
ric. We also note that while Tabw

awb5ṁ/4pr 2,
Tabv

avb50. Therefore there is energy flux only along one
the null directions.

A static observer with four-velocitySa5(1/AF,0,0,0)
and a rotating observer with four-velocit
Ra5(A2/F,0,0,1/r sinu) see, respectively, the energy den
ties TabS

aSb5ṁ/4pFr 21r and TabR
aRb52(ṁ/4pFr 2

1r)1P.
The stress-energy tensor~9! satisfies the dominant energ

condition if the following three conditions are met:

P>0, r>P, and Tabw
awb.0. ~10!

The first two of these imply thatm8>0 and m9<0. The
former just says that the mass function either increases
r or is constant, which is a natural physical requirement on

To satisfy the first two of the dominant energy conditio
~10!, we imposethe equation of stateP5kra, with k<1 and
a<1 . Thea,1 case will be discussed later. Fora51 this
gives the equation

2
m9

8pr
5k

m8

4pr 2 ~11!

for the mass function, which is easily integrated to give
o

e

et-

f

th
t.

m~r ,v !5H f ~v !2g~v !/@~2k21!r 2k21#, kÞ 1
2 ,

f ~v !1g~v !lnr , k5 1
2 ,

~12!

where f (v) and g(v) are arbitrary functions~which are re-
stricted only by the energy conditions!. Therefore we have
explicitly that

P5k
g~v !

4pr 2k12 5kr. ~13!

Therefore we must haveg(v)>0 for positive pressure and
energy density.

The last requirement in~10! for the dominant energy con
dition leads, forkÞ1/2, to

ṁ5 ḟ ~v !2
ġ~v !

~2k21!r 2k21.0. ~14!

Physically this means that the matter within a radiusr in-
creases with time, which corresponds to an implosion. T
condition is most easily satisfied ifḟ .0, and eitherġ.0 and
k,1/2, or ġ,0 andk.1/2.

In summary, for the dominant energy condition, we mu
have g(v)>0 and either ġ.0 for k,1/2 or ġ,0 for
k.1/2. For the weak or strong energy conditions~which are
equivalent for Type II stress-energy tensors!, we only need
r>0, P>0, andTabw

awb.0, but notr.P. Therefore for
the latter energy conditions we can havek.1 as well.

For k51/2, neither the weak nor dominant energy con
tions can be satisfied for allr becauseṁ5 ḟ (v)1ġ(v)lnr,
which always becomes negative for sufficiently smallr .
Therefore we will not consider this case further.

In summary, we have shown that the metric

ds252S 12
2 f ~v !

r
1

2g~v !

~2k21!r 2kDdv212dv dr1r 2dV2

~15!

is a solution of the Einstein equations for the null fluid stre
energy tensor~9! with P5kr, whereP is given by~13!.

There are two special cases of this solution which
already known. One is the Vaidya metric@1#, which arises for
g(v)50 ~vanishingr and P!. Then the only nonvanishing
component of the stress-energy tensor~9! is Tvv

5ṁ/4pr 25 ḟ (v)/4pr 2. The other is the charged Vaidya me
ric, where the charge depends onv @2#. This arises when
k51 in ~15!.

We therefore see that the stress-energy tensor we h
determined by imposing the equation of stateP5kr is a one
parameter (k.0) generalization of the stress-energy tens
which gives the charged Vaidya metric. The correspond
metric must therefore depend onk as in equation~15!. ~We
note that the parameterk in the metric or the stress-energ
tensor cannot be eliminated by a coordinate transforma
because it is the constant of proportionality between the
genvalues of the stress-energy tensor—exactly the same
son that this constant is not ‘‘gauge’’ for the ordinary perfe
fluid solutions with equation of stateP5kr.)
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A metric is considered to be asymptotically flat@20,21# if
in the vicinity of a spacelike hypersurface its compone
behave as

gab→hab1
aab~xc/r ,t !

r
1OS 1

r 11eD ~16!

as r→`. (e.0, hab is the Minkowski metric,aab is an
arbitrary symmetric tensor, andxc is a flat coordinate system
at spacelike infinity.!

According to this definition, our metrics~15! are asymp-
totically flat for k.1/2 and are cosmological fork,1/2. ~In
particular, fork51, f (v)5M and 2g(v)5Q2, the metric is
just Reissner-Nordstro¨m.!

When the imposed equation of state on the eigenva
~5! and ~7! of the stress-energy tensor~9! is P5kra, the
equation for the mass function is more complicated:

2
m9

8pr
5kS m8

4pr 2D a

. ~17!

This has solution

m~r ,v !5 f ~v !1E dr@g~v !2k~4p!12ar 2~12a!#1/12a.

~18!

