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F. T. Brandt and .I. fienkel 
Institute de Fistca, Universidade de 5% Paulo, Sdo Pa&, 05389.970 SP, Brazil 

(Received 12 May 1995) 

Following a remark advanced by Feynman, we study the connection between the form of the 
nonlinear vertices involving gauge particles and the Abelian gauge invariance of physical tree am- 
plitudes. We show that this requirement, together with scme natural assumptions, fixes uniquely 
the structure of the Yang-Mills theory. However, the constraints imposed by the above property are 
not sufficient to single out the gauge theory of gravitation. 

PACS number(s): ll.lS.Bt 
I. INTRODUCTION 

In the Yang-Mills theory, the source of the Yang-Mills 
fields is the conserved color current. Since these fields 
carry color, these will self-interact leading to a non- 
Abelian gauge theory [l]. Similarly, the source of the 
gravitational fields is the energy-momentum tensor, a 
quantity that is locally conserved. These fields carry en- 
ergy and momentum and hence must couple to them- 
selves. The non-Abelian gauge theory of gravitation, 
which is invariant under local gauge transformations, is 
identical to Einstein’s theory [z]. There has been much 
fundamental work on basic aspects of the non-Abe&n 
gauge theories [3-91. Feynman [3] has shown that in 
these theories the tree amplitudes involving free exter- 
nal gauge fields must be invariant under Abelian gauge 
transformations of the external fields. He remarked that 
this property may be used in order to investigate, in an 
alternative way, the structure bf the nonlinear graviton 
interactions. 

The purpose of this work is to study the question of 
whether the above property of physical tree amplitudes is 
sufficient to determine completely the form of the nonlin- 
ear interactions between the gauge particles. We consider 
this problem in Sec. II, first.in the simpler context of the 
Yang-Mills theory. We assume that the nonlinear inter- 
actions between the gluons are local and involve only di- 
mensionless coupling constants. We find that in this case 
the answer to the above question is affirmative, basically 
because of the absence of gluon vertices of higher degree 
than four. In Sec. III, we work out the corresponding ex- 
pressions for gravity, whose algebraic complexity is much 
greater. We assume that the interactions between the 
gravitons are local and involve only two derivatives of 
these fields. This allows for the presence of graviton’self- 
couplings to all orders. In the gravity case, it is always 
possible to make a local redefinition of the basic fields 
such that the physical amplitudes will be the same [9]. 
We argue that, even accounting for this possibility, the 
Abelian gauge invariance of the tree amplitudes does not 
yield enough constraints to fix the form of the nonlinear 
graviton couplings. 

We report for simplicity only the results for pure gauge 
theories, since the problem we study is basically con- 
nected with the self-interaction of gauge particles. We 
have verified that the introduction of matter fields adds 
only a further algebraic complication, without modifying 
the above conclusions. Finally,, we mention that other 
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interesting aspects of tree amplitudes in gauge theories 
have been discussed recently in the literature [10-X2]. 

We start with the Yang-Mills case, characterized by a 
gauge field AZ, where a denotes the color index and ~1 is 
a Lorentz index. The quadratic part of the Yang-Mills 
Lagrangian 

L&.,(A) = $ (+A: -&A;) (+A: -&A;) , (1) 

is invariant under the Abelian gauge transformation 

A;-+ A”,+&@. (2) 

This leads in momentum space to the free equation of 
motion 

(17ap@ - k&) -4; (k) = 0, (3) 

which is invariant under the gauge transformation 

6A: (k) = wok,. (4) 

We now consider the interactions between the gluons, 
which we assume to be local and characterized by di- 
mensionless coupling constants. This natural assumption 
allows for vertices involving three gluons with one deriva- 
tive term and four gluons with no derivatives, but pre- 
cludes the presence of higher-order gluon self-couplings. 
In tbis case, using Bose symmetry and Lorentz. invariance 
and disregarding total derivative terms, we can write the 
interaction Lagrangian as 

+11 daaedccie + 12 LzwLi)AaAbAeAd ti y P u 

+ (13 &a&ci. f 14 &a&ci) A”AbACAd. !A !J ” ” (5) 

Here fnbe denote the antisymmetric color structure con- 
stants of the gauge group SU(iV), and daac are the syrn- 
metric color factors. The coupling constant g sets the 
SC& of the gluon interactions and eo,li are dimension- 
less couplings, which must be determined. 

