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We investigate in detail the problem of constructing magnetic monopole solutions within finite- 
range electrodynamics (i.e., electrodynamics with nonzero photon mass, which is the simplest ex- 
tension of the standard theory; it is fully compatible with experiment),. We first analyze classical 
electrodynamics with the additional terms describing the photon mass and the magnetic charge, 
then we look for a solution analogous to the Dirac monopole solution. Next, we plug the found 
solution into the Schr6dinger equation describing the interaction between the,magnetic charge and 
the eldctron. After that, we try to derive the Dirac quantiz&on condition for our case. Since gauge 
invariance is lost in massive electrodynamics, we use the method of angular momentum algebra. Uu- 
der rather general assumptions we prove the theorem that the construction of such an algebra is not 
possible and therefore the quantiaation condition cannot be derived. This points to the conclusion 
that the Dirac monopole and the finite photon mass cannot coexist within one and the same theory. 
Some physical consequences of this conclusion are considered. The case of the ‘t Hooft-Polyakov 
monopole is touched upon briefly. 

PACS number(s): 14.80.Hv, 12.20.D~ 
I. INTRODUCTION 

Massive electrodynamics is electrodynamics in which 
the photon has a small mass1 rather than being ex- 

actly massless. It is perhaps the simplest and the most 
straightforward extension of standard quantum electro- 
dynamics (QED) [1,2]. It can be embedded into the stan- 
dard SU(2)xU(l) model (31. 

Although the introduction of a small photon mass may 
look unaesthetical, in some respects massive QED is sim- 
pler theoretically than the standard theory. For example, 
massive QED can be quantized in a manifestly Lorentz- 
covariant way without introducing the indefinite metric, 
while standard QED cannot. Also, the analysis of in- 

frared properties of massive QED is easier because there 
are no infrared singularities caused by the zero photon 
mass. 

Note that although the photon is massive in the the- 
ory under consideration, the electric charge is strictly 
conseryed in massive QED as well as in standard QED. 
From the experimental point of view, massive QED is as 
perfect as standard QED. 

In massive QED the photon has three polarization 
states: two transverse and one longitudinal. Despite this 
fact, it has been shown that the limiting transition be- 
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‘Experimentally, the photon mass has to be very small, less 

than 10mz4 GeV or even than lo@’ GeV, but the existence of 
such a bound is not important for the purposes of this paper, 
so we do not go into detail here. 
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tween both theories is, in fact, smooth rather than dis- 
continuous [4,5]. The physical reason is that the inter- 
action of longitudinal photons gets weaker as the photon 
mass tends to zero so that in the massless limit they ef- 
fectively decouple. 

Such smoothness may even be elevated to the role of 
an important theoretical principle: each physical phe- 
nomenon that csn be described in standard QED must 
have its counterpart description in massive QED; the two 
descriptions must merge continuously in the limit of van- 
ishing photon mass. 

Independently of whether this conjecture is true or not, 
it is instructive to see how it works (or fails) in various 
physical contexts, since in this way a better understand- 
ing of the physical situation can arise. With this aspect in 
view, it is natural to consider those phenomena for which 
the gauge invariance of QED is crucial or at least essen- 
tial. One example is the Dirac monopole [6,7]. Although 
there has been much work devoted to various sides of 
magnetic monopole physics, the aspect we are interested 
in has to the best of our knowledge not been analyzed in 
detail so far. 

The purpose of the present paper is to try to fill that 
gap. In other words, we would like to know if magnetic 

monopoles and massive photons can coexist within one 
and the same theory. 

We know that the very existence ofthe Dirac monopole 
is tightly connected with the existence of the gauge in- 
variance of QED. In massive QED, there is no longer any 
gauge invariance. So, the question is, what happens to 
magnetic monopoles there? Do they survive the loss of 
gauge invariance? 

