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How generic are null spacetime singularities?
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The spacetime singularities inside realistic black holes are sometimes thought to be spacelike and strong,
since there is a generic class of solutions~BKL ! to Einstein’s equations with these properties. We show that
null, weak singularities are also generic, in the following sense: there is a class of vacuum solutions containing
null, weak singularities, depending on 8 arbitrary~up to some inequalities! analytic initial functions of 3 spatial
coordinates. Since 8 arbitrary functions are needed~in the gauge used here! to span the generic solution, this
class can be regarded as generic.

PACS number~s!: 04.20.Dw, 04.20.Jb, 04.70.Bw
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One of the most fascinating outcomes of general relativ
is the observation that the most fundamental concept in p
ics, the fabric of space and time, may become singula
certain circumstances. A series of singularity theorems@1#
imply that spacetime singularities are expected to deve
inside black holes. The observational evidence at prese
that black holes do exist in the Universe. The formation
spacetime singularities in the real world is thus almost ine
table. However, the singularity theorems tell us almost no
ing about the nature and location of these singularities.
spite a variety of investigations, there is today still
consensus on the structure of singularities inside real
black holes.

At issue are the following features of singularities: th
location, causal character~spacelike, timelike, or null!, and,
most importantly, their strength. We use here Tipler’s term
nology @2# for weak and strong singularities. In typical situ
ations, if the spacetime can be extended through the sing
hypersurface so that the metric tensor isC0 and nondegen-
erate, then the singularity is weak@2#. The strength of the
singularity has far-reaching physical consequences. A ph
cal object which moves toward a strong curvature singula
will be completely torn apart by the diverging tidal forc
which causes unbounded tidal distortion. On the other ha
if the singularity is weak, the total tidal distortion may b
finite ~and even arbitrarily small!, so that physical observer
may possibly not be destroyed by the singularity@2,3#.

The main difficulty in determining the structure of blac
hole singularities is that the celebrated exact black hole
lutions ~the Kerr-Newman family! do not give a realistic de
scription of the geometry inside the horizon, although th
do describe well the region outside. This is because the w
known no-hair property of black holes, that arbitrary initi
perturbations are harmlessly radiated away and do not q
tatively change the spacetime structure, only applies to
exterior geometry. The geometry inside the black hole~near
the singularity and/or the Cauchy horizon! is unstable to ini-
tial small perturbations@4,5#, and consequently we must g
beyond the classic exact solutions to understand real
black hole interiors. To determine the structure of gene
singularities, it is necessary to take initial data correspond
530556-2821/96/53~4!/1754~5!/$06.00
y
s-
in

p
is
f
i-
-

e-

ic

-

lar

i-
y

d,

o-

y
ll-

li-
e

tic
c
g

to the classic black hole solutions, make generic small p
turbations to the initial data, and evolve forward in time
determine the nature of the resulting singularity. For this p
pose a linear evolution of the perturbations may be insu
cient; the real question is what happens in full nonline
general relativity.

The simplest black-hole solution, the Schwarzschild so
tion, contains a central singularity which is spacelike a
strong. For many years, this Schwarzschild singularity w
regarded as the archetype for a spacetime singularity.
though this particular type of singularity is known today
be unstable to deviations from spherical symmetry~and
hence unrealistic! @6#, another type of a strong spacelike si
gularity, the so-called Balinsky-Khalatnikov-Lifshitz~BKL !
singularity @7#, is believed to be generic~below we shall
further explain and discuss the concept of genericity!. Since
the BKL singularity is so far theonly known type of generic
singularity, in the last two decades it has been widely
lieved that the final state of a realistic gravitational collap
must be the strong, spacelike, oscillatory, BKL singularity

Recently, there have been a variety of indications tha
spacetime singularity of a completely different type actua
forms inside realistic~rotating! black holes. In particular, this
singularity isnull andweak, rather than spacelike and stron
The first evidence for this new picture came from the ma
inflation model@8,3#, a toy model in which the Kerr back
ground is modeled by the spherically symmetric Reissn
Nordstrom solution, and the gravitational perturbations
modeled in terms of two crossflowing null fluids. Later mo
realistic analyses replaced the null fluids by a spherica
symmetric scalar field@9#. More direct evidence came from
nonlinear perturbation analysis of the inner structure of
tating black holes@10#. Both the mass-inflation models an
the nonlinear perturbation analysis of Kerr strongly sugg
that a null, weak, scalar-curvature singularity develops at
inner horizon of the background geometry.~See also an ear
lier model by Hiscock@11#.!