We proceed by imposing the condition that the gluon 
tree amplitudes should be invariant under the Abelian 
gauge transformation given by (4). This property (31 fol- 
lows in consequence of the fact that the external lines 
satisfy the free equation of motion (3). We use this 
constraint on the three-gluon vertex shown in Fig. l(a) 
and perform a gauge transformation on the field AZ (kI). 
Since the trilinear gluon coupling proportional to g fabc 
satisfies identically the above constraint, when we make 
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FIG. 1. Basic tree diagrams involving gauge particles. All 
momenta are inwards with c k; = 0. 

use of momentum conservation, we find the condition 
that 

eo (hp ks7 - kz . km,) wa 4,aA;(WAj(kd = 0. (6) 

Because kz and k3 are arbitrary and independent mo- 
menta, this equation requires the vanishing of the cou- 
pling constant e(l: 

eo = 0. (7) 

Therefore, in this ca~e the Abelian gauge invariance de- 
termines basically the structure of the trilinear vertex. 
As we shall see, this special feature does not occur in 
the gravity case, which is much more complicated alge- 
braically. 

We now evaluate the contributions from the graph in 
Fig. l(b) and its permutations to the gluon-gluon scat- 
tering amplitude. In order to perform these calculations, 
it is simpler to use the Feynman propagator +/q’. In 
view of the Abelian gauge invariance of this amplitude, 
we must equate the negative of the gauge variation of 
these contributions to the corresponding variations as- 
sociated with the four-gluon vertex shown in Fig. l(c). 
Then, under a gauge transform&on of the gluon field 
A:(k>), we find that 

[6 treelI, = -d[fccsefc~. (klpv.r-r + h,m - 2+/s,) 

+f.c.fed. (h,vop + horn - Spvy.r)l 
XwaA~(kz)A~(ks)A~(k~), (8) 

where we have used the Jacobi identity 

f&f& + L&be + fodefbce = 0 (9) 

to eliminate contributions proportional to fe&k.. 
We can now express the gauge nriation on the left- 

hand side of (8) in terms of the parameters introduced in 
(5). Using relations such as 

fasefcde = j$ (8acb.i - L&c) + dm.ddae - dmiedbee, 

(10) 

and identifying the coefficients of the independent struc- 
tures appearing in (8), we obtain the relations 

We thus see that the parameters l; have not been fully de- 
termined by the gauge invariance property of the gluon- 
gluon scattering amplitude. However, we can now apply 
this condition also to the five-gluon tree amplitude rep- 
(4 w (4 

FIG. 2. Higher-order tree amplitude containing nonlinear 
couplings of gauge particles. 

resented by diagrams such as the one shown in Figs. 2(a) 
and 2(b). Because of the absence of direct five-gluon cou- 
plings, and using Eqs. (ll), it is straightforward to show 
that this constraint yields a further relation: 

10 = 9214. (12) 

Together with (ll), this relation implies the vanishing 
of the coupling constants l; (i = 1,2,3,4). Substituting 
these results in Eq. (5), and using (1) and (7), we arrive at 
the well-known expression for the Yang-Mills Lagrangian 

&m(A) = $ ($I& - &A; + g fd:A;) 

x (+A: - &A; + g f,wA;A;) (13) 

III. THE GRAVITATIONAL FIELD 

1n this case, it is convenient to introduce a symmetric 
tensor field h,, representing the deviation of the metric 
tensor gPv from the flat space Minkowski metric qfiu: 

gpv = v,w + n hp,, (14) 

where n is the usual gravitational constant. Gauge sym- 
metry and Lorentz invariance enable us to get the lin- 
earized gravitational Lagrangian 

L’(h) = $h,,,,h,,, - +hp,,,h,,,, 

+h pp&w,v - h pv,vhp,,w (15) 

where the index after a comma indicates differentiation. 
Although we are not making explicit the distinction be- 
tween up and down indices, the Minkowski metric tensor 
Q,~ is implicitly present in all the contractions of pairs 
of identical indices (e.g., h,, = qMvh,,,). 

