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Instantons and the fixed point topological charge in the two-dimensional O(3) CT model 
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We define a fixed point topological charge for the two-dimensional O(3) lattice n model which 
is free of topological defects. We use this operator in combination with the fixed point action to 
measure the topological susceptibility for a wide range of correlation lengths. The results strongly 
suggest that it is not a physical quantity in this model. The procedure, however, can be applied to 
other asymptotically free theories as well. 
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I. INTRODUCTION 

Topological effects play an important role in the dy- 
namics of asymptotically free field theories. In QCD in- 
stantons may be responsible for breaking the axial sym- 
metry resolving the so-called U(1) problem [l]. In a large 
N, limit the topological susceptibility relates the masses 
of the pseudoscalars r/, $, and K [2]. 

The topological susceptibility xt may be defined as the 
infimte volume limit of 

xy =‘(&2) 
v ’ 

where Q is the topological charge and V is the space- 
time volume. In the two-dimensional O(3) nonlinear D 
model it is a dimension two quantity that vanishes to all 
orders in the weak coupling expansion. From the pertur- 
bative renormalization group (RG) it is expected to scale 
according to the two-loop p function 

xt K P2expl-4n@) (P + m). (2) 

It is a nontrivial task to recover the correct contin- 
uum results from lattice Monte Carlo (MC) simulations. 
A lattice topological charge definition is needed, which 
returns even for large fluctuations reliable results. 

A “geometric” definition proposed by Berg and 
Li&her [3] is based on adding up the area of spheri- 
cal triangles, which are defined by the spin vectors in an 
elementary plaquette. As the contributions from all pla- 
quettes are summed up, the internal space - the sphere 
described by the spin variables - is covered, and if pe- 
riodic boundary conditions are used one obtains an in- 
teger charge signifying the number of times this sphere 
is “wrapped.” The topological susceptibility evaluated 
with this charge definition (and the standard action) 
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completely failed to scale [3-51. The reason was ascribed 
to special configurations called ‘Ldislocations” 151, which 
are dominant in the statistical average. Dislocations are 
nonzero charged configurations whose contributions to 
the topological charge come entirely from small localized 
regions where they become %ingular.” If the minimal ac- 
tion of dislocations is smaller than the continuum value of 
a one-instanton configuration (i.e., 411) then dislocations 
will dominate the path integral and spoil the scaling be- 
havior, Eq. (2) [4,5]. 

Another definition goes back to DiVecchia et al. [S] - 
for a recent discussion including the fixed point (FP) ac- 
tion see Ref. [7]. It is called a field theoretical or plaquette 
definition and uses a “naive” discretization of the contin- 
uum charge operator. This prescription does not yield 
integer values, and to obtain continuum results renor- 
malization factors are needed. For large fl these factors 
can be determined perturbatively, but for intermediate 
0 one has to use nonperturbative techniques [S-11]. Re- 
sults obtained with the field theoretical charge indicate 
for the susceptibility a behavior consistent with scaling 

WI. 
A serious problem in these approaches is the role of 

the lattice artifacts, sensitive both to the form of the 
lattice action and the choice of the topological charge. 
A recent work [13] suggests using the FP action of a 
renormalization-group transformation to study topologi- 
cal effects. In particular, an important feature is that the 
FP action has scale-invariant instanton solutions (with an 
action value exactly 4n), and hence - as will be discussed 
in this paper - one can define a topological charge with 
no lattice defects. In Ref. [13] and here the O(3) o model 
is considered, but the methods apply to other asymptot- 
ically free theories as well. The SU(3) gauge theory has 
been studied in Refs. [14,15]. A subsequent paper by one 
of us [17], will deal with the application of these ideas 
to CPNe’ models and in particular to the CP3 model. 
Some of our results were already presented in Ref. [16]. 

