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How generic are null spacetime singularities?
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The spacetime singularities inside realistic black holes are sometimes thought to be spacelike and strong,
since there is a generic class of solutidB&L) to Einstein's equations with these properties. We show that
null, weak singularities are also generic, in the following sense: there is a class of vacuum solutions containing
null, weak singularities, depending on 8 arbitrémp to some inequalitigsnalytic initial functions of 3 spatial
coordinates. Since 8 arbitrary functions are nee@edhe gauge used here span the generic solution, this
class can be regarded as generic.

PACS numbsd(s): 04.20.Dw, 04.20.Jb, 04.70.Bw

One of the most fascinating outcomes of general relativityto the classic black hole solutions, make generic small per-
is the observation that the most fundamental concept in phygurbations to the initial data, and evolve forward in time to
ics, the fabric of space and time, may become singular irdetermine the nature of the resulting singularity. For this pur-
certain circumstances. A series of singularity theorg¢fijs pose a linear evolution of the perturbations may be insuffi-
imply that spacetime singularities are expected to develogient; the real question is what happens in full nonlinear
inside black holes. The observational evidence at present general relativity.
that black holes do exist in the Universe. The formation of The simplest black-hole solution, the Schwarzschild solu-
spacetime singularities in the real world is thus almost inevition, contains a central singularity which is spacelike and
table. However, the singularity theorems tell us almost nothstrong. For many years, this Schwarzschild singularity was
ing about the nature and location of these singularities. Deregarded as the archetype for a spacetime singularity. Al-
spite a variety of investigations, there is today still nothough this particular type of singularity is known today to
consensus on the structure of singularities inside realistibe unstable to deviations from spherical symmetand
black holes. hence unrealistjd 6], another type of a strong spacelike sin-

At issue are the following features of singularities: their gularity, the so-called Balinsky-Khalatnikov-LifshitBKL)
location, causal charactéspacelike, timelike, or null and,  singularity [7], is believed to be generitbelow we shall
most importantly, their strength. We use here Tipler's termi-further explain and discuss the concept of genericBnce
nology [2] for weak and strong singularities. In typical situ- the BKL singularity is so far thenly known type of generic
ations, if the spacetime can be extended through the singulaingularity, in the last two decades it has been widely be-
hypersurface so that the metric tensoid$ and nondegen- lieved that the final state of a realistic gravitational collapse
erate, then the singularity is wedR]. The strength of the must be the strong, spacelike, oscillatory, BKL singularity.
singularity has far-reaching physical consequences. A physi- Recently, there have been a variety of indications that a
cal object which moves toward a strong curvature singularityspacetime singularity of a completely different type actually
will be completely torn apart by the diverging tidal force, forms inside realisti¢rotating black holes. In particular, this
which causes unbounded tidal distortion. On the other handsingularity isnull andweak rather than spacelike and strong.
if the singularity is weak, the total tidal distortion may be The first evidence for this new picture came from the mass-
finite (and even arbitrarily small so that physical observers inflation model[8,3], a toy model in which the Kerr back-
may possibly not be destroyed by the singulafy3]. ground is modeled by the spherically symmetric Reissner-