Before starting any reasoning, we could just try to 

guess the right answer. Obviously, it has to be either 
“‘yes” or “no.” Let us consider these in turn. 
984 01996 The American Physical Society 



53 MASSIVE ELECTRODYNAMICS AND THE MAONETIC MONOPOLES 985 
At first sight, the positive answer does not look impos- 
sible at all. We know that with the introduction of the 
photon mass the electrostatic field changes from the usual 
Coulombform, E - f, to theYukawaform E - +e--?. 
So, we would expect the magnetic field of a monopole 
also to change from H - 5 to H - f&“‘. However, 

what would happen to the Dirac quantmation condition? 
Should we expect any modification of it depending on the 
magnitude of the photon mass and vanishing smoothly 
with the vanishing photon mass? Or should the quanti- 
&ion condition remain the same in both theories? Next, 
how can we make sure the string is unobservable if we do 
not have gauge invariance? 

Now, if Ge guess that there can be no monopoles in 
massive QED, then again there arise sever$ questions. 

What about rotational invariance? We’ know that the 
Dirac quantization condition can’ be obtained from ro- 
tational invariance and angular momentum quantization 
[S-11] without using gauge invariance. CBn We general- 

ize that kind of argument to the case ‘of massive QED? 
Next, what about the limit of the vanishing photon mass? 
If magnetic monopoles abruptly disappear when photon 
mass equals zero, then how can we make a continuous 
transition between the massive and massless QED? So it 

seems that both “yes” .+nd “no” options offer interesting 
questions to ponder on. 

Our strategy in this paper will be as follows. First we 
write down the classical Maxwell equations describing the 
magnetic charge and massive photon. We then find the 
solutions that would go into the Dirac monopole solution 
in the limit of vanishing photon mass (Sec. II). At this 
stage no inconsistencies arise, but no genuine monopoles 
arise either because we have, of course, the,string at- 
tached to the monopole. 

In the spirit of Dir&s approach, we then turn to quan- 
tum mechanics in our efforts to eliminate the mischievous 
string. We undertake this step in Sec. III by plugging the 
solution found in Sec. II into the ShrGdinger equation de- 
scribing the interaction between the magnetic charge and 
the electron. After that, we try to derive the Dirac quan- 
tiaation condition for our case. Since gauge invariance is 
lost in massive electrodynamics, we use the method of 
angular momentum algebra [SI, generalized to the case 
of the non<anishing photon ma&. Under rather general 
assum$ions we prove a theorem that the constructitin of 
such an algebra is not possible, and therefore the quan- 
tization condition cannot be derived. This points’to the 
conclusion that the Dirac monopole and the finite pho- 
ton mass cannot coexist within one and the same theory. 
Some physical consequences of this conclusion, includ- 
ing the problem of continuity, are discussed at a qualita- 
tive level in Sec. IV. The case of the ‘t Hooft-Polyakov 
monopole is touched upon briefly at the end of the paper. 

II. CLASSICAL THEORY 

We start by writing down the Proca equation describ- 
ing electrodynamics with finite range (or equivalently 
with a nonzero photon mass):* 

&‘A, = 0, (14 

where the field strength F,,” is connected with the 4- 
vector potential A, the usual way: 

F,,” = &,A, - &A,. 

The dual pseudotensor ppy is defined, as usual, via 

J, is the (electric) current density. Next, the Maxwell 
equations generalized to include magnetic charge are 

(24 

Pb) 

Fpv = @,A, - &A,, (24 

where index 9 denotes the magnetic current density. 
Now the straightforward generalization of systems (1) 

and (2) reads 

PF,,, = J, - dA,, (3a) 

awFp,, = J,9, Pb) 
PA, = 0, 

F,,” = a,A, - &A,. 
(3c) 

(34 

Let us rewrite this system in the three-dimensional form: 

V.E=p-n?Ao, (4a) 

aH . 
VXE=-~-J~, 

V.H=p,, 

VxH=j-&A+g~ 

%.V.A=O, 

dA 
E=-gradAo+x, 

H=V,xA. 