It is easy to verify that the above Lagrangian is invari- 
ant under the Abelian gauge transformation 

hp, -+ hp, + t-p+ + t-v+. (1’3) 

By varying this Lagrangian one obtains in momentum 
space the equation of motion satisfied by a free graviton, 

(k%cx,aplpY - k,kxv,sv - kJ+wcw + k&v,w) km(k) 

= 0, (17) 

which is invariant under the gauge transformation 

&v(k) = k&-p + k,&. (18) 

In order to proceed, we need to parametrize the general 
structure of the graviton self-interactions, which we as- 
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sume to involve products of fields with two derivative 
indices. The algebraic complexity is now so great that 
we have made use of computer algebra to do the c&u- 
lations. We start constructing the three-graviton vertex 
f? as a sum over all possible independent trilinear prod-, 
ucts of fields with two derivative terms. When we write 
all such possible products and use Lorentz invariance, we 
find an expression involving 16 independent constants a;: 

The next steps are done in correspondence with the 
ones in the Yang-Mills theory. We attempt to determine 
these constants, using the requirement of gauge invari- 
ance under the transformation (18) of the three-graviton 
vertex associated with Fig. l(a). Using the equation of 
motion (17) for the free gravitons and momentum con-~ 
sew&ion, this results in a set of seven independent equa- 
tions for the 16 parameters, which yield the relations 

al=a14-6as-6als-8ale-8alo-4all-4as, 

a2=-6as-8als-8ale-8alo 

+als - 2% - 2% - 4a12, 

a3 = 141.~1s + 12~ + 16~6 + 16~0 

-2ala+4all+4a9+4alz-a~4, (20) 

a4=-a14+2a15-2a13, 

as=3as+3als+4ala+4alo+2all+2asr 

a6 = -2 a15 + 2 a13, 

We remark that after inserting (20) into (19) the resulting 
expression is such that the coefficient of a14 is a total 
derivative. 
In contrast with the situation in the Yang-Mills theory 
[see Eq. (7)] we see that in this case we do not have 
enough conditions to determine all the parameters of the 
trilinear graviton. couplings. All we can do is to express 
/Zc3 as a function of the parameters that appear on the 
right-hand side of Eq. (20), which we denote collectively 
tobethesetii~u*,...,ale. 

It is appropriate to comment here on the possibility of 
making a local transformation of the fields so that 

h:v = hp” + +11),u (ha,)’ + Am,wh&p, 

+A&,&,, + Alrh,uh,,) + , (21) 

where the ellipsis denotes terms of higher order inn. Note 
that the Abelian gauge transformation (18) is the same 
for both fields h,, and hhY. Since the terms of order n 
in (21) involve four arbitrary parameters, it is possible 
to make a redefinition of the fields such that the number 
of independent parameters in (19) may be reduced l?om 
9 to 5. Even allowing for this possibility, we see that, 
in contrast to the Yang-Mills case, there remains a basic 
indetermination of the trilinear graviton couplings. 

Following the analysis done in the Yang-Mills case, we 
may evaluate the contributions from the graph l(b) and 
its permutations to the graviton-graviton tree amplitude, 
in terms of the parameters present in the set ii. Since the 
gauge invariance condition of the physical tree amplitude 
should be valid for any gauge-fixing term added onto (15), 
it will be convenient to choose this so that the graviton 
propagator becomes [3] 

pP”a%(P) = hdl”% + %L%Wa - %‘“%%m?. (22) 

(We have verified, in the case of the gravitational Comp- 
ton scattering by scalar particles, that no additional 
information is obtained by considering a more general 
class of gauges.) The result of this evaluation, involv- 
ing quadratic functions of the parameters &;, which are 
excessively long to write down here, will be employed 
subsequently. 