The main difficulty in determining the structure of black Nordstrom solution, and the gravitational perturbations are
hole singularities is that the celebrated exact black hole sanodeled in terms of two crossflowing null fluids. Later more
lutions (the Kerr-Newman familydo not give a realistic de- realistic analyses replaced the null fluids by a spherically
scription of the geometry inside the horizon, although theysymmetric scalar fielf9]. More direct evidence came from a
do describe well the region outside. This is because the wellRonlinear perturbation analysis of the inner structure of ro-
known no-hair property of black holes, that arbitrary initial tating black holeg10]. Both the mass-inflation models and
perturbations are harmlessly radiated away and do not qualithe nonlinear perturbation analysis of Kerr strongly suggest
tatively change the spacetime structure, only applies to ththat a null, weak, scalar-curvature singularity develops at the
exterior geometry. The geometry inside the black h@iear inner horizon of the background geometf$ee also an ear-
the singularity and/or the Cauchy hori2da unstable to ini- lier model by HiscocK11].)
tial small perturbation$4,5], and consequently we must go  Despite the above compelling evidence, there still is a
beyond the classic exact solutions to understand realistidebate concerning the nature of generic black-hole singulari-
black hole interiors. To determine the structure of generidies. It is sometimes argued that the Einstein equations, due
singularities, it is necessary to take initial data correspondingo their nonlinearity, do not allow generic solutions with null
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curvature singularitiefl2]. According to this argument, the of genericity is basically the same as that used by BKL
nonlinearity, combined with the diverging curvature, imme-The motivation behind this definition is obvious: Suppose
diately catalyzes the transformation of the null curvature sinthat a given particular solution admits some specific feature
gularity into a strong spacelike one, presumably the BKL(€.g., a singularity of some typeObviously, in order for this
singularity [13]. A similar argument was also given, some feature to be stable to smaliut generig perturbations in the
time ago, by Chandrasekhar and HafB¢ According to this  initial data, it is necessary that the class of solutions satisfy-
point of view, the results of the nonlinear perturbation analy-ing this feature should depend &rarbitrary functions. Func-
sis of Kerr are to be interpreted as an artifact of the perturtional genericity is thus a necessary condition for stability,
bative approach usgd5] (and the mass-inflation model is a and is also necessary in order that there be an open set in the
toy model, after a)l This objection clearly marks the need space of solutions with the desired feature, in any reasonable
for a more rigorous, nonperturbative, mathematical analysigopology on the space of solutiofi20].
to show that a generic null weak singularity is consistent As we mentioned above, our result is a mathematical
with Einstein’s equations. demonstration of the existence of a functionally generic null
Recently, Brady and Chambers showed that a null singuweak singularity. More specifically, we prove that there ex-
larity could be consistent with the constraint section of Ein-ists a class of solutionsM,g) to the vacuum Einstein equa-
stein’s equations formulated on null hypersurfadd$].  tions, which all admit a weak curvature singularity on a null
However, their result does not completely resolve the abov8ypersurface, and which depend k8 (see below arbi-
issue. The hypothesis raised in Riif2], according to which  trary analytic functions of three independent variablgs.
nonlinear effects willimmediately transform the singular ini- Ref. [17] we shall give a more precise formulation of this
tial data into a spacelike singularity, is not necessarily inconstatemenj. The singularities may also be characterized by
sistent with the analysis of Refl16]. It is possible that a the fact that the manifold may be extended through the null
spacelike singularity could form just at the intersection pointsurface to an analytic manifoldV’,g’) where the metric
of the two characteristic null hypersurfaces considered irg’ is analytic everywhere except on the null surface where it

Ref.[16]. It is primarily the evolutionequations which will is only C° Our construction idocal in the sense that the
determine whether singular initial data will evolve into a null manifolds we construct are extendiblim directions away
singularity or into a spacelike one. from the null singularity; roughly speaking they can be

The purpose of this paper is to present a new mathematihought of as open regions in a more complete spacetime,
cal analysis which addresses the above question. Our analpart of whose boundary consists of the singular null hyper-
sis shows thati) the vacuum Einstein equatioriboth the  surface. We damot prove that null weak singularities arise in
constraint and evolution equationadmit solutions with a the maximal Cauchy evolution of any asymptotically flat,
null weak singularity andii) the class of such singular so- smooth initial data set. The spacetimes we construct are of
lutions is so large that it depends on the maximum possibl¢he formD*(2), whereX is an open region in an analytic
number of independent functional degrees of freedom. Winitial data set. The curvature singularity is already present
will call such classes of solutiorfsinctionally generic(see  on the boundary of in the initial data, in the sense that
below). Therefore any attempt to argue, on local groundsgcurvature invariants blow up along incomplete geodesics. We
that a null weak singularity is necessarily inconsistent withemphasize that we daot view 2, as a physically acceptable
the nonlinearities of Einstein’s equations, must be false. Innitial hypersurface; rather, the initial hypersurfage is
this Rapid Communication we outline this analysis andmerely a mathematical tool that we use to construct and pa-
present the main results; a full account of this work is givenrametrize the desired class of vacuum solutions.
in Ref.[17]. We shall first demonstrate the main idea behind our math-

