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Example of a Poincark anomaly in relativistic quantum mechanics 
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The PoincarC algebra of classical electrodynamics in one spatial dimension is studied using light- 
cone coordinates and ordinary Minkowski coordinates. We show that it is possible to quantize the 
theory by a canonical quantieation procedure in a Poinca&invariant manner on the light cone. We 
also show that this is not possible when using ordinary coordinates. The physical reason for this 
anomaly is analyzed. 
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I. INTRODUCTION 

It is well known that it is generally not possible to for- 
mulate relativistic quantum mechanics with a finite num- 
ber of degrees of fteedom, due to the existence of negative 
energy solutions of the relativistic wave equations. These 
solutions are interpreted as antiparticles. Wave packets 
with an extension smaller than the particle’s Compton 
wavelength,’ X, = lfm, contain considerable admixtures 
of these antiparticle solutions (see, e.g., [l]). Therefore, 
a many-body description of relativistic quantum systems 
is usually inevitable. 

We will show, however, that it is possible to quan- 
tize gauge theories in one space and one time dimension 
(l+l dimensions) on a truncated Fock space, while pre- 
serving Lorentz invariance, if one uses light-cone coordi- 
nates. More specifically, in this paper we will analyze 
the difference between light-cone quantization and quan- 
tization in ordinary coordinates in a Hamiltonian formu- 
lation of electrodynamics in l+l dimensions. We will 
explicitly show that canonical quantization of this the- 
ory is possible in a Poincar&invariant manner in light- 
cone coordinates but not in ordinary coordinates. This 
result means that one encounters a quantum mechanical 
anomaly when using an equal-time quantization proce- 
dure. Position space matrix elements for the anomalous 
contribution to the Poinca& algebra can be interpreted 
in terms of particle trajectories which make an intuitive 
interpretation of the results possible. 

In a pioneering paper, Dirac formulated the basic re- 
quirements necessary for combining the Hamiltonian for- 
mulation of dynamics with special relativity [2]. The 
principle of relativity demands invariance of physical laws 
under continuous coordinate transformations, which are 
boosts and translations:’ 

p’ = a+- + a@, Ap‘P = g”P (1) 

‘Throughout this paper we set fi = c = 1. 
‘In ‘j+l dimensions also invariance under rotations has to 

be demanded. 
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This so-called Poinca& group is determined by the Lie 
algebra of its generators: 

{H,P}=O, {K,P}=H, {K,H}=P. (‘4 

H := Po is the Hamiltonian, P := P1 is the momentum, 
and K the boost generator of the physical system under 
consideration. {A, B} is the standard Poisson bracket 131, 
with {z,,p,,,} = S,,. I, are the positions of the parti- 
cles and p,,, the corresponding canonical momenta. Note 
that although a Hamiltonian formulation is not mani- 
festly covariant, the theory is still Lorentz invariant if 
the Poincare algebra is closed. K generates a canoni- 
cal transformation of the phase space variables (zm,p,) 
which connects different reference frames. Because of the 
last two brackets in (2), P’ = (P”, P’) transforms like a 
Lorentz vector. The first set of brackets expresses trans- 
lation invariance. 

Quantum mechanically, one has to replace the Pois- 
son brackets by -i[,] where [,I is the commutator. The 
quantum Poincar& algebra therefore is 

[I?, B] = 0, [R, F] = ii?, [kJ?] = il; (3) 

A closed quantum Poincark algebra means that a unitary 
transformation 

exists which connects quantities in different Lorentz 
frames, where k is the generator of this unitary transfor- 
mation. The existence of this unitary transformation is a 
necessary and sufficient condition for a Lorentz invariant 
formulation of quantum mechanics. In general, the exis- 
tence of a canonical transformation does not guarantee 
the existence of the corresponding unitary transforma- 
tion. One example for this is the axial anomaly in QED 
where the classical theory is invariant under chiral rota- 
tions but the quantized theory is not [5-71. 

A Hamiltonian formulation of a dynamical system us- 
ing ordinary Minkowski coordinates z”, zr1 corresponds to 
specifying the initial conditions on a spacelike hypersur- 
face z?’ = const in Minkowski space. Another possibility 

ti(X) := exp(i>li) 
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is offered by the use of light-ccx coordinates 

where a new time variable I+ and a new space variable 
z- are introduced 121. Initial conditions are now specified 
on a lightlike hypersnrface z+ = con& As with the or- 
dinary coordinates, the generators of the Poincar6 group 
are the components of the momentum vector: 

HLC := P+ = 
Po + Pl 
-, PLC :=P- = 7, 

Jz 
(5) 

and a boost generator KLC. The quantum Poinca& al- 
gebra has the form 

^ ^ 
&c,pLc] = 0, &,&c1 = -i&c, 

I&.,, &I = iA,, (6) 

These relations are found by using the definitions of P+ 
and P- (5) and the Heisenberg brackets (3). Quantum 
mechanically, the choice of one of the two formulations 
does not necessarily lead to the same theory. This will be 
demonstrated for classical electrodynamics in one space 
and one time dimension below. 

