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Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin- 
Radkin (BF) formalism, the anomaly-capceling super-Liouville fields are introduced to identify the 
original second-class constrained system with a gauge-fixed version of a first-class system. The 
BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A 
local effective action constructed in the configuration space contains two super-liouville actions; one 
is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, 
and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields 
for the Liouville &the gravity supermultiplets are introduced to make the BRST algebra close 
off-shell. Inchi~ion of them turns out to be essentially important especially in the super-light-cone 
gauge fixing, where the supercurvature equations (@g++ = 85x++ = 0) are obtained as a result 
of BRST invariance of the theory. Our approach reveals the origin of the OSp(l,Z) current algebra 
symmetry in a transparent manner. 

PACS number(s): 11.25.Hf, 0485.+e, 11.25.Pm 
I. INTRODUCTION 

During the last decade there has been remarkable 
progress in our understanding of noncritical string theo- 
ries (l-31. The fist key observation of Polyakov [1] was 
that the conformal mode of the metric variables does 
not decouple from the theory at noncritical dimensions. 
Along this line of thought, the noncritical string was 
investigated in the light-cone gauge [4, 51. Noting the 
SL(2, R) Kac-Moody symmetry, Knizhnik, Polyakov, and 
Zamolodchikov (KPZ) have succeeded in deriving grav- 
itational scaling dimensions for conformal matter inter- 
acting with two-dimensional (2D) gravity on the world 
sheet. Furthermore, David [6], and Distler and Kawai 
(DDK) (71 showed that the Polyakov path integral formu- 
lation [l] reproduces the KPZ results also in the confor- 
ma1 gauge. It was based on the assumption that the Ja- 
cobian associated with changing the functional measure 
from that for the conformal mode defined in [1] to a trans- 
lational invariant one generates a Liouville-type action. 
This DDK ansatz for the functional measure has been 
examined using the heat kernel method [s]. The relation 
between the conformal gauge and the light-cone gauge 
[9, lo], has also been discussed, and analyses based on 
the Becchi-Rouet;Stura-Tyutin (BRST) formalism have 
been carried out by several authors [ll, 121. Further- 
more, the analysis in the light-cone gauge and conformal 
gauge have been extended to the supersymmetric case in 
[13-151 and in [7, IS], respectively. 

In our previous paper (171, we gave a systematic canon- 
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ical formulation of the Polyakov string at noncritical di- 
mensions by applying the idea developed for anomalous 
gauge theory [18]. It prqvides a general approach to non- 
critical strings. The BRST anomalies of the Polyakov 
string theory at noncritical dimensions [19-211 can be 
compensated by introducing new degrees of freedom and, 
thereby, the theory can be made gauge symmetric, i.e., 
invariant under Weyl rescalings of the metric variables 
as well as world-sheet reparametrizations. The BRST. 
gauge-fixed action turned out to contain two Liouville 
type actions, one being written only in the world-sheet 
metric and the other containing the new degree as the Li- 
ouville field. In the conformal gauge, this reduces to the 
effective action of DDK, giving a justification of their 
functional measure ansatz from a canonical viewpoint. 
We further gave a systematic description of the theory in 
the light-cone gauge, clarifying the relation between the 
BRST invariance and SL(2,R) Kac-Moody symmetry. 

In this paper we will investigate the extension of this 
work to a Neveu-Schwarz-Ramond superstring [22, 231. 
The locally supersymmetric action [24] can be regarded 
as hi =l 2D supergravity (SUGRA) coupled with string 
variables as superconformal matter. The basic strategy 
parallels the bosonic string case. Our starting point is the 
most general form of the BRST anomalies in 2D SUGRA 
[25] in the extended phase space (EPS) of Batalin, Frad- 
kin, and Vilkovisky (BFV) [26]. The anomaly appeared 
there as anomalous Schwinger terms which destroy the 
first-class nature of the super-Virasoro constraints. The 
quantum system is described by the second-class con- 
straints. In general, systems with second-class con- 
straints can be regarded as gauge-fixed systems of un- 
derlying symmetric theories. Actually, one can rewrite 
the system with second-class constraints into a gauge 
symmetric form by introducing compensating fields in 
the EPS. B&din and Fradkin (BF) [27] developed the 
852 01996 The American Physical Society 
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general idea of converting systems with second-class con- 
straints into gauge symmetric ones in a general and sys- 
tematic way. Applying their method to the present case 
and carrying out the BFV-BRST quantization 1261, one 
obtains a BRST gauge-fixed effective action. The con- 
struction of the action given here completely parallels 
that in the anomalous chiral gauge theories 118,281. The 
resulting effective action contains two super-Liouville ac- 
tions. One just coincides with the local but noncovariant 
counterterm found in [25], and acts as the Wess-Zumino- 
Witten term to shift the super-Virasoro anomaly to the 
super-Weyl anomaly. The other with the BF variables as 
super-liouville fields cancels this super-Weyl anomaly. 
This can be shown without invoking a particular gauge. 
The fact that our act&n reduces exactly to the one sug- 
gested in (7,161 for the superconformal gauge implies that 
our formulation provides a justification of their functional 
measure ansatz from the candnical viewpoint. 

Although our construction of the effective action al- 
most parallels that for the bosonic theory, some new is- 
sues arise in the quantizatioq of the fermionic theory. 
In the EPS, the BRST transformation incorporates su- 
persymmetry transformation, and closes off shell by con- 
struction. One may go to the configuration space by elim- 
inating the momentum variables. In general, the BRST 
transformation in the configuration~space thuS obtained 
closes only on shell. In the superconformal gauge, the 
on-shell closure of the algebra is enough to quantize the 
theory. This is not the case, however, in the supersym- 
metric light-cone gauge. Inclusion of auxiliary fields for 
the supermultiplets of the gravity and the Liouville sec- 
tors needed to close the algebra off shell tarns out to 
be essentially important for quantizatioh. Since a sys- 
tematic way of introducing such fields in the EPS is not 
known, we shall discuss the auxiliary field as well as the 
complete form of the BRST transformation after passing 
to the configuration space. It should be noted in our gen- 
eral construction that the auxiliary field for the Liouville 
sector and that for the gravity sector couple nontrivially, 
generating a new local symmetry incorporated in the fi- 
nal form of the BRST transformation. 

