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Unitarized model of hadronic diffractive dissociation
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It is shown that in a supercritical Pomeron model the contribution of the triple-Pomeron diagrams violates
the unitarity bound for the cross section even when taking into account the multiple Pomeron exchanges
between the initial hadrons. The asymptotic behavior of the single diffractive dissociation cross section is
calculated in the approximation where every Pomeron in thedixgram is eikonalized as well as an elastic
interaction of initial hadrons is taken into account. In this approximatidf o,— 0, ats— .

PACS numbds): 13.85.Hd, 12.40.Yx

The interest in diffractive dissociation is caused by bothrized in the most simple way, taking into account multiple
comparatively new experimental data obtained at the FermiPomeron exchanges between the incoming had¢ortal-
lab Tevatron[1] and by observations at the DESp col-  state interaction This approach was suggested in Ré&l. In
lider HERA of deep inelastic processes with typical rapiditya more general context the problem of unitarization in dif-
gaps[2]. The generally adopted interpretation of these simi-fractive dissociation was discussed a long time &gz, for
lar enough phenomena is based on the following interactioexample[8]). It was claimed ir(6] that, taking into account
mechanism. The incoming fast protéor virtual photon in  the initial-state interaction, the integrated cross section of
deep inelastic scatteringemits” a Pomeron which interacts diffractive dissociation rises logarithmically with energy,
with the proton target producing a shower of hadrons. ThesePxIns, in accordance with the experimental data.
hadrons are distributed in the rapidity scale at a large dis- We will show that this conclusion df7] is wrong, and
tance(rapidity gap from the initial proton. The central point taking into account the initial-state interaction by the eikonal
of the model, the interaction of the Pomeron with the proton(or by another way does not allow one to eliminate the
target, is universal. It means that this subprocess does nekceedingly fast growth of the cross section. We have per-
depend on where a dissociation is considered: in a pure hafiermed asymptotic evaluations of a wider class of correc-
ronic process or in a deep inelastic scattering. tions, which indeed allows one to eliminate the explicit con-
In what follows we consider diffractive dissociation in a tradiction with unitarity bounds.
pure hadronic procedsh—hX. If the effective mass of the To make our arguments more clear we list a few well-
produced shower is large enough then with certain simplifyknown general statements and formulas. Because we are in-
ing assumptions the cross section of the process may be prerested only in an asymptotic cross-section behavior, the
sented(due to the generalized optical theonelny a diagram  contribution off Reggeon is omitted in all expressions.
with a triple-Pomeron verteiFig. 1). As in [6] we will work in the impact parameter represen-
The properties of the cross section of course depend otation. The normalization of the amplitude is
the specific model of Pomeron. The best known one at
present, the so-called supercritical Pomeron, has a trajectory q
with the intercepivp(0)=1+ A with A>0. In particular the g _ 2 _
model of Donnachie and Landshoff with=0.08 based on a dt (D% oo=4m Imf(s,0). @D
Pomeron-photon analogy describes quite well the hadronic
data [3]. However the contribution of the supercritical
Pomeron to the total cross section rises with energy as An amplitude in theb representation is defined by the trans-
power oxs® violating the Froissart-Martin bound formation
o< consi In%(s/sy). The strict consistent procedure of uni-
tarization is absent now, but there are some simple phenom- 1
enological ways to eliminate the rough contradictions with _ > __ig-b _ 2
unitarity. For example, the eikonpd], U-matrix [5] methods a(s,b)= wa dge (s, t=-q 2
and their generalizations are often used for unitarization of
the amplitude. A different approach to the problem was sug-
gested in6].
It is quite obvious that the three-Pomeron diagram alsc
needs unitarity corrections, which should remove a too fas
growing contribution of the supercritical Pomeron to the dif-

fractive dissociation cross sectigap to the Irs factors it is Ex
proportional tos?*). The 3P diagram seemed to be unita-
*Electronic address: martynov@gluk.apc.org FIG. 1. Process of diffractive dissociation ang 8liagram.
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Eikonal summation of the high energy elastic Pomeronwhere
rescatterings can be realized with the amplita@g b) in the
form (s o0 (S>A 492 (s
v(sIS)) === == ——|—
a(s,b)=i(1—e ®sb), 07 27wR?(slsg) | Sg R%(s/sg) | sp

A
)1 4

Q(S’b):_Zl_ﬂ-f dae_i‘i'sfo(s,t), R2(s/sg)=2Bg+4a’In(slsy), oo=8mg>. (5)

wherefq(s,t) is an input elastic amplitude. Starting from a In this modelif o(s,t) and{}(s,b) are the real functions, but

simplified model of the supercritical Pomeron with the tra-analyticity and crossing symmetry are restored by the substi-

jectory ap(t)=1+A+ apt, tution s—s exp(—iw/2). It is easy to obtain from the above
expressions thair,=27AR?(s/sp)In(s/sy), as s/sg— .

