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Exact solutions for null fluid collapse
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Exact nonstatic spherically symmetric solutions of the Einstein equations for a null fluid source with pres-
sureP and densityp related byP=kp? are given. Thea=1 metrics are asymptotically flat for ¥k<1 and
cosmological for 6<k<<1/2. Thek=1 metric is the known charged Vaidya solution. In general the metrics
have multiple apparent horizons. In the long time limit, the asymptotically flat metrics are hairy black hole
solutions that “fall between” the Schwarzschild and Reissner-Nordstneetrics.

PACS numbsd(s): 04.20.Jb, 04.40.Nr

The problem of gravitational collapse in general relativity state of the fluid isP=kp®. As we will see, while these
is of much interest. One would like to know whether, andcollapse solutions do not have direct relevance for the critical
under what initial conditions, gravitational collapse results inbehavior mentioned above, they do have a number of inter-
black hole formation. In particular, one would like to know if esting features, including hair on black holes.
there are physical collapse solutions that lead to naked sin- An inverted approach is used to find the solutions. First
gularities. If found, such solutions would be counterex-the stress-energy tensor is determined from the metric. Then
amples of the cosmic censorship hypothesis, which state§e equation of state and the dominant energy condition are
that curvature singularities in asymptotically flat spacetimegmposedon its eigenvalues. This leads to an equation for the
are always shrouded by event horizons. metric function, which is easily solved. The precise form of
Since the general problem appears intractable due to tH&e stress-energy tensor is then displayed. Some interesting
complexity of the full Einstein equations, metrics with spe-properties of the solutions are then discussed.
cial symmetries are used to construct gravitational collapse For the general spherically symmetric metric
models. One such case is the two-dimensional reduction of
general relativity obtained by imposing spherical symmetry. ds?=—e?/"?)F(r,v)dv?+2e/"dy dr+r2dQ?, (1)
Even with this reduction however, there are very few inho-
mogeneous nonstatic exact solutions known. One example Wwhere Osr<c is the proper radial coordinate; <y <
the Vaidya metrid1,2]. It describes the collapse of pressure-is an advanced time coordinate, aid? is the metric on the
less null dust and is asymptotically flat. For the minimally unit two sphere, the Einstein equatioBg,=87T,;, give
coupled massless scalar field, the only inhomogeneous non-
static examples are cosmological solutions which have naked ,_dm 9 b
singularities[3,4]. For perfect fluids with equation of state m= o —A4mr T, @
relating pressurd® and energy density given by P=Kkp,
self-similar solutiongwhich are not asymptotically flahave m
been studied5]. m=—=4mrT,", ®)
Recently there have been a number of numerical studies v
of the spherically symmetric collapse probléf-10|. The
initial data in these works are a compact ingoing pulse. It
was found that a black hole forms if any of the parameters ) . )
in the initial data are above certain critical valugs, other- The mass function m(r,v) is defined by
wise the pulse scatters back out to infinity leaving flat space’ (F-v)=1—2m(r,v)/r, and is a measure of the mass con-
In particular, the black hole mass formula tained within radiusr. We will consider the special case

Mgn=k(c—c,)%36 was discovered in Ref6]. This shows ¥(r,v)=0, which means front4) that T, =0. _
that black holes initially form with zero mass—that is, no  1he stress-energy tensor derived from the above metric
mass gap is found. may be diagonalized to give the energy den.sny and the prin-
There have been a number of attempts aimed at an angiPal pressures. Tige eigenvalue prob_leng?Ub=)\Ua.
lytical understanding of these resultsl—1§. One approach 1he 6-¢ part of T;”, which is determined fronG,, and
is to look for exact collapse solutions and see what blackG 4= SiF0 Gy, is already diagonal with pressure eigenval-
hole mass formulas may be extracted from them. ues
In this Rapid Communication we give exact inhomoge- ,
neous and nonstatic spherically symmetric solutions of the P=T.0=T .= _ m )
Einstein equations for a collapsing null fluid. The equation of 0 ¢

DB

W =4mrT,,. (4)

8mr’

Since T,,=0 (by choice, we haveT,’=T," and T,"=0.
*Present address. Therefore they-r part of the matrix to be diagonalized is
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T T f(v)—g(v)/[(2k—1)r2k-1], :
0 TV m(r,v) , (12
v f(v)+g(v)lnr, k=3,
This has one eigenvalue which gives the energy density
p: namely, wheref(v) andg(v) are arbitrary functiongwhich are re-
stricted only by the energy conditionsTherefore we have
m’ explicitly that
—p=N=T = Y
Pk 2y (13
The corresponding eigenvectorig=(1,0,0,0) [in the co- T g2 TP

ordinates ¢,r,0,¢)], and is lightlike. Therefore the stress-
energy tensorwhich follows from#=0), is of Type [I[19].  Therefore we must havg(v)=0 for positive pressure and