This paper is organized as follows: In Sec. II we will 
show that the Poincare algebra of classical electrodynam- 
ics closes in l+l dimensions. The quantum Poincar& al- 
gebra, however, does not close when one is using ordi- 
nary coordinates. The physical reason for this anomaly 
will be explained in terms of retardation effects. Analo- 
gous calculations using light-cone coordinates show that 
no anomaly occurs in this case (Sec. III). In Sec. IV we 
show that the anomalous contribution to the Poinca& 
algebra vanishes in the infinite momentum frame. We 
conclude in Sec. V. 

II. POINCARI?, INVARIANCE 
FOR ORDINARY COORDINATES 

In one space and one time dimension (l+l dimensions) 
the field strength tensor contains only one independent 
component, and the electric field can be easily expressed 
by the coordinates of the charged particles [s]. In this 
paper, we restrict ourselves to two particles of equal mass 
rn with charges e and -e. The generalization to many 
particles is straightforward. One obtains the following 
classical Hamilton function: 

The remaining two generators of the Poinc& algebra are 

P=&, 
i=l 

(8) 
t 
1 

x,(t) 

‘M 

x 

FIG. 1. Classical particle trajectory in Minkowski space. 

[c(z) is 1 for positive and -1 for negative argument]. It 
is a simple exercise to show that the Poinc& algebra (2) 
is closed. The ordering of the first two terms in K is of 
no significance in the classical theory, but is needed in 
order to ensure Hermiticity of K after quantization. 

The reason why it is possible to formulate electrody- 
namics in one. space dimension in a Lor&tz-invariant way 
using an instantaneous interaction is closely related to 
the properties of the linear potential, as the interparticle 
force is constant. For classical particles, such a constant 
force yields the same dynamics as a retarded force 141, 
which can be seen in the following way: The origin of 
retardation effects is that no signal can propagate faster 
than with the speed of light. Therefore, the force which 
acts on a particle at position zr (see Fig. l), because of 
a particle traveling on the Minkowski world line z=(t), 
is determined by the intersection point zs of the world 
line IT with the backward light cone of 2~. The size 
and direction of the force only depends on whether the 
intersection point IS is right or left of XM. Because the 
particle cannot move faster than the speed of light, the 
intersection point of the world line ZT with the t = 0 
axis (which determines the instantaneous force) is on the 
same side as IS with respect to 5~. Therefore, retar- 
dation effects are not important for the specific system 
considered here. 

For our discussion of the quantum Poinc& algebra, 
we replace the canonical variables 2, and p, by the COT- 
responding operators g* and &,. One finds that the first 
two equations in (3) are satisfied, but that 

[k,i%]=iP+2, 

with a nonvanishing operator 

w 
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2 : = ;2 ~[A&: - i;, - (&ii + iiAi)(il - %)] , 
.=I 

sii : = [e(& -2*),&z] (11) 

This means that the Poincare invariance of the classi- 
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cal system is destroyed by quantisation and that we en- 
counter an a%omaly. The anomaly is characterized by 
the operator 2. 

We will now study matrix elements of this operator in 
order to obtain an intuitive understanding of the nature 
of the anomaly. In Appendix A it is proven that 
where K1 is a modified bessel function [9]. For the case 
that the two particles do not cross each other, (II - 
x2) and (2: - z!J have the sane sign and the matrix 
element vanishes. Therefore, the first conclusion at this 
point is that crossing of the particles must be an essential 
feature for the appearance of the anomaly. We can see 
this clearly by calculating matrix elements of the first 
relativistic contribution3 in (ll), 

i 22 
= y[6(& -cm +@zN , (13) 

with eigenfunctions of the nonrelativistic Hamiltonian 

2 fj? 
ii = c - + 2]& - $2l 

i=, 2m 
(14) 

The eigenstates are Airy functions with the eigenvalties 

@ 113 
-%=l4l; , 

0 
(15) 

where a: are the zeros of the fist derivative of the Airy 
function (see Appendix B). It is easy to show that 2 of 
Eq. (13) has the following expectation value: 

