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We study the two-loop resummed propiigator in hot g2+4 theory. The propagator has a cut 
along the whole real axis in the complex energy plane, but for small g the spectral density is sharply 
peaked around the plasmon. The dispersion relation and the width of the plasmon are calculated at 
zero and finite momentum. At large momenta the spectral width vanishes, and the plasmon loses 
its collectivity and behaves like a noninteracting free particle. 
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I. INTRODUCTION 

At high temperature ‘I’ and low momenta p < T the 
effective degrees of freedom in any field theory are col- 
lective modes, bosonic “plasmons” [1,2], and fermionic 
“plasminos” [3,4]. Even if the fundamental field theo- 
retical degrees of freedom were massless, the collective 
modes possess $ finite “thermal” mass which is gener- 
ated dynamically by the interactions among the funda- 
mental degrees of freedom. The thermal masses regu- 
late (some of) the severe infrared divergences which the 
massless theory would otherwise develop at finite tem- 
perature due to the singularity of the Bose distribution 
at zero momentum [5,6]. The strong rise of the Bose 
distribution at small momenta causes, for example, the 
transport properties (viscosity, heat conduction) of a hot 
plasma of massless fields to be dominated by the interac- 
tion between low-momentum collective modes [7,8]. The 
determination of their dispersion relation and their colli- 
sional width is therefore a necessary prerequisite for any 
microscopic calculation of the transport coefficients, for 
example, using the Kubo formulas [9]. 

It is known that a consistent determination of the plas- 
mon dispersion relation ‘and width in a massless field 
theory requires the resummation of certain loop con- 
tributions to the propagator, the so-called “hard ther- 
mal loops” (HTL’s) (61. In massless gauge theories, 
this resummation becomes nontrivial beyond leading or- 
der, due to the complicated analytical structure of the 
HTL’s (i.e., their momentuin dependence and logarith- 
mic branch cuts from Landau damping [1,2]). In massless 
scalar @ theory, the resummation is much easier [10,5], 
since the leading HTL (the tadpole diagram) is just a 
momentum-independent real constant, and it can there- 
fore be relatively easily carried beyond leading order [ll]. 
Still, when we started this work, no calculation of the 
collisional width of finite momentum plasmons existed. 
Since the latter is needed, however, for the calculation 
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of transport coefficients from the Kubo formulas (previ- 
ous calculations [8,13] used, for lack of better knowledge 
but without justification, the zero momentum limit of the 
plasmon width), we present in this paper a calculation of 
the resummed scalar field propagator in g2@ theory at 
the two-loop level, including real and imaginary parts in 
four-dimensional momentum space. While this work was 
in progress, Jean [12] presented a calculation of the plas- 
mon width at zero and finite momentum on the plasmon 
mass shell. Our results agree with his and extend them 
into the off-shell domain. 

This paper is organized as follows. In Sec. II we will 
give a brief review of results from Ref. [ll] on resum- 
mation in hot @ theory which we will need later. In 
Sec. III we present the calculation of the imaginary part 
of the two-loop self-energy and investigate the analytical 
structure of the full propagator at two-loop order. The 
properties of plasmons at rest and at finite momentum 
are studied analytically and numerically in Secs. III A 
and IIIB, respectively. Our conclusions are summarized 
in Sec. IV. The Appendix contains some technical steps 
of the calculations in Sec. III. 

II. RESUMMATION AT HIGH TEMPERATURE 

For a hot scalar field, we consider the following La- 

grangian with X = $ < 1: 

At the tree level it describes massless scalar fields with 
a quartic self-interaction. The induced thermal mass re- 
sulting from the single HTL (tadpole) is of order g and 
reads [lO,ll] 

The effects &oom this thermal mass can be resummed by 
defining an effective Lagrangian through 
899 01996 The American Physical Society 
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and treating the last term as an additional interaction. 
This effective Lagrangian defines an effective propagator 
with thermal mass mth 

where in the imaginary time formalism KZ = ki + k’, 
k. = 2mrT, n = 0, &l, f2,. It represents the infinite 
sum of iterated HTL’s. Since mth leads to a qualita- 
tive modification of the resummed effective propagator 
for soft momenta, p 5 gT, its inclusion via resummation 
is necessary to avoid infrared divergences at finite tem- 
perature (51. Vertex corrections from HTLs are down by 
a factor g relative to the bare vertex g2 and do not qual- 
itatively change the latter. In a perturbative expansion 
of c#? theory we can thus keep using the bare vertex [ll]. 

