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We report the observation of the Cabibbo-suppressed detayspK K* andAS —p¢ using data col-
lected with the CLEO Il detector at CESR. The latter mode, observed for the first time with significant
statistics, is of interest as a test of color suppression in charm decays. We have determined the branching ratios
for these modes relative th; —pK~ 7" and compared our results with theory.

PACS numbsgs): 13.30.Eg, 12.39-x, 14.20.Lq

The strength of color suppression in interh#emission 7 for each mass hypothesis= 7,K,p. Using these prob-
charmed meson decays has long been in question. For exbilities 7%, a normalized probability ratid; is evaluated
ample, #(DJ —=K*°K*)/.ADf—¢n*)=1, [1,2] while for each track according to the formula
the expectation from color-matching requirements is that thid-i=73 /(7 + 7% +7%). Well-identified protons form a
ratio should be about 1/9. Reasonable overall agreement wittharp peak near,=1, while tracks identified asot being
the experimental data in the charm sector has been obtain@dotons form a peak near,=0. The remainder of the can-
using factorization and taking the largé, limit in a /N, ~ didates fall in the region between 0 and 1. For the proton
expansion approach, whekg is the number of quark colors involved in each decay mode under study we require
[3,4. The Cabibbo-suppressed charmed baryon deca9p>0-97 which constitutes a strong cut. For the kaons we
Agﬂp(ﬁ, shown in Fig. 1, is also naively expected to beapply a loose cut of x«>0.1. In addition, all protons and

color suppressed. However, using factorization and takinéj}ogg r(r)gjlst r%zssegi\?elrIwgrgréee?%g?g]deuncﬁfieolgr()le ir:)?nbi-
the limit N,— o leads to a prediction of no color suppression” K™~~~ P Y- 9

. o
[5]. Since theA —p¢ decay receives contributions only natoric background, the candidate, scaled momentum

from factorizable diagrams, a reliable calculation should bé(P?EAC/K[%ia[“_ Mic 'f’ I'm'te,d tohxp>0'.5.F' 2 The broad
obtained using factorization. Observation of the €p invariant mass 1S shown in F1g. 2. 1he broa

A. —p¢ decay was first reported by the ACCMOR Col- enhanpement in the mass reg'of ab0\£e %'37 Gew a
laboration with 2.8-1.9 eventd9]. Last year the E687 Col- reflection from the decay moda. —pK_ ", where the

: T ' Y ) ion has been misidentified as a kaon. The spectrum is fitted
laboration published results on the first observation of th

; R 0 a Gaussian for the signal with width fixeddo=4.9 MeV/
Cabibbo-suppressed charmed baryon desdy-pK™K™, 2 jetermined from Monte Carlo simulatiofL2], and a

along with an upper limit on the resonant substructurésecond-order Chebyshev polynomial for the smooth back-
A¢—p¢ [10]. Herein we present new CLEO results on theground. This fit yields 21450 events for the inclusive
observation of A; —pK"K* and AJ—p¢ decays and A} —pK K* signal with a mean mass of 22855
discuss the implications of the results. +1.2 MeV/¢ [13].

We use a data sample recorded with the CLEO Il detector The ¢ candidates are reconstructed through their decays
operating at the Cornell Electron Storage RI@ESR. The ¢ K~K™. Because the width of the is comparable to
sample consists o e~ annihilations taken at and slightly the detector mass resolution, tdesignal shape is best de-
below theY (4S) resonance, for a total integrated luminosity scribed by a convolution of a Gaussian and a Breit-Wigner
of 3.46 fb~ 1. The main detector components which are im-fynction of width I'=4.43 MeVkE? [1]. The background

portant for this analysis are the tracking system and the bafs parametrized by a function of the fornb(m)
rel time-of-flight (TOF) particle identification system. Addi-

tional particle identification(ID) is provided by specific

ionization (dE/dx) information from the tracking system’s + ° ; ¢

main drift chamber. A more detailed description of the CLEO Ac wh

Il detector has been provided elsewhgt#]. u
To search for theA! signals we studypK K™ track u up

combinations found by the tracking system. The@nd K= d d

candidates are identified by combining information from the
TOF anddE/dx systems to form a combinegf probability FIG. 1. The decay\! —pé.
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FIG. 4. Fit to K"K* mass from combinations belonging to
the A signal and sideband regions. The region above 1.06 GeV/
c? is not included in the fit because Kf*° feed-up when ther is
misidentified as &«.