PI 

(4c) 

(44 

(4e) 

(4f) 

(4d 

This is the system of generalized Maxwell equations, 
which would presumably describe the existence of both 
magnetic charge and nonaero photon mass. 

‘We use the Heaviside system of units throughout this paper 
and also put A = 1, c = 1. 
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A few remarks are now in order. 

(1) The photon mass term ???A, on the right-hand side 
of the Maxwell equations violates the symmetry between 
the electric and magnetic charges. This is clearly seen 

from the comparison of Eqs. (4a) and (4~): the “electric” 
equation (4a) has as its solution the familiar Yukawa po- 
tential 

E = -&-“‘P~, 
4nr3 

while the “magnetic” equation (4~) does not feel the pho- 
ton rnasS at all. 

(2) The gauge invariance is completely lost due to the 
photon mass term. Indeed, it can be seen that the trans- 
formation 

A, +A,+%J 

is inconsistent with Eqs. (1) and (2) whatever the func- 
tion f is. (Recall that the ordinary Maxwell equations 
in the Lorentz gauge, a,A” = 0, also do not allow gauge 
transformation with the arbitrary function f. However, 
these equations allow transformations for f satisfying the 
condition Of = 0. In our case, even that restricted 

gauge invariance is lost.) Note that this loss of invariance 
has occurred already at the stage of the Proca equations 
without magnetic charge, and so it has nothing to do 
with the introduction of magnetic charge. 

(3) Because of the loss of gauge invariance, the vector 
potential A,, becomes an observable quantity on the same 
footing as the field strength F,,“. It can be seen that the 
presence of photon mass term &A in the right-hand side 
of Eq. (4d) creates a sort of additional current density, 
in addition to the usual electric current j. 

(4) It is not immediately obvious that the loss of 
gauge invariance destroys the consistency of the Dirac 
monopole theory and the validity of the quantization con- 
dition. For example, the Aharonov-Bohm effect, which is 
also based on the electromagnetic gauge invariance, has 
been shown to survive in the massive electrodynamics 
despite the absence of gauge invariance there [12]. 

Our modified Maxwell equations tell us that there arises 

the additional magnetic field created by the “potential 
current” &A. There is no way to separate this ad- 
ditional magnetic field from the normal one. Although 

in Proca theory (without magnetic charge) this circum- 
stance does not cause any problems, it becomes the main 
source of trouble once magnetic charges are added to the 
massive electrodynamics, as we shall see shortly. 

After these general remarks, let us see if our system 
of “Maxwell + photon mass + magnetic charge” equa- 

tions (4) is consistent or not. Let us try to find a static 
monopolelike solution of that system. For this purpose, 
we assume the absence of electric fields, charges, and cur- 
rents (E = 0, A0 = 0, p = 0, j = 0) as well a.? the absence 

of magnetic current (j, = 0). 
We are then left essentially with four equations, 

V.H=p,, (5=) 

VxH=-&A, (sb) 
H=VxA, 

V.A=O. 

(5c) 

(54 

The first equation has the familiar Dirac monopole solu- 

tion: 

HD = sr, 

A,D = A; = 0, 

Ag=$tani. 

(‘54 

Pb) 

(‘4 

As is well known, this solution involves a singularity in 
vector potential along the line 0 = ?r (“a string”). Yet 

this singularity was shown by Dirac to be only a nuisance 
without any physical significamx3 Now if we plug this 
Dirac solution (or, more exactly, the Coulomb magnetic 
field) into the second equation, we immediately run into 
trouble, because clearly V x HD = 0, instead of being 

equal to (-&A). Let us try to find a better solution by 
adding something to the Dirac solution. In this way we 
write: 

H=HD+H’, A=AD+A’, (7) 

where the rotor and the divergence of the additional field 
H’ must satisfy 

V.H’=O, (8) 

V x H’ = -m2(AD + A’), (9) 

while the divergence of the potential A’ must vanish: 

V A’ = 0, (10) 

because 

V.AD=OandV.(AD+A’)=O. 