One can now recalculate the one-loop self-energy us- 
ing this resummed effective propagator. This amounts 
to computing the contribution of all “cactus diagrams” 
or “superdaisies” in the original Lagrangian [lo] each of 
which is infrared divergent. Using dimensional regular- 
ization in the minimal subtraction (MS) renormalization 
scheme, the diagram in Fig. l(a) gives 

q=g -1+ 
( 

$+L(T)2 

x [In(&) +m]) +0(951ng), (2.5) 

where p is the scale parameter in dimensional regular- 
ization and 7~ = 0.577216. . is Euler’s constant. The 
resummation of an infinite series of i&wed diagrams re- 
flects itself through a g3 correction to the leading term 
-g2T2/24 = -rn&; it is nonanalytic in the coupling con- 
stant X = g2/24 and for g < 1 dominates any finite 
genuinely perturbative corrections of order g4. In tbis 
sense resummation is essential. 

Including also the contribution i?om the new two-point 
interaction in (2.3), Fig. l(b), the full one-loop self- 
energy can be written as C1 = Ci + rn:,,. It is purely 
real. Thus, to order g3, the full propagator has only two 
(a) Cb) 

FIG. 1. Lowest-order contributions to the self-energy for 
the resummed effective Lagrangian. Lines with a dot denote 
effective propagators with masses rnth or rn=, respectively. 
The squared box denotes the additional interaction due to 
the mass shift. 

poles at po = & 

summed plasnm~ 

p2 + rn2 where mP is the one-loop re- 

(2.6) 

Following Ref. [ll], we can mxv ‘improve the resumma- 
tion procedure by including into the effective Lagrangian 
all one-loop effects which are independent of the regular- 
ization scheme, i.e., by writing 

L = 
( 

Lo + gL;42 
> 

- gz;42. (2.7) 

and expanding into effective scalar propagators with an 
effective plasmon mass mP. Then all factors mth in 
Eq. (2.5) are replaced by mPr and from the full one-loop 
self-energy Cl = C; + rn; all terms up to order g3 cancel, 

leaving a leading contribution of order g4 which is real. 
At two-loop order, the Feynman diagrams shown in 

Fig. 2 contribute. Their leading contributions me also 
of order g4. Figure 2(c) arises from the new two-point 
interaction of the Lagrangian (2.7) and contributes at the 
same order. 

The contribution Ch of Figs. 2(a) and 2(c) is easily 
evaluated. It is purely real. As a consequence of re- 
summation, all leading g* terms cancel, and the result is 
found to be 

E; = O(gS lng). F-9 

A convenient way to calculate Fig. 2(b) is to use the 
Saclay method [14]. Its contribution can be expressed as 
x;(ipo,p) = 
s { 

d[k,q] S(Ek,&,K)[(l + fkW + f*W + A.1 - M&l 

+ S(Ek,E,, -ET)@ + fk)(l+ fq)fv - h-f& + A)1 

+ S(Ek, -E,&)[(l + Ji)f& + fm) - fk(l + f&l 

+ S(-Ek,Eq,Ev)[.)[fk(l + fn)U + A) - (1 +f~v&l} > (2.9) 
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(a) tb) 

FIG. 2. Next-to-lowest-order contributions 
self-energy for the resummed effective Lagrangian. 

with the same notation as in Ref. [ll], namely 

g4p4c dD-‘k ,p’q 1 

d[k’ql = 6 (2+-l (2+‘-’ 8EbE,E, ’ 

s(E*A~~)=apo+Ek~E +E 
* r 

1 - 

where 

ip,, - Ek - E4 - E, ’ 

’ = exp(EI/T) - 1’ 
l=k >P>T. 

to the 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2,14) 
D = 4 - 2~ is the the number of space-time dimension 
introduced in dimensional regularization. Please notice 
that now the one-loop resummed mass rn, occurs in all 
on-shell enereies. The real Dart of XX! contains an ultravi- 
olet divergence. A detailed discussion of the subtraction 
of this ultraviolet divergence by a counterterm in the La- 
grangian and the final expression for the real part of the 
renormalized self-energy can be found in Ref. Ill]. We 
can see from Eq. (2.lQ) that Re?; is of the order g4 and 
depends on the mass parameter p of the dimensional reg- 
ularization. 