(QJ,li(Q*) = $& (1’3) 

Classically, the particles move periodically with period 
‘7. Because of the virial theorem, T - a, since the 
potential is linear. Therefore Eq. (16) can be written 
alternatively: 

This result can be explained in the following way: we 
already pointed out that crossing of the particles is the 
physical reason for the anomaly. Therefore, we expect 
that the matrix element under consideration is propor- 
tional to the number of crossings in a given time interval, 
i.e., - l/T. It has also to be proportional to the typi- 
cal time the particles’ distance is less than one Compton 

% the nonrelativistic limit m zz rn. + p2/(2n) the 
Paincar& algebra closes. In this case K is the generator of 
Galilei transformations. 
wavelength. This typical time is proportional to the in- 
verse velocity of the particles when they cross each other 
which is proportional to the inverse oscillation time l/T. 
Therefore we find that (Z) - l/T2 in agreement with the 
calculation. 

The physical reason for the violation of the Poincark 
algebra is related to the fact that quantum mechanically 
a particle can move faster than the speed of light over 
distances comparable with its Compton wavelength. This 
one can see, by calculating the free retarded propagator 
of a relativistic particle in l+l dimensions, 

m(t’ - t) 

xKl[m~(z’ - z)” - (t’ - t)2] (18) 

[0(r) is 1 for positive and 0 for negative argument.] Prop- 
agation into the spacelike region (z’ - z)” > (t’ - t)’ 
is possible although it is exponentially suppressed as 
Kl(mz) N exp(-mz) for large arguments. Therefore, re- 
tardation effects are important if the particles cross each 
other. In Fig. 2 there are two intersection points of the 
particle world line with the backward light cone of zr 
on the left side of 2~ and one on the right side. The 
instantaneous force in the Hamiltonian formalism does 
not describe the dynamics properly because the intersec- 
tion point of the particle world line with the t = 0 axis 
is on the right side of zr, causing a negative force. The 
retarded force, however, is positive. 

‘t 
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FIG. 2. Quantum-mechanical particle propagation in 
Minkowski space. 
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If a particle propagates forward in time into a space- 
like region in one Lorentz frame, then there is another 
Lorentz frame where this particle propagates backward 
in time. This is interpreted as the presence of an an- 
tiparticle. In order to keep Lorentz invariance, one is 
forced to allow for particle-antiparticle production which 
is not inherent in the quantum mechanical Hamiltonian 
considered here. 

It is possible to get an approximately closed Poincark 
algebra, however, including the first relativistic correc- 
tion. To this end we add to the Hamiltonian an addi- 
tional potential h6(&1 - &) which is only nonzero when 
the particles cross each other. h has to be determined 
in such a way that the P&car6 algebra is closed up to 
this order. We therefore have for the Hamiltonian and 
the boost generator 

I? = H + hJ(& - &), 

A h 
R’ = K + $+I + i&3(& - &) . (19) 

One finds tl+ the first two equations of (3) still hold and 
that 

p?,f?] =iP+2+i’, 

where 2 is defined as in Eq. (11) and 

(20) 

2’ 25 ;[@I +@z)6(& -hJ] . (22) 

Comparing that with 2 in Eq. (13) we find that the 
Poinca& algebra is closed including the first relativistic 
correction, if we set 

One obtains an intuitive understanding for this addi- 
tional attractive 6 potential by keeping in mind that it 
is only nonvanishing when the particles cross each other 
and it enhances the relative velocity during the crossing. 
This is in agreement with the qualitative explanation of 
the anomaly given above. 

Higher order relativistic corrections contain derivatives 
of the 6 function at the origin. Therefore locality of the 
interaction is lost. 

III. POINCARti INVARIANCE 
IN LIGHT-CONE COORDINATES 

In the quantized theory one has the following genera- 
tors of the Poincar6 group: 
Note that I? is independent of the interaction and there- 
fore a nondynamical generator. 

It is easy to check that the Poincark algebra (6) still 
closes in the quantum theory. This result clearly signals 
that the quantum mechanical system under consideration 
must be different from that in ordinary coordinates where 
P&c& invariance was violated by quantization. The 
reason for this is rooted in the structural simplicity of 
proper Lorentz transformations on the light cone. The 
Lorentz tensor reads 

(26) 

where a is the velocity of the moving &xne. As a conse- 
quence, Lorentz transformations are simply scale trans- 
formations of the coordinates I+ and z‘- without mix- 
ing them in contrast to ordinary coordinates. Therefore, 
a particle which moves forward in time in one Lorentz 
f&ne will move forward in time in any other Lorentz 
frame independent of the dynamics under consideration. 
This fact is reflected in the simple form of the boost gen- 
erator in (25). 

