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Superfield description of the FRW universe
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An alternative procedure to construct local supersymmetric quantum cosmological models is presented. This
is performed by introducing a superfield formulation and is applied here to the FRW model. It has the
advantage of being more simple than models proposed based on full supergravity and gives, by means of this
local symmetry procedure, in a direct manner, the corresponding fermionic partners. It also permits the inclu-
sion of matter in a systematic way.
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In the generic case we have been unable to manage the Then, the FRW model for gravity, represented by this
canonical quantization of the full equations of general relascale factor, is defined by the action
tivity; the minisuperspace approximation has been used to
find results in the hope that they would illustrate the behavior
of the general theory. The Bianchi cosmologies are the prime S‘j
example. As is well known, the equation that governs the
guantum behavior of these models is the Wheeler-DeWitivherek=1,0,—1 stands for spherical, plane or hyperspheri-
equation, which results in a quadratic Hamiltonian leading tacal three-space and=dR/dt. In the action(2) the cosmo-
an equation of the Klein-Gordon-type. The recent introducdogical term could be included. This one is invariant under
tion of supersymmetric minisuperspace models has led to theeparametrization off t—t+a(t)], if the transformations of
definition and study of linear “square root” equations defin- R,N are defined assR=aR, SN=(aN) . The variations
ing the quantum evolution of the Universe. To achieve thesavith respect toR and N lead to the classical equations of
Dirac-type equations, one can make use of the fact that sunotion for the scale factdR and the constraint, which gen-
pergravity provides a natural square root of grayity-8] or  erates the local reparametrizationRBndN. The constraint
supersymmetrize the modd3,10]. In the last procedure the leads to the standard Wheeler-DeWitt equation in quantum
Grassmann quantities are not in a clear manner the supetesmology.
symmetric partners of the cosmological bosonic variable. In  Action (2) gives a simple one-dimensional model for the
this paper we propose a different approach based on the ssemehow interacting “matter” fieldR(t) with the “gravity”
perfield construction of the action which is invariant underfield N(t), defined by the one-dimensional metNé(t). We
n=2 (n=1 in the complex calculatigrocal supersymmetric will proceed with the superfield formulation of this action.
transformations with a (1) internal subgroup. This local For this purpose we need to generalize the local time trans-
symmetry procedure will provide in a systematic way theformationst— (t, 5, 7) in the following way:
corresponding fermionic fields. This is here performed for L
the closed Friedmann-Robertson-WalkERW) models. Our St=a(t)+inp(t)+inp(t),
approach is more simple than the use of full supergravity,
and permits the inclusion of matter in a systematic way. -

We begin by considering the homogeneous and isotropic on=pU)+
metric defined by
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where 7 is a complex odd parametér odd “time” coordi-
natesg, B(t) is the Grassmann complex parameter of local
“small” n=2 SUSY transformation, and(t) is the param-
eter of local Ul) rotations of the complex;. It is well
whered()3 is the spatial FRW standard metric over three-known that these supersymmetric transformations applied to
space. The lapse functidw and the scale factd® depend on  the relativistic particle model lead to the description of spin-
the time parameter. ning particles[11], superparticle$12], and spinning super-
particles[13].
The superfield generalization of actid®), which is in-
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where D,=d/dn+in(s/dt) and 5 ——alag—in(al  Inthis actionN(t),s(t),¥(t), andV(t) are Lagrange multi-

MKD, D o =—2i(dlat)] are the supercovarlant deriva- pliers.
tives of the global ‘small” supersymmetry of the generalized Now we consider the Hamiltonian analysis of this system.

parameter corresponding to The local supercovariant de- The momentumrg conjugate toR is given by
rivatives have the fornD,=N"Y?D, andD,=N"'?D, . _

Note that the BeE, as well as the super-Jacobian of the L iR N ) — RR 9
generalized time transformation (3), equal to TR aR 2N ("b v ) ©

BerE g=(NY2NY2)~"IN=1, is then omitted in the actiof).
In the action(4) N(t, »,») is a real gravity superfield and with respect to the canonical Poisson bracke®#g} =1,

has the form and for the momenta conjugate to the Grassmann dynamical
X _ . - _ variables\,\ we have
N(t, 7, 7)=N(t) +iggp() +ing(t) + nnV(), (5

and R(t,,7) is a real *matter” superfield, which has the = il:: ! A, = '9_5: ! . (10)

form )N 2 EN 2
R(t, 7, 7) =R +i g\ () +i g\ () + p7F (D). (6) Because of the definitions we have the odd second-class

) constraints:
The components of the superfield(t,n,7) are gauge

fields of the one-dimensionah=2 (real calculation ex- i P _
tended supergraviti(t) is einbein,(t), (t) are the com- [y=ay+ > A=0, II,=m+ > A=0, (1)
plex gravitino, andv(t) is U(1) gauge field.

The supersymmetry transformation law for components of , . . . .
superfieldsN(t), R(t) follows from transformation law€3). eading to the Dirac brackets for dynamical variables:
For example, the transformation of componeNdtsy, andV — )
of the supergravity multiplet has the form AN =i {Rmr}* ={R, g} =1. (12

SN=(aN) , doy=(ay) , oV=(aV) , After quantization of the Dirac bracketd2) we get the
_ _ o commutation-anticommutation relations
N=i(By+BY), oY=B+BV, V=0, _
) [R,r]=i,{AA}=1. (13
S6N=0, oéy=—iby, o6V=hb.
From the action(8) one derives the first-class constraints

The componenE (t) of the superfieldi(t) is an auxiliary varyingN, ¢, #, andV, respectively. We obtain

degree of freedontnondynamical variabde and X (t),A(t)
are fermionic partners of the scale faciit).