Despite the above compelling evidence, there still is
debate concerning the nature of generic black-hole singu
ties. It is sometimes argued that the Einstein equations,
to their nonlinearity, do not allow generic solutions with nu
R1754 © 1996 The American Physical Society
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53 R1755HOW GENERIC ARE NULL SPACETIME SINGULARITIES?
curvature singularities@12#. According to this argument, th
nonlinearity, combined with the diverging curvature, imm
diately catalyzes the transformation of the null curvature s
gularity into a strong spacelike one, presumably the B
singularity @13#. A similar argument was also given, som
time ago, by Chandrasekhar and Hartle@5#. According to this
point of view, the results of the nonlinear perturbation ana
sis of Kerr are to be interpreted as an artifact of the per
bative approach used@15# ~and the mass-inflation model is
toy model, after all!. This objection clearly marks the nee
for a more rigorous, nonperturbative, mathematical analy
to show that a generic null weak singularity is consist
with Einstein’s equations.

Recently, Brady and Chambers showed that a null sin
larity could be consistent with the constraint section of E
stein’s equations formulated on null hypersurfaces@16#.
However, their result does not completely resolve the ab
issue. The hypothesis raised in Ref.@12#, according to which
nonlinear effects will immediately transform the singular in
tial data into a spacelike singularity, is not necessarily inc
sistent with the analysis of Ref.@16#. It is possible that a
spacelike singularity could form just at the intersection po
of the two characteristic null hypersurfaces considered
Ref. @16#. It is primarily theevolutionequations which will
determine whether singular initial data will evolve into a n
singularity or into a spacelike one.

The purpose of this paper is to present a new mathem
cal analysis which addresses the above question. Our an
sis shows that~i! the vacuum Einstein equations~both the
constraint and evolution equations! admit solutions with a
null weak singularity and~ii ! the class of such singular so
lutions is so large that it depends on the maximum poss
number of independent functional degrees of freedom.
will call such classes of solutionsfunctionally generic~see
below!. Therefore any attempt to argue, on local groun
that a null weak singularity is necessarily inconsistent w
the nonlinearities of Einstein’s equations, must be false
this Rapid Communication we outline this analysis a
present the main results; a full account of this work is giv
in Ref. @17#.

Let us first explain what we mean by ‘‘degrees of fre
dom’’ and ‘‘functionally generic.’’ Suppose thatc is some
field on a ~311!-dimensional spacetime, which may be
multicomponent field. Suppose that initial data forc are
specified on some spacelike hypersurfaceS. We shall say
that c has k ‘‘degrees of freedom’’ ifk is the number of
initial functions~i.e., functions of the three spacelike coord
nates parametrizingS) which need to be specified onS in
order to uniquely determine insideD1(S) the solution to the
field equations satisfied byc @18#. The numberk depends on
the type of field, and also possibly on the gauge condit
used if there is gauge freedom. For example, for a scalar
k52, because one needs to specify bothc and ċ on S. For
the gravitational field, it is well known that there a
23254 inherent degrees of freedom. Theactual number
k, however, is 4 plus the number of unfixed gauge degree
freedom, which depends on the specific gauge conditi
used. In the gauge we use we find thatk58 ~see below!.

We shall say that a class of solutions to the field equati
is functionally generic, if this class depends onk arbitrary
functions of three independent variables@19#. This concept
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of genericity is basically the same as that used by BKL@7#.
The motivation behind this definition is obvious: Suppo
that a given particular solution admits some specific feat
~e.g., a singularity of some type!. Obviously, in order for this
feature to be stable to small~but generic! perturbations in the
initial data, it is necessary that the class of solutions satis
ing this feature should depend onk arbitrary functions. Func-
tional genericity is thus a necessary condition for stabil
and is also necessary in order that there be an open set i
space of solutions with the desired feature, in any reason
topology on the space of solutions@20#.

