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Unstable states in QED of strong magnetic fields 

M. Kachelriess 
INFN, Lab0rat0ri ~~~~~~~~~ de1 ~~~~ sa3~0, 1.67010 ~~~~~~~ (AQ), Italy 

and Theoretische Physik I, Ruhr-Universitiit Bochum, D-44780 Bochum, Gemany 
(Received 1 March 1995; revised manuscript received 30 August 1995) 

We question the use of stable asymptotic scattering states in QED of strong magnetic fields. 
To correctly describe excited Landau states and photons above the pair creation threshold the 
asymptotic fields are chosen as generalized Licht fields. In this way the off-shell behavior of unstable 
particles is automatically taken into account, and the~resonant divergences that occur in scattering 
cross sections in the presence of a strong external magnetic field are avoided. While in a limiting 
case the conventional electron propagator with Breit-Wigner form is obtained, in this formalism it 
is also possible to calculate S-matrix elements with external unstable particles. 

PACS number(s): 12.20.D~ 
I. INTRODUCTION 

The discovery of neutron stars with extremely strong 
magnetic fields B up to 10 I3 G has given the impetus 
to numerous calculations of QED processes in which the 
magnetic field is taken into account exactly. A remark- 
able feature of these magnetic’field strengths is that the 
cyclotron energy becomes of the order of the electron 
rest energy, and, consequently, the quantization of the 
electron states into discrete Landau levels becomes im- 
portant. These QED processes were recalculated using 
conventional perturbation theory in the Furry picture: 

the free electron propagator and the free wave function 
of an electron were replaced by the exact Green’s func- 
tion and the exact solution of the Dirac equation with 
a homogenous, static magnetic field. Then the same 
Feynman rules were applied. In this way, most first- and 
second-order processes have been recalculated in the last 

15 years (for a review cf. Ref. [l]). However, the re- 
sults often show an unsatisfactory behavior. Because of 
strict energy conservation, first-order processes such as 

cyclotron absorption have &function-like decay widths 
or, like cyclotron emission, become infinite averaging over 
“reasonable” distribution functions. This is remedied by 

accounting for the finite lifetime of the external states; 
i.e., one replaces the 6 function expressing energy con- 
servation by a Lorentz curve in the decay width. In 

the case of second- or higher-order processes singulari- 
ties arise due to on-shell intermediate states. Here, one 
accounts for the finite lifetime of the intermediate Lan- 

dau states and replaces in the electron propagator Feyn- 
man’s ia with ?jir,v r, where r,, is the decay width of 
the electron state with Landau quantum number N and 
polarization 7. 

Despite the use of the electron propagator with a com- 
plex mass, some processes still lead to divergent cross sec- 

tions. The most prominent example is magnetic Comp- 
ton scattering with an initial photon which is above the 
pair creation threshold. If the intermediate electron is 
in the stable Landau ground state, there is no decay 
width associated with it, and, consequently, the total 
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cross section is divergent everywhere above the pair cre- 

ation threshold [2]. Another problem arises if more than 
one particle is unstable. Then it is not obvious how the 
decay widths should be defined. Usually, for first-order 
processes the total decay width is assumed to be additive, 
i.e., to be the sum of the decay widths of the individual 
particles. In contrast, for second-order processes the de- 
cay width of every single virtual particle is chosen as its 
individual on-shell decay width. This seems to be arbi- 
trary and shows the absence of a comprehensive strategy 
to treat the instability of electrons and photons in mag- 
netic fields. Therefore, it is the purpose of this paper 
to formulate a well-defined perturbation theory for QED 
of strong magnetic fields where the finite lifetime of ex- 
cited Landau states and photons above the @air creation 
threshold is automatically incorporated. To this end, we 
give up the concept of stable scattering states and instead 
introduce generalized Licht fields for the unstable parti- 

cles. The energy of particles described by Licht fields is 
not fixed by an on-shell condition but is given by some 
spectral function. We do not attempt to calculate these 

spectral functions from first principles because they are 
well approximated for practical calculations by Lorentz 
curves [3]. The advantage of using Licht fields is that 
within this formalism it is possible to take into account 
consistently the instability of intermediate and external 
particles. 