This paper is organized as follows. In Sec. II, we briefly 
outline the most general’ form of the BRST anomaly 
in 2D SUGRA. The BF algorithm is applied to can- 
cel the super-Virasoro anomaly. We formulate in Sec. 
III the BRST gauge-fixed effective action in the EPS 
and describe covariantization of the action, where auxil- 
iary fields are introduced to obtain the off-shell nilpotent 
BRST transformations in the configuration space. The 
sup~rconformz.1 gauge is discussed in Sec. IV. Section 
V is devoted to supersymmetric light-cone gauge fixing. 
OSp(1,2) Kac-Moody symmetry is obtained in a system- 
atic manner based on the BRST invariance. A summary 
and discussion are given in Sec. VI. In the Appendix, we 
summarize the BRST transformation in the configuration 
SpWS. 

II. BRST ANOMALY IN THE 
FERMIONIC STRING THEORY 

In this section we will briefly review the BFV formal- 
ism fof fermionic string theory and the BRST anomaly 
along the lines of Ref. [25]. The fermionic string can 
be formulated as N = 1 2D SUGRA coupled to string 
coordinates and is described by the action [24\ 

S, = - J [ d%e i (gap6’,Xi3~X - i&7,$) 

+%pPPw,x + $NZ,pPP~I 1 (2.1) 

where Xe and @‘ (M = 0,. ,D-1) are, respectively, the 
bosonic and fermionic string variables,’ and we have sup- 
pressed the space-time indices. The zweibein and grav- 
itino are denoted by eaa and xa, respectively. 

The action (2.1) possesses invariances under the world- 
sheet reparametrizations, local Lorentz rotations, lo- 
cal supersymmetry, local Weyl rescalings, and fermionic 
symmetry [24]. This suggests a convenient choice of 
parametrizations [25] for the zweibein and the gravitino 
a.9 

X+=*E!z=fifgol ~=ln(-el+el-)=lng,,, 
el* 911 ’ 

E=!,n 22 
( 11 

v* = :x0 f &* 

d%3 
,A*=$+ (2.2) 

where xaF stands for the upper and lower components 
of ~a, and ea* = eao rt e,‘. We also use the rescaled 
components & defined by 

+ = 
( 

,f(s-BI+- 
,-+(e+f)$+ > 

(2.3) 

for the fermionic string variables. In this parametrization 
e, 8, and A+ are the only variables that change under the 
Weyl.rescalings, the Lorentz rotations, and the fermionic 
symmetry, respectively. The other variables are all in- 
variarit under these symmetries, and the action (2.1) can 
be written only in terms of these variables as 

Sx = d% 
J [ 

x+ ix- (2 - x+x’)(k + X--X’) 

+$+(4+ - A++,;) + $(d- +x-?/ti) 

+x+ 5 x- {i(k - x+x’)&.v+ - i(k 

+x-X’)dl+v-} + x+ t x- $+o+u- ] (2.4) 

‘We choose qDb = diag(-1,l) and q’” = diag(-l,l, ,l) 
fir tlat metrics and Pb = --zbQ with eol = 1 for the Levi- 
Civita symbol. The world-sheet coordinates are denoted by 
I=- = (T,CT) for a = 0,l and are assumed to take --co < c < 
+co. It is straightforward to make the analysis on a finite 
interval of g so as to impose the Neveu-Schwarz, or Ramond 
boundary conditions. We will use the notation A = %A and 
A’ = &A for derivatives. Dirac matrices po (a = 0,l) are 
chosen to be po = .JZ, p’ = ial, and ps - pop’ = ms, where 
C* (k = 1,2,3) are Pauli matrices 
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In the canonical description the local symmetries man- 
ifest themselves as first-class constraints according to 
Dirac’s classification 1291. Denoting the canonical mo- 
menta for X’, x*, [, E, G, =*d A+ by P,,, ni, ~69 ne, 
n>, ,and x,“, respectively, the canonical theory of this 
system is characterized by the following set of first-class 
constraints: 

pPRF$TAmO for A = X*,&E , 

pEpco for i=u*,A*, 

1 
‘p:‘;i(P*x’)2+~10*~:~o, 

J~,x$*(P+x’)co, (2.5) 

where I& and ~-2 are the super-Virasoro constraints, 
and satisfy the classical super-Viiasoro algebra under the 
equal-7 super-Poisson brackets [26] 

{v:(4,P:(41 = *[vX(4 + vx(a%~(~ - 4 , 

{J$(u),@(u’)} = -4i&(u)6(0 - u’) ; 

all other super-Poisson brackets vanish. (2.6) 

To set up the BFV-BRST formalism [26], we introduce 
the EPS by adding to the classical phase space the ghost 
and auxiliary field sector for each constraint as 

LPA : P,FA), (P*,~a), W,BA) , 

7 : (r”,~z)> (P”,=izL W”,Az) > (2.7) 

where A = X*,&e,Xk and z = t/*,&X+, respec- 
tively, label the bosonic and fermionic constraints given 
in (2.5). The classical BRST charge can then be con- 
structed directly from (2.5) and (2.6) without recourse 
to gauge fixing as 

+C+(F+C+’ + p++y+‘) + 7+ 
( 

2iF+7+ - J,B 
2+ 

C+’ 
> 

-c- (F-c-’ + B-y-‘) 

+y- 2iP-7-+ ;pr 
( >I , 

(2.8) 

where A and .z run over all constraint labels. The ghost 
trilinear terms are determined so that Q satisfies the 
nilpotency condition under the super-Poisson brackets as 

IQ> Qi=O. (2.9) 

The dynamics are controlled by the BRST-invariant total 
Hamiltonian HT, which consists of the canonical Hamil- 
tonian and the gauge-fixing term. In the present case the 
canonical part vanishes identically, and HT is given by 
HT = {Q, *I, (2.10) 

where CJ is a gauge fermion. We shall use the standard 
form of @ given by 

tX! = 
I, 

du[ c.& + 7’~. + p,NA + P’M, ] , (2.11) 

where X* and x. denote the gauge conditions imposed 
on dynamical variables. The BRST invariance of HT can 
be stated as 