Since a,1, this mass function gives only cosmologic
metrics—the pressures are too small to make them asy
totically flat. However, if the dominant energy condition
not imposed but only the weak~or strong! one is, thena.1
is possible, which will give asymptotically flat metrics.

We now consider in turn the asymptotically flat (k.1/2)
and the cosmological (k,1/2) metrics.

k.1/2: Since the dominant energy condition is satisfi
only for g(v)>0 and ġ(v)<0, if g(v) is zero initially, it
must remain zero. On the other hand, if it is nonzero initia
it can decrease to zero. Therefore the asymptotically flat m
rics can be flat in thev→2` limit only if g(v)[0. But this
is just the Vaidya case. However, the following two para
eter (A>0,0<B<1) family of metrics~where we have se
k51 for concreteness!, demonstrates an interesting featur

ds252S 12
A~11tanhv !

r
1

~12B tanhv !

r 2 Ddv2

12dv dr1r 2dV2. ~19!

In the v→2` limit this metric has a naked singularity a
r 50. However, in thev→1` limit it may have horizons
depending on the relative values ofA,B. Specifically, these
horizons are given byr 5A6AA21B21. Therefore a black
hole first forms at nonzero mass whenA2512B. This mass
gap separates a black hole from a naked singularity, and
be contrasted with the critical behavior solutions@6–8#
where there is no mass gap between flat space and a b
hole metric. Similar results hold for other values ofk.1/2.
What is happening physically is that initially only th
‘‘charge’’ term is present in the metric, and subsequen
infalling fluid reduces the ‘‘charge’’ and adds a ‘‘mass’’ term
s

es

p-

d

,
t-

-

ay

ck

,

These solutions also include metrics that give the evo
tion of a naked singularity atv52` into flat space at
v5`. This case occurs if we setA50, B51 in ~19!.

Another feature of these solutions is that they give bla
holes with null fluid hair for 1/2,k,1. An example of such
a static solution results from thev→` limit of the metric:

ds252S 12
A~11tanhv !

r
1

~12B tanhv !

r 3/2 Ddv2

12dv dr1r 2dV2, ~20!

with B as the ‘‘hair.’’ ~We have putk53/4.)
k,1/2: The dominant energy condition is now satisfi

for g(v)>0 andġ(v)>0. Therefore these metrics can be fl
as v→2`, and have black holes asv→`. A specific two
parameter (A,B>0) example fork51/3 ~radiation! is

ds252S 12
C1A~11tanhv !

r
2

B~11tanhv !

r 2/3 Ddv2

12dv dr1r 2dV2. ~21!

The apparent horizons in thev→` limit ~with C50! are
now given by the cubic equation (r 22A)32(2B)3r 50.
This equation always has a solution for the ranges ofA and
B allowed by the energy conditions. Thus, this solution d
scribes the collapse of radiation (P5r/3) from flat space at
v52` to a black hole atv5`.

Another possibility occurs whenC is negative in~21!.
Then, as for thek.1/2 case above, we have a naked sing
larity at v52`, which becomes a black hole atv5` as the
collapse proceeds.

In the general case, if limv→` f (v)5A and
limv→`g(v)5B the radii of the apparent horizons in th
v→` limit of the metric ~15! are given by

r 52A2
2B

~2k21!r 2k21 , ~22!

which in general may have multiple solutions.
In conclusion, we have given a new class of null flu

collapse solutions~15! and~18! of the Einstein equations fo
the stress-energy tensor~9!. These include new asymptot
cally flat black hole solutions (a51, 1/2,k,1) with mul-
tiple apparent horizons and hair. The general metric depe
on one parameter (k), and two arbitrary functions ofv
~modulo energy conditions!. The long time limits of the
asymptotically flat solutions ‘‘fall between’’ the Schwarz
child and Reissner-Nordstro¨m metrics in the sense tha
1,2k<2 in ~15!.

Physically, thek.1/2 solutions describe the evolution o
a naked singularity into the same, or into a black hole. T
parameters in the solution~19! determine which of these pos
sibilities occurs, and the black hole always forms at a fin
nonzero mass. Thek,1/2 solutions describe the evolution o
either flat space or a naked singularity into a black hole i
cosmology. All of the new solutions support the cosmic ce
sorship conjecture.

Because of these physical properties, the exact solut



on
r

ns

m-
the

En-

R1762 53VIQAR HUSAIN
we have given are not of relevance for the collapse soluti
that exibit critical behavior@6–8#. The physical reason fo
this is that, although our stress-energy tensor~9! has nonzero
components along both ingoing and outgoing null directio
there is energy flow only along one direction~because, as
noted aboveTabv

avb50).
fo

or
s

,

It should be possible to find more exact solutions by i
posing other equations of state on the eigenvalues of
stress-energy tensor~9!.

This work was supported by the Natural Science and
gineering Research Council of Canada.
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