As an application ive show, for the generic example of 
magnetic Compton scattering in which the initial photon 
is above the pair creation threshold, how the use of Licht 
fields eliminates resonant divergences of QED with strong 
magnetic fields. 

II. UNSTABLE STATES AND PROPAGATORS 

To see the underlying reasons for the unsatisfactory 
behavior of cross sections of QED with strong magnetic 
fields, we remind the reader of two failures of perturba- 
tion theory in the Furry picture for B > 0 using stable 

particle states and propagators. 
(i) It is a highly distinctive feature of vacuum theory 
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that the Hilbert space structure does not change in going 
from the free to the interacting theory. This remains true 
for B > 0 only if the electron self-energy and the vacuum 
polarization vanish on shell. But this is not the case 

due to the imaginary part of the self-energy indicating 
the decay of Landau states for N > 0 and of the vacuum 
polarization indicating the decay of a photon in an e-e+- 
pair above the pair creation threshold [4,5]. 

(ii) Fields that describe unstable states have a vanish- 
ing Lehmann-Symanzik-Zimmermann (LSZ) limit (6,7]. 

For us these results are the starting point for iden- 
tifying the correct states and propagators for decaying 
electrons and photons in strong magnetic fields. There 

are two ways of introducing unstable particles in quan- 
tum field theory. Usually, the notation of a complex mass 
shell, p,p’ = rn2 - ir, is used. This approach is easily 
applied for propagators yielding the typical Breit-Wigner 

ghape for resonances in cross sections [8], but was recently 
also generalized to external lines [9]. Another method is 
the use of generalized Licht fields. Here, one replaces the 
on-shell condition p,p’ = rn2 by an off-shell mass spec- 
tral density. The abandoning of the on-shell condition 
is justified by the time-energy uncertainty which forbids 
an unstable particle to have a fixed energy. The use of 
Licht fields is additionally motivated by the following two 
reasons: First, generalized Licht fields have nonvanishing 
LSZ limits. Second, in the case of propagators, the Licht 

field approach is the more general one and contains the 
complex mass shell method as a special case. There- 
fore, we follow the second approach in this work and, in 
the spirit of Refs. [6,7,10], introduce suitable generalized 
Licht fields for the unstable particles. However, the two 
different methods result in a different treatment of exter- 
nal lines. These differences will be discussed at the end 
of sec. III. 

For the electron we define the Licht field by 

+Z?;(E)d+ (E)yp(x)e+iEt] (1 (1) 

and 9 = !J$y”, where the anticommutation relations are 
the usual ones for N = 0; for N > 0, 

{b,(~),b:,(~')} = {d.(~),dL,(r3')} = 6,,,w -if') 

(2) 

and the other anticommutators are zero. Here, 4:” are 
the energy solutions of the Dirac equation in the presence 
of the external magnetic field B = Be,, a = {N, ~,p~,p.}
denotes the set of quantum numbers needed in order to 
completely characterize the solutions, and X = f dis- 
tinguishes positive and negative energy solutions [11,12]. 
The energy E of thy;article is smeared around th: on- 

shell value E, = rn + 2NeB + pz due to the integra- 

tion over the spectral functions Z:‘,“(E). These func- 
tions are generalizations of the wavi function renormal- 

ization constant 2 of a stable field and labeled by that 
subset of quantum numbers n = {N,T} which enters in 
 

the decay width of the unstable states. In the following, 
we will suppress the other quantum numbers p, and p, 

[13]. The dependence of Z:(z on X reflects the different 
time evolution of positive and negative energy solutions. 

Therefore, the difference between Z:<z and Z$, should 
show up only as some kind of boundary condltlon. In 
order to get a charge symmetric theory, the condition 
p. = ,idZ’P where C$ 1s an arbitrary phase, fOllows. 