After integrating over the Grassmann coordinatgs; H=H-—
and making the field redefinitiong— N, A—(N/R)X,
andV—(1/N)(V+244/N), we obtain the action in its com-

oz WAN=0, §=0, §-0, F=0, (19

ponents: where
. = 2
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(IN+N) W(I// YN) S=| = —ivkyR| A= — ¢\, (16)
JR N
N —
+vk RF—= A\ ]dt. 7) - i
= =2 +iVkyR N g A, (17)
The auxiliary fieldF(t) may be determined from the appro- VR

priate equations of motion, and after substituting them again _
into the action we get F=\N\. (18

-

1 - - iR - -
=2 PN 5 RN+ g)

1 R(R)? T kN R VKN -1 N The classical constraints,S,S, andF form a closed algebra
"2 N AN+ 2 V2R AMA+5 2 AN under Dirac bracket$12). The constraint§15), (16), (17),
and (18) follow from the invariant action(8) under the
“small” local supersymmetric(SUSY) transformation(3)
[the parameters(t),3(t),B(t), and b(t) are respectively
K generated by these first-class constrdints

VK TN The total Hamiltonian iH;= RWR-i—MT)\-I—)\ﬂ'}\ L, and

YRy w\)}dt' ® has the form
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and is given by
TR T Y
Hr=NH+ - S+ - S+F _E)' (20)

In order to give the canonical form of the theory, we replace

R(t) by x(t) = 2R%¥A(t); then the kinetic ternR(R)?/2 in the
action (8) leads tox%/2.
In this case the Hamiltoniafl5) takes the form

2

— Tx 1 ’ 2 " N
H——7—§[W (X)] +W (X))\)\,

which is the well-known structure of the SUSY classical
Hamiltonian in supersymmetric quantum mechanics with su

perpotential(x) = 3*3kx*3/273 We observe that the mi-
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whereH is the HamiltonianS is the single complex super-
symmetric charge afi=2 supersymmetric quantum mechan-
ics with the algebra

{S,St=—2H, [SH]=0, [F,S]=-S,

(23

$*=s?=0, [SH]=0, [F,S]=S,

which follows from (21) in the gauge#=0, andF is the
fermion number operator. Generat@2®) were found in the
works (9) while looking for the hidden symmetry in cosmo-
logical models, but the superalgeli&8) of these generators
corresponds to a global symmetry. The local supersymmetry
of the subgroup of time reparametrization comes out from
generatorg15)—(18). So, the actior(8) has the form of the

localized version oN=2 supersymmetric quantum mechan-

nus signs in the first and second terms qf the Hamiltonie_lrpcs_ The generatorf2?) satisfy the superalgebr@3). The

arise as a consequence of pure gravity field, and the thirfd— 1 case deserves some comments. The third term in the

term is a consequence of the SUSY and is positively definedyamiltonian makes it non-Hermitian; this is the isotropic
In the quantum theory all the dynamical variables becomenogel corresponding to the Bianchi type V model. It is also

operators with the commutation rul&3), and first-class con-

straints are imposed on states vectors. In our &asecan be

well known [14] that, already in standard quantum cosmol-
ogy, the quantization of the class B Bianchi models faces

realized either by raising and lowering operators in_accor-gme problems. It is, however, at this stage not clear if the

dance with their quantum anticommutation relation, X}
=1 or by matricesr,, and 7_,. o

For the quantum generatotd,S,S,F we obtain the
closed superalgebra

.~ = O e T -
{S,S}Z—ZH—NlﬁS—NdIS‘f‘mlﬂlﬂF,

[F,H]=0.

We have then shown that the acti8) is invariant under the

“small” SUSY transformations(3); then we can choose the

gaugey=0, N=1. In this case the generatdisS,S, andF
lead to the form

non-Hermiticity of the Hamiltoniar(22) for k=—1 is con-
nected with the difficulties found in the standard quantum
cosmology. In any case this model deserves further study.

We suggest that the correct reduction frdm4 of differ-
ent versions oN=1 supergravity must lead to local versions
of then=2 andn=4 supersymmetric quantum mechanics for
cosmological models. Perhaps the consequent reduction,
leading to supersymmetric quantum mechanics frosd
supergravity, may be realized by using Lorentz harmonics.

Cosmological models interacting with matter may also be
constructed by the procedure followed in this paper.

An interesting point is to try to find out if the “small”
SUSY in the suggested cosmological models is a remnant of
the “big” SUSY in supergravity theories, or if it is necessary
to construct models possessing both types of local SUSY’s in
order to construct consequent quantum cosmology. In this
case the problem of the spontaneous breaking of SUSY in
the SUSY cosmological models and its relation with sponta-
neous breaking of SUSY in supergravity theories should also
be studied.

The development of this approach in SUSY cosmological
models will be discussed in the near future for all the Bianchi
type models. In addition, we will discuss the=4 construc-
tion in the supersymmetric cosmological models and its re-
lation with n=4 Witten's mechanics.

On the one hand, our superfield approach provides in gen-
eral an alternative way to construct supersymmetric models
with a reduced number of degrees of freedom and is in par-
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ticular more simple for quantum cosmology than to use the We are grateful to T. Aliev, S. Fedoruk, A. Nurmagambe-
full N=1 supergravity applied to these reduced modelstov, C. Ramiez, J. Socorro, D. Sorokin, and D. Volkov for
Moreover, the method proposed here provides a systemattbeir interest in this work. The work of V.I.T. was supported
way to include matter in any desired model. A generalizatiorin part by the International Science Foundation under Grant
of this procedure to all Bianchi models and the inclusion ofNo. U96000. This work was also supported in part by
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