FIG. 2. Invariant mass of inclusiveK K* combinations pass-
ing all requirements. Nab cut is applied. The region above 2.37
GeV/c?, where there is a large enhancement from
Af—pK a" decays, is not included in the fit.

fixed to the Monte Carlo value as before. This gives

=N(m—mg)“ef(M M) The measured Gaussian resolution —16.4+9.6 events for thep sidebandA ;| yield. Since the
from the fit is 0=1.6-0.2 MeVk?. In order to perform true contribution must be positive definite we set the central
background subtractions, 1.0K21in,<1.0273 GeV¢? is  value to zero and use®9.6 as the best estimate of the
designated as the ¢ “signal” region, while AJ—pK K contribution. After scaling this by, and
0.990< m, <1.005 GeV¢* and 1.035my<1.050 GeV/ subtracting we find that the nét; —p¢ yield is 54+ 13
c? are designated as the “sideband” regions. Integrating thevents.
background function over the sideband and signal regions As a check of the nonresonant contribution to the
gives a signal-to-sideband scale fac®y=0.560+0.016, A —p¢ signal we fit thek "K™ mass spectra correspond-
which is used in thep background subtraction below. ing to the A} signal and sideband regions as determined

In order to obtain the\.; —p¢ signal, thepK K* mass  from the inclusivepK K * mass spectrum. The yield ob-
plot is made both fomy -+ in the ¢ signal region and the  tained from theA sideband regions, 2.246m<2.266
¢ sideband regions. Figure 3 shows the results. The specteghg 2. 306 m, < 2.326 GeVe?, is subtracted from that for
arE fitted to % Gaussian for the signal with width fixed tohg A{ signal region, 2.276 m<2.296 GeVe2. Figure
o=4.9 MeVk“ from Monte Qarlo simulation, and a second- 4 ¢ ows the fits to thi K *+ spectra from the\;” signal and
$rhde:c Chelr)]yshEYKp+olynomlal for the smooth tg’.‘Ckgrourr:d'sidebr:md regions, which yieldl signals of 92.217.0 events

€ itiot epn mass spectrum. corresponding tot €and 36.5:13.5 events, respectively. Thd ! sideband
¢ signal region yields 54 12 events with a confidence level K t in Eig. 4 has b led byt
of 97%. The mean mass for the signal is measured to be, mass spectrum in Fig. as been scaled byALe
2288.2+1.3 MeVk2. In fitting the pk-K* mass corre- signal-to-sideband scale factor EEfA6+=O.502tO.013, ob-
sponding to thegp sideband region, the meak, mass is tained by integrating the background function in Fig. 2 over
fixed to that obtained from the signal region and the is
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PK K mass (GeV/c") FIG. 5. Invariant mass opK~ 7" combinations found in the

FIG. 3. Invariant mass gbK~ K™ combinations corresponding same data sample. The! —pK~#* signal is used for normaliza-
to K”K™ mass in thep signal and sideband regions. tion of the A7 —p¢ branching ratio.
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TABLE I. Calculation of the branching ratios fox; —p¢ and  ing the particle-ID efficiencies versus momentum. The mea-
A{—pK K™ relative toA; —pK™ 7" and A{ —pK K". The  sured particle-ID efficiency is incorporated into the Monte

errors are statistical only. Carlo simulation by randomly rejecting the corresponding
Decay mode: A, —pé  A: —pK K* A; —pK 7 fraction of tracks in eac_h.momentum bin. The par_ticle—.ID

: (Lx>0.1, 7>0.001) efficiency for the kaons is derived in
Raw yield 5413 21450 5683-138 an analogous manner, except that the kaons are taken from
Efficiency 0.178:0.004 0.216:0.005 0.224:0.005 D* decays through the cascade prOC@g-FHDO’IT*—,
/5’(¢H_K7K+) 0.491+0.005 DK~ #". A sample of 11 000 sucB°—K ™ 7" decays
Corr. yield 618138 991233 25371837 is obtained with an 8:1 signal-to-background rdtld]. The
Z1A(pK” ™) 0.024-0.006  0.032-0.009 1 particle-ID efficiency for protons is near 90% from 300
L1 H(pK”KT)  0.62£0.20 1 MeV/c to 1.1 GeVt falling off to below 10% by 2.5 Ge\.

For kaons the particle-1D efficiency remains relatively flat at
about 95%.