Finally, 

V x A’ = V x H’. (11) 

Now, we have the complete system of equations (8) 
through (11) for the rotors and divergences of both H’ 
and A’. Let us see if there is any solution to it. Taking 

the rotor of both sides of Eq. (11) and using Eqs. (9) and 
(lo), we get the second-order equation for A’ only: 

‘The magnetic charge can be assumed to be either scalar 01 
pseudoscalar under the a&on of P parity (for more details, 
see, e.g., a review [13]). In the former case, which we adopt in 
this paper, the theory with magnetic monopoles is not parity 
invariant. However, none of our physical results would be 
changed if we treated the magnetic charge as a pseudoscalar 
(rather than scalar) quantity. 



3 MASSIVE ELECTRODYNAMICS AND THE MAGNETIC MONOPOLES 987 
(A - &)A’ = maAD. (12) 

The natural boundary condition for this equation is 
that A’ must vanish at infinity. Note that after this equa- 

tion is solved we have to make sure that the transversality 
condition V A’ = 0 is obeyed. 

In Cartesian coordinates we get three decoupled scalar 
equations instead of one vector equation: 

(A - r&4; = m2Af i = I, y, zz. 

The Green’s function for the equation 

(13) 

(A - rn+ = f, 

with the boundary condition of vanishing at infinity, is 

1 exp(-mlr - r’l) 
G(r, r’) = G 

Ir-r’1 

Therefore, we can write the solutions of the Eqs. (13) as 

A;(r) = g 1 d%‘A,D(r’) “““(i”‘:,; =‘I), 

and the same for y, t components. Thus we can write in 
the vector form 

A’(r) = g /&AD@‘) exp’i”‘;, r’i), (14) 

Let us check that this solution is indeed transverse: find 
V A’(r). 

We have (here R = r - r’) 

V. fWk(r’) = Vf(R) g(r’) 

= f’(R). VR g(r’) = qRg(r’). 

(Note that all differential operations are taken with re- 
spect to the vector r.) 

Next, 

f’(R) = & (G) = -g(l+mR). 

Finally we obtain 

V A’(r) = -$ 
J 

d3r’g(l + mR)RA&r’). 

Let us now show that it is zero. Note that left-hand 

side (lhs) [and right-hand side (rhs)] are pseudoscalar 
(because both A’ and AD are pseudovectors). To con- 
struct this pseudoscalar, we have only two vectors at our 
disposal, r and n (the unit vector along the monopole 
string). From them we can make only two pseudoscalars, 
(r x n)n and (r x n)r. Both of then are zero (in ad- 
dition to that, the first combination is ruled out by the 
condition that it must be linear in n, but not quadratic). 

-. . .~ 
‘I’hus we have shown that mx solution satisfies both 

the equation (A - m’)A’ = -m2AD and the subsidiary 
condition of transversality, V A’ = 0. Let us now find 
the restrictions on the form of the potential A’(r), which 
follow from the general principles (dimensional analysis, 
rotational invariance and space reflection). 

The ‘most general form of A’(r) , as a pseudouector 
depending only on two vectors, r and n, is 

A'(r) = f(r,nr)(n x r). (15) 

It is easier to work with dimensionless quantities, so let 
us write again 0uT initial formula 

and make a change of variables 

r’, = nd, 

l-5 = mr, 

RI = mR, 

so that r’l, rl, R1 are all dimensionless. 
NOW, 

AD(r’) - $ = ;, 

so that we get 

Now, go back to the old variables: 

A’(r) = m2gf[m~,m(m)](n x r). (1’3) 

f is now a dimensionless function of two variables. 
Let us check if this most general form satisfies the con- 

dition of transversality, V A’ = 0. Use 

V.(SV) =sv.v+vvs 

* V A’ = m’g{fV (n x P) + n x rVf}, 

but 

v (n x r) = 0. 