The complete two-loop expression for the real part of 
the self-energy is given by 

ReC(ipo,p) = CI + C; + ReC;(ipo,p), (2.15) 

with the last term taken from Ref. [ll]. A detailed cal- 
culation of the imaginary part of the self-energy will be 
given in the followihg section. 

III. FULL PROPAGATOR AND SPECTRAL 
FUNCTION OF THE PLASMON 

The leading contribution to the imaginary part of the 
self-energy comes from the two-loop Fig. 2(b). Making 
an analytical continuation Zp, = w + iv9 q = O+, and 
using l/(A + iv) = P(l/A) - id(A), we obtain, from 

Eq. P.Q), 
ImC(w,p) = ImE;(w,p) = --?r 
J 

d[k,q] 

x l~(~+Ek+Eq+Er)-~(~-Ek-Eq-E,)1[(1+fk)(l+f~)(l+f,)-jkj~j~] 1 

+WJ + J% + Ep - ET) - +J - & - Ep + &)I[(1 + f&)(1 + jq)fv - j&(1 + fF)] 

+I& + El, - -% + ET) - fi(” - J% + E, - E~)lO + h&(1 + f,) - fs$ + f&l 
+[&J - JG +Ep + ET) - CJJ + -& - Ep - E,)l[fk(l + &)(I + L) - (I+ h)j&]}. (3.1) 
This gives the rates for physical decay and scattering 
processes (151: The ti& line corresponds $0 the decay of 
one off-shell into three on-shell 4 meson8 and (with op- 
posite sign) the inverse process; the two 6 functions rep- 
resent the decay of particles with negative and positive 
energy, respectively. The remaining lines in Eq. (3.1) cor- 
respond to Landau damping via scattering of the off-shell 
meson with on-shell particles from the heat bath, for- 
ward and bakkward scattering process contributing with 
opposite signs. Landau damping requires the presence 
of thermally excited states and vanishes at zero temper- 
ature. In each term every ingoing meson from the heat 
bath receives a thermal weight j< and each outgoing one 
a Bose-enhancement factor (1 + ji). 

It is easy to show that 
~C(-W,P) = ReC(w,p), 

ImC(-w,p) = -ImC(w,p), 
(3.2) 

so we restrict ourselves to positive energy w > 0. After 
suitably relabeling the integration variables, the imagi- 
nary part of the self-energy (3.1) for w > 0 can be reduced 
to 

Imw+p) = Irwl(W,P) +IwJz(w,P) (3.3) 

with the three-body decay and Landau damping contri- 
butions, respectively: 
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Imgl(w,p) = ?r(e”‘T - 1) /-~~k~lfkf&~ 
* 

X(W-Ek-Eq-E,), (3.4) 

hg&p) = 3n(e”‘T - 1) 
s 

4kqlP + fk)f& 

x(w+&-Eq-B,.). (3.5) 

The 6 functions in Eqs. (3.4) and (3.5) arise from energy 
conservation and constrain the integration over k and q 
to the kinematically allowed domain. The evaluation of 
the resulting kinematic limits of the integration variables 
is the most demanding part of the following calculation 
and is briefly discussed in the Appendix. Before going 
into the technical details of evaluating the internals.. let 
us summarize some relevant analytical properti& of the 
propagators and self-energies. In the imaginary time for- 
malism, the full propagator 

D(iPO, P) = - 
1 

P; + P= + rn; - qipo, P) 
(3.6) 

has the spectral representation 

D(iPO>P) = 
J 

m*‘H. (3.7) 
-cc 

The spectral density satisfies 
(3.3) 
It is an odd function of w, see Eqs. (3.2): 

PC-C P) = -P(w, P) o* PhP) = 4~)dMP) Y 

(3.9) 

where E(W) = sgn(w). Thus the full propagator D(ipo, p) 
has the following analytical structure: If Im C # 0, the 
full propagator has a cut along the real axis in the com- 
plex w plane, with a discontinuity across this cut given by 
the spectral function. If ImC goes to zero, the identity 

1 lim ’ - = 6(A) 
nwoA2+q2 

(3.10) 

shows that the spectral density can be expressed as a 6 
function at w2 = p’+mz-ReC(w, p); the corresponding 
analytical structure of the full propagator D(ipO,p) is 
poles in the complex w plane given by the zeros of the S 
function. 