As we mentioned above, our result is a mathemati
demonstration of the existence of a functionally generic n
weak singularity. More specifically, we prove that there e
ists a class of solutions (M ,g) to the vacuum Einstein equa
tions, which all admit a weak curvature singularity on a n
hypersurface, and which depend onk58 ~see below! arbi-
trary analytic functions of three independent variables.~In
Ref. @17# we shall give a more precise formulation of th
statement.! The singularities may also be characterized
the fact that the manifold may be extended through the n
surface to an analytic manifold (M 8,g8) where the metric
g8 is analytic everywhere except on the null surface wher
is only C0. Our construction islocal in the sense that the
manifolds we construct are extendible~in directions away
from the null singularity!; roughly speaking they can b
thought of as open regions in a more complete spaceti
part of whose boundary consists of the singular null hyp
surface. We donot prove that null weak singularities arise i
the maximal Cauchy evolution of any asymptotically fla
smooth initial data set. The spacetimes we construct ar
the formD1(S), whereS is an open region in an analyti
initial data set. The curvature singularity is already pres
on the boundary ofS in the initial data, in the sense tha
curvature invariants blow up along incomplete geodesics.
emphasize that we donot view S as a physically acceptabl
initial hypersurface; rather, the initial hypersurfaceS is
merely a mathematical tool that we use to construct and
rametrize the desired class of vacuum solutions.

We shall first demonstrate the main idea behind our ma
ematical construction by applying it to a simpler problem
a scalar field. Consider, as an example, a real scalar fief
in flat spacetime, satisfying the nonlinear field equation

f ,a
,a5V~f!, ~1!

where V(f) is some nonlinear analytic function.~We add
this nonlinear piece in order to obtain a closer analogy w
the nonlinear gravitational case.! In order to show that this
field admits a functionally generic null singularity we pro
ceed as follows: Letx,y,u,v be the standard, double-nul
Minkowski coordinates~i.e., such thatds2524 du dv
1dx21dy2). Equation~1! reads

f ,uv5f ,a
,a2V~f! ~2!

where here and below the indicesa,b, . . . run over the co-
ordinatesx andy. We now define

w[v1/n ~3!

for some odd integern>3. We also define
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R1756 53AMOS ORI AND ÉANNA É. FLANAGAN
t[w1u, z[w2u. ~4!

Reexpressing the field equation~2! in terms of t and z we
obtain

f ,tt5f ,zz1n@~z1t !/2#n21@f ,a
,a2V~f!#. ~5!

Let M0 denote some neighborhood of the orig
(x5y5z5t50) with compact closure, and letS1 be the
intersection of the hypersurface t50 with M0 ~see Fig. 1!.
Let f 1(x,y,z) and f 2(x,y,z) be two analytic functions of
their arguments, defined onS1. For any such pair of func-
tions, there exists a neighborhoodM 1#M0 of S1 and a
unique analytic solutionf(x,y,z,t) to the field equation~5!
in M 1, such that onS1, f5 f 1 and f ,t5 f 2 . This follows
directly from the Cauchy-Kowalewski theorem@21#, in view
of the form of Eq. ~5!. Let us denote the intersection o
M 1 with the null hypersurfacev50 by N1. Recall that
N1 includes a neighborhood of the origin in the hypersurfa
v50.

Returning now to the original independent variab
(u,v) we find that f(x,y,u,v) is continuous throughou
M 1. We now focus attention on the sectionv,0, t>0 of
M 1, which we denote byM . Since the transformation from
(z,t) to (u,v) is analytic as long asvÞ0, we find that
f(x,y,u,v) is analytic throughoutM . However,f will gen-
erally fail to be smooth atv50: f ,v5(1/n)v1/n21f ,w will
diverge atv50 as long asf ,wÞ0 there. We assume that a
the origin ] f 1 /]zÞ6 f 2 . This ensures that at least in som
neighborhood of the origin, bothf ,w and f ,u are nonzero.
Let N be the intersection of that neighborhood with the s
tion t>0 of N1. We find thatf ,v diverges onN. Moreover,
the invariantf ,af ,a diverges onN too @it is dominated by
(1/n)v2111/nf ,uf ,w #. N is thus a singular null hypersurface