The paper is organized as follows: First we review some 
results derived in Ref. [13] and define the FP field oper- 
ator. This is followed by a closer look at instantons in 
the continuum, in a finite periodic volume and finally on 
a lattice using the FP action. We theti define the FP 
923 01996 The American Physical Society 
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topological charge and present some numerical results on 
classical solutions. In the last section we analyze the 
topological susceptibility evaluated in a Monte Carlo sim- 
ulation. After a brief description of the methods used, 
we present the results, which are followed by a conclusion 
and an outlook. 

II. RG RESULTS AT THE CLASSICAL LEVEL 

A. Review of the RG transformation 
and its fixed point 

Let us briefly summarize some RG results, which were 
developed in a previous paper [13]. For a detailed discus- 
sion we refer the reader to this paper. 

We consider the O(3) nonlinear o model in two- 
dimensional Euclidean space defined on a square lattice. 
The partition function reads as follows: 

Here DS is the O(3) invariant measure 

(3) 

DS = n d3S,, 6(S; - l), (4) 
n 

and pa(S) is a regularization of the continuum action 

Pd,,,(S) = ; J d%~,,S(z) 8$(z), where S’(z) = 1. 

(5) 

We perform exact RG transformations by a Kadanoff 
type of blocking; i.e., we divide the lattice into 2 x 2 
blocks labeled by indices ng. To each block we define a 
block spin variable KB, which is some mean of the spin 
variables S, in the block. The block spins KB form 
a lattice whose spacing is twice as large as the original 
one. An effective action is defined by integration over the 
original lattice: 

,-@d’(R) = D$j ,-Pldw+nR,sN 
J 

(6) 

where 7 is the kernel of,the RG transformation, and its 
normalization 

J 
DR,-Pmw = 1 

(7) 

ensures the invariance of the partition function under this 
transformation. In the classical limit (p + co) the path 
integral is dominated by its saddle point: 

(8) .4’(R) = xnn {a(S) + 7(R, S)} 

The transformation kernel used in Ref. [13] has in the 
limit fi + ca the simple form 

7(R,S)=nx c S, --%a. c % 
(I I 

(9) 
niI “Ena ?LE”B 

Here n is a free positive parameter of the RG transforma- 
tion, which is tuned to make the FP action as compact 
as possible. As indicated by the free field theory in one 
dimension, the choice n = 2 gives the most short-ranged 
FP action. A fixed point of the transformation satisfies 
the equation 

&P(R) = $$MS) + T&S)}. (10) 

This equation, called the FP equation, fixes for arbitrary 
configurations {R} the value of the FP action. Starting 
from a lattice regularization of the continuum action, re- 
peated RG transformations will drive the effective action 
to its fixed point. This takes on the form of a minimiza- 
tion in a multigrid of lattice configurations: 
Ack)(R) = min 
{sc’),sc~l,...,s(~)} 

d(‘)(dk)) + 7-(dk), S(“-I)) + + ‘7-(R, S”‘)} (11) 

On each successive level (see Fig. l), the spin con- 
figurations become smoother, not only because the lat- 
tice spacing is halved, but also because the minimization 
tends to smooth out the fluctuations around a solution 
to the equations of motion. Hence, one may choose for 
the action A(‘)(S(“)) on the finest configuration {Sc”)} 
any lattice discretization of the continuum action. The 
FP action & is then obtained as the limit of k --t ca 

of d(“)(R). For practical purposes, however, only a few 
levels are needed, and starting from the standard action 
on the lowest level the FP value is reached soon. 

B. Parametrization of the FP action 

In principle, the above multigrid approach C.&I be used 
to evaluate the Fq action for arbitrary configurations to 

(RI 
(S”) 
IS”‘1 . 

FIG: 1. A multigrid obtained by iterating the FP equation. 
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any precision desired. For practical calculations, how- 
ever, a parametrization of the FP action is needed. In 
Ref. [13] a parametrization has been obtained by fitting 
the known values of the action for - 500 configurations. 
That parametrization represented the FP action well on 
those configurations. However, to control the topological 
effects better, we decided to improve the parametrization 
further by including some small size topological solutions 
in the fitting procedure. We used several two-instanton 
solutions of the lattice FP action. While improving the 
fit for these instanton solutions, the new parametriza- 
tion does not affect the quality of the fit for the previous 
configurations. 