From D(Zpo,p) the full retarded propagator D(w + 
iv, p) is obtained by analytical continuation ipo + w+in. 
The full propagator in the real time formalism can be 
written as [15] 

G(w,p) = D(w + i+)q) - 27r$$$‘~)l (3.11) 

All of these full propagators have the same analytical 
structure. 

Defining the damping rate as 

(3.12) 

and substituting this into Eq. (3.8), we see that if 

7(W,P) K pz + mg - Re C(w, p), then p(w, p) is 

strongly peaked at w2 = p2 +ms -Re C(w, p). The solu- 
tion of this dispersion relation defines a weakly damped 
single-particle state which is interpreted as a quasiparti- 
cle, the so-called plasmon. Denoting the solution for w by 
E(P) and defining r 5 27(&(p), p), the spectral density 
can in this limit be expressed approximately in the form 
of a relativistic Breit-Wigner function with full width I? 

Finally, the spectral function sati&es the sum rule [16] 

2 
SW 

dwwp(w,p) = 1. 
0 

(3.14) 

In the following two subsections we now investigate in 
detail the properties of plasmons in @ theory, both at 
rest and at finite momentum p relative to the heat bath. 

A. Plasmons at rest, p = 0 

For p = 0 the evaluation of the imaginary part of the 
two-loop self-energy (3.3) can be carried out in the fol- 
lowing manner: for the q integration we choose the E 
axis along k and define t = cos(k,q). The integrals in 
Eqs. (3.4) and (3.5) thus take the form 

R 
J 

d[k,q] --+ &~mdkkz~mdqq2 

J 

I 1 
x ~ 

-1dt EkEpEr ’ 
(3.15) 

where E, = , k= + q2 f 2kqt +,m;. The energy- 

conserving 6 functions in Eqs. (3.4) an& (3.5) will be used 
to perform the t integration by using 
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dE, kq -=--. 
dt E, 

(3.16) 

The condition that the zeros of the 6 function fall into 
7 interval -1 5 t 5 1, i.e., ,/w < E, 5 

(k + 4.Y + mg, leads ~to restrictions of the integration 

regions in k and q. These restrictions are worked out in 
the Appendix. For the three-body decay contribution we 
find 

Img~(w, 0) = S(w - 3m,) $$ (e”‘T - 1) 

J 

6) 
x l&J f(v) f(w - u) 

a 
x In f(4Yl))fMYZ) + 21 - w) 

( fMYZ))f(4Y1) + IJ - w) > 

, (3,1,) 
where 

a=$E, WE?! ,=k 
T’ T’ y=;> 

E(Z) = ?/2-G, f(v) = -&. (3.18) 

The specific values z; and ~1.2 are given by Eqs. (A7) 
and (A4), (A5) for p = 0, respectively, divided by T. 

Similarly, the Landau damping contribution 
Im g2 (w , 0) is given by 
Iwz(w,O) = g (e-/‘-1) [B(m,-u)&?u +e(u-m,,~=dv] 

x(l+fW)f(w+4 ln 
( 

f(4Yd)f(&(Y4) - 2) - w) 

fMY4))fMYd -v - w) > ’ 
(3.19) 
with z$ and y3,4 given by Eqs. (A17) and (A12), (A13) 
for p = 0, respectively, divided by T. 

While Imgl(w,O) vanishes below the three-particle 
threshold Et = 3m, [see Eq. (A2)], the Landau damping 
contribution Imgz(w, 0) (which arises only at T # 0) is 
nonzero for all positive values of w. Due to the symmetry 
(3.2), at two-loop order the full propagator thus has a cut 
along the whole real w axis. This is qualitatively different 
from the simple double-pole structure at one-loop order. 

