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Unitarized model of hadronic diffractive dissociation

E. S. Martynov* and B. V. Struminsky
N.N. Bogoliubov Institute for Theoretical Physics, 252143, Metrologicheskaja st. 14b, Kiev-143, Ukraine

~Received 28 July 1995!

It is shown that in a supercritical Pomeron model the contribution of the triple-Pomeron diagrams violates
the unitarity bound for the cross section even when taking into account the multiple Pomeron exchanges
between the initial hadrons. The asymptotic behavior of the single diffractive dissociation cross section is
calculated in the approximation where every Pomeron in the 3P diagram is eikonalized as well as an elastic
interaction of initial hadrons is taken into account. In this approximationsSD/s tot→0, ats→`.

PACS number~s!: 13.85.Hd, 12.40.Yx
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The interest in diffractive dissociation is caused by bo
comparatively new experimental data obtained at the Fe
lab Tevatron@1# and by observations at the DESYep col-
lider HERA of deep inelastic processes with typical rapid
gaps@2#. The generally adopted interpretation of these sim
lar enough phenomena is based on the following interac
mechanism. The incoming fast proton~or virtual photon in
deep inelastic scattering! ‘‘emits’’ a Pomeron which interacts
with the proton target producing a shower of hadrons. Th
hadrons are distributed in the rapidity scale at a large
tance~rapidity gap! from the initial proton. The central poin
of the model, the interaction of the Pomeron with the pro
target, is universal. It means that this subprocess does
depend on where a dissociation is considered: in a pure
ronic process or in a deep inelastic scattering.

In what follows we consider diffractive dissociation in
pure hadronic processhh→hX. If the effective mass of the
produced shower is large enough then with certain simpl
ing assumptions the cross section of the process may be
sented~due to the generalized optical theorem! by a diagram
with a triple-Pomeron vertex~Fig. 1!.

The properties of the cross section of course depend
the specific model of Pomeron. The best known one
present, the so-called supercritical Pomeron, has a trajec
with the interceptaP(0)511D with D.0. In particular the
model of Donnachie and Landshoff withD50.08 based on a
Pomeron-photon analogy describes quite well the hadro
data @3#. However the contribution of the supercritic
Pomeron to the total cross section rises with energy a
power s}sD, violating the Froissart-Martin bound
s tot,const3 ln2(s/s0). The strict consistent procedure of un
tarization is absent now, but there are some simple phen
enological ways to eliminate the rough contradictions w
unitarity. For example, the eikonal@4#, U-matrix @5# methods
and their generalizations are often used for unitarization
the amplitude. A different approach to the problem was s
gested in@6#.

It is quite obvious that the three-Pomeron diagram a
needs unitarity corrections, which should remove a too
growing contribution of the supercritical Pomeron to the d
fractive dissociation cross section~up to the lns factors it is
proportional tos2D). The 3P diagram seemed to be unita
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rized in the most simple way, taking into account multip
Pomeron exchanges between the incoming hadrons~initial-
state interaction!. This approach was suggested in Ref.@7#. In
a more general context the problem of unitarization in d
fractive dissociation was discussed a long time ago~see, for
example@8#!. It was claimed in@6# that, taking into account
the initial-state interaction, the integrated cross section
diffractive dissociation rises logarithmically with energ
sSD} lns, in accordance with the experimental data.

We will show that this conclusion of@7# is wrong, and
taking into account the initial-state interaction by the eikon
~or by another! way does not allow one to eliminate th
exceedingly fast growth of the cross section. We have p
formed asymptotic evaluations of a wider class of corr
tions, which indeed allows one to eliminate the explicit co
tradiction with unitarity bounds.

To make our arguments more clear we list a few we
known general statements and formulas. Because we ar
terested only in an asymptotic cross-section behavior,
contribution of f Reggeon is omitted in all expressions.

As in @6# we will work in the impact parameter represe
tation. The normalization of the amplitude is

ds

dt
5pu f ~s,t !u2, s tot54p Imf ~s,0!. ~1!