The resulting couplings are given in Table I, together 
with a graphical notation of the corresponding operators. 
Let us explain here again the meaning of this notation. 
The parametrization of the action has the form 

&p(s) = c coupling x products of i+?i,nj , (12) 

where B,i,nj is the angle between the two spins S,,< and 
Snj. Two dots connected with a line - represent a 
factor $9ii,nj in the action, and the positions of the dots 
represent the lattice sites ni and nj, respectively. Double 
(triple) connected dots stand for the square (cube) of the 
above factors. The operator, finally, is the product of all 
the factors i?ii,nj, as indicated by the lines in the figure. 
The quadratIc and quartic couplings 1, 2, 4, 5, 7, 10, 16, 
and 19 are determined analytically [13]; the others are 
determined with a numerical fitting procedure with the 
new instanton configurations added. 

C. The Axed point field 

As we shall see in Sec. IIIB, FP operators are closely 
related to the FP field. The FP field is the fine field Sck) 
in the multigrid solution of the iterated FP equation (11) 
as k goes to infinity. If the functional dependence of the 
solution on the first fine level Sc’) on R is known, the FP 
field can be evaluated by iteration. Below we construct 
the operator Sc’) = S(*)(R). (In the limit k + co the 
solution {Sc’)} of the iterated FP equation is identical to 
the solution {S} of the FP equation.) 

For smooth fields a quadratic approximation of the FP 
equation can be made, which can be solved analytically. 
Consider a smooth configuration {R}, where the spins 
fluctuate around the first axis: 

FL*=(y), 
where gmn, has two components, and ]& 1 < 1. For the 
TABLE I. Couplings used for the parametrization of the FP action including instanton configu- 
rations. The graphical notation is explained in the text. 

No. Type Coupling Type Coupling Type Coupling 

1- 

4 / 

7 dL 

10 
.-I 

13 a 

16 X 
- 

19 
- 

22 c 

0.61834 - -0.04957 - -0.00932 

0.01881 L -0.00180 

0.02155 -I 0.00536 

0.00941 a 0.00488 

-0.01040 -0.00218 

0.00658 

.4l -0.00081 

-0.00225 

- 
0.00146 

- 
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minimizing fine field we can make the ansatz 

Inserted in the FP equation, the above expansion leads 
in leading order to the free field case. This was solved by 
Bell and Wilson [la] (for a brief review see, for instance, 
Ref. [13]). Here we only report the relation between & 
and fnin, : 

Here a is given by 
where &p(q) is the coefficient in the quadratic part of 
the FP action (given by the free field case). By iterating 
Eq. (15) one can obtain the FP field operator in the free 
field case. The form is very similar to the above result, 
but with slightly modified parameters [14]. 

On smooth configurations {R} Eqs. (13)-(15) give a 
good approximation. However, we want to evaluate the 
fine field using a parametrization that performs well not 
only for smooth configurations {R}, but also for general 
ones. Our experience with the parametrization of the FP 
action suggests the ansatz 
where N is a normalizing factor, which ensures Sz = 1. 
As for the action, we found it to be useful to replace the 
scalar product (1 - Qn,Qnb) between the coarse spins 

at sites mu and mb, respectively, by the angle $tik,,mi. 

In order to determine the coefficients 0, we numerically 
minimized the FP equation (10) using 60 configurations 
with lattice size 5 as input and stored the resulting fine 
lattices. The coefficients were then determined by min- 
imizing the difference between the minimized fine spins 
and the parametrization (17). 

