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Superfield description of the FRW universe
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An alternative procedure to construct local supersymmetric quantum cosmological models is presented. This
is performed by introducing a superfield formulation and is applied here to the FRW model. It has the
advantage of being more simple than models proposed based on full supergravity and gives, by means of this
local symmetry procedure, in a direct manner, the corresponding fermionic partners. It also permits the inclu-
sion of matter in a systematic way.
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In the generic case we have been unable to manage
canonical quantization of the full equations of general rel
tivity; the minisuperspace approximation has been used
find results in the hope that they would illustrate the behavi
of the general theory. The Bianchi cosmologies are the prim
example. As is well known, the equation that governs th
quantum behavior of these models is the Wheeler-DeW
equation, which results in a quadratic Hamiltonian leading
an equation of the Klein-Gordon-type. The recent introdu
tion of supersymmetric minisuperspace models has led to
definition and study of linear ‘‘square root’’ equations defin
ing the quantum evolution of the Universe. To achieve the
Dirac-type equations, one can make use of the fact that
pergravity provides a natural square root of gravity@1–8# or
supersymmetrize the models@9,10#. In the last procedure the
Grassmann quantities are not in a clear manner the sup
symmetric partners of the cosmological bosonic variable.
this paper we propose a different approach based on the
perfield construction of the action which is invariant unde
n52 ~n51 in the complex calculation! local supersymmetric
transformations with a U~1! internal subgroup. This local
symmetry procedure will provide in a systematic way th
corresponding fermionic fields. This is here performed fo
the closed Friedmann-Robertson-Walker~FRW! models. Our
approach is more simple than the use of full supergravi
and permits the inclusion of matter in a systematic way.

We begin by considering the homogeneous and isotrop
metric defined by

ds252N2~ t !dt21R2~ t !dV3
2, ~1!

wheredV3
2 is the spatial FRW standard metric over three

space. The lapse functionN and the scale factorR depend on
the time parametert.
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Then, the FRW model for gravity, represented by thi
scale factor, is defined by the action

S5E S 2
R~Ṙ!2

2N
1

1

2
kNRD dt, ~2!

wherek51,0,21 stands for spherical, plane or hyperspher
cal three-space andṘ5dR/dt. In the action~2! the cosmo-
logical term could be included. This one is invariant unde
reparametrization oft[ t→t1a(t)], if the transformations of
R,N are defined asdR5aṘ, dN5(aN)˙ . The variations
with respect toR and N lead to the classical equations of
motion for the scale factorR and the constraint, which gen-
erates the local reparametrization ofR andN. The constraint
leads to the standard Wheeler-DeWitt equation in quantu
cosmology.

Action ~2! gives a simple one-dimensional model for the
somehow interacting ‘‘matter’’ fieldR(t) with the ‘‘gravity’’
field N(t), defined by the one-dimensional metricN2(t). We
will proceed with the superfield formulation of this action.
For this purpose we need to generalize the local time tran
formationst→(t,h,h̄) in the following way:

dt5a~ t !1 ihb~ t !1 i h̄b̄~ t !,

dh5b̄~ t !1S ȧ~ t !

2
1 ib~ t ! Dh1 ibG hh̄, ~3!

whereh is a complex odd parameter~h odd ‘‘time’’ coordi-
nates!, b~t! is the Grassmann complex parameter of loca
‘‘small’’ n52 SUSY transformation, andb(t) is the param-
eter of local U~1! rotations of the complexh. It is well
known that these supersymmetric transformations applied
the relativistic particle model lead to the description of spin
ning particles@11#, superparticles@12#, and spinning super-
particles@13#.

The superfield generalization of action~2!, which is in-
variant under the transformation~3!, has the form

S5E F2
1

2
N21RD̄hRDhR1

Ak

2
R2Gd t d h d h̄, ~4!-

ne.
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where Dh5]/]h1 i h̄(]/]t) and D̄h52]/]h̄2 ih(]/
]t)[{ Dh ,D̄h} 522i (]/]t)] are the supercovariant deriva
tives of the global ‘‘small’’ supersymmetry of the generalize
parameter corresponding tot. The local supercovariant de
rivatives have the formD̃h5N21/2Dh andDD h5N21/2D̄h .

Note that the BerE A
B, as well as the super-Jacobian of th

generalized time transformation ~3!, equal to
BerE B

A5~N1/2N1/2!21N51, is then omitted in the action~4!.
In the action~4! N~t,h,h̄! is a real gravity superfield and

has the form

N~ t,h,h̄ !5N~ t !1 ihc~ t !1 i h̄c̄~ t !1hh̄V~ t !, ~5!

and R~t,h,h̄) is a real ‘‘matter’’ superfield, which has th
form

R~ t,h,h̄ !5R~ t !1 ihl~ t !1 i h̄l̄~ t !1hh̄F~ t !. ~6!