Therefore, 

V A’ = m’g(n x r)Vf. 
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but 

Therefore, 

Hence we see that both terms br and +-n give zero when 
multiplied by the vector product (n x r). 

Conclusion: our general form for A’ always satisfies 
the transversality condition. 

Now consider the problem of possible singularities in 
A’(r). In principle, there are two potential sources of sin- 
gularities within A’(r): (1) the i behavior of the Green’s 

function and (2) the singularity of string due to the AD 
factor. 

The worst case,is when they occur simultaneously. Let 
us consider this case. That is, we consider the case when 
the observation point (0) lies on the string, while the in- 
tegration point (I) approaches it (i.e., observation point). 

To see what happens near the observation point, let us 
shift the integration variables: 

r’ = r - R, d3r’ = d3R. 

Now choose the coordinates (see Fig. 1.) Put the origin of 

the spherical system of coordinates at the point A4 (i.e., 
where monopole is), with the E axis directed opposite the 
string of monopole. Call this system M. 

Now, introduce a second spherical system with the ori- 
gin at 0. Call this system 0. Obviously, d3R has a 
simple form in the system 0, 

d3R = R’dR sin b’od&d& 

while the vector potential has a simple form in the system 

M. 

FIG. 1. The choice of coordinates for analyzing the integral 
in Eq. (14). 
AD(I) 1-a = G g tan!p- 
4nr &e(4), 

where e(4) is a unit vector in the azimuthal direction. 
Now, we need to find the relation between the angles 

0~ and 6’0. For this purpose consider AlOM: in it, we 
know two sides, OM = T and 01 = R, and one angle, 
LIOM = 00. If we find the angle, LOMI = I, then 6’~ 

will be simply 6’~ = r - 2. We have 

IH 

t=nx= HM = 

R sin b’o 
rn R sin Bo. 

T-RcosBo T 

Since 2 is assumed small, we obtain 

R 
cc= - smflo, 

T 

but 

Putting it all together, we get 

A’(r) zz 5 
I 

1 1 
R’dR sin &db’Dd+ ___ 

R R sin B. e(‘) 

9 
*n 

dR d4.44). 
“2;; o J s 

From this form it is clear that A’(r) does not have 
any singularity in the case considered. [Note also that 

/o2”d$e(4) = 0.1 H oweer, because we have considered 

the worst possible case, we may conclude that there are 
no singularities in A‘(r) at all. 

Let us now find the structural form of the magnetic 
field H’(r). From Eq. (14), which gives us the integral 
expression for the vector potential A’, we can obtain the 
formula for H’ by taking the rotor 

H’(r) = V x A’(r) 

= 2 
I 

dyyR --(1 + mR)(Ao x R). (17) 

Now, because H’(r) is a vector (not a pseudovector) de- 

pending on the two vectors only, n and r, it has the 
following most general form: 

H’(r) = h(~, nr)r + g(r,nr)n. (18) 

A question arises: can H’(r) be spherically symmetric, 
that is, can it take the form 

H’(r) = h(~)r? 

The answer is no, because in that case we would have 

V x H’(r) = 0 

everywhere, which is inconsistent with the initial 
Maxwell equations. 
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III. QUANTUM MECHANICS 

Having considered the classical theory of mass&e elec- 
trodynamics with magnetic charge, we can now turn to 
quantum mechanics. Since 1931, the Dirac quantization 
condition has been derived in many ways differing by 
their initial assumptions. Obviously those methods us- 
ing gauge invariance (such as original Dirac derivation 

or the Wu-Yang formulation [14]) are not applicable in 
our case. Other methods [B-11] depend on rotational in- 
variance, and we can try to generalize them to include 
massive electrodynamics, too. Before doing so, let us 
recall very briefly the &&ce of the standard arguments. 