The numerical values of the coefficients a and /3 are 
given in Table II together with a symbolic notation of 
the corresponding operators. We chose a set of 23 op- 
erators mainly because of their compactness. Operators 
l-6 are the analytically determined coefficients a, and 
7-23 are the numerically determined coefficients 0. The 
meaning of the graphical notation of the operators is the 
following: The dashed lines represent a 3 x 3 section of 
the coarse lattice grid. The cross + in between indicates 
the position n of the fine spin S, in Eq. (17). The lit- 
tle square (0) denotes the position nb of the coarse spin 
It,,= The two connected dots ware the positions me 
and m(B of the spins whose angle &t’?& m, enters into the 

parametrization. Graphs obtained by &vial symmetry 
transformations are not drawn separately. 
III. INSTANTONS 

A. Instantons on the lattice 

In infinite volume continuum field theory topology is a 
well-defined concept. Field configurations can be classi- 
fied in topological sectors according to a “winding num- 
be?’ or topological charge [19]. In a lattice formulation 
this concept breaks down. When discretizing a theory, 
continuity in coordinate and internal space is lost. On 
the other hand, topology is based on continuous transfor- 
mations of mappings, which are separable into classes. In 
a discretized theory every field configuration can be con- 
tinuously transformed into any other. Iflattice configura- 
tions are sufficiently smooth, an unambiguous topological 
charge may be assigned. Conversely, for field configura- 
tions containing large fluctuations, an interpolation is not 
unique, and a charge definition becomes ambiguous. 

An additional problem arises due to the discretiza- 
tion of the continuum action. While the continuum ac- 
tion possesses scale-invariant instanton solutions, this is 
generally not true for discretized actions. In particular, 
starting with nonzero charged configurations, Liischer [4] 
found that one can continuously lower the standard lat- 
tice action to zero by a local minimization in the spin 
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variables. 
In Ref. [13] investigating the above problems with the 

aid of renormalization group methods was suggested, and 
it was shown that the FP action’has scale-invariant in- 
stanton solutions. In this section we continue along these 
lines and construct instanton solutions of the FP action. 
These in turn can be used to study the performance of 
a proposed improved topological charge definition. But 
first, let us review some basic facts about instantons in 
the continuum [19]. 

In an infinite volume, configurations with a finite ac- 
tion play a special role: At “infinity” all spin variables 
TABLE II. Coefficients of the parameterization of the line field. 

No. Type Coeff. No. Type Co& No. Qpe CO&. 

7; +y / -0.01228 8 / fl j -0.02004 9 
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point in the same direction, and the space W2 can be 
compactified by stereographic projection into a sphere 
S2. A finite action configuration is thus a mapping of 
a “coordinate” sphere onto the internal sphere Sz = 1. 
Such mappings can be classified by homotopy classes, 
with an integer number, the topological charge Q, charac- 
terizing the sectors. While configurations from the same 
topological sector can be continuously deformed into each 
other, this is not true for configurations with a different 
charge. The charge Q is the number of times the internal 
sphere is wrapped as the coordinate sphere is traversed. 
It may be defined as the integral 

and it is related to the action by the inequality 

dA4nIQI. (19) 

If for a given configuration the equality is satisfied, the 
configuration minimizes the action and is therefore a so- 
lution of the equations of motion. 

Let us now turn to the theory in a finite volume. By 
demanding periodic boundary conditions 

S(q + Lm,sz + Ln) = S(zl,z.& where rn, n E Z 

(20) 

we define the theory on a square torus of size L. In a finite 
volume every field configuration has a finite action, and 
because of the periodic boundary conditions an integer 
topological charge Q associated with it. 

We can now explicitly construct pure instanton or pure 
anti-instanton configurations with an action A = 4nlQl 
[ZO]. We use the plane coordinates defined by the stere- 
ographic projection to describe the solutions: 

2ui 
si = ~ 

1 + I@’ 
i = 1, 2, 

(21) 

where u = zll + iuz. The instanton solutions at the 
boundary of Eq. (19) satisfy the Cauchy-Riemann equa- 
tions for u being an analytic function in z = 11 + izz: 

(a, + i&)u = 0. (22) 

The solutions are doubly periodic meromorphic func- 
tions called elliptic functions [20]. They can be written 
as 

Here the integer k is the topological charge of the solution 
and c, al,. , akr and bl, . , bk are complex numbers. 
u(z) is the Weierstrass G function with half periods w = 
L/2 and w’ = iL/2. Using Cauchy’s theorem one can 
show that there are no solutions with a topological charge 
equal to one [ZO]. Hence we are forced to construct charge 
two instanton solutions. Specifically, we set k = 2 and 
c = 1. A reasonable definition for the instanton size is 

p = ; min{lal - bll, laI - bzl}. (24) 