An amplitude in theb representation is defined by the tran
formation

a~s,b!5
1

2pE dqW e2 iqW •bW f ~s,t !, t52q2. ~2!

FIG. 1. Process of diffractive dissociation and 3P diagram.
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53 R1019UNITARIZED MODEL OF HADRONIC DIFFRACTIVE DISSOCIATION
Eikonal summation of the high energy elastic Pome
rescatterings can be realized with the amplitudea(s,b) in the
form

a~s,b!5 i ~12e2V~s,b!!,

V~s,b!52
i

2pE dqW e2 iqW •bW f 0~s,t !,

where f 0(s,t) is an input elastic amplitude. Starting from
simplified model of the supercritical Pomeron with the tr
jectory aP(t)511D1aP8 t,

f 0~s,t !5 ig~ t !S s

s0
D aP~ t !21

, g~ t !5ge2B0t/4,

one can obtain

V~s,b!5n~s/s0!e2b2/R2~s/s0!, ~3!
a
ta
or

r
a-

n

n

-

where

n~s/s0!5
s0

2pR2~s/s0! S s

s0
D D

5
4g2

R2~s/s0! S s

s0
D D

, ~4!

R2~s/s0!52B014a8ln~s/s0!, s058pg2. ~5!

In this modeli f 0(s,t) andV(s,b) are the real functions, bu
analyticity and crossing symmetry are restored by the sub
tution s→s exp(2ip/2). It is easy to obtain from the abov
expressions thats tot.2pDR2(s/s0)ln(s/s0), as s/s0→`.
Thus, in a supercritical Pomeron model the eikonal corr
tions to one-Pomeron exchange remove the explicit violat
of unitarity condition. The resulting cross sections satisfy
Froissart-Martin bound.

The expression for an integration over thet cross section
of diffractive dissociation was written in@7# in the form
M2
dsSD

dM2 5s0
2GPPPS s

M2D 2DS M2

s0
D D

1

@pR̃2~s/M2!#2pR̃2~M2/s0!
E dbW dbW 8exp@22n~s/s0!e2b2/R2~s/s0!#

3expS 22
~bW 2bW 8!2

R̃2~s/M2!
2

b82

R̃2~M2/s0!
D , ~6!
ing
wheren,R2 are defined by Eqs.~4! and ~5!,

R̃2~z!5B01r 214a8ln~z! ~7!

andr is the radius of the triple-Pomeron vertex. The eikon
corrections due to Pomeron rescatterings in the initial s
~Fig. 2! were accounted by the insertion of fact
exp@22V(s,b)#5exp@22n(s/s0)e

2b2/R2(s/s0)# in the integrand of
Eq. ~6!.

Unfortunately a mistake appeared in@7# when asymptotic
evaluation of the integral was made. After integration oveb
and b8 the differential cross section of diffractive dissoci
tion becomes

M2dsSD

dM2 5
s0

2

2pR̃1
2~s/M2!

3GPPP

ag@a,2n~s!#

@2n~s!#a S s

M2D 2DS M2

s0
D D

, ~8!

FIG. 2. 3P diagram which corresponds to interaction of hadro
in the initial state.
l
te

where

a5
2R2~s/s0!

R̃2~s/M2!12R̃2~M2/s0!
~9!

andg@a,2n# is the incomplete Euler gamma function.
In the limit under consideration,s@s0 ,M2/s0 ,s/M2@1,

the ratioa tends to 2 andg@a,2n# tends toG(2). Substitut-
ing these limits to expression~8! authors of@7# have ob-
tained

M2dsSD

dM2 5pR2~s/s0!GPPPS M2

s0
D 2D

.

However, this result is wrong. Indeed, one can see us
definitions~4!, ~5!, ~7!, and~9! that, ats,M2,s/M2→`

s
FIG. 3. Diagram with eikonalized Pomerons.
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R1020 53E. S. MARTYNOV AND B. V. STRUMINSKY
a5
2R2~s/s0!