On the plasmon mass shell w = rn, only Landau damp- 
ing contributes to the imaginary part. From the Ap- 
pendix we find that in this cme B(m,, k) = kZ and thus 
y3 = 0, y4 = I as well as x; = 0. Substituting this into 
Eq. (3.19) and using Eqs. (3.3) and (3.12), we obtain the 
on-shell plasmon damping rate (see also [12]) 

7(%>0) = 
Imw%O) 

2m 
P 

= && P+ %7h7)1 , (3.20) 

where Lz(z) is the Spence function defined as 

Z&z) E - J z dt ln(1 - t) 
II t . 

The leading term in the last expression of (3.20) was also 
found in Ref. 1111. 
Im C is finite and does not require any regularization. 
For dimensional grounds the width ^I(%,, 0) for plasmons 
at rest is thus proportional to the temperature T. From 
(3.20) we further see that for small g the ratio 7(m,, 0)/T 
is proportional to g3. 

Using Eq. (3.8) we can also eV&ate the spectral func- 
tion. We notice that, as discussed in Sec. II, the O(g4) 
term in Re C contains the renormalization scale p which 
should be absorbed into the renormalized coupling con- 
stant. But since the O(g4) corrections have only a min- 
imal effect on the position of the peak in the spectral 
function, and all O(g3) terms have already been included 
in the plasmon mass, we can to very good approxima- 
tion neglect ReC. In this approximation the plasma fm- 
quency 

WP=E(P=O)=mp=ST l-39 a d n&4 
(3.22) 

is strictly proportional to T. An additional logarithmic 
temperature dependence through the running of the cou- 
pling constant can only enter in higher order. 

In the following we comment on some further prop 
erties of the plasmon based on numerical results. In 
Fig. 3(a) we show for m+h/T = 0.1 the two-loop spec- 
tral function together with a line indicating the pole po- 
sition at one-loop order (including HTL resummation). 
Note that there is no visible shift of the peak due to the 
higher-order corrections; the shift of the peak below the 
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T 
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T 

FIG. 3. The two-loop spectral function for nafT = 0.1. 
The vertical line at the peak position in the upper diagram 
indicates the spectral 6 function at one-loop order. 

value of mth is entirely due to the one-HTL resumma- 
tion, see Eq. (3.22). The major new feature at two-loop 
order is just the finite width of the pladmon. Although 
the two-loop spectral density is strictly positive for all 
values of w, it approaches zero very fast as one moves 
away from the plasmon peak. Only in the neighborhood 
of the three-body decay threshold w = 3 rn, it gains some 
weight again as shown in Fig. 3(b); the reader should no- 
tice, however, the tiny vertical scale of this figure. 

In Fig. 4 we show the plasmon peak in the spec- 
tral function for three different values of mth/T = 
0.10, 0.11, 0.12. Since both the plasmon frequency 
and its width grow linearly with T, and according to 

Eq. (3.13) I sz. l/(rwJ), the height of the peak 
decreases with rising temperature like l/T2 for fixed g. 
T2p(wp) decreases accordingly with increasing coupling 
constant like l/g4 for small g. This is seen in Fig. 4. 

For small g the ratio of the damping rate to the plasma 
frequency is 

From Eq. (3.22) we see that our resummation procedure 
FIG. 4. The two-loop spectral function for different values 
of mth/T (or coupling constant g). 

is only applicable for X = g < g N 1. In this domain 
the ratio (3.23) is always smaller than about l/10, i.e., 
the plasmon is a well-defined quasiparticle which is not 
overdamped. 

B. Moving plasmons, p # 0 

The evaluation of the imaginary part of the self-energy 
for ,p # 0 is a little more complicated because now two 
nontrivial angular integrations occur. For the q integra- 
tion we choose the t axis in the direction of k - p and 
define t = cos(k - p, q). For the k integration we choose 
the e axis along p and define u = cos(p, k). In this way 
the integrals in Eqs. (3.4) and (3.5) can be expressed as 

(3.24) 

The occurrence of two angles in the integrand renders the 
determination of the integration limits from the energy- 
conserving b functions more complicated. However, as 
shown in the Appendix, similar methods can be applied 
as in the case p = 0. The t integration in Eq. (3.24) can 
be performed by using 

(3.25) 

The condition that the zero of the energy 6 function lies 
inside the integration domain leads to kinematic limits 
for the integrations over q, k, and 2~. We find (see the 
Appendix) 
I=wl(w,p) = 0 (w - E;) & (@ - 1) s_: d$ ,x f&.) 