Let us now turn to the construction of instanton so- 
lutions on the lattice. As was pointed out in Ref. [13], 
the FP action allows scale-invariant instanton solutions. 
Since we use this fact to construct instantons on the lat- 
tice, it is appropriate to repeat the statement: 

If a given configuration {R} satisfies the equations of 
motion for the FP action AFP and it is a minimum, then 
the solution {S} of the FP equation (10) satisfies the 
equations of motion also. Moreover, both configurations 
yield the same value for the action. 

The proof is quite simple. If {R} is at a local minimum 
of the FP action dFP, variations with respect to {R} will 
vanish: 

Here S = S(R) is the solution of the FP equation with 
{R} as coarse input configuration. Since {R} is a local 
minimum, Eq. (25) implies 

Consequently, we have 

7(R, S) = 0. (27) 

Since the transformation kernel 7(R, S) > 0, the configu- 
ration {S} gives its minimum for fixed {R}. Because the 
configuration {S} minimizes the right-hand side of the 
FP equation, it minimizes the FP action dpp(S) sep- 
arately. Therefore it is a solution of the equations of 
motion. Since 7(R, S) = 0, both actions have the same 
value: dFP(R) = dFp(S). This concludes the proof. 

The reverse of the above statement is, in general, not 
true for arbitrary configurations. Although a fine config- 
uration, which is a solution of the FP equations of motion 
and which is used to construct a coarse configuration by 
means of the above blocking equation (26), locally mini- 
mizes the right-hand side of the FP equation, this mini- 
mum does not necessarily coincide with the absolute one. 
This, in fact, prevents the existence of arbitrary small in- 
stanton solutions. 

Using the above ideas, it is clear how to construct 
instanton solutions of J&P. We naively discretize the 
continuum instanton solution on a very fine lattice with 
spacing ao = 2-Ea. After performing k blocking steps 
as defined by Eq. (26), we obtain a configuration {R} 
on a lattice with spacing a. In the limit k + rn, we re- 
cover the continuum solution, which is, of course, a local 
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minimum of the continuum action. Since all the succes- 
sive blocked configurations minimize the transformation 
kernels in the iterated FP equation, the configuration 
{R} is a good candidate for a lattice solution of the FP 
action1 We may solve the FP equation for {R} to check 
whether it is still a solution. If {R} is a solution, then 
the multigrid minimization procedure should lead to the 
same configurations on finer lattices as those which were 
used in constructing {R} by blocking. 

B. Definition of the topological charge on the lattice 

In the following we define a topological charge oper- 
ator based on the multigrid solution of the FP action. 
We evaluate the FP topological charge by means of the 
solutions of the FP equation (10). Under a RG transfor- 
mation an operator 0(S) transforms into (7’(R) on the 
coarse lattice as 

@(+-P’d’@? = DS (7(S)e-P[d(s)+~(R,s)l, (28) 
J 

In the limit fl + co the path integral on the right-hand 
side is approximated by its saddle point, and we obtain 

@CR) = o@(R)), (29) 

where the spin configuration {S(R)} is the solution of the 
FP equation (10). Repeated application of this trans- 
formation will single out the operator with the largest 
eigenvalue. Since the topological charge is expected to 
be a marginal operator, we may obtain it as the limit 

Qpp(R) = lim Q(S(“)(R)). 
k-im (30) 

Here Q is some standard lattice charge definition and 
{Sc”)} is the solution of the iterated FP equation (11) 
on the lowest level in a k level multigrid (see Fig. 1). 
In other words, the FP topological charge is a standard 
topological charge evaluated on the FP field. 