Let us first explain what we mean by “degrees of free-ematical construction by applying it to a simpler problem —
dom” and “functionally generic.” Suppose that is some a scalar field. Consider, as an example, a real scalar dield
field on a(3+1)-dimensional spacetime, which may be ain flat spacetime, satisfying the nonlinear field equation
multicomponent field. Suppose that initial data feérare
specified on some spacelike hypersurf&eWe shall say ¢ a=V(e), (1)
that ¢+ hask “degrees of freedom” ifk is the number of ) . ) .
initial functions (i.e., functions of the three spacelike coordi- Where V(¢) is some nonlinear analytic functiofiWe add
nates parametrizing) which need to be specified d& in this nonl_lnear piece in order to obtain a closer analogy Wlth
order to uniquely determine insid2* (S) the solution to the the nonlinear gravitational cagen order to show that this
field equations satisfied by [18]. The numbek depends on field admits a functionally generic null singularity we pro-
the type of field, and also possibly on the gauge conditiorP€€d as follows: Lek,y,u,v be the standard, double-null,
used if there is gauge freedom. For example, for a scalar fieIPf"”kzo‘"’Sk'2 coordinates(i.e., such thatds’=—4 du dv
k=2, because one needs to specify bgtand s on S. For +dx*+dy?). Equation(1) reads

the gravitational field, it is well known that there are b w=b2— V() @)
2% 2=4 inherentdegrees of freedom. Thactual number we a
k, however, is 4 plus the number of unfixed gauge degrees Qfjhere here and below the indicash, . .. run over the co-

freedom, which depends on the specific gauge conditiong,dinatesx andy. We now define
used. In the gauge we use we find tkat8 (see below
We shall say that a class of solutions to the field equations w=plh ®)
is functionally generigcif this class depends ok arbitrary
functions of three independent variabld®]. This concept for some odd integen=3. We also define
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FIG. 1. Spacetime diagram in—t coordinates, illustrating the
mathematical construction used. Our final spacetifeg) con-
sists of the shaded region.

t=0

t=w+u, z=w-u. (4)
Reexpressing the field equati@®) in terms oft and z we
obtain

b=+ nl(z+1)/2]" P13 — V()] 5
Let M° denote some neighborhood of the origin
(x=y=z=t=0) with compact closure, and 1&" be the
intersection of the hypersurface=® with M° (see Fig. 1L
Let f1(x,y,2z) and f,(x,y,z) be two analytic functions of
their arguments, defined d®". For any such pair of func-
tions, there exists a neighborhodd*CM° of S* and a
unique analytic solutiorb(x,y,z,t) to the field equatiori5)
in M*, such that or§*, ¢=f, and ¢ =f,. This follows
directly from the Cauchy-Kowalewski theordr@l], in view
of the form of Eq.(5). Let us denote the intersection of
M™ with the null hypersurfaces=0 by N*. Recall that
N* includes a neighborhood of the origin in the hypersurfac
v=0.

Returning now to the original independent variables

(u,v) we find that ¢(x,y,u,v) is continuous throughout
M*. We now focus attention on the sectior<0, t=0 of
M*, which we denote by. Since the transformation from
(z,t) to (u,v) is analytic as long a®#0, we find that
¢(x,y,u,v) is analytic throughouM . However,¢ will gen-
erally fail to be smooth ab=0: ¢ ,=(1mn)v™ ¢ , will
diverge atv=0 as long asp ,,#0 there. We assume that at
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which in turn implies thag”’=0. This ensures that the co-
ordinatev is null (that is, the hypersurfacas = const are
null). There are six nontrivial metric functions, which we
denote byg; (i=1,...,6), where here and below the indi-
cesi,j, ... represent the six pairs of spacetime coordinates
(XX, XY,YY,vX,0y,Uv).