Xf(E(z))f(W - 44) In 
fMY1)) f(4YZ) + 42) - w) 
f(B(YZ)) j(&(YI) + E(I) - w) > 

(3.26) 
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with the same dimensionless variables (3.18) as before and 

(3.27) 

The limits z;, yl, and y2 are now given by Eqs. (A6), (A4), and (A5), 
(z + 0) Eq. (3.26) correctly reduces to Eq. (3.17). 

respectively, divided by T. In the limit p + 0 

For the Landau damping contribution Imgz(w,p) we obtain 

%dJJ,P) = & (e-/T-l)Jd(u,2)(l+f(~(I)))f(W+&(I)) 

x I= 

( 

f(4Yd) fMY4) - 4z) - w) 

f(dY4)) fMY3) - +4 - w) > 1 
(3.28) 

where 

if p > 3m,/2, respectively. In deriving these expressions from the results (A19) and (A20) in the Appendix, we used 
for the region w > EP the relation 

dlk - PI -=-A 
du 

to rewrite the u integration. Since the integrand in (3.28) does not depend on u, the resulting integrals Sdlx - z[ in 
(3.29) and (3.30) can be evaluated trivially. Again Imgz(w;p) is nonzero for all w > 0, and the full propagator has a 
cut along the whole real w axis, arising from Landau damping as for the case p = 0. One easily checks that in the 
zero-momentum limit Eq. (3.28) reduces to (3.19). 

On the plasmon energy shell w = the plasmon damping rate can be deduced as 
where 

~=e-Gw C=e--, (3.33) 

This on-shell result has also recently been obtained by 
Jean [12] by a different method. 

For the numerical evaluation of the spectral function 
we substitute Eqs. (3.26) and (3.28) into Eq. (3.3) and 
then use Eq. (3.8). In Fig. 5 we show the spectral density 
at fixed m$,,/T = 0.1 for three values of the momentum 
p/T. As p/T increases, the width of the spectral func- 
tion decreases as illustrated in Fig. 6. For large p/T the 
width goes to zero, and at the same time the height of 
the spectral function approaches a constant. This can 
been seen explicitly in Figs. 6 and 7. This means that 
for large p/T the plasmon loses the features of a collective 
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-.-.-.-.-.-.-.-  
mode and again behaves like a noninteracting free parti- 
cle. At fixed, nonzero momentum p the dependences on 
the temperature ‘2’ and the coupling constant g, on the 
other hand, are qualitatively the same as at p = 0. 

From the analysis of HTL resummation in gauge theo- 
ries [6] it is known that there the summation scheme can 
only be guaranteed to work in the soft momentum region 

W,P - gT < T. A partial reason for tbis is that the 
thermal loops are momentum dependent, and the partic- 
ular momentum dependence of the “hard” thermal loop 
arises as the leading term in a high-temperature expan- 
sion of the one-loop self-energy [l]. Correspondingly, one 
might be inclined to distrust the above results for mo- 
menta p/T >> 1. In @ theory the situation is, however, 
different in that the HTL which we resum is momentum 
independent to order g2 and g3; momentum dependence 

enters only at order g4, and for weak coupling X = g < 1 
as in Figs. 5 and 6 it is weak on the scale rn,. Therefore 
the essential criterion for the validity of the resummation 
procedure is the smallness of the coupling constant and 
not that of w/T or p/T. 

Cb) +0.5 

1 

I 0 .00T 
FIG. 5. The two-loop spectral density at fixed ma/T = 0.1 

for different values of p/T. 
4 

FIG. 6. (a) The width of the spectral function vs p/T for 
nw,/T = 0.01 (dot-dashed line), na/T = 0.1 (dashed line), 
and na/T = 0.5 (solid line). (b) Close-up of (a) for small 
PIT. 

1-i 
; ‘\ k. -~-.-.______________.
.._______.________._.. -..-..--.-. ________..-.. 

0.5 1.5 1 .- ._ 2 
FIG. 7. (a) The peak value of the spectral function vs p/T 

for W./T = 0.01 (dot-dashed line) and mn/T 7 0.1 (dashed 
line) and ma/T = 0.5 (solid line). (b) Close-up of (a) for 
small pJT. 
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TABLE I. The values of I,,, for different values of rnth/T 
at fixed p=O (upper half) and for different values of p/T at 
fixed m,,JT = 0.1 (lower half). 