Consider an electron placed in the field of a magnetic 
charge 9. The angular momentum operator for the elec- 
tron is given by 

L=rx(-iV+eA)+eg; e>O. (19) 

Despite the strange-looking second term, this operator 
can be shown to obey all the standard requirements of 
a bona fide angular momentum: see commutation rela- 
tions Eqs. (22)-(24) below. The angular momentum is 
the generator of rotations. The two terms &re individ- 
ually not angular momentum operators, in spite of the 
appearance of the first term, but the sum is an angular 

momentum operator (see [S] for more details). Moreover, 
Li commute with the Hamiltonian 

H = -&V + ieA)' + V(T). 

Next, it was shown in [8] that the quantity L(r/r) = eg, 
should be quantized according to 

eg=o, *J fl..., 
2’ (21) 

which is the Dirac qua&&ion condition. 
Now, we would like to generalize this result to the case 

of massive electrodynamics. Unfortunately, this turns 
out to be impossible: we will show that the angular mo- 
mentum operator cannot be defined for the system of 
charge plus monopole within massive electrodynamics. 
More exactly, the following theorem holds. 

Theorem. There are no such operators Li that the 

following standard properties are satisfied: 

[Li, Lj] = iQjkLk, (22) 

[L<,Tj] = iE<j,@g (23) 

[Li, Dj] = i&ijkDk, 

where 

D=-iV+eA 

is the kinetic momentum operator 

D=&. 

(24) 

(25) 

(26) 
Note that the conditions of this theorem are not too re- 
strictive: for example, we do not require that the Hamil- 
tonian be rotationally invariant (i.e., [Li, H] = 0 is not 
required). 

Proof. Our proof consists of two parts. First we prove 
that from Eqs. (22)-(25) it follows that 

[L;, Hi] = ieijkHk, (27) 

where H is the magne$ic field 

H=VxA. 

Second, we show that Eq. (27) is incompatible with the 
general form for H, Eq. (18). Let us start with the first 
part. 

Commuting Eq. (25) with itself, we obtain 

[D;,Dj] = -ie;jkHk. (28) 

Therefore, we have this expression for the magnetic field: 

i 
Hk = pj [D;, Dj] (29) 

We note that this form of the commutator implies nonas- 
sociativity and the appearance of the three cocycle [15]. 

Now, let us plug this expression into the commutator 

[L,Hk]: 

L-h, Hk] = [L, i&<jk [D<, Dj] ] 

= ;&,+(L,,DiDj - LnDjDi - DiDjL, 

+DjDiL,). 

We then commute L, and Dj in the two middle terms of 
the above equation using Eq. (24): 

(. .) = L,DiDj - (~c,~~D~ + DjL,)D; 

-Di(-ie,jpD, + L,Dj) + DjDiL,. (30) 

The terms containing the B tensor can be rewritten using 
Eq. (28): 

~E,,~,(D~D, - D,Di) = --E E. H = -&;H, f GjiH,. n3.u -3* 4 

(31) 

Next, the rest of Eq. (30) can betransformed to contain 
only [LD] and [DD] commutators. 

LnD;Dj -DjL,Dd - D;L”Dj - DjD;L, 

= [LnDi,Djl- [D&n,Dj] = [ [Ln,Dt] ,Di] 

= [kdb~ Djl = ~~~r~~j&!~ 

= &jH< - 6;jHn. (32) 

Note that in obtaining Eqs. (31) and (32) we have used 
the identity 

E;jkqmk = &$j, - &,bj~. (33) 

Finally, putting Eq. (31) and (32) together, we obtain 
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Eq. (27). Thus we have shown that indeed Eq. (27) fol- 
lows from Eqs. (22)-(25). 