The components of the superfieldN~t,h,h! are gauge
fields of the one-dimensionaln52 ~real calculation! ex-
tended supergravity.N(t) is einbein,c(t),c̄(t) are the com-
plex gravitino, andV(t) is U~1! gauge field.

The supersymmetry transformation law for components
superfieldsN~t!, R~t! follows from transformation laws~3!.
For example, the transformation of componentsN, c, andV
of the supergravity multiplet has the form

dN5~aN!˙ , dc5~ac!˙ , dV5~aV!˙ ,

dN5 i ~ b̄c1bc̄!, dc5ḃ1b̄V, dV50,

dN50, dc52 ibc, dV5ḃ.

The componentF(t) of the superfieldR~t! is an auxiliary
degree of freedom~nondynamical variable!, and l(t),l̄(t)
are fermionic partners of the scale factorR(t).

After integrating over the Grassmann coordinatesh,h̄
and making the field redefinitionsc→ANc, l→A(N/R)l,
andV→~1/N)(V12c̄c/N), we obtain the action in its com
ponents:

S5E H 2
1

2 FR~Ṙ!2

N
22i l̄l̇1

R

N
F22

l̄l

R
F2

iAR

N

3Ṙ~ c̄l1cl̄!1
AR

N
~ c̄l2cl̄!F2l̄lVG

1AkS RF2
N

R
l̄l D J dt. ~7!

The auxiliary fieldF(t) may be determined from the appro
priate equations of motion, and after substituting them ag
into the action we get

S85E F2
1

2

R~Ṙ!2

N
1 i l̄l̇1

kN

2
R2

Ak

2

N

R
l̄l1

1

2
l̄lV

2
1

4N
c̄cl̄l1

i

2

AR

N
Ṙ~ c̄l1cl̄!

2
Ak

2
AR~ c̄l2cl̄!Gdt. ~8!
-
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In this actionN(t),c(t),c̄(t), andV(t) are Lagrange multi-
pliers.

Now we consider the Hamiltonian analysis of this system
The momentumpR conjugate toR is given by

pR5
]L

]Ṙ
5

i

2

AR

N
~ c̄l1cl̄!2

RṘ

N
, ~9!

with respect to the canonical Poisson brackets {R,pR} 51,
and for the momenta conjugate to the Grassmann dynami
variablesl,l̄ we have

pl5
]L

]l̇
52

i

2
l̄, pl̄5

]L

]lG
52

i

2
l. ~10!

Because of the definitions we have the odd second-cla
constraints:

Pl̄[pl̄1
i

2
l50, Pl[pl1

i

2
l̄50, ~11!

leading to the Dirac brackets for dynamical variables:

$l,l̄%* 52 i ,$R,pR%* 5$R,pR%51. ~12!

After quantization of the Dirac brackets~12! we get the
commutation-anticommutation relations

@R,pR#5 i ,$l,l̄%51. ~13!

From the action~8! one derives the first-class constraints
varying N, c, c̄, andV, respectively. We obtain

H̃[H2
1

2N2 c̄cl̄l50, S̃50, SD 50, F50, ~14!

where

H52
1

2

pR
2

R
2

kR

2
1

Ak

2R
l̄l, ~15!

S̃5S pR

AR
2 iAkARD l2

i

N
cl̄l, ~16!

SD 5S pR

AR
1 iAkARD l̄1

i

N
c̄l̄l, ~17!

F5l̄l. ~18!

The classical constraintsH̃,SD ,S̃, andF form a closed algebra
under Dirac brackets~12!. The constraints~15!, ~16!, ~17!,
and ~18! follow from the invariant action~8! under the
‘‘small’’ local supersymmetric~SUSY! transformation~3!
@the parametersa(t),b(t),b̄(t), and b(t) are respectively
generated by these first-class constraints#.