WkhlT 0.05 0.1 0.5 1.0 
Is.“, 0.9834 0.9852 0.9916 1.0669 

PIT 0 10 20 80 
I.““, 0.9852 0.9896 0.9903 0.9914 

This argument is also, supported by a numerical inves- 
tigation of the sum rule Eq. (3.14). In Table I we give 
values for the integral up to the three-particle threshold, 

I sum = 2 
I 

E; 
dQJWP(W,P), 

0 

for different values of mt,,/T (or of the coupling constant 
X = g2/24) at p = 0 and for different values of p/T 
at fixed m,h/T = 0.1. From the given numbers we see 
that in all cases the sum rule is nearly exhausted by the 
collective plasmon mode, and that the three-body decay 
contribution at w > EG is negligible. For large coupling 
constant (r&T > l), where the resummation of hard 
thermal loops is no longer expected to be a good approx- 
imation, we begin to see appreciable violations of the 
sum rule. On the other hand, for mt,,/T = 0.1, the sun, 
rule is very well satisfied even for very large momenta, 
p/T N 100. As a consequence, the shape of the spectral 
function (in particular the interplay of the p dep&dence 
of its width and height at the plasmon pole shown in 
Figs. 6 and 7) is completely controlled by this sum rule. 

IV. CONCLUSIONS 

In this paper we studied the analytical structure of the 
full propagator and the properties of the plasmon in hot 
@ theory at two-loop order, using the hard thermal loop 
(HTL) resummation scheme. 

Since in 44 theory the one-loop self-energy is com- 
pletely real, damping of the plasmon occurs only at the 
two-loop level. Its physical origin is Landau damping 
by scattering with thermal scalar field quanta,. This re- 
sults in a cut of the full propagator along the entire real 
frequency axis. However, for small coupling constant g 
the spectral function which is given by the discontinuity 
across this cut shows a strong and rather sharp plasmon 
peak located at.the position expected from the one-HTL 
resummation. Its width r/w, is approximately given by 
g2/(321r) for plasmons at rest in the heat bath, and this 
width decreases even further if the plasmon is moving 
relative to the heat bath. For very fast plasmons the 
width goes to zero while the height of the plasmon peak 
approaches a constant: the plasmon behaves again like a 
noninteracting free particle, i.e., it loses the features of a 
collective mode. Within the range of validity of our re- 
summation scheme, which is defined by the smallness of 

the coupling constant X = & compared to 1, the plasmon 
remains a well-defined, weakly damped quasiparticle ex- 
citation for all values of the temperature. The sum rule 
Eq. (3.14) for the spectral density is very well satisfied by 
the two-loop result even for momenta much larger than 
T, and it is essentially saturated by the plasmon peak. 
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APPENDIX A: KINEMATIC LIMITS 
FOR THE COLLISION INTEGRALS 

Here we give Some technical details on how to solve 
for the kinematic limits of the integral (3.24) resulting 
from the energy-conserving 6 functions. We perform the 
calculation for arbitrary external momentum p; the ex- 
pressions needed in Sec. III A for plasmons at rest are 
easily obtained by setting p = 0. In this limit the inte- 
grand is independent of u, and the 21 integration gives a 
trivial factor of 2. 

We start by doing the t integration in (3.24) using 
(3.25) and exploiting the energy 6 function. In order 
to obtain a nonzero contribution, the solution E, of the 
6 function constraint must lie in the interval 

defined by the limits of the t integration, -1 5 t 5 1. 
For fixed Ik - pi (or fixed k and u) these limits on E, 
generate upper and lower integration limits for 4. If the 
latter are complex, the corresponding values of k and u 
must be excluded from the exterior integrations. 