{Q,fhl= 0 > (2.12) 

which is automatically satisfied by (2.9). 
So far our arguments are restricted within classical 

theory. In quantum theory, the operators Q and HT 
must be suitably regularized, and the quantum version 
of the BRST invariance (2.9) and (2.12) may fail to be 
valid due to anomalies. Assuming that the anomalous 
commutators2 can be expanded in FL as 

[Q, Q] c iti% + O(h3) , 

[&,I&-] s ;R2r + O(h3), (2.13), 

we obtain the algebraic consistency condition for Cl in the 
lowest order of h. as 

m=o, (2.14) 

where 6 is the classical BRST transformation given by 
the super-Poisson bracket 6F = -{Q,F} for any F. On 
the other hand, l? can be related to fi by 

r={qq}. (2.15) 

Hence it is sufficient to cancel the anomaly in Q2 to retain 
BRST invariance. 

The consistency condition (2.14) has been, solved in 
the EPS 1251, and the nontrivial (matter independent) 
solution is f&md to be 

Ci=K J do[(C+@+ - 8iy+@y+) 

-(C-@C- + 8i7-@7-)] . (2.16) 

The cohomology class to which this solution beIon& is 
uniquely fixed and independent of the choices of regular- 
izations and gauge fixing. 

The overall coefficient K, how&r, remains undeter- 
mined in this algebraic method. To fix K, we must de- 
fine operator products by some ordering prescription, and 
then examine the nilpotency of the BRST charge. For 
the purpose of defining operator ordering, we decompose 
operators into two parts by 

‘A careful analysis of the equal-time commutators appearing 
in the BRST algebra is given in 1301. 
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A(*)(o) = / dc&)(c~ - d)A(d) 

for A=P+X’,$+,C+,P +3 

A(*+) = /dod(*)(u - a’)A(o’) 

for A=P-X’,&,C-,F-, (2.17) 

with 6(*)(m) = &z The A(+) and Ac-1 thus de- 

fined reduce, respectively, to positive- and negative- 
frequency part in the superorthonormal gauge. By 
putting A(+)% to the right of A(-)%, we define opera- 
tor ordering. We thus obtain 

for the anomaly co&fficient. This coincides with the result 
of superconformal gauge fixing [23]. If we change the or- 
dering prescription, the value of K also changes. Which 
ordering should be employed depends on the gauge cho- 
sen. Because of this, the operator ordering introduced 
above should be understood as temporal. We will come 
back to this point later. 

The Q2 anomaly is a direct consequence of the super- 
Virasoro anomaly of the generalized super-Virasoro con- 
straints defined by 

Q+ s 9; * 2F*c+’ *~~c* f ;p*.-p i $,+, 

I& E J-$ F $3*c* F &c+t + 4ip*-y* , (2.19) 

where operator ordering is implicitly assumed. Suppress- 
ing R henceforth, we can easily show that these satisfy 

[**(u),‘s*(d)] = hip(a) + e+qa&7 - 0’) 

-+iK@(a - 0’) , 

= *i;I*(cr)a,s(o - 0’) f 2$(u) S(u - d), 

[l*(o),I+(o’)] = 4+*(0)6(0 - 0’) + SKf@(u - 0’); 

all other supercommutators vanish. (2.20) 

Qne finds that, due to the appearance of the anomalous 
Schwinger term, the super-Virasoro constraints become 
second-class ones. 

The result (2.16) or (2.20) with K given by (2.18) 
does not rely on h expansion and is exact as far as the 
Q2 anomaly is concerned. Strictly speaking, the BRST 
anomaly must be canceled in order for the higher order 
corrections to be meaningful. The critical string with 
D = 10 is such a case, where the super-Liouville mode of 
the 2D SUGRA multiplet is decoupled iiom the theory. 
In noncritical strings, however, we must take account of 
the super-liouville mode as a dynamical variable, which 
also contributes to the BRST anomaly. 

Instead of taking account of the super-Liouville mode 
which is expected to become dynamical in quantum the- 
ory, we modify the theory to recover all the classical local 
symmetries violated by anomalies. This can be carried 
out, without affecting the physical content of the origi- 
nal theory, by introducing extra degrees of freedom which 
can be formally gauged away by the recovered local sym- 
metry. 

Following the general idea of BF [27], we introduce a 
canonical pair of bosonic fields (O,?r,) and a Majorana 
field &, which we will refer to as BF fields henceforth. 
They are assumed to satisfy the same type of canoni- 
cal supercommutation relations as string variables. We 
then modify the constraints (2.19) by adding to @‘+ and 
I* an appropriate terms containing BF fields to cancel 
the super-Virasoro anomaly in (2.20). Let us denote the 

modified super-Virasoro operators by &* and &; then 
they are given by 

f* z I* f c*o, F 4yCk F 27&& , (2.21) 

where we have defined O+ c B’f?ie. y is a free parameter 
to be fixed to cancel the super-Virasoro anomaly. In fact, 
the super-Virasoro constraints of the BF sector satisfy 
the super-Viiasoro algebra with the anomaly coefficient 

n ze 272 (2.22) 

under classical super-Poisson brackets. Since the BF 
fields also contribute to the super-Virasoro anomaly as a 
single superconformal matter multiplet in quantum the- 
ory, the BRST anomaly can be canceled if n satisfies 

For D 5 25 we find the parameter ^I to be real, the only 
case which we wills consider in the following sections. In 
order to retain the reality of y we must choose the BF 
fields to generate negative metric states for D > 25. 

In (2.21), the term containing the mass parameter pa 
is not necessary for the purpose of canceling the BRST 
anomaly but it turns out to be related to the cosmologi- 
cal terms in the covariant effective action as we shall see 
in the next section. In quantum theory, the exponential 
operators exp(6’/2~) will be modified by the gravitational 
dressing effect 12, 6, 71. The full quantum mechanical 
treatment of them will be discussed in Sec. IV. 