Next we must parametrize the structure of the four- 
graviton vertex Cc4 indicated in Fig. l(c), in terms of all 
possible quadrilinear products of fields with two derive- 
tives indices. Proceeding in this way, we find for Lc4 the 
following expression involving 43 independent constants: 
(23) 
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,From the gauge invariance condition, one expects that 
a change in the gravitational field Jh,,, given by (18), 
should have no effect on the graviton-graviton tree am- 
plitude. Imposing this requirement and using the results 
mentioned in the previous equations, we obtain a relation 
that can be written in correspondence with (8) as 

[6 tree(bi = - (S tree(Z)],b, (24) 

where [a tre& represents the gauge variation associated 
with the diagram in Fig. l(b) and its corresponding per- 
mutations. It is expressed as a function of the inde- 
pendent coupling constants & left over from the anal- 
ysis of the trilinear graviton vertices. The left-hand 
side of Eq. (24), denotes the gauge variation result- 
ing from the contributions associated with the graph in 
Fig. l(c), which is a function of the independent con- 
&ants bl.. b43, which parametrize the four-graviton ver- 
tex in (23). 

We now gather together the terms with the same struc- 
ture and set the coefficients of~all independent struc- 
tures in (24) equal to zero. We then obtain a system 
that comprises 27 algebraically independent equations, 
expressing certain linear combinations of the bi in terms 
of quadratic functions of the parameters 6;. Clearly, this 
set of independent equations cannot determine all the 
parameters bi, nor can it lead to any additional rela- 
tions among the iLi. The solution of the above system 
is given by a set of equations where the 27 coefficients 
bi (i = 1, 2, ,26, 27) are expressed in terms of the re- 
maining 16 coefficients bi (i = 28, 29, ,42, 43) and of 
the parameters ?L;. We write here explicitly only a few 
typical equations: 
(25) 
Although much more complicated in detail, these rela- 
tions are basically similar to the one encountered in the 
Yang-Mills case [see Eq. (ll)]. The crucial difference oc- 
curs when attempting, in parallel to the procedure used 
in the Yang-Mills case, to apply the gauge invariance con- 
dition to the five-graviton tree amplitude. Now, there 
exists a basic five-graviton vertex, shown in Fig. 2(c), 
which must be parametrized in terms of the most gen- 
eral sum of independent products involving five graviton 
fields with two derivatives. This parametrization can be 
done in terms of a very large number of new constants, 
which we denote by the set ci. Following closely the 
analysis after Eq. (24), is is clear that the Abelian gauge 
invariance condition will merely lead to some relations 
expressing certain ci in terms of the remaining ci and 
of the parameters 6; and bi left over from the previous 
analysis. 

It is evident that this behavior is quite general, in view 
of the fact that the graviton self-couplings occur to all 
orders. We thus conclude that the constraint of Abelian 
gauge invariance of the physical tree amplitudes does not 
determine completely the from of the nonlinear graviton 
interactions. It is only when we impose the condition 
that the theory should be invariant under (infinitesimal) 
non-Abelian gauge transformations, 
that it becomes essentially determined. For example, us- 
ing the parametrization given by (IQ), we find in this 
case, for the trilinear graviton vertex, 

al=l+ala, 2az=-3-2als, aa=l-ala, 

a4 = ax, 20,s = -1, eae = -1, 4a7 = 1, 

2a*=-l-20,*& as=-1, 2alo=l, all=l, 

2n1z = 1, 2a1j = 2a15 - 1, 4a1a = -1. 

We remark that the structures, which multiply aI4 and 
1~15, add up to total derivative terms. Since total deriva- 
tives are not relevant for our purpose, the above result is 
equivalent to the one obtained from the Einstein’s gen- 
eral relativity. Then, the theory becomes consistent with 
the existence of a locally conserved energy-momentum 
“tensor” of matter and gravitation [2]. 
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