We conclude that there exists a class of solutions to
~1!, which depends on two analytic functions of (x,y,z)
( f 1 and f 2) that can be chosen arbitrarily~apart from the
above inequality!, and which contains a singularity on a nu
hypersurface. In other words, the scalar field admits a fu
tionally generic null singularity.~Note thatf has a well-
defined limit on the singular hypersurface; this is the sca
field analogue of the notion of weak singularity.!

We turn now to generalize this construction to the gra
tational field. As before, our coordinates are deno
(x,y,u,v). We adopt the gauge

gux5guy5guu5gvv50, ~6!

FIG. 1. Spacetime diagram inz2t coordinates, illustrating the
mathematical construction used. Our final spacetime (M ,g) con-
sists of the shaded region.
e
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which in turn implies thatgvv50. This ensures that the co
ordinatev is null ~that is, the hypersurfacesv 5 const are
null!. There are six nontrivial metric functions, which w
denote bygi ( i 51, . . .,6), where here and below the ind
cesi , j , . . . represent the six pairs of spacetime coordina
(xx,xy,yy,vx,vy,uv).

In this gauge, the numberk of arbitrary functions in a
general solution isk58. This can be seen as follows. Defin
the new variablesT[v1u, Z[v2u. Then to determine a
solution of the evolution equations, 12 initial functions ne
to be specified on the spacelike hypersurfaceT5const,
namely,gi(x,y,Z) andgi ,T(x,y,Z), 1< i<6. However, these
12 functions must satisfy 4 constraint equations, as is alw
the case in general relativity, so that the number of indep
dently specifiable functions isk58. This conclusion can also
be reached by adding the conventional number of intrin
degrees of freedom of the vacuum gravitational fie
(23254) to the number of unfixed gauge degrees of fre
dom in the gauge~6!, which we show in Ref.@17# to be 4.

We shall now outline the generalization of the abo
scalar-field construction to the gravitational field. First, o
writes the Einstein equationsRab50 in the gauge~6!. These
equations can be naturally divided into six evolution equ
tions and four constraint equations. At this stage we fo
attention on the evolution equations, which can be taken
beRi50. Next, we definew, t, andz as before@Eqs.~3! and
~4!#, and transform the field equations from the independ
variables (u,v) to (z,t). @To avoid confusion we emphasiz
that what we are doing here isnot a coordinate transforma
tion: it is just a change of independent variables in the d
ferential equationsRab50; thus, the unknowns in Eq.~7!
below are still the six metric functionsgi , which correspond
to the coordinates (x,y,u,v).# By taking certain linear com-
binations of the equationsRi50, it is possible to rewrite the
evolution equations in the schematic form

gi ,tt5 f i~gj ,gj ,t ,gj ,A ,gj ,AB ,gj ,At ,z,t !. ~7!

Here, the indicesA,B run over the ‘‘spatial’’ variables
x,y,z. If we impose certain inequalities on the initial da
@which ensure that in the region of interest det(g)>21#,
then the functionsf i are analytic in all their arguments.@The
gauge conditions~6! are crucial in deriving Eq.~7!.#

We now consider the evolution of initial data under t
system~7!. As before, we take the initial hypersurface to
t50. Equation~7! requires 12 initial functions to be specifie
on this hypersurface: the six functionshi(x,y,z)
[gi(x,y,z; t50) and the six functions pi(x,y,z)
[gi ,t(x,y,z; t50). The form of Eq.~7! is suitable for an
application of the Cauchy-Kowalewski theorem. Thus, defi
ing S1, M 1, andM as before, and following the argumen
above, we arrive at the following conclusion: For any cho
of the above 12 analytic functionshi(x,y,z) and pi(x,y,z)
on the sectionS1 of t50 ~subject to certain inequalities!,
there exists an analytic solutiongi(x,y,z,t) to Eq. ~7! in
M . Again, returning from the variables (z,t) to the original
independent variables (u,v), we find that the metric func-
tionsgi(x,y,u,v) are continuous throughoutM 1 ~and in par-
ticular at v50) and, moreover, are analytic throughoutM .
However, at the hypersurfacev50, gi ,v typically diverge
like v2111/n. As a consequence, the Riemann compone
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53 R1757HOW GENERIC ARE NULL SPACETIME SINGULARITIES?
Ravbv generically diverge there@17#. Moreover, it can be
shown that the scalarK[RabgdRabgd also generically di-
verges atv50 ~like v2211/n). However, it is easy to chec
directly that the singularity is weak. Thus, focusing attent
on the physical regionM , we find that the solutions con
structed in that way are absolutely regular inside the reg
M , but develop a null, weak, scalar-curvature singularity
the portionv50 of its boundary.