R̃1
2~s/M2!12R̃1

2~M2/s0!

52F12
ln~M2/s0!

ln~s/s0!
1OS 1

ln~s/s0! D G .
Therefore the factor of expression~9! which violates the uni-
tarity is transformed as

S s

M2D 2DS M2

s0
D D

@n~s!#2a.expH 2D lnS s

M2D1D lnS M2

s0
D

22D ln~s/s0!J ;S M2

s0
D D

,

conserving a too fast growth of the cross section at la
M2.

In what follows we investigate the diagrams which a
important to restore the unitarity. In our opinion it is nece
sary not only to take into account an interaction of hadron
the initial state but also to ‘‘eikonalize’’ each Pomeron in t
diagram of Fig. 2. In another words we estimate an asym
totical contribution tosSD of diagrams of Fig. 3. Evidently it
is impossible to calculate such diagrams in a general fo
without any simplified assumptions. At the same time th
are two important and interesting points. First, is the vio
tion of unitarity bound indeed removed after an eikonaliz
tion? Second, how fast does the eikonalized diffractive cr
sectionsSD rise ats→`?
e

e

-
n

-

m
e
-
-
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Our model we define in the form, which corresponds
Fig. 3,

M2
dsSD

dM2 5s0
21G̃I ,

where

I 5E dbW dbW 8exp@22V~s,b!#

3H 12expF2ṼS s0

s

M2 ,b8D G J 2

3$12exp@2Ṽ~M2,ubW 2bW 8u!#% ~10!

and G̃ includes all of the relevant couplings and constan
The value Ṽ(z,b) differs from the input one-Pomero
V(z,b) @Eq. ~4!#. The difference is that one of the verticesg
in it is changed for the part of triple-Pomeron vertex.

We note that it is not enough to eikonalize only Pomero
in 3P vertex in order to restore unitarity. If we do that, th
factor exp@22V(s,b)# is absent in the integrand of~10!. The
integral is calculated easily:

M2
dsSD

dM2 }R1
2R2

2 ln~s/M2!ln~M2/s0!, sSD} ln5~s/s0!.

The result evidently contradicts the Froissart-Martin boun
Let us now calculate the asymptotic behavior of integraI

at the limit s→`. To do that let us rewrite it in the form
I 54pE
0

`

dbE
0

`

db8E
0

p

df bb8@12e2n1e2b82/R1
2

#@12e2n2e2b2/R2
2

#2exp$22n0exp@2~b21b8212bb8cosf!/R0
2#%.
To avoid being cumbersome in the following formulas w
use the notation

n0[n~s/s0!, n15
4gv

R1
2 S M2

s0
D D

, n25
4gv

R2
2 S s

M2D D

,

R0
2[R2~s/s0!, R1

2[R̃1
2~M2/s0!, R2

2[R̃2
2~s/M2!,

whereR2(s/s0) is defined by Eq.~5! and
R̃1
2~M2/s0!5B01r 0

214a8ln~M2/s0!,

R̃2
2~s/M2!5B01r 1,2

2 14a8ln~s/M2!.

Making the substitution of the integration variables

n1exp~2b2/R1
2!5z1 ,

n2exp~2b2/R2
2!5z2 ,

we get
I 52pR1
2R2

2E
0

n1 dz1

z1
E

0

n2 dz2

z2
~12e2z1!2~12e2z2!E

0

p

df expS 22n0expH 2Fr1lnS n1

z1
D

12Ar1lnS n1

z1
D r2lnS n2

z2
D cosf1r2lnS n2

z2
D G JD ,
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where

r15R̃1
2/R0

2, r25R̃2
2/R0

2.