As we mentioned above, a different choice of operator 
ordering gives rise to a different anomaly coefficient. For 
the superconformal gauge fixing, the ordering prescrip 
tion introduced above can be used and (2.23) turns out 
to be correct. In the light-cone gauge, we will adopt dif- 
ferent ordering and arrive at different conditions for IC as 
we will see in Sec. V. 
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III. EFFECTIVE ACTION 
AND GEOMETRIZATION 

In the previous section we introduced the BF fields, 
and modified the super-Virasoro constraints so as to can- 
cel the BRST anomaly. In this section we will apply the 
BFV algorithm to the gauge symmetrized system and 
investigate the BRST-invariant effective action. 

Let us denote the BRST charge modified by the BF 
fields by Q, then it generates the BRST transformation 
of any variable F by 

6F = i[tj, F] (3.1) 

We thus obtain the following set of BRST transforma- 
tions in the EPS: 

6X = &+ -c-)x’ + ic+ +c-)P} + ^i+++ 

+-Y-L 

6P = 
( 

;{(c+ - c-p + (c+ + c-)x’} 

+“/+ti+ -r-4- 
1’ 

I 

6$* = *pt+* *&I& + iyq rt X’), 

&9= ;( c+o+ -c-o- ) - r(c+ - c-)’ 

+7+c+ + r-c- > 

he = 
( 

$CfO+ -c-o-) - y(c+ + c-)’ 

+y+c+ - r-c- , 
6x+ sc:, 6[ = CE,& = C’, 

&2: = 0, a.3 = 0, ISC’ = 0, 

6v* = -y;, LM* = -72, by; = 0, s-f; = 0, (3.2) 

&NA = Pa, 6M, = -fl,, 6PA = 0, SF = 0 , 

&?a = -Ba, 67” = -A”, &Ba = 0, bA” = 0, 

6FA = -‘pi; si? = 4, 6F+ = -&, 6p, = -i*, 

dc* = zx*c* - 2qy*y, hf* = +*y + e*y* , 

where the constraint labels A and i run only through 
primary constraints, while A and I are taken over all the 
bosonic and fermionic constraints. 

The change in the BRST charge is reflected in the dy- 
namics through the total Hamiltonian 

(3.3) 

This is BRST invariant if the @” anomaly is absent. 
To construct the effective action we choose the stan- 
dard form of gauge fermion (2.11) shifted by Q + 

~du[~~l(r’ + r”tiz]. This just cancels the Legendre 
terms Jd%[i?A@ + rzfiz + Bafi* + A’&] in con- 
structing the effective action. The BRST-invariant effec- 
tive action can be obtained as 

(3.4) 
I 

(3.5) 

(3.6) 

(3.7) 

So = Pi + &b+$+ + $1_1)-) + ?reh + &+i, + <Li-) 

+&4+ +7&t- + Tr<( -I- Ted + n,+fi+ + n;L. + lT‘yli+ + *,A- 

-NHqA -NC@+ -N-e- + Ms9 + M+j+ + M-j- 1. ; 

Sg,, = pA’aCA + p”i; - ?&y* + r”&y, - “PAP* - $fl, 
@+ + $?++r+’ + 27-C-’ f ?%T- + $y-’ + $‘r- 

i &C’ - 4@+r+ + M- %p-C-’ + pL’-c- + 4iF-r- 
> ( )I 

, 

S,f = d%[-B.& - A=x.] . 
In (3.5) I&. and j*, respectively, are obtained from the 

super-Virasoro constraints 6-1: and .?* given by (2.21) 
with all the ghost contributions removed. The xA and 
x. stand for the gauge fixing conditions. We have used 
the BRST transformations (3.2) in deriving these actions. 
For a wide class of gauge conditions the effective action 

provides us with a starting point to analyze the quantum 
theory of a fermionic string as 2D SUGRA. It is, how- 
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ever, written in terms of the EPS variables, which have 
no direct geometrical interpretation unless we explicitly 
specify the gauge conditions. In order to see the physical 
significance of the effective action, we relate the EPS vari- 
ables to the configuration space variables to geometrize 
the effective action. The geometrization of the EPS vari- 
able has been developed in Re&+. ‘121,251. No essential 
change will appear in relating the ghost variables in the 
EPS to those of configuration space in the presence of 
the BF variables. 

Since the auxiliary fields N* and M*, respectively, 
play the roles of X* and +iY, in (3.5), we identify them 
by imposing the gauge conditions 

X:=X*-N*, ,y;=v*riMT. (3.8) 

As for the rest of the gauge conditions, we assume that 
they and their BRST transforms are independent of P, 
ti*, r.9, f*t, Ti, Ti> 7~~ and p”. They are otherwise arbi- 
trary. This is sufficient for the purpose of geometrization. 

Due to the assumptions on the gauge conditions, we 
can derive equations of motion for P, &, ?rg, &, xi, 

ni, 7.4, and pz by taking the variation of (3.4) with 
respect to these variables as 

% - ;{(N+ + A’-)P + (iV+ -N-)X’} 

+M’$+ + M-$- = 0, 

4 - ;{(N+ + N-)TO + (N+ -N-)0’ } 

-y(N+ -N-)’ + MC<+ + M-C- = 0, 

& F N+$; + ;N*;‘+ + iM*(P f X’) = 0, 

& + Ni<; 7 ;N*‘, + iMi(?re f 0’) F, 4iyM*’ = 0, 

i*=N;, (ZN”, @ZN’, fi+=M;, li&=M:, 

t:,‘pp,‘, CF=@, ticpc, +z=p;, +;rp;, 

P* = t* f C*N” 7 C*‘N*t- 4$&f*, 

p* = ,+* f +T*;’ 7 +‘N* qz &M*’ f ;&.‘M* 

(3.9) 

We require that, if we use the equations of motion (3.9) 
to elimiimte P, P*, and /3*, the BRST transformations 
(3.2) in the EPS reduce to those in the configuration 
space given in the Appendix. For instance, the covari- 
ant reparametrization ghosts C” and the supersymme- 
try ghosts w can be identified by comparing the BRST 
transformations of X in the EPS and in the confkuration 
space in (A2). They are given by 