The total Hamiltonian isHT5ṘpR1lGpl̄1l̇pl2L, and
has the form
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HT52
1

2
N

pR
2

R
2

kNR

2
1

Ak

2R
Nl̄l2

1

2
l̄lV1

1

2N
c̄cl̄l

1
i

2

pR

AR
~ c̄l1cl̄! 1

Ak

2
AR~ c̄l2cl̄!, ~19!

and is given by

HT5NH̃1
i c̄

2
S̃1

ic

2
SD 1FS 2

V

2 D . ~20!

In order to give the canonical form of the theory, we repla
R(t) by x(t)5 2

3 R3/2(t); then the kinetic termR(Ṙ)2/2 in the
action ~8! leads toẋ2/2.

In this case the Hamiltonian~15! takes the form

H52
px

2

2
2

1

2
@W8~x!#21W9~x!l̄l,

which is the well-known structure of the SUSY classic
Hamiltonian in supersymmetric quantum mechanics with s
perpotentialW(x)534/3Akx4/3/27/3. We observe that the mi-
nus signs in the first and second terms of the Hamiltoni
arise as a consequence of pure gravity field, and the th
term is a consequence of the SUSY and is positively defin

In the quantum theory all the dynamical variables becom
operators with the commutation rule~13!, and first-class con-
straints are imposed on states vectors. In our casel,l̄ can be
realized either by raising and lowering operators in acc
dance with their quantum anticommutation relation {l,l̄}
51 or by matricest~1! andt~2! .

For the quantum generatorsH̃, S̃, SD , F we obtain the
closed superalgebra

$S̃,SD %522H̃2
i

N
c̄S̃2

i

N
cSD 1

1

N2 c̄cF,

$S̃,S̃%5
2i

N
cS̃, $SD ,SD %5

2i

N
c̄SD ,

@F,S̃#52S̃2
i

2
cF, @F,SD #5SD 2

i

N
c̄F, ~21!

@H̃,S̃#5
c̄c

2N2 S̃, @H̃,SD #52
c̄c

2N2 SD ,

@F,H̃#50.

We have then shown that the action~8! is invariant under the
‘‘small’’ SUSY transformations~3!; then we can choose the
gaugec50, N51. In this case the generatorsH̃,S̃,SD , andF
lead to the form
ce
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H52
1

2

pR
2

R
2

kR

2
1

Ak

2R
l̄l,

S5S pR

AR
2 iAkARD l, ~22!

S̄5S pR

R
1 iAkARD l̄,

whereH is the Hamiltonian,S is the single complex super-
symmetric charge ofn52 supersymmetric quantum mechan
ics with the algebra

$S,S̄%522H, @S,H#50, @F,S#52S,
~23!

S25S̄250, @S̄,H#50, @F,S̄#5S̄,

which follows from ~21! in the gaugec50, and F is the
fermion number operator. Generators~22! were found in the
works ~9! while looking for the hidden symmetry in cosmo-
logical models, but the superalgebra~23! of these generators
corresponds to a global symmetry. The local supersymme
of the subgroup of time reparametrization comes out fro
generators~15!–~18!. So, the action~8! has the form of the
localized version ofN52 supersymmetric quantum mechan
ics. The generators~22! satisfy the superalgebra~23!. The
k521 case deserves some comments. The third term in
Hamiltonian makes it non-Hermitian; this is the isotropi
model corresponding to the Bianchi type V model. It is als
well known @14# that, already in standard quantum cosmo
ogy, the quantization of the class B Bianchi models face
some problems. It is, however, at this stage not clear if th
non-Hermiticity of the Hamiltonian~22! for k521 is con-
nected with the difficulties found in the standard quantu
cosmology. In any case this model deserves further study

We suggest that the correct reduction fromd54 of differ-
ent versions ofN51 supergravity must lead to local versions
of then52 andn54 supersymmetric quantum mechanics fo
cosmological models. Perhaps the consequent reducti
leading to supersymmetric quantum mechanics fromd54
supergravity, may be realized by using Lorentz harmonics

Cosmological models interacting with matter may also b
constructed by the procedure followed in this paper.

An interesting point is to try to find out if the ‘‘small’’
SUSY in the suggested cosmological models is a remnant
the ‘‘big’’ SUSY in supergravity theories, or if it is necessary
to construct models possessing both types of local SUSY’s
order to construct consequent quantum cosmology. In th
case the problem of the spontaneous breaking of SUSY
the SUSY cosmological models and its relation with spont
neous breaking of SUSY in supergravity theories should al
be studied.

The development of this approach in SUSY cosmologic
models will be discussed in the near future for all the Bianc
type models. In addition, we will discuss then54 construc-
tion in the supersymmetric cosmological models and its r
lation with n54 Witten’s mechanics.

On the one hand, our superfield approach provides in ge
eral an alternative way to construct supersymmetric mode
with a reduced number of degrees of freedom and is in pa
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ticular more simple for quantum cosmology than to use th
full N51 supergravity applied to these reduced mode
Moreover, the method proposed here provides a systema
way to include matter in any desired model. A generalizatio
of this procedure to all Bianchi models and the inclusion o
matter will be reported elsewhere.
e
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