+d;physical G%pretation of Eq. (1) is that CJ describes 
n-times different particles, i.e., every Landau state with 
distinct N and 7 would be identified as a different par- 
ticle. Excited states with N > 0 are unstable because of 
the interaction with the photon field. These particles can 

decay and Z:!:(E) weights the contributions of creating 

an unstable “(N, T) particle” with energy E and polar- 
ization 7. Only the ground state n = (N = 0,~ = -1) 
remains stable. To recover the usual on-shell energy re- 

lation and wave function of a stable electron, one has to 

set z’12 h,O,-l = 6(E’- Eo). Then, the ground state has the 

usual LSZ limit 40,-l + Z~“$~‘?, for t + M, where 
Z, is the normal electron wave f&tion renormalization 
constant and the limit, as in all of the following, should 
be understood iwthe weak operator topology. 

In the case of the photon field with its continuous en- 

ergy spectrum we adopt, in an analogous way, the Licht 

field 

A,(+) = Jd- ds’[Z:!:(s’)At+)(~,s’) 

+Z:!,2(s’)A~-‘(d)] > (3) 

where A(') and A(-) are the positive and negative energy 
photon fields, respectively. Similarly to the case of the 

electron field, the functions Z:::(s’) are labeled besides 
by X by those quantum numbers on which the one-y- 
pair production probability r,(s) depends: the energy 
perpendicular to the magnetic field s = usin@, and the 
polarization T of the photon [14]. The part of the photon 

field A?)(z) with energy below the pair creation thresh- 
old w = 2m/sin0 is stable. Therefore, for s < 2~2, the 

112 I functions Z,,? (s ) = S(s - s’) and the field has the usual 

LSZ limit A,?‘(z, s) + Z~‘2A~t(X)(r, s) for t + co. 
In contrast with the fields * and Ap describing unsta- 

ble particles, the component fields AcA) (z, 8’) and 

?&+‘(cz,E) = b,(E)$J(+)(x)e--t 

&;‘(z,E) = $(E)&(x)e+‘Et: 

(4) 

(5) 

do have a nonvanishing LSZ limit [6,7]: 

Ap)(s,s') -+ A~)oYt(z,d) for t + co (‘3) 
and 

qp(z,E) + ?,w”yz,E) for. t + ca . n (7) 

Therefore, one is able to compute Green’s functions with 
the G&Mann-Low or the LSZ reduction formula using 

the decomposed out fields. Expressed in terms of these, 
the interaction Hamiltonian HI reads 
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x, ?ct,, --(X’)o”t(z, El)+‘$~~)““t(~, E2)Af’)oYt(z, s’) , (8) 

where we omit all counterterms. ‘Since here we are only interested in lirst- and second-order processes, we do not 
take care of renormalization. But we want to mention that, since physical parameters should be chosen as directly 
observable quantities, the bare parameter mo shduldbe expressed by the physical rnam m only for the Landau ground 
state. In this’way, the usual electron wave fuhction renormalizatiop constant,Zz is fixed. However, for decaying states 
one should choose as a physical parameter instead of’m some characteristic ,parameter of an unstable state, e.g., the 
dec?y width I?,. 

Now, we are ready to derive diagrammatic p&wb&ion theory. As a first step we compute the components of the 
electron propagator (omitting the index “out” from nbw on) for N > 0, 

Using the decomposed propagator, ,one has not only to integrate over all not fixed momenta, but also over the variables 
of the functions Z. However, we are mainly interested in Green’s functions of @. The,total propagator is sandwiched 
between two vertices. Qne of &he two integrations over E breaks down due to the 6 function and one obtains 

~SF(=I,ZZ) = (O(T (‘%4~(~)) IO) 

-dE Z,(E) (11) 
Here, we set the ill-defined Z&E) equ4to 6(E-Eo) to 
obtain a compact expression and the vertex becomes the 
usual iv+‘. The functidns Z,(E) are abbreviations for 

IZ:!i12. Therefore, they are real and independent from 
X. One should remember that the propagator obtained, 
although similar to the spectral representation of the full 
propagator in vwuum theory, is a bare one. 