Note that S(“)(R) becomes increasingly smooth as k 
grows: first, because the corresponding lattice spacing 
a,, = +a decreases, and second, because S(“)(R) be- 
comes almost a solution to the equations of motion. 
Consequently, any sensible definition of the topological 
charge can be used in these configurations; the final re- 
sult will not depend on this choice. Nevertheless, it is 
more convenient to use the geometric definition, since it 
is stable against small variations of the field, and hence 
k, the number of levels in the multigrid minimization, 
could be kept small with this definition. For a review of 
the geometric definition, we refer the reader to Ref. [3]. 

One can easily show that with this definition of the 
topological charge there are no dangerous dislocations. 

‘It will be a solution, unless the size of the instantons is too 
small with respect to the lattice spacing. 
More precisely, one has 

&w(R) 2 ~~IQFPWI, (31) 

for arbitrary configuration {R}. The corresponding 
statement is true in the continuum; hence, it is also true 
for S@)(R) fork + rn. Equation (31) follows then by ob- 
serving that the contribution of the 7 terms in Eq. (10) is 
non-negative. We are now ready to discuss the numerical 
aspects of classical solutions. 

C. Classical numerical results 

Following the above program, we naively discretize 
two-instanton solutions on the torus of various sizes on 
very fine lattices. We find that four to five blocking steps 
are sufficient to make any lattice artifacts of the origi- 
nal discretization negligible. On the finally blocked con- 
figurations we can measure several quantities. On the 
coarse configuration itself we measure the standard ac- 
tion and the parametrization of the FP action presented 
in Sec. IIB. Performing a minimization on a multigrid 
with three finer levels, we measure the exact FP action 
and on the finest level the FP charge. Using the instan- 
ton radius given by Eq. (24), we get a parameter that well 
characterizes the breakdown of the blocking to obtain in- 
stanton solutions on coarse lattices: In Fig. 2 it can be 
clearly seen that below an instanton radius of p < 0.7a 
the configurations are no longer instanton solutions, and 
we shall say that the instanton falls through the lattice. 
It is gratifying to see that the FP charge immediately 
falls off to zero, as the FP action drops below the contin- 
uum value. Furthermore, Fig. 2 demonstrates how well 
the parametrization for the FP action is suited for instan- 
ton configurations. The deviation from the exact value is 
quite small, in particular the parametrized FP action is 
only marginally smaller than the continuum value in the 
region above the point where the instanton falls through 
the lattice. In contrast. the values of the standard action 

0.0 - 
0.4 0.5 0.6 0.7 0.8 0. 9 

Pb 

FIG. 2. Actions and charge of instantms with radii of the 
order of one lattice spacing. 
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are quite different from the continuum ones. These nu- 
merical findings support the above statement, that there 
are no dangerous dislocations present when using the FP 
action together with the FP topological charge. 

In numerical simulations we use a parametrized form 
of the FP action and the parametrization in Eq. (17) for 
the FP field instead of the time consuming minimiza- 
tion procedure. One then is interested as to whether the 
use of these two parametrizations has an influence on 
the existence of dislocations. The curves referring to the 
FP action and FP charge in Fig. 2 have a nonanalytic 
break at p/a N 0.7. Our parametrization does not fully 
reproduce this behavior, and so one might expect that 
observable deviations will occur in this instanton region. 
We systematically searched for minimal action configu- 
rations with a parametrized action lower than the con- 
tinuum value in the QFP - par - 2 sector. We find a minimal 
action of 1.84 x 4n (compare this with the value 0.93 x 4?r 
that we find using the standard action and geometric 
charge). This value can be ascribed to the not exactly 
accurate parametrization of the FP field. If we actually 
solve the FP equation (10) for this “dislocation configu- 
ration” we get the correct charge Q = 0. Nevertheless, 
as one has to use parametrizations for Monte Carlo sim- 
ulations, such configurations could be dangerous. On’the 
other hand, the search for dislocations reveals the weak- 
est point of the parametrization that performs very well 
in other cases (cf. Fig. 2). What actually counts is not 
how the parametrization works for some configurations 
that were specially sought for their bad performance, but 
how well it performs for configurations in thermal equi- 
librium occurring in a Monte Carlo simulation. The re- 
sults of a test of this performance, presented in Sec. IV A, 
shows that indeed there is no problem. 