It is convenient to divide both integrals overz1 and z2
into two parts, one is from 0 up to 1 and the second is fr
1 up ton i :

I 5I 0,0
1,11I 1,0

n1,1
1I 0,1

I ,n21I 1,1
n1,n2.
e
n

l

Consider, for example, first, where the integrations o
z’s go from 0 up to 1~remaining ones are similarly est
mated!. The smallz1 and z2 contribute to it. Therefore re-
placing 12exp(2zi) by zi and using the new variables

xi52
lnzi

lnn i
, i 51,2,

we write I 0,0
1,1 in the form
I 0,0
1,152pR1

2R2
2 lnn1lnn2E

0

p

dfE
0

`

dx1exp~22x1lnn1!E
0

`

dx2exp~2x2lnn2!expH 22n0expS 2~b1A11x11b2A11x2!2

14b1b2A~11x1!~11x2! sin2
f

2 D J ,
where

b15Ar1lnn1, b25Ar2lnn2. ~11!

Before further calculation let us pay attention to the b
havior of r, b, n, at s→`. It is easy to see that for a
arbitrary but fixedr i ,

lnn i5r i lnn0F12
ln~R0

2/s0!

lnn0
1OS 1

ln~s/s0!
D G , ~12a!

b i5r iAlnn0F12
1

2

ln~R0
2/s0!

lnn0
1OS 1

ln~s/s0!
D G ,

~12b!
-

r11r2511
r 0

21r 1,2
2

R0
2 , ~b11b2!25 lnn02 lnS R1

2R2
2

s0R0
2D

1O~1!.
~12c!

Making use of the above properties ofr, b, n, one can
argue that the main contribution in the integrals overxi ,f is
determined by smallx1 , x2 , f. Keeping linear inx1 , x2 ,
f2 terms in the internal exponential and substituting

u15exp@2b1~b11b2!x1#, u25exp@2b2~b11b2!x2#,

we obtain
I 0,0
1,152p

R1
2R2

2 lnn1lnn2

b1b2~b11b2!2E
0

p

dfE
0

1 du1

u1
E

0

1 du2

u2
u1

a1u2
a2expH 22

R1
2R2

2

s0R0
2 exp~b1b2f2!u1u2J

.2pR1
2R2

2
Ap lnn1lnn2

~b1b2!3/2~b11b2!2~a12a2! H G~a2!

Aa2
S 2

R1
2R2

2

s0R0
2D 2a2

2
G~a1!

Aa1
S 2

R1
2R2

2

s0R0
2D 2a1J ,
where

a15
b1 /r1

b11b2
, a25

2b2 /r2

b11b2
. ~13!

Since a1511O@1/ln(s/s0)# and a2521O@1/ln(s/s0)#, as it
follows from ~12! and~13! we finally obtain, for the integra
I 0,0

1,1,

I 0,0
1,15pAps0R0

2 lnn1lnn2

~b1b2!3/2~b11b2!2 F11OS 1

ln~s/s0! D G .
Similar calculations for other terms of the integralI give rise
to

I 0,1
1,n2.I 0,0

1,1, I 1,0
n1,1.

1

2A2

s0R0
2

R1
2R2

2 I 0,0
1,1,

I 1,1
n1 ,n2,const3exp~2R0

2/s0!.

Thus, ass→`,
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R1022 53E. S. MARTYNOV AND B. V. STRUMINSKY
M2
dsSD

dM2 .pApG̃~R0
2!2AD ln~s/s0!

R1
2R2

2

.const
@ ln~s/s0!#3/2

Aln~s/M2!ln~M2/s0!
. ~14!

Integration of Eq. ~14! over M2 in the domain where
r1,2→” 0, gives

sSD} ln3/2~s/s0!, sSD/s tot→0, at s→`.

Thus we have proposed and investigated the simpli
eikonal model for a process of hadronic single diffracti
d

dissociation. We have shown that eikonalization of ea
Pomeron in the 3P diagram and an account of the elas
interaction of hadrons in the initial state allow us to resto
the unitarity which is violated by an input supercritic
Pomeron. Our result is only an asymptotical one. The
merical calculations and account of the nonasymptotical c
tributions are needed to compare the considered model
experiment.
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