Now we turn to the second part of our proof. Let us 
insert the general form of the magnetic field H’, Eq. (U), 
into the commutator [Li, Hl]; we shall disregard the HD 
field because it satisfies the correct commutation rela- 
tions with L due to Eq. (23): 

[Li, &I = [Li, hrl + ml 

ah 

If Li were good angular momentum operators, this would 
have to be equal to 

ieir,HJ = iwq(hrq + gn,). (35) 

Now, compare Eqs. (34) and (35). We notice that (1) 
terms proportional to h in both equations coincide, (2) 
terms quadratic in ni in Eq. (34) must vanish [because 
the remaining term in Eq. (35) is linear in ‘TL; and the 
condition n2 = 1 has never been used] and, therefore, we 
should have 

and (3) the remaining term (proportional to nk) in 
Eq. (34) should be antisymmetric with respect to ex- 
change i ft I, in particular, it must vanish for i = 1. 
Taking i = 2 = 1, j = 2, k = 3, we see that this term 
reduces to 

whence 

ah =o. 
+4 

It follows then that g = 0, too. 
Thus, we obtain, that the angular momenta with cor- 

rect commutation relations can exist only if H’ is spher- 
ically symmetric: 

H’ = h(r)r. 

However, this is impossible, as we noted above, because it 
is inconsistent with our initial Maxwell equations. Thus 
our proof is finished. 

IV. CONCLUSIONS 

To summarize, we have shown that the introduction 
of an arbitqary small photon mass makes the existing 
proofs of the consistency of the Dirac monopole theory 
invalid. More exactly, the massive electrodynamics does 
not allow any generalization of the methods in which the 
Dirac monopole was introduced into the massless elec- 
trodynamics. Not only does the original Dirac scheme, 
which arrives at the quantization condition by using the 
gauge invariance, single valuedness of the wave function 

and “the veto” postulate does not work anymore, but 
also a different approach relying on the algebra of angu- 
lar momentum fails in, the case of massive electrodynam- 
ics. If the magnetic monopole were ever to be introduced 
into massive electrodynamics consistently, that would be 
possible only due to some radically new mechanism com- 
pared with the existing ones. 

What is the physical reason for that failure? The whole 
existence of the Dirac monopole in the massless electro- 

dynamics rests upon the quantization condition, which 
makes the string attached to the monopole invisible. The 
quantization condition can be obtained either with the 
help of gauge invariance or the angular momentum quan- 
tiaation. In the massive case, both these approaches are 
no longer applicable, as we have shown. That means that 
there is hardly any way to make the string invisible in 
the massive electrodynamics. Thus, although the system 
“string plus monopole” does exist in massive electrody- 
namics, it is very difficult, if not impossible, to make a 
consistent theory of the monopole without a string. 

One may think that our result contradicts the princi- 
ple of continuity, which states that any physical conse- 

quence of massive electrodynamics should go smoothly 
into the corresponding result of the standard electrody- 
namics when the photon mass tends to zero. Indeed, 
at first .sight the appearance of the Dirac monopoles at 
zero photon mass is an obvious discontinuity as compared 
with their absence at an arbitrary small photon mass. 

However, this simple argument is not yet sufficient to 
claim discontinuity. An analogy with a similar “disconti- 
nuity” is instructive here: consider the number of photon 
degrees of freedom in massive and massless electrody- 
namics. The photon with a mass has three polarization 
states, independent of how small its mass is. Then, as 
soon as the photon becomes massless, the longitudinal 
polarization abruptly vanishes, and we are left with only 
two (transverse) polarization states. Does this fact create 
a discontinuity? No. To find out, if there is a disconti- 

nuity or not, we have to study the behavior of a more 
physical quantity, such as the probabilities of emitting 
or absorbing a longitudinal photon, rather than merely 

counting the number of degrees of freedom. 
The analysis done by SchrGdinger shows that if one 

considers the interaction of longitudinal photons with 
matter, this interaction vanishes as photon mass tends 
to zero. Thus the longitudinal photons decouple in the 
limit nb, + 0 so that the continuity is restored. Com- 

ing back to our case with monopoles, one should carry 
out a similar program to make sure the continuity is not 
violated. 