We also searched for the minimal action configuration 
in the Q = 1 sector and did not find a configuration 
with an action below the continuum action. This is not 
astonishing as there are no one-instanton solutions on a 
torus. 

IV. TOPOLOGICAL SUSCEPTIBILITY 

If the topological susceptibility ii a well-defined physi- 
cal quantity that is renormalization-group invariant, then 
one expects that it scales like a (rna~s)~ in the continuum 
limit. One additionally measures a second quantity, e.g., 
the correlation length [, and builds the dimensionless 
product xt [‘, which should go to a constant in the limit 
t + 03. Earlier Monte Carlo calculations do not show 
convincingly whether this is the case. Furthermore, per- 
turbative considerations indicate that in the O(3) model 
there might be a problem with the topological suscepti- 
bility in the continuum limit. 

One may calculate the contribution of instantons in the 
continuum using a semiclassical expansion. The proba- 
bility density to find an instanton with topological charge 
Q = 1 and size p < l/h is [21,22] 

where A is the scale parameter of the model. Using the 
renormalization group, one can show that Eq. (32) is ex- 
act as p + 0 [4] assuming the small instantons form 
a dilute gas. The ultraviolet divergence at p = 0 in 
Eq. (32) indicates, however, that this assumption is not 
true: Small instantons are not suppressed but contribute 
strongly to the susceptibility. Such a dominance of small 
instantons is also indicated by numerical studies, trying 
to determine the instanton size distribution with different 
methods [11,12]. 

On the lattice, however, not the whole range of the 
instanton railius is probed. The lattice cuts the contri- 
bution of small instantons because there is a smallest pos- 
sible radius before the instanton falls through the lattice 
(cf. Fig. 2). Hence the measured topological susceptibil- 
ity is always finite. It is not excluded, however, that it 
raises boundlessly with increasing correlation length as 
the perturbative considerations suggest. 

Using the perfect lattice action and the perfect charge, 
we performed extensive Monte Carlo simulations at cor- 
relation lengths in the range [ E (2 - 60). In order 
to avoid finite size effects, we kept the ratio L/t k 6 
constant. The correlation length was obtained from the 
long-distance behavior of the aero space momentum cor- 
relation function. 

We determined the topological charge using both the 
geometric definition and the definition of the FP charge 
given in Sec. IIIB. For the measurement of the FP 
charge, we used the geometric definition of the charge 
on a finer lattice of the multigrid with the Monte Carlo 
generated lattice as coarsest level. To determine the con- 
figuration S(R) on the fine lattice, one can either mini- 
mize the FP equation (which is very time consuming) or 
use the parametrization of the dependence on R given in 
Sec. IIC. We denote the corresponding charges Q.O.r.. 
TABLE III. Results of test MC simulations in the O(3) model indicating that it is sufficient to 
measure the charge only on the first finer parametrized level. Minimizing or going to a lower level 
yields the same result. 

P (Q:oe.m) (Qk.r 1st 1.4 (Qtr 2nd d (&Li, M 4 (Qk 2nd 4 
0.6 2.56(5) 1.96(4) 1.93(4) 
0.7 3.39(4) 2.48(3) 2.45(3) X45(3) 2.45(3) 
0.85 5.62(11) 4.31(9) 4.30(9) 
1.0 6.38(S) 4.86(6) 4.82(6) 
1.0 6.33(6) 4.78(5) 4.75(5) 
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TABLE IV. Results of MC simulations with the FP action. 