In this gauge, the numbéc of arbitrary functions in a
general solution i&k= 8. This can be seen as follows. Define
the new variable§=v +u, Z=v—u. Then to determine a
solution of the evolution equations, 12 initial functions need
to be specified on the spacelike hypersurface const,
namely,g;(x,y,Z) andg; t(x,y,Z), 1<i=<6. However, these
12 functions must satisfy 4 constraint equations, as is always
the case in general relativity, so that the number of indepen-
dently specifiable functions ls= 8. This conclusion can also
be reached by adding the conventional number of intrinsic
degrees of freedom of the vacuum gravitational field
(2x2=4) to the number of unfixed gauge degrees of free-
dom in the gaugé6), which we show in Ref[17] to be 4.

We shall now outline the generalization of the above
scalar-field construction to the gravitational field. First, one
writes the Einstein equatior®, ;=0 in the gaugé6). These
equations can be naturally divided into six evolution equa-
tions and four constraint equations. At this stage we focus
attention on the evolution equations, which can be taken to
beR;=0. Next, we definav, t, andz as beford Egs.(3) and
(4)], and transform the field equations from the independent
variables (1,v) to (z,t). [To avoid confusion we emphasize
that what we are doing here ii®t a coordinate transforma-
tion: it is just a change of independent variables in the dif-
ferential equationR,,;=0; thus, the unknowns in Ed7)
below are still the six metric functiorg , which correspond

o the coordinatesx,y,u,v).] By taking certain linear com-

binations of the equatior®;=0, it is possible to rewrite the
evolution equations in the schematic form
gi,ttzfi(gj1gj,t1gj,Avgj,Angj,Atvzyt)' (7)
Here, the indicesA,B run over the “spatial” variables
X,y,z. If we impose certain inequalities on the initial data

[which ensure that in the region of interest dgt& — 1],
then the functiond; are analytic in all their argumentisThe

the Origin afl/aZQE =+ f2. This ensures that at least in some gauge Conditi0n$6) are crucial in deriving Eq(?)]

neighborhood of the origin, both ,, and ¢, are nonzero.

We now consider the evolution of initial data under the

Let N be the intersection of that nEighborhOOd with the SeC'System(7)_ As before' we take the initial hypersurface to be

tiont=0 of N*. We find that¢ , diverges orlN. Moreover,
the invariant¢ ,¢'“ diverges onN too [it is dominated by
(Ln)p =g b, 1. Nis thus a singular null hypersurface.

t=0. Equation(7) requires 12 initial functions to be specified
on this hypersurface: the six functiond;(x,y,2)
=gi(x,y,z; t=0) and the six functions p;(X,y,z)

We conclude that there exists a class of solutions to Ed=g; ,(x,y,z; t=0). The form of Eq.(7) is suitable for an

(1), which depends on two analytic functions aof,y,z)
(f; and f,) that can be chosen arbitrarilgpart from the
above inequality and which contains a singularity on a null

application of the Cauchy-Kowalewski theorem. Thus, defin-
ing S™, M*, andM as before, and following the arguments
above, we arrive at the following conclusion: For any choice

hypersurface. In other words, the scalar field admits a funcof the above 12 analytic functiortg(x,y,z) and p;(x,y,z)

tionally generic null singularity(Note that¢ has a well-

on the sectionS* of t=0 (subject to certain inequalitigs

defined limit on the singular hypersurface; this is the scalarthere exists an analytic solutiog(x,y,z,t) to Eq. (7) in

field analogue of the notion of weak singularity.