Although we do not intend carrying out this program 

in the present work, we would like here to present some 
physical arguments suggesting that the continuity may 
be indeed preserved. We have shown that instead of a 
true Dirac monopole, massive electrodynamics contains 
a more cumbersome object, which can be viewed as con- 
sisting of three pieces: the monopole, the string, and, 
finally, the additional “diffuse” magnetic field, Eq. (17) 
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[or the corresponding vector potential, Eq. (14)]. Let us 
call this complex object “a fake monopole.” Before any 

discussion of the continuity problem, one has, of course, 
to make sure that fake monopoles can be described within 
a logically consistent quantum theory. This is an open 
question beyond the present paper, but for the sake of ar- 
gument let us simply assume that the answer is positive. 

Then a natural question arises: how can we physically 
distinguish between a fake and a true monopole? 

If the fake monopole has a “dequantized” magnetic 
charge [i.e., the charge not obeying the Dirac quantiza- 
tion condition, Eq. (Zl)], there does not seem to be any 
problem. However, imagine that a fake monopole takes 
on a magnetic charge that exactly coincides with one of 
the quantized values. What happens then? Let us try 
to detect the string. One way to do that is to use the 
Aharonov-Bohm effect, but then we run into trouble be- 
cause if the magnetic charge has one of the Dirac val- 
ues, the strings of fake and true monopoles are exactly 
the same. Therefore, both of them are invisible in the 
Aharonov-Bohm type of experiment. The way out of this 
difficulty is to remember about the existence of the feeble 
diffuse component of the fake monopole, which is of the 
order of rn’. Generally speaking, this component would 
give a nonzero contribution to the Aharonov-Bohm effect 

and thus would, in principle, distinguish between a fake 
and a true monopole. 

Thus, at least in a gedanken experiment we would be 
able to distinguish between a fake and a true monopole. 
(Whether this gedanken experiment can be transformed 
into a real one is an open question.) The observable 
difference be&en the fake and true monopoles would 
vanish smoothly as the photon mass tends to zero. 

So we see that in this particular case there does not 
arise any problem of discontinuity. It would be interest- 
ing to complement this type of analysis by considering 
other physical situations, such as Cabrera-type of exper- 
iment or the scattering of the electron on a monopole. 

On the other hand,‘if the continuity is found to be bro- 
ken (which we cannot completely rule out at this stage), 
that would constitute a serious argument against the ex- 
istence of monopoles and thus would provide a possible 
theoretical reason for the absence of monopoles in na- 
ture. Alternatively, the continuous failure to discover 

the monopoles in the experiment may be considered as 
an indirect evidence for the finite photon mars (unfortu- 
nately, we cannot say anything definite about the value 
of this mass). 

In this paper we have considered only fundamental 
monopoles within massive U(1) electrodynamics. A nat- 
ural question, then, is what about ‘t Hooft-Polyikov 

monopoles, which appear necessarily within gauge the- 
ories based on simple groups [such as SU(S)]? In such 
theories, one might give small mass to the photon by 
spontaneous breaking of the electromagnetic U(1) sym- 
metry. 

However, there is perhaps less interest in considering 
these kinds of theories because they seem to be ruled 
out by the experiment. More specifically, the reason 
is that after giving photon a mass through spontaneous 
breaking of U(1) symmetry, in such theories there arises 

a very light charged particle, which is unacceptable ex- 
perimentally [16,17]. An important feature of such theo- 
ries is that the electric charge conservation is violated in 
these theories: to give photon a mass, we need to have a 
charged scalar field with nonzero vacuum expectation; 
this necessarily leads to the electric charge nonconserva- 
tion. 

To make our discussion of this point more comprehen- 
sive, we note that there does exist an acceptable way 

to spontaneously violate the electric charge conservation 
and give photon a mass, but it requires introduction of 
Higgs particles with extremely small electric charge: for 
details, see [16,18]. However, even this mechanism is ex- 
cremely difficult or impossible to implement within the- 

cries based on semisimple groups [e.g., SU(5)]; see the 
discussion in [19]. 

Thus the present work reveals a new and rather gen- 
eral relation between the two fundamental facts: the 
masslessness (massiveness?) of the photon and the non- 

existence (existence?) of the magnetic monopole. 
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