Its nonvanishing components are energy density.
) i The last requirement ifiL0O) for the dominant energy con-
m m it
Tvv=p( 1- T) n el T, =—p, ®) dition leads, fork#1/2, to
nmto)- =30 g 14
Too=P8ps, Tys=P0ss- m=f(v) (2k—1)r2k- 17+ (149

These components may be succinctly written using the twi
linearly independent future pointing lightlike vectors
v,=(1,0,0,0) andv,=(F/2,—1,0,0) as

?—’hysically this means that the matter within a radium-
creases with time, which corresponds to an implosion. This
condition is most easily satisfiedfit>0, and eitheg>0 and
k<1/2, org<0 andk>1/2.

m(r, _ -
abZ(—l;)vavbJrP(f,v)(vaWbJrvbWa) In summary, for the dominant energy condition, we must
4art have g(v)=0 and eitherg>0 for k<1/2 or g<0 for
+P(r,0)(Gap+vaWp+ vpWa). (99  k>1/2. For the weak or strong energy conditidndich are

equivalent for Type |l stress-energy tengprse only need

[This tensor should be compared with the perfect fluid one=0, P=0, andTa;w*w">0, but notp>P. Therefore for
Tab= pUalp+ P(Jap+ UaUp), Whereu, is timelike] the latter energy conditions we can have 1 as well. .
The stress-energy tens(®) has support along both the ~ Fork=1/2, neither the weak nor dominant energy condi-
two future pointing lightlike vectors , andw,, and as we tions can be satisfied for ail becausem=f(v)+g(v)Inr,
will see below, it is of precisely the form which gives the which always becomes negative for sufficiently small
charged Vaidya solutiof2]. For P=p=0, (9) reduces to the Therefore we will not consider this case further.
stress-energy tensor which gives the uncharged Vaidya met- In summary, we have shown that the metric
ric. V\k/’e also note that while T wowP=m/4mr?,
T.pv % °=0. Therefore there is energy flux only along one of 2f(v) 29(v)
the null directions. $=-|1- T 2k— D= dv®+2dv dr+r2d0?
A static observer with four—velocitysaz(1/\/E,0,0,0) (15
and a  rotating observer  with  four-velocity
R%=(\/2/F,0,0,1f sind) see, respectively, the energy densi- is a solution of the Einstein equations for the null fluid stress-
ties T,,S°SP=m/4nFr2+p and T,,R®R°=2(m/4wFr?  energy tensof9) with P=kp, whereP is given by(13).

+p)+P. There are two special cases of this solution which are
The stress-energy tens@®) satisfies the dominant energy already known. One is the Vaidya metfid], which arises for
condition if the following three conditions are met: g(v)=0 (vanishingp and P). Then the only nonvanishing
component of the stress-energy tens¢®) is T,
P=0, p=P, and T,,w?w">0. (10 =m/4nr2=f(v)/4mr2. The other is the charged Vaidya met-

ric, where the charge depends on[2]. This arises when

The first two of these imply tham’=0 andm”’<0. The k=1 in (15).
former just says that the mass function either increases with e therefore see that the stress-energy tensor we have
r or is constant, which is a natural physical requirement on itgetermined by imposing the equation of stBte kp is a one

To satisfy the first two of the dominant energy conditionsparameter k>0) generalization of the stress-energy tensor
(10), weimposethe equation of state=kp® withk<1and  which gives the charged Vaidya metric. The corresponding
a§1 . Thea< 1_ case will be discussed later. Fe=1 this  metric must therefore depend &nas in equatior(15). (We
gives the equation note that the parametérin the metric or the stress-energy
tensor cannot be eliminated by a coordinate transformation
because it is the constant of proportionality between the ei-
genvalues of the stress-energy tensor—exactly the same rea-
son that this constant is not “gauge” for the ordinary perfect
for the mass function, which is easily integrated to give  fluid solutions with equation of state=kp.)

" !

m m

T 8mr g2 (11)
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A metric is considered to be asymptotically fl20,21] if These solutions also include metrics that give the evolu-
in the vicinity of a spacelike hypersurface its componentsion of a naked singularity ab=—o into flat space at
behave as v =0, This case occurs if we sé&t=0, B=1 in (19).