, s |1 a4 Thus, in a supercritical Pomeron model the eikonal correc-
fo(s,t)=ig(t) S ., g(t)y=ge "o, tions to one-Pomeron exchange remove the explicit violation
of unitarity condition. The resulting cross sections satisfy the
one can obtain Froissart-Martin bound.
- The expression for an integration over theross section
Q(s,b)=wv(slsy)e PR (Ss0), (3)  of diffractive dissociation was written if7] in the form
|
dO'SD S 24 M2 4 1 S s 252
M?2 =G — . . j db db’exg —2v(s/sy)e PR (S%0)]
dM? - TOPPPRAIMZ] sy | [R2(sIM2)12mRE(M 2/ sy) °

< 2(6_6/)2 b/2 (6)
exp —2= — = ,
R%(s/M?) R2(M?/sy)
|

wherev,R? are defined by Eqg4) and(5), where

R(z)=By+r2+4a’ln(z) @)

2R?(s/sg)

andr is the radius of the triple-Pomeron vertex. The eikonal 9

a== =
2 2 2 2
corrections due to Pomeron rescatterings in the initial state RA(s/M%) +2R%(M*/so)

(Fig. 2 were accounted by the insertion of factor
ex] —20(sb)]=ex —21(gsy)e > /FE9)] in the integrand of
Eq. (6).

Unfortunately a mistake appeared[if] when asymptotic
evaluation of the integral was made. After integration dver
andb’ the differential cross section of diffractive dissocia-

and y[ a,2v] is the incomplete Euler gamma function.

In the limit under consideratiors>s,,M?/s,,s/M?>1,
the ratioa tends to 2 andy[a,2v] tends tol'(2). Substitut-
ing these limits to expressio(8) authors of{7] have ob-

tion becomes tained
Mzda'SD: U'S M2doSP ) M2| A
dM* 2mwR3(sIM?) dm2 = mR(s/Sp)Gppp 5

ay[a,2v(s)] (i) ZA( M2>A’ @®

PPP [2v(9)]7 | M? So However, this result is wrong. Indeed, one can see using

definitions(4), (5), (7), and(9) that, ats,M?,s/M?—

FIG. 2. 3P diagram which corresponds to interaction of hadrons
in the initial state. FIG. 3. Diagram with eikonalized Pomerons.
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2R2(s/sp) Our model we define in the form, which corresponds to
a== - Fig. 3,
R2(s/M?)+2R3(M?/sy) oS
In(M?/so) M2 oz =00 Gl
=2 Insrsy TClintsisy | |-
0 0 where
Therefore the factor of expressi¢®) which violates the uni-
tarity is transformed as I=J db db’exd —2Q(s,b)]
s 2A MZ A s M2 2
= - —a_ = - ~ s
Mz) ( So) [(s)] exp{ZA |n(M2)+A In( SO) X{l_exf{_Q<S°W*b/)H
MZ A ~ N
—2A |n(s/so)]~(s—) , x{1—exgd —Q(M?,|b—b'|)]} (10
0

. . and G includes all of the relevant couplings and constants.
conserving a too fast growth of the cross section at Iargel.he value ﬁ(z b) differs from the input one-Pomeron

M2, . : .
In what follows we investigate the diagrams which are.Q(Z’b) [Eq.(4)]. The difference is that one of the vertiogs

. oS T in it is changed for the part of triple-Pomeron vertex.

important to restore the unitarity. In our opinion it is neces- Wi hat it i h ikonali v P

sary not only to take into account an interaction of hadrons in © note that it is not enough to eikonalize only Pomerons
L . o . in 3P vertex in order to restore unitarity. If we do that, the

the initial state but also to “eikonalize” each Pomeron in the . . )

di . . factor expp—2Q)(s,b)] is absent in the integrand ¢£0). The

iagram of Fig. 2. In another words we estimate an asym ‘ntearal is calculated easily:

totical contribution tarSP of diagrams of Fig. 3. Evidently it 9 y:

is impossible to calculate such diagrams in a general form szSD - ) ) D15

without any simplified assumptions. At the same time there M* 7 *RiRz In(s/M?)In(M%/so), o™ e<In>(s/sp).

are two important and interesting points. First, is the viola-

tion of unitarity bound indeed removed after an eikonaliza-The result evidently contradicts the Froissart-Martin bound.

tion? Second, how fast does the eikonalized diffractive cross Let us now calculate the asymptotic behavior of integjral

sectionaSP rise ats—»? at the limits—oe. To do that let us rewrite it in the form

0 0 T _h2p2 _h2/R2
|=477f dbf db’f dep bb'[1—e 71 " Mj1—ev2* " 2exp] — 2vgex — (b2+ b’ 2+ 2bb’ cosp)/RE]}.
0 0 0

To avoid being cumbersome in the following formulas we ﬁf(lesoFBo+r§+4a’ln(M2/sO),
use the notation

R3(s/IM?)=By+r1% ,+4a’'In(s/M?).