C++C- 
C”=N++N-’ 

c, = N-C+ - N+C- 
N++N- ’ 

(3.10) 

The Weyl ghost C, and the local Lorentz ghost CL can 
be found from the BRST transformation properties of ,$ 
and E to be 

cw = cc - vc’ + v,- , 
cL=cc-z,++z,-, (3.11) 

where Vc* and Zt are defined by 

V,” = ;G& zk A& + Ci’ , 

z,’ = +:L* + ;^(*A* + tc*’ (3.12) 

2 
Gi=N++N- [&NC + NFf + (N+ - N-)’ 

+i+M+ + A-M-)] , 
2 

L*=N++N- [&Ns + N+E’ 7 (N+ + N-)’ 

++M+ -A-M-)] (3.13) 

We finally obtain the super-Weyl ghost from the BRST 
transformations of A* as 

qt./ = 
( 

.&-&+,- 
e-;(c+$, VW+ > 

c++c- 
with qw+ = WF + N+ + N- w,’ , (3.14) 

where WN’ and WC” are defined by 

fi(G+M* + 4M*‘) , 

W,” = 7; 7 A$’ F ;A&*’ 

fi(G*y* + 47*‘) (3.15) 

The equations (3.10), (3.11), and (3.14) fix the ghost re- 
lations b&v&n the BFV basis and the c&ariant one. 

Except for the BF fields, which we will shortly discuss, 
it is straightforward to convert the BRST transforma- 
tions of the remaining variables in terms of configuration 
space variables. Furthermore, the BRST transformations 
of ,the covariant ghost variables can be easily obtained 
from (3.2) and (3.9). We shall introduce here auxiliary 
fields, Fg, Fo, FL, and Fw for the supermultiplets corre- 
sDondine to the strine variables. the eravitv. the Liouville . I - “I 
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fields land the super-Weyl ghost, respectively. These are 
needed to close the algebra off-shell. The BRST trans- 
formations constructed from (3.2) by using (3.9) and the 
ghost relations given above coincide with those of the Ap- 
pendix up to the terms containing auxiliary fields, being 
only on-shell-nilpotent. The original BRST transforma- 
tions (3.2) in the EPS satisfy the off-shell nilpotency by 
construction. There, the number of bosonic fields bal- 
ance~ that of the fermionic fields. Eliminating the mo- 
mentum variables, however, destroys the balance, and the 
off-shell nilpotency is no longer satisfied. Incidentally, the 
off-shell nilpotency of these two BRST transformations 
is realized in a quite different manner. In the conf?gura- 
tion space, the covariance is manifestly maintained and 
the nilpotency is consistent with the covariance. On the 
other hand, the covariance is only manifest on the mass 
shell in the EPS and the off-shell nilpotency is realized 
by sacrificing the manifest covariance. Therefore, when 
passing to the configuration space, we include auxiliary 
fields to retain the off-shell nilpotency needed to investi- 
gate the theory in arbitrary gauges. 

With these preparations, we turn to the geometrization 
of the BF fields. In terms of covariant ghost variables the 
BRST transformations of the BF fields are given bye 

66=c"a,e-i(w-C+ -w+C-) 
-7[2C” + co’(x+ - A-)] , 

JC* = C”&&-* + ;(P f x*CO’)~* - 47C0’VF - 47w; 

*,++- [e f ATB’ +7(x+ - A-)’ 

+i(v-6+ - v+c-)I (3.16) 

The presence of the terms proportional to 7 implies that 
0 and C+ have no simple transformation properties as 
scalar and spinor components of a scalar supermultiplet 
for the string variables. Rather, the BF fields possess 
transformation properties similar to those of [ and A+ 
as is easily seen from (A2). In fact we can construct 
covariants by taking the combinations 

lfl=t-- ;9, 

7= 
( 

&-I)+ 

e-:(c+f)17+ > 
with ‘I+ = A+ - $+ (3.17) 

The covariant BRST transformations of these variables 
coincide with those of the super-Liouville multiplet given 