The 12 initial functionshi(x,y,z) andpi(x,y,z) are sub-
ject to four constraint equations. It is therefore natural
expect that 8 of these 12 initial functions can be cho
arbitrarily. This is not trivial to prove mathematically, how
ever, especially because the constraint equations~expressed
in the variablesx,y,z) are somewhat pathological atz50.
After some effort we found a mathematical constructi
which proves the above statement. More specifically, in
mathematical scheme one is free to choose the
hi(x,y,z), pxy(x,y,z), and one other functionp(x,y,z). We
can then show~using the Cauchy-Kowalewski theorem! the
existence of a solution of the constraint equations~in a
neighborhood ofz50). The remaining initial functions
pi(x,y,z) are then determined from that solution. The abo
eight analytic functions can be chosen arbitrarily, up to so
inequalities.

To summarize, our mathematical construction shows
existence of a class of~local! solutions to the vacuum Ein
stein equations, which contain a weak scalar-curvature
gularity at the null hypersurfacev50, and which depends o
k58 analytic functions of (x,y,z). Our construction there
fore demonstrates the existence of a functionally gen
null, weak, scalar-curvature singularity.

The main limitation of our construction is its restriction
analytic initial functions. We believe that this is merely
technical limitation of the mathematical theorems used in
proof, and the same physical situation~a null weak singular-
ity! will evolve even if the initial functions onS1 are not
analytic~provided they are sufficiently smooth forv,0). At
any rate, it is worthwhile to compare the mathematical sta
of our generic null weak singularity to that of the BKL sin
gularity. To the best of the authors’ knowledge, the existe
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of even a single inhomogeneous singular vacuum solutio
the BKL type has not yet been proved mathematically,
alone the generality of this class of singular solutions. On
other hand we have demonstrated rigorously the existenc
a huge class of exact solutions containing null weak sin
larities.

Our results have a simple intuitive interpretation: Inlinear
hyperbolic systems, it is well known that weak discontinu
ties of various types can freely propagate along character
lines. Our construction demonstrates that Einstein’s eq
tions, despite their nonlinearity, also behave in this way~at
least with respect to the type of weak discontinuity cons
ered here!. This is perhaps contrary to what was sometim
thought in the past, but is not really surprising, because, a
all, Einstein’s equations are quasilinear. Thus, what we h
shown is thelocal consistency of null weak singularities wit
Einstein’s equations, despite the nonlinearity of the lat
The important issue of theonsetof the singularity from regu-
lar, asymptotically flat, initial data~e.g., in gravitational col-
lapse! still remains open; this issue is addressed~indirectly!
by the nonlinear perturbation analysis of Ref.@10#, but the
onset still lacks a rigorous mathematical proof.

Finally, it should be pointed out that the inner-horizo
singularity that is suggested by perturbation analyses i
realistic rotating or charged black hole~see, e.g., Ref.@10#!,
is qualitatively similar to the singularity constructed here,
that it is null and weak. There are some important diff
ences, however. The main difference is that the structure
the inner-horizon singularity is analogous to what wou
have been obtained from our construction if we had
w51/lnuvu. Our method of proof does not generalize straig
forwardly to this case, however, becausev is no longer ana-
lytic in w at w50 ~though it is still C`) @22#. We hope to
discuss the analytic features of this more realistic null we
singularity elsewhere.
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