Vo= V(S/SO), V1=

4gv (M2\A 4gv [ s \A
, 2 ) Making the substitution of the integration variables

R sy 2T Rz M?
viexp—b%/RY) =z,

2_R2 2_ 520N\ 12 2_R»2 2
I:20_R (S/SO)! Rl Rl(M /SO)r RZ RZ(S/M )1 Vzexq_bZ/Rg):Z2,

whereR?(s/s,) is defined by Eq(5) and we get
v dz; (v2 dz w v
I=27TR§R§f ' z_l ’ 2—2(1—e*21)2(1—e*22)f de ex —2v0exp{ - p1|n<z—l>
0 1J0 2 0 1

ik

+2\/|V1|VZ+|V2
Plnz—lpz”Z—ZCO&f’ p2n| 2
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where Consider, for example, first, where the integrations over
~s ~y Z's go from 0 up to l(remaining ones are similarly esti-
RY/RG,  p2=R3/RG. mated. The smallz; andz, contribute to it. Therefore re-
. . - . placing 1-exp(—z) by z; and using the new variables
It is convenient to divide both integrals ovey and z,
into two parts, one is from 0 up to 1 and the second is from Inz

1 up towy;:

1,1 vl lva, yviv2 ) )
I=Tootly o Hlo Tl ™ we write 15§ in the form

St=27R3RS InvlanZJO dd)fo dxexp(—2x4Invq) jo dxzexp(—lenvz)exp{ —Zvoexy{ —(BIV1+ X1+ Boy1l+X,)?

+4B1BoN(1+X1)(14X,) sin2§> ] ,

where L R
p1tp2=1+ 7 (B1tB2) =Invg—In| ——3
Bi=\pilnvy,  Br=+poInv,. (11) R 70Ro
Before further calculation let us pay attention to the be- +0(1). (128
12¢

havior of p, B, v, at s—o. It is easy to see that for an
arbitrary but fixedp; , Making use of the above properties pf B, v, one can

IN(R%/ ) 1 argue that the main contribution in the integrals oxenp is
0 ( ” (129 determined by smalkq, X,, ¢. Keeping linear inx;, X,,

Inv;=pilnwo In In(s/sg) : : i ituti
Yo 0 ¢? terms in the internal exponential and substituting
1 In(R3/ o) 1 o o
Bi=pivinyg 1—5 invy in(s/sg) ur=exgd — B1(B1+ B2)X1], Ux=exd —Ba(B1+ B2)Xa],
2b) we obtain
|
|11 R2R2 |nV1|nV2 f fl dulfl dU2 a;, a, R%Rg FXB ﬁ ¢2)
—u;'uy’ex ex uzu
00T B\ Bo(Brt B2)? ZooRg SR FiF2d Nt
2 RER2 Jr Invlnw, I'(a,) [ R2R3 ’aZ_ I'(a;) 2R2R§ T
2(B1B2) YA B1+ B2)*(a1—ay) Ja, ooR3 Ja, ooRS ’
|
where Similar calculations for other terms of the integralive rise
to
B1lp1 2B21p2
a,= , A= . 13
LBt B 2 B1t B2 13 1 o.R2
=i = TR,
Sincea, =1+ O[ 1/In(9's)] and a,= 2+ O[ 1/In(gsy)], as it o ? 22RiR;
foIIows from (12) and(13) we finally obtain, for the integral
| , V1,V
0 |14 "2< const< exp( — R/ o).

Invqlnv,

- ) 1
IO'O_W\/;UORO(,BlﬂZ)S/Z(,Bl"',BZ) { O(In(s/so)) '

Thus, ass— o,
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dosSP . A In(s/sg) dissociation. We have shown that eikonalization of each
MZW;‘W\/;G(RS)Z ——— Pomeron in the B diagram and an account of the elastic
RiR? interaction of hadrons in the initial state allow us to restore
[In(s/sg)]%? the unitarity which i§ violated by an input supercritical
= t ) (14 Pomeron. Our result is only an asymptotical one. The nu-
VIn(s/M?)In(M?/s) merical calculations and account of the nonasymptotical con-
. . ] tributions are needed to compare the considered model with
Integration of Eq.(14) over M< in the domain where experiment.

p12+0, gives .
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