The derivation of the photon propagator is similar. 
However, there arises the additional difficulty that the 
usual spin projection operators do not work for off-shell 
states: a propagator for spin-s .particles will generally 

contain particles with lower spin values (s-1,4-2,. . ;O). 
But since Feynman diagrams with virtual photons do not 
play a prominent role in the astrophysical applications, 
we omit the derivation here [15]. 

III. SPECTRAL FUNCTIONS 

In order to make the whole treatment cdnsistent, the 
spectral functions Z,(E) and Z,(s) have to be-at least 
in principle-computable. A hard way is to use the fact 

that the Z:‘,“(E) completely determine thrdugh the Eqs. 

(1) and (7) the normalization of the components of the 

field g. The latter is fixed by,the can&xxl anticom- 
mutation relations. Therefore one can use perturbation 

theory in the H&ember& picture to calculate Z::(E), 
and, similarly, Z:‘,?(s) [7,10]. 
In practice, th& calculations are nearly intractable 

and one will use a guess. The An&x according to con- 

ventional wisdom are Lorentzians: 

Z:(E) = rn 

r ((E - E,Jz + ir:) 
(12) 

for the electron and 

Z,“(s’) = ra 
?r (cs - 9q2 + g:(d)) 

(13) 

for the photon, where we choose r, and r,(s) to be the 
total decay width of the Landau level (N,T) [12] and the 
one-y-pair production probability r,(s) [14], respectively, 
calculated in conventional perturbation theory. 

This ansatz reproduces’ the electron propagator with 
the ndrmally used Br&t-Wigner prescription ic + ail?,, 
for l?, < E,. In this case, after expanding the poles, 
the lower limit of iritegration can be extended from 0 to 
-co producing ‘two poles at ‘s - X(E, - $r,). Accord- 
ing to Ref. [16], the Breit-Wigner approximation yields a 
result that is always consistent within the perturbation 
theoretical order of calculation. In particular, the author 

showed that for all B and N the deviations from the 
Breit-Wigner line shape are small. From our derivation 
follows the usual restriction r, < E,, for the validity of 
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the approximation. Using the approximative formulas of 
Ref. [17] for I’,, one sees that the condition l?, < .E,, is 
indeed always satisfied. 

However, from a mwe fundamental point of view, it is 
clear that the extension of the integration to negative E 
violates the spectral condition and is at the root of the 
violation of unitarity and causality. Although therefore 
the consistency of the approach is lost, it seems to us 
worthwhile to explore the consequences of this Ansatz.
In contrast with the usual derivation of the propagator 

with Br&-Wigner shape, the derivation presented here 
gives a complete scheme that describes unstable particles 
as external as well as intermediate states. Furthermore, 
one can treat processes with more than one unstable par- 
ticle without ambiguities. Therefore, in this section we 
do not attempt to calculate the spectral functions 2 from 
first principles but restrict ourselves to the simpler task 
of investigating the consequences of the B&t-Wigner ap- 
proximatioti in.the Licht field approach. 

Denoting the electron wave functions obtained in this 

approximation by &A(z), we obtain 

md &,, - -(‘) - $pL’y”. Here, N is a normalization constant 
and we chose the signs in 

ix 
+%XJ? (15) 

7% 2 n 

according to the following two requirements: first, we 
demand that the wave functions do not vanish for t > 0 
and, second, in the limit l?, --t 0 the phase of $gi has 

to coincide with,the phase of $JL”. The first requirement 
leads automatically to decaying states, for both positive 
and negative energy solutions. The choice of nonvanish- 
ing wave functions for t < 0 results in states whose norm 
grows in time. Therefore, the choice between nonvan- 
ishing wave functions for t > 0 or t < 0 corresponds to 
the choice of the direction of the time arrow and has to 
be made by hand. As anticipated, the different form of 

Zi/,” for X = zlc is necessary to obtain the correct bound- 
ari condition for decaying states. Similarly, we obtain, 
for the photon wave functions, 

A&$) = N (2wV)- lpEp ,-i(Yt-k.X),-~r,(W)t

(16) 

Since the norm of the states varies with time, the cor- 
rect normalization is not obvious. A reasonable prescrip 
tion is the requirement that cross sections calculated with 
decaying states coincide in the limit r + 0 with the same 
cross sections calculated in the usual formal&. 