Using a Monte Carlo sample of —p¢ decays, where
the A; signal and sideband regions. This gives*®® the A; fragmentation takes place according to the Lund
events for theA ] —p¢ signal, which is in agreement with JETSETMonte Carlo simulatior15], the full detection effi-
the first method. ciency is determined, with the particle-ID portion folded in

A check is also made for a possible reflection fromas described above. For; —p¢, the overall efficiency is
DJ—¢7™, where the pion is misidentified as a proton. It is 0.178+0.004 including the particle-ID efficiency which is
found that the reflection is a broad enhancement in the mags425+-0.011. ForA;—pK K* and A —pK 7" the
region above the signal. The effect of this background isoverall efficiencies are 0.2360.005 and 0.22# 0.005, re-
minimized by the tight particle-ID requirement on the pro- spectively.
ton. Consequently, the overall fake rate is less than 1%, caus- Since for all the decay modes the requiremept-0.5
ing negligible reduction of the\ | —p¢ signal yield from is applied, the relative branching ratio for each mode is
the fit. found simply by dividing the corrected yields. Table |

The decayA; —pK™ 7" is used as the normalization gives the details, listing only the statistical errors. The es-
mode for theA —p¢ relative branching ratio. In finding timates for the main sources of systematic error include
the A; —pK ™" yield, the same cuts are applied as in thethe AJ—p¢ and AJ—pK"K™ signal shapes7% and
AF—pK K™ analysis to minimize systematic errors, ex- 11%, respectively and background shape$2% and
cept that the particle ID for ther* is loosened to a consis- 0%, Kespectlvel)( particle-ID  efficiency (6%), and
tency requirement:7,>0.001. The A —pK =" mass (e Ac—pK-a™ fit (4%). In addition, for the
spectrum is shown in Fig. 5. The parametrization of the fit isAc —P¢ mode, varying thej signal and sideband regions
the same as tha; —p¢ mass fit in Fig. 3, except that the 9IVeS a 5% \{ar|at|on in +the yield. Flnallly, there is a
width of the Gaussian is allowed to vary. The fit yields 1-8% contribution to theA; —p¢ systematic error from
5683138 observed signal events with a mean ofthe ¢—K K" branching ratio uncertainty. Thus we esti-
2286.8-0.2 MeVk? and a width of 6.4:0.2 MeVic?. Ifthe ~ Mate 12% systematic error ins(pe)/A(pKm), 17%
width of the Gaussian is fixed to the Monte Carlo predictionin -#(PKK)/.Z(pK=), and 18% in.7(p¢)/.Z(pKK).
of 5.8 MeV£?, the yield changes by 4%. This dependence isThe final results appear in Table I, along with those
included in the systematic error. from NA32 [9] and E687[10] and theoretical predictions

Monte Carlo simulation is used to determine all aspects offom Cheng and Tsend5], Korner and Kraner [6],
the detection efficiency except particle ID. The particle-ID Zenczykowski[7], and Datta[8]. From Table | we also
efficiency for protons is obtained using a sample of 33 00dind Z(A¢ —pK~K*[non+])=0.029-0.010¢£0.005 for
A—pm~ decays with a signal-to-background ratio of 50:1 A, —pK~ K" decays not arising from [ —p.

[14]. For protons thus identified, the momentum spectrum In summary, we have observed the Cabibbo-suppressed
after the particle-ID cutsl(,>0.9,.7%,>0.001) is divided by ~decaysA —p¢ and A —pK~K*. The results appear in
the momentum spectrum before these cuts, bin by bin, yield¥able 1I, which show that the phenomenological treatments

TABLE II. Final results onA; —p¢ andA; —pK K™,

Ratio of interest Bpd) B(pK™7t) Bpd) B(pK K) BPK KN B(pK™7™")
This experiment 0.0240.006+0.003 0.62:0.20+0.12 0.03%0.009+0.007
NA32 [9] 0.04+0.03

E687[10] <0.58 at 90% C.L. 0.0960.029+0.010
Cheng and Tsenp] 0.045+0.011

Zenczykowski 0.023

Korner and Kraner[6] 0.05

Datta[8] 0.01

*Referencd7], using Ref[1] for Z(AF —pK~7").
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of the AJ —p¢ decay rate agree within a factor of 2 or 3 We gratefully acknowledge the effort of the CESR staff
with  our result. Our measured branching ratioin providing us with excellent luminosity and running con-
L(pp).B(pKK) is consistent with the E687 upper limit, ditions. This work was supported by the National Science
while our measurement of7(pKK)/.%(pKr) differs from  Foundation, the U.S. Department of Energy, the Heisenberg
the E687 result by 1.¢. Within the factorization approach Foundation, the Alexander von Humboldt Stiftung, the Natu-
using a 1N, expansion, our result supports the validity of ral Sciences and Engineering Research Council of Canada,
taking the largeN, limit in charm baryon decays. and the A. P. Sloan Foundation.
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