M. Again, returning from the variablez,t) to the original

We turn now to generalize this construction to the gravi-independent variablesu(v), we find that the metric func-

tational field. As before, our coordinates are denoted

(x,y,u,v). We adopt the gauge

Jux= guy:guu:gvvzoi (6)

ionsg;(x,y,u,v) are continuous througho * (and in par-
ticular atv =0) and, moreover, are analytic throughdat
However, at the hypersurface=0, g; , typically diverge
like v 1" As a consequence, the Riemann components
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Ra,b, generically diverge thergl?7]. Moreover, it can be of even a single inhomogeneous singular vacuum solution of
shown that the sca|a|(ERaBy§Ra375 also generically di- the BKL type has not yet been proved mathematically, let

verges abv =0 (like v ~2"¥"). However, it is easy to check alone the generality of this class of singular solutions. On the
directly that the singularity is weak. Thus, focusing attentionother hand we have demonstrated rigorously the existence of
on the physical regioM, we find that the solutions con- @ hl_Jge class of exact solutions containing null weak singu-

structed in that way are absolutely regular inside the regiof@ities.

M, but develop a null, weak, scalar-curvature singularity on OuE)r?suIts have a.s!mple"inlzuitive ir;]terpretalii%nlihea_r .
the portiono = 0 of its boundary. yperbolic systems, it is well known that weak discontinui-

The 12 initial functionsh;(x,y,2) andp;(x.y,Z) are sub- t_ies of various types can freely propagate along cha_lrzyslcteristic
ject to four constraint equations. It is therefore natural tol[nes. Our _constryctlon.dem_onstrates that E.mste.ms equa-
expect that 8 of these 12 initial functions can be choseﬁ'ons’ d.esplte their nonlinearity, also behave n th|s v(my_
arbitrarily. This is not trivial to prove mathematically, how- least with respect to the type of weak discontinuity con&d—
ever, especially because the constraint equatierpressed ered her}: This is perhqps contrary to Wh"’.‘t was sometimes
in the variablesx,y,z) are somewhat pathological at0. thought |n_tr’1e past, _but is not real!y surprising, because, after
After some effort we found a mathematical constructiona”' Em;tems equat|0r_15 are quasilinear. Th_us, Wh.a.t we _have
which proves the above statement. More specifically, in ou hown. 'S, théocal_consstenqy of null weak S'f?gu'a”“es with
mathematical scheme one is free to choose the si instein’s equations, despite the no.nI|near.|ty of the latter.
hi(X.y,2), Pxy(x.y.2), and one other functiop(x,y,z). We he |mp0rtan't issue of 'gh@setof the smgularlty frpm regu-
can then showusing the Cauchy-Kowalewski theorgnine lar, asymptotically flat, initial datée.g., in gravitational col-

existence of a solution of the constraint equatidirs a lapsg still remains open; this issue is addressiiirectly)

neighborhood ofz=0). The remaining initial functions by the npnlmear p(_arturbat|0n analys[s of RE0], but the
onset still lacks a rigorous mathematical proof.

pi(x,y,2) are then determined from that solution. The above Finally, it should be pointed out that the inner-horizon

ﬁ:gghgﬁﬁg'c functions can be chosen arbitrarily, up to somesingularity that is suggested by perturbation analyses in a

To summarize, our mathematical construction shows théeaIIStIC rotating or charged black hdtsee, e.g., Re10J),

existence of a class dfocal solutions to the vacuum Ein- is qualitatively similar to the singularity constructed here, in

; : ‘ ; . that it is null and weak. There are some important differ-
stein equations, which contain a weak scalar-curvature sin-

ularity at the null hvoersurfage=0. and which depends on ences, however. The main difference is that the structure of
g y . P ! =P the inner-horizon singularity is analogous to what would
k=8 analytic functions of X,y,z). Our construction there-

fore demonstrates the existence of a functionall enericrgave been obtained from our construction if we had set
. . y 9 W= 1/Injv|. Our method of proof does not generalize straight-
null, weak, scalar-curvature singularity.

O S - forwardly to this case, however, becausés no longer ana-
The main limitation of our construction is its restriction to lytic in w at w=0 (though it is stillC*) [22]. We hope to
analytic initial functions. We believe that this is merely a y 9 i P

technical limitation of the mathematical theorems used in oufj.ISCUSS the analytic features of this more realistic null weak

proof, and the same physical situati@null weak singular- singularity elsewhere.
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