Formally, S-matrix elements with external unstable 
particles will be calculated in the usual way. But because 
of the 0 functions, the time integration over vertices with 
external unstable particle goes effectively only from 0 to 
co. Thereby, no divergent time integrals will be caused 
 

g(t) 

by the real part of the expontintials of decaying states. 

Finally, we want to compare our approach with that 
of a recent paper [9]. The authors propose the use of 
propagators with complexified energies and-this is the 
main difference-the use of external states 

for the electrons and similar ones for photons. In contrast 

to our wave functions, the norm of the negative energy so- 
lutions grows in time. Furthermore, these wave functions 
are valid for t < 0 as well as for t > 0. Therefore, the 
real part of the exponentials will lead to divergent time 
integrals. Consequently, no scattering amplitudes in the 
normal sense (i.e., for transitions between t;,f --t 3x0) 

with external unstable states can be calculated in this 
approach. Instead; one calculates matrix elements of the 
time evolution operator U(t,, ti) which are dependent on 

the time lapse tl - ti between preparation of the initial 
state and measurement of the final state. The authors 
of Ref. [9] claim that this approach, which is the direct 
transcription of the Wigner-Weisskopf method of nonrel- 
ativistic quantum mechanics, eliminates all divergences 
of QED with strong magnetic fields. However, the main 
object of field theory, the S matrix, is not generally com- 
putable in this formalism. Moreover, the wave function 
4 is not the Dirac conjugate spinor of 1(, since the real 

part of the exponent changes sign. Coxisequently, charge 
symmetry is lost Andy the S-matrix elements lack cross- 
ing symmetry. Finally, a more practical objection seems 
to be important. Since the main application of QED of 
strong magnetic field is astrophysics, the usefulness of 
cross sections which are dependent on the time lapse be- 
tween “preparation” and “measurement” of the states is 
restricted. 

IV. APPLICATIONS 

In.this section, we want to illustrate home basic conse- 
quences of this formalism. 

First, we”consider a generic first-order process. The 
S-ma+ element is given by 

S,i = 
J 
dE&Ezds’ Z:‘“(E1)Z,““(E2)Z;Iz(s’)S~ , 

(19) 

where ST is the conventional S-matrix element but 

with off-shell energies. Choosing the spectral functions 
to be Lm&z curves, there is no difference between the 
approach presented in this work and conventional pertur- 
bation theory where the delta function expressing energy 
conservation is replaced ad hoc by a Lorentzian. Since 
the wave functions depend on r only through an expo- 

nential factor, the simple assumption that the total decay 
width is additive, is valid, i.e. (as used, e.g., in Ref. [X2]), 

riot = r,, + r,, + r,(5) (20) 
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Hence, quantum correlations between different decaying 
states exist only for non-Lorentzian spectral functions. 

Second, let us consider magnetic Compton scattering 
as a typical second-order process. The electron propaga- 
tor coincides with the conventional one with complex&d 

energy for Z,(E) = Z:(E). Therefore, in the simplest 
case of Ni = 0 -i Nf = 0 Compton scattering where the 
energy of the photons is below 24 sinB, we obtain the 
old, well-known result [2,18]. Otherwise, the instability 
of the initial and final particles is also incorporated in the 
S-matrix element. Assuming the functions Z’lz are well 
behaved, the integration over the off-shell energies will 
remove the remaining singularity of the electron propa- 
gator when the virtual electron is in the stable Landau 

ground state. In particular, the S-matrix element of mag- 
netic Compton scattering is now finite in the case where 
the initial photon is above the pair creation threshold. 