For the three-body decay (3.4) we must solve w - Ek - 
Ep - E, = 0, with the notation of Eqs. (2.12) and (2.13). 
This has no solutions unless w exceeds the three-particle 
threshold 

E,=m,+ p2+4m;. 
J 

With the help of the auxiliary function 

A(+ Ik _ p,)= (w - Ed2 [(w - Ed2 - (k - P)’ - 47$1 
(w - E# - (k - P)~ 

h43) 

the lower and upper integration limits for Q which result 
from (Al) can be expressed as 



908 ENKE WANG AND ULRICH HEINZ 53 
(I1 = m‘4,9;1 with q: = i (JW-lk-PI) (*4) 

and 

qz = t 2 (&WC Ik - PI) ~+ Ik - PI) (*5) 

For ql, q2 to be real, A(w, Ik - pi) must be positive. The function A is shown in Fig. 8(a). A(w, Ik - pi) has a single 

zero at 

k; = 
2(w2 - pW) w-5) 

which for p = 0 reduces to 

a p-independent double zero at 

k;= Jw, 

and a singularity in between at 

k; = 
p(w2 - p2 t rn;) + w (w” - p2 + rn;)2 - 4(d - pw)m; 

2(wZ - pW) 

k 

w 

W) 

FIG. 3. (a) The function A(w, k) vs k for 
w > 3m, (solid line) and for w = 3m, 
(dot-dashed line); k; and kg indicate the two 
zeros and k; the singularity of the solid curve. 
(b) The function B(w,k) vs k for w < mP 
(solid line), for w = rn, (dot-dashed line) 
and for w > rn, (dashed line); ki indicates 
the zero of the solid curve. 

k 
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which for p =,O becomes simply 

One checks that for k > k,’ the energy constraint cannot be satisfied; for ki < k < k$ the function A(w, (k - pi) 
is negative, giving rise to complex q integration limits. Hence the allowed region for k is 0 5 k < ki. There is no 
constraint on u. The q integration can be done analytically, giving the results presented in Sec. III. 

For the Landau damping term (3.5) th e calculation is slightly more involved. We must solve w -EL. - Ep - E, = 0 
with the restriction (Al). For fixed Ik - pi the resulting lower and upper limits for q can now be expressed in terms 
of another auxiliary function 

B(w, Ik _ pI) = (w + &)’ [Cm + Ed2 - (k - P)” - 461 
(w + E# - (k - P)’ 

as 

45 = m=$A dl with qj=~(JB(w,lk-PI)-Ik-PI), 

and 

(All) 

(*13) 

The function B(w, k) is illustrated in Fig. 8(b). For w 2 Ep, B(w, (k-pi) is always positive, so qs, qd are real and the 
b function can be satisfied for all k E [0, ca] and u E [-1, 11. For w < Ep, B(w, Ik - pi) has a positive and real zero at 

k; = 
p&J2 - p2 - 3$) + w (d - p2 - 3m;)z - 4(w2 - pW)m;: 

2(w2 - p%?) 

if simultaneously u < U* with 

, 4W2m;-(W2-P~--33m;)2 
u*=--’ - 

2P% 

(*14) 

(*15) 

u* itself is real only for w 2 & where 

For 3&, < w < Ep, positivity of B(w, jk - pi) th us restricts the integration range of k to k > kz if u < ?I*, while all k 

are allowed for u > u*. For w < &, there is no upper constraint on u, and k is restricted to the region k > k;. 
For p = 0, there is no constraint on u, and k; reduces to 

k’ = J(% - w2)P$ - 4 
4 2w 

We can summarize the results so far by writing 

(*17) 

+B(w - E,, s_: du Jdm dk L4w 

The missing low.% limits of the u integration in two of the terms will be determined now. 
Equation (A14) shows that for w < P, k4 has a singularity at u = -w/p. (At u = +w/p, k; remains finite because 

the numerator vanishes, too.) This implies an additional restriction on the lower limit of the u integration domain 
for the two k;-dependent terms in Eq. (A18) whenever w < p. Which of these two terms is affected depends on the 
magnitude of p: For p < 3m,/2 we find also p < &,, so in this case the second term in Eq. (A18) is not affected 
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by this problem because it receives contributions only from w > &, > p. For p > 3mp/2 we get also p > ,$,, and 
then both the first and the second terms in Eq. (A18) are affected. It turns out that the region u < -w/p is always 
unphysical because either the function B is negative or the &function constraint cannot be satisfied. One thus finds, 
using the dimensionless quantities (3.18)) 

S J du dk p<3;,,2 W% - w) UP - ti) J-t,, du + CJ - P) s_: du) ( dr 
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