P L E (Q:od x:0,,, EZ C&f., 4 XL lWCl .E= 
0.51 10 1.6049(42) 1.87(l) 0.0482(4) 1.329(S) 0.0342(3) 

0.6 14 2.1960(46j 2.57(2j O.O631(6j 1.90(i) O.O467(4j 

0.685 20 3.012(14) 3.57(3) O.OSlO(lO) 2.65(2) 0.0601(7) 

0.7 20 3.186(15) 3.36(3) 0.0852(11) 2.52(2) 0.0640(S) 

0.85 40 6.057(17) 5.73(4) 0.1314(12) 4.38(3) 0.1004(9) 

1.0 70 12.156(34) 6.36(5) 0.1918(19) 4.80(4) 0.1448(15) 

1.1 130 20.397(86) 10.04(12) 0.2472(36) 7.69(g) 0.1893(27) 

1.2 180 34.44(30) 8.23(14) 0.3013(73) 6.11(10) 0.2237(53) 

1.3 340 58.06(37) 12.01(29) 0.3502(96) 8.94(22) 0.2607(72) 
for the geometric charge, Qpar Ist level for the charge mea- 
sured on the first finer level using the parametrization of 
the fine field, etc. 

For two fl values, we compared the results of using 
the parametrization on a finer level and of minimizing 
on a multigrid. As is shown in Table III, the results 
were found to be consistent within the statistical errors. 
This confirms that the parametrization performs well for 
configurations occurring in a Monte Carlo simulation (cf. 
the discussion at the end of Sec. IIIC). In order to test 
if the result of going to a lower level is already stable, 
we also calculated the charge for a few 0 values on the 
second finer lattice. As. also can be seen in Table III, 
the values on the first and the second finer level were 
found to be consistent within the statistical errors. Thus 
it is sufficient to calculate the fine field only on the first 
finer level. This is not astonishing as the maximal angle 
between two neighboring spins halves as one goes one step 
down to a finer level. So even on the first finer level the 
maximal possible angle between two neighboring spins 
is 90°, and there is practically no ambiguity left for the 
topological charge. 

In Table IV we report the results of the simulations for 
the correlation length t, the geometric charge (Q&& 
and the FP charge (Qt,, level) evaluated on the first 
parametrized finer level. Using the geometric charge as 

0.40 
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5 

FIG. 3. Results of Monte Carlo measurements of the topo- 
logical susceptibility at different correlation lengths. 
we!.l as the FP charge, we build the dimensionless quan- 
tity xt E2 of topological susceptibility and correlation 
length. 

Figure 3 shows the results for the topological suscep- 
tibility. Clearly, no scaling is seen even at correlation 
lengths as large as 60. Both curves, the one for the ge- 
ometric charge and the one for the FP charge, are ris- 
ing, and no flattening occurs at the largest correlation 
lengths. There is a significant difference between the 
topological susceptibility built with the geometric charge 
and the one with the FP charge. The value of the geo- 
metric charge lies several standard deviations above the 
v&e of the FP charge. Furthermore, the difference is 
slowly growing with increasing correlation length. 

V. CONCLUSION AND OUTLOOK 

The definition of the FP topologjcal charge is based on 
th< FP field operator. The FP field can be evaluated to 
any precision desired by solving the iterated FP equation 
on a k level multigrid. As was demonstrated by Fig. 2 and 
can be shown analytically for sufficient large multigrids, 
the FP charge together with the FP action has no lattice 
defects whatsoever. 

For use in MC simulations, however, a parametriza- 
tion of the action and the charge are needed. Instead of 
parametrizing the charge directly, we have parametrized 
the solution of the FP equation, which is to be iterated 
to obtain the FP field. The accuracy of the parametriza- 
tions have been rechecked in MC simulations. 

The partition function of the lattice u model is, as in- 
dicated by a semiclassical approximation [21], dominated 
by small sized topological excitations. These fluctuations 
itre the cause for the divergence, which is seen in Fig. 3. 

Although we studied the g model in this paper, the 
methods derived are quite general and can be applied to 
other asymptotically free theories such as CPNe’ models 
or W(N) gauge models. For instance, in CPNm’ models 
a lowest-order semiclassical approximation estimates for 
instanton contributions [21,22] 

I- J dpp-. (33) 

If N > 4, the contribution of short-distance topological 
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excitations is small relative to that of the physical ones, 
and we expect to see a scaling of the topological sus- 
ceptibility according to the perturbative RG. In fact, in 
the CP3 model, which is studied by one of us [17], the 
topological susceptibility already exhibits the expected 
scaling behavior. 
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