Now we want to make our argument quantitative. The 
S-matrix element of Ni = 0 --) Nf = 0 Compton scatter- 
ing is given by 
where i and f refer to initial and final states, while the the quantum numbers of the virtual electron will be marked 
by the subscript a. Using stable fields, the divergence for si > 2m occurs in the exchange diagram Sc’) when the 
virtual electron propagates as a positron in the Landau ground state, i.e., has the quantum numbers N, = 0 and 
X, = -1 121. Since the space integrals remain unchanged and are fimte, we only have to consider the time integrals 
of Sc’) for N, = 0 and X, = 0: 

Here, E denotes the energy of the electrons and w’ = s’ sin 0 the (off-shell) energy of the photons. Performing the two 
time integrations and the integration over t, which comes from the @ function of the electron propagator, results in 

S,‘z’ = J ds;ds’ zy:i (s:)z:y, (s;, 
f-Ef-E +w!+ie2n6(Ef+w;-Ei-w:). 

@. I 
(23) 

The result of the integration over si depends on the energy perpendicular to the magnetic field s; of the final photon: 

s(Z) = 274,2, (4,1) 
t -Ei - E, + Wf + ie sin Bf 

Sf < 2m 

+ J dsi 24,,2;(4,,)z~~,2, (3;) sine, 
-Ei - E, fw; +ia ’ s; >2m ’ (24) 
where we introduce s;,~ = (Et + cof - E,) sin Si, s& = 
(Ef + w; - E;) sin& and wf denotes the on-shell energy 

of the final photon. In the second term of Sc’), the inte- 
gration over 3; gives a finite result as long as a principal 
value integral of the integrand can be defined. There- 
fore, the only remaining dangerous part of Sc’) is the 
fist term. But for sf < 2m the denominator can never 

become zero because E; + E, = rn + 
lrzzz. 
rn + wf cos Bf IS 

always greater than wf. Here, we assumed p;,, = 0 with- 
out loss of generality and used momentum conservation 

parallel to the magnetic field. 
In the more general case of Compton scattering when 

Ni and Nf are not restricted to be zero, this result re- 
mains valid. In this case, there are additionally integra- 
tions over the off-shell energies of the unstable electrons. 
As above, the necessary condition for a finite S-matrix 
element is that a principal value integral of the integrand 
can be defined. 

This example illustrates well the connection between 
the instability of external particles and singularities of 
intermediate states: as soon as the energy of the initial 
photon is above the pair creation threshold, the virtual 
electron can become real, producing a divergent cross 
section. At the same time, however, the photons also 
become unstable. Taking this instability into account 
properly, one obtains well-behaved cross sections. 

Finally, we want to comment on the behavior of mag- 

netic Compton scattering if all external particles are sta- 
ble. Then there is no decay width which could cure the 
resonance if the virtual electron is in the Landau ground 
state N, = 0. Formally, the resonance energies w,% are 
given for all N, = 0, 1, . ., by [z] 
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wz = [(m2+2N,eBsin2Bi)1’2-~m]/sin2Bi, (25) 

i.e., cd,%=” = 0. In the case of Ni # 0 + Nf = 0 

Compton scattering, the limit wi --) 0 results in divergent 
cross sections [19]. In Ref. [ZO], these divergences were 
interpreted not as resonances but as infrared divergences. 

By contrast, in the case of Ni = 0 + Nf = 0 scattering, 

the S-matrix element diverges like w;’ while the cross 
section goes to a finite, constant value in the limit w; + 0 

IW 

V. SUMMARY 

We have presented a consistent method to describe the 

instability of excited Landau states and photons above 
the pair creation threshold in QED of strong magnetic 
fields. This approach consists in using Licht fields for 
unstable states and introduces additionally integrations 
over the off-shell energies of the unstable particles. We 
have shown for the generic example of Compton scat- 
tering where the energy of the photon is above the pair 
creation threshold how in this way the resonant diver- 
gences of S-matrix elements of QED of strong magnetic 
field are avoided. 

In the Br&t-Wigner approximation the Licht states are 
exponentially decaying or growing in time. Since the di- 

vergent part of the wave functions is cut off by 0 func- 
tions, no divergent time integrals will be caused by the 
real part of the exponent&. Therefore, in this formalism 
it is possible to calculate S-matrix elements with external 

unstable particles. 
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