where we have included the auxiliary 
~~~J$%~~tioned above. We see from this that 
(&~,FL) can be regarded as a super-Liouville ,multi- 
plet. They not only transform as a scalar multiplet under 
reparametrizations and supersymmetry but also change 
under super-Weyl transformations. 

The master action (3.4) contains many nonpropagat- 

ing degrees, i.e., P, ~0, PA, pa, oz, p’, NA, and M,, 
which can be eliminated by virtue of the equations of 
motion (3.9). After eliminating these variables from the 
master action and rewriting it in terms of the covariant 
variables defined above, we arrive at the gauge-fixed co- 
variant action 
6% = sx + s, + s, + s..m + S,“, + s,, + Sgr (3.18) 

with 

6 4,q 
s4=+ , 

s~=-~~~+Jd22egoO{(~)‘}2], 

Sgr = 
s 

da+B+x,+ - B-X, - BExE - B,x’ - Bfxf 

-A+x; - A-x; - A;x$ - Aax!], (3.19) 

where Sp is the supersymmetric Liouville action given 

by 

with R being the scalar curvature of the metric g-0. The 

Si* can be obtained from (3.20) by the replacement 4 + 
< and II-+ -i A*. This is a local functional of 2D SUGRA 
fields and can be considered a super-Liouville action with 

as the super-Liouville fields. 
In (3.18) we have also included the auxiliary fields to 

retain the BRST invariance in the configuration space 
given in the Appendix. In this connection, we notice here 
the appearance of a new local symmetry associated with 
&(I) -+FG(I)+X(Z) and FL(I) -+ FL(Z)+,+) by an 
arbitrary function X(z). To gauge-fix the local symmetry, 
we have added a new gauge condition xf and an antighost 
cf to (3.18). The Fw required by the off-shell nilpotency 
of the BRST transformation in the super-Weyl ghost sec- 
tor can be considered as the ghost corresponding to this 
symmetry, as can be seen from the BRST transforma- 
tions of FG and FL given iq (Al). 

It is very interesting to see the properties of (3.18) 
under the classical local symmetries of (2.1). As was dis- 
cussed in Ref. [25], S, is not invariant under the classical 
symmetries (except for the local Lorentz invariance) and 
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produces both super-Virasoro and super-Weyl anomalies 
even in the classical theory. The quantization, of the 
string variables breaks the reparametrization invariance 
and the local supersymmetry, and leads to the super- 
Viiasoro anomaly. This anomaly together with the con- 
tributions from other sectors including supergravity itself 
is canceled by the classical super-Viiasoro anomaly pro- 
duced by S,. The super-Weyl anomaly of S, is canceled 
by that of 5’4. This is rather obvious since the combina- 
tion S+ + S, depends on [, 4, A*, and q+ only through 
the BF fields which are invariant under super-Weyl trans- 
formations. Furthermore, the cosmological term can be 
obtained by eliminating the auxiliary by the equation of 

motion FG - FL = -2pe-8 as 

-2i/.@&Pge-~ -I- 4&=flji&X@C “1 (3.22) 

It is easy to show that this is invariant under super-Weyl 
transformations. 

We noti come back to the invariance of the effective 
action (3.18) under the BRST transformations given in 
the Appendix. From the very construction of our sym- 
metriaation procedure, it is invariant under the trans- 
formations without the auxiliary fields. When they are 
included, the BRST transformations of Majorana fields 
are modified by 

It is well known that the noninvariance of Sx is canceled 
by the variation of the Fs term in S,,. Noting that the 
modificatiohs due to FG can be regarded as a fermionic 
transformation, we easily find 

sps, = 2K 
I 

d%e@%pp5V,~~Fo (3.24) 

These can be shown to cancel exactly the BRST transfor- 
mation of S,,,. The fact that only the difference FG -FL 
appears in the action is related to the extra symmetry 
mentioned above. The action (2.1) supplemented by the 
auxiliary field Fx by itself is classically invariant tinder 
the full BRST transformations containing FG. The auxil- 
iary field FG, however, enters into the action only through 
quantum effects, i.e., the super-Weyl anomaly 1311. 

We emphasize that, though the effective action (3.18) 
has beenderived by assuming the restricted class of gauge 
conditions stated below (3.8), it is considered to be valid 
for arbitrary gauge conditions. This is because the effec- 
tive action is invariant under the BRST transformations 
maintaining the off-shell nilpotency. If we restrict OUP 
selves to the gauge conditions satisfying the assumption 
stated below (3.8), we need not introduce the auxiliary 
fields. In such a case, the BRST transformations are 
only on-shell nilpotent, but the equations of motion can 
be consistent with the BRST symmetry. Actually this 
happens in the superconformal gauge. The restriction 
on the gauge conditions, however, is too strong to allow 
interesting gauges such as the light-cone gauge. Let us 
discuss now these specific gauge fixings. 

IV. SUPERCONFORMAL GAUGE FIXING 

In the previous section we formulated the BRST- 
invariant effective action. So far our argument does not 
rely on particular gauge conditions. The effective action 
(3.4) nor its covariantized version (3.18) can be applicable 
to any gauge fixing. It is, however, instructive to describe 
explicit calailations and illustrate some issues which arise 
in quantizing the effective action. In this section we will 
discuss superconformal gauge fixing. 

Since the effective action (3.18) possesses all the clas- 
sical local symmetries, we can fix the zweibeins and the 
gravitinos to arbitrary background fields. The gauge- 
fixed action can be easily constructed in this general case. 
In particular we can choose the background to be flat 
Minkowskian superspace. Here we shall discuss this sim- 
plest case, i.e., e: = S$ x- = 0. In terms of (2.2) the 