To remove negative energy states (for which one does 
not have a proper interpretation in a quantum mechan- 
ical theory), one can introduce a projection operator on 
positive momentum states: 

(27) 

It is easy to check that the projected operators, 

still satisfy a closed P&car& algebra: 

(29) 

For this fact it is important that the boost operator 
&L, anfl the projectiop ope+or on positive momentum 
states Q commute ([KLc, Q] = 0). This is intuitively 
clear because of the simple form of the boost transforma- 
tion. As a consequence, the decomposition of the Fock 
space into spaces of definite particle number and projec- 
tion on positive momenta is a Lorentz invariant concept. 
This phenomenon is also valid in (l+l)-dimensional QCD 
formulated in light-cone variables where it can be used 
for a valence quark approximation of mesons and baryons 
which is Lorentz invariant [lo]. 
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IV. THE ANOMALY IN THE INFINITE 
MOMENTUM FRAME 

Weinberg motivated the use of light-cone variables by 
switching to a system which moves with infinite momen- 
tum [ll]. We will show now that in this frame the ef- 
fect of the anomaly disappears. Consider the matrix ele- 
ment (p:p!&lplpz). After a straightforward but lengthy 
calculation one finds, in the infinite momentum limit 

PI,PZ > m ==d P;,P; B T 

&&(P:P;l~lPlPz) - g&P - P’) 

x & + (I-& -# ’ ( > 
(30) 

where 

pl=zP, pz=(l-z)P, P=Pl+Pz, (31) 

p; = yP, p; = (1 - Y)P> P’ = P; + P’z (32) 

The anomalous matrix element vanishes in the limit 
P + 00. Therefore it.is possible to formulate relativis- 
tic quantum mechanics on a truncated Fock space in the 
infinite momentum f?xne. This is in accordance with 
Weinberg’s motivation of the light cone. 

The anomaly will only vanish if both particles carry 
a large momentum fraction, due to the singularities at 
I = 0, y = 0 and z = 1, y = 1. If quantum states with 
a nomanishing wave function at these singular points 
contribute in a relativistic wave equation, then the effect 
of antiparticles becomes important. 

Moreover, it is not possible to boost wave functions or 
nonscalar observable from the infinite momentum frame 
to another Lorentz frame, as we have no closed Poincare 
algebra; which means we have no generator of unitary 
transformations K in ordinary coordinates on a trun- 
cated Fock space. A two-body wave function in the inli- 
nite momentum frame is, in general, a complicated many- 
body wave function in the rest &me, containing a large 
number of particle-antiparticle pairs. Two problems arise 
if one tries to construct this wave function: first one has 
to find the boost generator in the presence of antiparti- 
cles, i.e., &om the corresponding quantum field theory. 
This boost generator will, in general, be a dynamical 
quantity dependent on the interaction under considera- 
tion. The second problem is to calculate the boosted 
wave function $‘. It is given by the equation 

I$‘) = ex~(iXK)lllr) 

As K is dynamical, i.e., it contains the interaction; this 
problem is as complicated as finding the full propaga- 
tor of the quantum field theory. Therefore, only scalar 
observables can be calculated in the infinite momentum 
fxame or light-cone coordinates and compared with quan- 
tities in the rest frame of the two particles in ordinary 
coordinates. 
V. DISCUSSION 

We have seen that classical Poincar6 symmetry of elec- 
trodynamics in one space dimension is lost if the theory 
is quantized on a truncated Fock space in ordinary coor- 
dinates. In a Hamiltonian formulation, this shows up as 
an anomaly in the Poinca& algebra. Almost all known 
examples of anomalies are restricted to relativistic quan- 
tum field theories. However, the loss of a classical sym- 
metry after quantization is a more general phenomenon, 
which is related to the necessity of specifying a Hilbert 
space [12]. This can be seen in the simple case of the 
motion of a free particle in one dimension, with H = p2 
(131. If one quantizes the theory on the Hilbert space 
&[-rn, ca], the classical theory and the quantum theory 
are translationally invariant. The momentum operator p 
generates a unitary transformation which translates the 
system according to 

exp(ipa)a: exp(-ipa) = z + a 

If the theory is quantized on a circle with periodic bound- 
ary conditions this symmetry breaks down to a discrete 
lattice symmetry, i.e., the parameter a has to be con- 
strained to integral multiples of 2?r [13]. For a detailed 
discussion of a related problem in the presence of an ex- 
ternal magnetic flux through a circle see [14]. Another 
example of an anomaly of a finite dimensional system 
which is closely related to the axial anomaly in QED 
is the supersymmetric harmonic oscillator. The parity 
symmetry of the classical theory is broken by the ground 
state but all excited states appear in parity doublets 1131. 