Another feature of these solutions is that they give black
aap(XEr 1) 1 holes with null fluid hair for 1/2.k<<1. An example of such
Yab— 7ab™ ( 1+s) (16) a static solution results from the—co limit of the metric:
asr—o. (e>0, 7, is the Minkowski metric,ayp, is an s A(l+tanbv) (1-Btanhv)|

. . . . = - 1_ + 32 dU
arbitrary symmetric tensor, and is a flat coordinate system r r
at spacelike infinity. 5 2

According to this definition, our metricd5) are asymp- +2dv dr+r°dQ%, (20

totically flat for k>1/2 and are cosmological far<1/2. (In

particular, fork=1, f(v)=M and (v)=Q?, the metricis  With B as the “hair.” (We have puk=3/4.)

just Reissner-Nordstro.) k<1/2: The QOminant energy condition is now satisfied
When the imposed equation of state on the eigenvaluefor g(v)=0 andg(v)=0. Therefore these metrics can be flat

(5) and (7) of the stress-energy tens®) is P=kp? the asv— —=, and have black holes as—c. A specific two

equation for the mass function is more complicated: parameter A,B=0) example fork=1/3 (radiatior) is
m” m’ \2 C+A(1+tanhv) B(1l+tanhy) )
 8ar _k<47ﬂ’2) ' (17 ds*=—|1- r - r3 Y
+2dv dr+r2dQ?2. (21

This has solution

The apparent horizons in the—« limit (with C=0) are
m(r,v)=f(u)+f dr[g(v)—k(4m)t ar2t-ajli-a now given by the cubic equationr £ 2A)%— (2B)3% =0.
(19) This equation always has a solution for the range# aind

B allowed by the energy conditions. Thus, this solution de-

Since a<1, this mass function gives only cosmological scribes the collapse of radiatio® € p/3) from flat space at

metrics—the pressures are too small to make them asymp-~ _ ~ toa blac_k _hole ap = . . L

totically flat. However, if the dominant energy condition is Another possibility occurs wheg is negative |n(21)..

not imposed but only the wedlor strong one is, thera> 1 Th_en, as for th&k> 1/2 case above, we have a naked singu-

is possible, which will give asymptotically flat metrics. larity atv = —c°, which becomes a black holeat as the
We now consider in turn the asymptotically flact1/2) ~ collapse proceeds. L

and the cosmologicalk& 1/2) metrics. _Inthe general case, if lim..f(v)=A and
k>1/2: Since the dominant energy condition is satisfied!Mv—~<9(v) =B the radii of the apparent horizons in the

only for g(v)=0 andg(v)=<0, if g(v) is zero initially, it v limit of the metric(15) are given by

must remain zero. On the other hand, if it is nonzero initially,

it can decrease to zero. Therefore the asymptotically flat met- F—oA_ 2B 22)

rics can be flat in the — — oo limit only if g(v)=0. But this (2k— 1)r2'2* '

is just the Vaidya case. However, the following two param-

eter (A=0,0=B=1) family of metrics(where we have set \yhich in general may have multiple solutions.

k=1 for concretenegsdemonstrates an interesting feature:  |n conclusion, we have given a new class of null fluid

collapse solution$l5) and(18) of the Einstein equations for

the stress-energy tens@). These include new asymptoti-

cally flat black hole solutionsa=1, 1/2<k<1) with mul-

tiple apparent horizons and hair. The general metric depends

+2dv dr+r?dQ?. (19 on one parameterkj, and two arbitrary functions ob
(modulo energy conditions The long time limits of the

In the v — —< limit this metric has a naked singularity at asymptotically flat solutions “fall between” the Schwarzs-

r=0. However, in thev— + limit it may have horizons child and Reissner-Nordsmo metrics in the sense that

depending on the relative values AfB. Specifically, these 1<2k=<2 in (15).

horizons are given by=A=+ \J/AZ+B— 1. Therefore a black Physically, thek>1/2 solutions describe the evolution of

hole first forms at nonzero mass whaf=1—B. This mass a naked singularity into the same, or into a black hole. The

gap separates a black hole from a naked singularity, and magyarameters in the solutidi9) determine which of these pos-

be contrasted with the critical behavior solutiof$—8§] sibilities occurs, and the black hole always forms at a finite

where there is no mass gap between flat space and a blanknzero mass. ThHe<1/2 solutions describe the evolution of

hole metric. Similar results hold for other valueskof 1/2.  either flat space or a naked singularity into a black hole in a

What is happening physically is that initially only the cosmology. All of the new solutions support the cosmic cen-

“charge” term is present in the metric, and subsequentlysorship conjecture.

infalling fluid reduces the “charge” and adds a “mass”term.  Because of these physical properties, the exact solutions

A(l+tanh) (1-Btanh)|
- r + r2 dU

ds?=—|1
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we have given are not of relevance for the collapse solutions It should be possible to find more exact solutions by im-
that exibit critical behaviof6—8]. The physical reason for posing other equations of state on the eigenvalues of the
this is that, although our stress-energy ter(8phas nonzero stress-energy tens¢g).

components along both ingoing and outgoing null directions,

there is energy flow only along one directidbecause, as This work was supported by the Natural Science and En-

noted aboveT , 3 °=0). gineering Research Council of Canada.
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