flat superorthonormal gauge can be implemented by the 
f&&g set of gauge conditions: 

x*=JV*.-l,, Xc=& 

x; = 7iM’, 

xc = F> 

x2 = A*, Xf = fG , (4.1) 

where x$ and x$ denote the gauge conditions for the 
super-Virasoro constraints. The last gauge condition in 
(4.1) is to fix the local symmetry associated with the 
presence of the auxiliary fields discussed in the previous 
section. In this gauge the Lorentz ghost, the super-Weyl 
ghosts can be related to thi super-reparametrization 
ghosts as 

c, = -%%& , 
2 

cw=-a-c*, 

Fw=O, VW = -2ip”& , (4.2) 

and their antighosts vanish. Integrating out the multi- 
pliers BA, A”, the auxiliary fields.Fx,L, and eliminating 
nonpropagating variables by the equations of motion, we 
can reduce the effective action (3.18) to the following 
expression? 

SThe light-cone coordinates are denoted by I* = x0 f x1. 
Correspondingly, the flat metric is given by v++ = II-- = 0, 
q+- = q-+ = -;, We exceptionally define the derivatives by 
a+ = a, *a,; hence akx* = 2. 
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s~*=~d%[-~a+xa~x + ;$+a-$+ + &a+c] 

i; 
J [ 

ds ia+da-4 + $+a-)l+ + $-a+17- - 2fiV9 - ip7-7h.e 

+ 
I 

d%-b++a-c+ - b--a+c- -t p++ah- + p--a+w+l , (4.3) 
where the antighosts c* and r+ are, respectively, de- 
noted by b** and &*. Then the string variables and 
the ghosts become free fields, and the BF fields satisfy 
the supersymmetric Liouville equations, i.e., 

a+a-x = a,+, = 0, 

a,c* = a,+ = aTb** = ar13+* = 0, 

.a+a-4 - 2&-4 + $b& = 0 , 

a-+‘7F*tAe 
-d 

2 =o. (4.4) 

The gauge-fixed action ,(4.3) is invariant under the 
BRST transformations 

6x = ++a+x + .$-a-x - qw-$+ - LI++-) , 

62/)-+ = i&a,++ + ia&& * w,a,x , 

64 = -ia+c+ - :a-,- 

1 1 
h+ = f’aFw* T zaFc%& , 

sbi.* = T:* + Ti* + T:$@’ + T** d+/2) , 

6& = st.J:* + J:* + .&, , (4.5) 

where T:&LL’gh(2’3’2’ and JXvL*gh are the components of 
the stress tensors and the*&percurrents of the string, 
Liouville, and ghost sectors. They are given by 
J& E q@*+a,c* + ia+p++c* - 4ib*.+w,) , 

(4.6) 

where rrm = (~/2)&is the canonical momentum conjugate 
to 4. These results can be obtained directly from (3.2) 
by~using the equations of motion. 

We now turn to the BRST charge Ij in the supercon- 
formal gauge and examine the nilpotency. It is given 
by (2.8) with the contribution of the BF fields included. 
Since Pa = oz = 0 in this gauge, we obtain 

0 = / do p(T,= + T:+ + ;T$?’ + T$“)) 

+C-(T?- + Th- + ;T!h(‘) + T??‘) 

-iw-(J:, + J,“,, + iw+(.F + J4-) 

+2ib++w? + 2ibL-wt 
I (4.7) 

As was mentioned in Sec. III, the operator products in 
the right-hand side (RHS) of (4.7) are defined by the 
ordering prescription. For the string variables and the 
ghosts, it coincides with the free field normal ordering. 
We do not know, however, what operator ordering should 
be chosen for the BF fields. Since they are not free fields, 
the ordering prescription introduced in Sec. III would not 
be completely legitimate. But we shall continue to use 
the free field ordering. prescription in this section. 

To satisfy the nilpotency of Q it is necessary for the 
total stress tensor and the total supercurrents defined by 

T~~=T~*+T~*+T~~“+T** , 9W/~) 

Jz; = J& + J+* + Jgh ** (4.3) 

to satisfy super-Virasoro algebra with the total central 
charge being canceled. Except for the BF sector, (4.6) 
satisfies the super-Virasoro algebra with central charges 
30/Z, ,-26, and 11 for the string, the reparametrization 
ghost, and the bosonic superghost sectors, respectively. 
On the other hand the Ti+ and Ji* given in (4.6) do not 
form super-Virasoro commutation relations for nonvan- 
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isbing cosmological terms. To recover the super-Virasoro 
algebra, let us modify these operators by 

T~*=s[~~*~~~)‘-~i~~m)’ 

+*q; + /1=v,2 7 iwvdlql* 
13 

Ji* = *; [7)* (4! f ir+) - 417; - 2&7,] 1 (4.9) 

where a is a free parameter and V, is defined by 

v, c: exp(-a$) : (4.10) 

For a = l/2, (4.9) reduces to the classical expression 
given in (4.6). The operator products in the RHS of (4.9) 
are defined by the free field ordering prescription except 
for the V,Z term, while the operator V,Z is assumed to be 
the square of the normal ordered operator (4.10); hence 
it is not well defined. But as far as we know it is not pos- 
sible tp recover the super-Virasoro algebra by the free 
field ordering prescription for a nonvanishing cosmologi- 
cal term. Besides this shortcoming of our argument, (4.9) 
satisfies the super-Virasoro algebra with central charge 
312 + 24~~ for 

2 1 

ay-FG=2. 
(4.11) 

This is just an extension of the canonical analysis of Ref. 
[Z] to a superstring. The deviation of a from the classi- 
cal value can be interpreted as gravitational self-dressing. 
The condition (4.11) corresponds to the requirement that 
the vertex operator (4.10) must be a conformal field with 
conformal weight (i, 3) as discussed in Ref. [7]. 

These arguments show that the BRST charge (4.7) sat- 
isfies the nilpotency for n and a satisfying (2.23) and 
(4.11), i.e., 

a= 
J- 

pim7* diz) (4.12) 

V. SUPERSYMMETRIC LIGHT-CONE 
GAUGE FIXING 

In this section we will investigate the supersymmetric 
extension of the light-cone gauge [13-151. It is defined by 
the following set of gauge conditions: 

e++=e--=1, e-+=0, x-- = x-+ = 0 , 

(5.1) 

on the zweibeins and gravitinos. These lix the gauges of 
reparametrizations, local Lorentz, and local supersym- 
metry. To specify the gauge for the super-Weyl symme- 
try, we impose additional gauge conditions on the super- 
Liouville fields as 

4=q=F~=0. (5.2) 

In this gauge the only independent components of the 
gravity multiplet are e+- = -g++; x++, x+-, and Fo, 
which behave as the analog of the super-liouville fields. 

The gauge conditions (5.1) and (5.2) can be imple- 