The fact that the Poinc& anomaly is present in or- 
dinary coordinates but not in light-cone coordinates in- 
dicates that a different Hilbert space is used in the two 
formulations. In light-cone coordinates the Fock space 
can be decomposed into spaces of a definite number of 
particles without violating Lorentz invariance, whereas 
in ordinary coordinates this is not possible. Therefore, 
it is not possible to compare wave functions in the two 
formulations in a simple manner. As in the case of then 
infinite momentum frame, a two-body wave function in 
light-cone coordinates does not correspond to a two-body 
wave function in ordinary coordinates. 

The discussion of the anomaly in the infinite momen- 
tum fizne exemplifies that our results are consistent 
with the original motivation of light-cone coordinates 
[ll]. From the structure of the anomalous matrix ele- 
ment in the infinite momentum frame, one can read off a 
necessary condition for the validity of the valence quark 
approximation in this Lorentz frame. If the momentum 
space wave functions do not vanish rapidly enough at the 
singular points z = 0 and y = 0, the anomaly is impor- 
tant also in this frame, therefore the truncation of Fock 
space violates Lorentz invariance. 

Our results also clearly indicate that the so-called 
“simplicity” of light-cone theories is rather deceptive and 
probably an artifact of working in l+l dimensions, as it 
relies on the exceptionally simple structure of the boost 
generator and the Fock space. Unfortunately, it is clear 
that two of the three boost generators will become dy- 
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namical quantities in 3fl dimensions alswon the light 
cone. As a result, a Lorentz-invariant formulation of 
quantum mechanics will be a~ difficult as in ordinary co- 
ordinates. Therefore, the intuition which is gained by 
studying lower dimensional theories may be misleading 
when phenomena in the real world, i.e., in 3+1 dimen- 
sions are to be understood. In addition, it will be much 
harder to implement, e.g., rotational invariance on the 
light cone, because the gene&m for tbis symmetry are 
also dynamical, in contrast to ordinary coordinates. 
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APPENDIX A: CALCULATION OF MATRIX 
ELEMENTS OF 2 

In tpis appendii we compute the matrix element 

(+$l~,lwQ): 
For the integral on the right side one arrives at 

I 
This integral has to be regularized: 

h,reg : = $l:l+ Re (I o- dnm ev (pl(iq - 4) > 
-1 

=- (-42) ?rq2 

For the integral I2 defined as 

Iz := ~Jdmdp~(~-p~)cc&q) , (A3) 

one obtains after two partial integrations 

I2 = 5 - 
s 

-dP1 m2 cos(pl$ . 

7r* q* 
(A4) 

0 

Therefore one has, finally [9], 

I 
- dpl - exp (ipl(z; - 11)) 

-rn 2?F 
The calculation for (z~z~I~~Iz~z~) is completely an&- 
gcw. Fkom the two matrix elements (12) follows imme- 
diate1y. 

APPENDIX B: SOLUTION 
IN THE NONRELATIVISTIC LIMIT 

The nonrelativistic Hamiltonian for two particles in- 
teracting by a linear potential is 

2 8” 
I? = c 2 + ey& - izl . 

kl2-m 
(W 

After separating the center of momentum one has for the 
relative variable the S&&linger equation 

-k&+(v) + e+l~(r) = E+(r) 632) 

For T > 0 one gets, after the substitutions y := (e’r - 
E)n and .a := (e4m2)-1+/, 
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The solution is [9] 

Ii)(t) = cIAi(z) + czBi(z) . G34) 

c2 must be zero because Bi(z) is not normalizable. For 
T < 0 the procedure is similar. For the wave function one 
gets then 

qb(r) N Ai[m(e4m2)-“3(e2~r~ - E)] . CB51 

The energy eigenvalues are determined by the require- 
ment that the wave function and its first derivative is 
continuous at the origin. Therefore one has 

Ai’[-n(e4m2)-‘/3E] = 0 , w 
53 

and if the serqs of the tist derivative of the Aiiy function 
are denoted a:, one has finally 

W’) 

1$,,(0)12 is given by 

and therefore we have, for (&$‘l&,), 
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