mented by choosing 

X;=N+-l, X;=(N-+l)eF-2, 

f=c, x6=4, xf=fLr 

x; = -iM+, 1 
x,=iM--4(N-+1)A-, x:=1)*. 

(5.3) 

It can be easily seen that these together with N* = X* 
and M* ti fit+ given by (3.8) indeed lead to (5.1) and 
(5.2). 

The gauge conditions (5.3) do not satisfy the assump- 
tion given below (3.8) since their BRST transforms con- 
tain the canonical momentum ?rg and &. Then the mas- 
ter action (3.4) formulated in the EPS leads to erroneous 
results ,when (5.3) are imposed. This is because (3.17) 
cannot be identified with the covariant super-Liouville 
fields. It seems rather difficult to find covariant super- 
Liouville multiplets without the assumption on the gauge 
conditions. To avoid this difficulty, we apply (5.3) to 
(3.18) instead of (3.4) and use the covariant BRST trans- 
formations (A2) rather than (3.2). This should be com- 
pared with the superconformal gauge fixing where the 
gauge conditions (4.1) satisfy the assumption given be- 
low (3.8),4 z+d we can work with (3.4) from the beginning 
as well. 

Substituting (5.3) into (3.19), we obtain the effective 
action (3.18) in the light-cone gauge5 As in the super- 
conformal gauge fixing, CL, Cw, qw, and Fw in the 
ghost sector become nonpropagating, and can be elim- 
inated via equations of motion. Taking variations of See 
with respect to N* = X* and M* = GV,,, we obtain 
the multipliers B+ and A* as 

where ‘p:,gagh and .?’ :,g,+- are the super-Virasoro con- 

straints given by 

We can relate the BRST transformations of the 
antighosts to the super-Virasoro operators via (5.4). 

In the light-cone gauge, the ghost action takes the fol- 
lowing forni: 

‘In the case of the EPS the gauge condition corresponding 
to f= = 0 is inherently absent. 

‘In this section we consider the case $ = 0 for simplicity. 
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Sgh = J 1 d% -?+&C+ - cm(a+C+ + a-C- - glla-c+ - 2iw-h,) 

+7;+a-w- + y a-w, f &a-t + ;a-c+A- - (5.6) 
The presence of the auxiliary field fm turns out to be 
essential in order for the BRST transformations to be 
consistent with the equations of motion. Eliminating fm 
via the equation of motion nfifc = T-W-, we see 
that a quartic term appears in the bosonic ghosts and 
antighosts. Sgh also contains interaction terms between 
the supergravity sector and the ghost sector. Remarkably 
enough, all the ghost variables and A+ can be madk free 
fields by the following field redefinitions: 

c+=c+, 

c+ G c- + $a+c+ - iz-w-A+ + ;(z-)“I;-(L)“, 

7- c w-, 
bEi?-, 

b++ E i?+ - gI1?- + ;?-A- + %a+z-, 

p+zx 
&Tl’ 

- x- r- 2 
a++ s T+ - ix-C-A+ + - - 

( > 
we 

4nJiiii ’ 

2 -- 
x+=A+-;x C-w-. 

In terms of these variables the gauge-fixed action then 
takes the form 
see = J&[ $X(a+X + g++a-x) + $+a-$+ + ;$-(a,$- + S’++a-h) - 2ix++4-8-x] 

+; d=x J 1 gps11)’ - 2a-~ldlng*l)’ + 4(1%711)“} + $++ 
( 

a-x++ - $:+ 
> 

+ ;x+&x+] 

+ 
J 

d%(-b++&c+ - ba-c, + p++a-7- + P+a-Y+) > (5.8) 
where we have used the relations 911 = 1 + g++ and 

&A- = 4x++, and $+/a, the lower component of 
the fermi&c string coordinates II, in our representation, 
has been newly denoted by $+. See is the supersym- 
metric extension of 2D gravity action discussed in [17]. 
As in the bosonic string case, it leads to the free ghost 
equations 

ah+ = ah- = a-y- = a-7, = 0, 

a-b++ = a-b = a-P++ = a-o+ = o 1 (5.9) 

and the canonical supercommutation relations among 
ghost variables as 
[c+(u), b++(d)] = [c+(u), b(d)] = -i6(u - 0’) , 

[7-(u),P++(o’)] = [-Y+(u),P+(u’)L= ib(u - u’) , 

all other supercommutators vanish . (5.10) 

By taking variations of (5.8) with respect to g++ and 
x++, we obtain the equ&pns of motion for the graviton 
and gravitino as 

$2 + pPg = ;glla!gu - 4inx++a-x++ ) 

P + 2 = 4n&Tla-X++ , (5.11) 

where we have used (5.5). 
The BRST transformations of the variables appearing 

in (5.8) can be found from (5.7) and (A2), by using the 
gauge conditions (5.1) and the equations of motion for 
ghosts (5.9) as follows: 
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l+ 6g++ = se a+g++ + g++a+c+ + 2 c+ - $a+c+ a-g++ - ?a+ c+ - $a+c+ 
‘( > 7 

+4iy+x++ - iy-x+ 1 - “$a+++ - 5 ( i x-a+(7-x+) 

- - qg++ - &@)‘a + 1 (br!) 

1, 3 
6x++ = 5~ a+~++ + za+~+~++ + z C+ - ?a+ a-x++ 

‘( “2 

-irmx+(l -6a-lx++ - :a,!{~ - ?a-}x++ 

-:7+,9-g++ +‘$3+72(1- $a-)g++ + $+03+7Z) , 

1, 1 
sx+ = ?C a+x+ - qa+c+x+ + 2a+7- + 7- 

6c+ = kc-‘-a+=+ + 2i7T , 

1, 1 
k+ = 2c a+c+ + 2a+c+c+ + 2i7; , 

Jo- = ic+at7- - ia+c+7- , 

67+ = iC+a+7+ + ia+C+7+ - ;7+7-x+ - 2i7: (I- $a-)X++ + &+o+r?, 

1 SW 
66++ = T:+ + T:+ + 2T++ 

+ T!:(o) + T;:(3/2) + T2’% , (5.12) 

6b= ;atg++ - ;a+bc+ - iby-x+ + &(/3+7-)’ , 

sp++ = iJ+” + :x+(~ - Ga-)a-g++ - ina+x+ + $a+p++c+ + ip++a+c+ - 4ib++7- 

-4ib7- i - $a- + vat!} g++ + 4ip+7; (I- $a-),++ 

-++ - ;D+r+)x+ - &‘:Y-c+ , 

1 1 
60, = -4inamX++ f za+pc+ + ,p+a+c+ - 4ib7+ + z~+~-x+ , 

(r 

I 
where we have omitted the transformations of’ string 
variables. In deriving the BRST transformations of 
antighosts, we have used (5.4) and (5.11). The stress 
tensors and the supercurrents are defined by 

T+“+ = pf = $a+x + g++a-x)2 + il(t+a+ti+l , 

J:+ = 3: = d+(a+x + g++a-x) , 

T:+ s g $aeg++)2 - ig++a2g++ 

i -- 
( 
a-- $a-a+ a-g++ > 1 

+4inX++a-x++ + ~x+?+x+ , 

1 
T$@) t -za+b++ - b++a+c+ , (5.13) 

Tgh@) = ?a be+ , Ln 
+t -2+ 

Tg? z %++a+r- + aa+L?++r- , 
4 

Tgh(“‘) E &T+a+r+ - ia+P+7+ ++ 
Except for the gravitational stress tensor Tf,, these sat- 
isfy conservation laws. The index j = 2,0,3/2,1/2 of 
the stress tensors for the ghost sector labels the canoni- 
cal pairs of ghost and antighost with conformal weights 

1 - j and j [32]. The T$” defined by the usual nor- 
mal ordering satisfies the Viiasoro algebra with central 
charge 

2e(6j2 - Sj +l) , (5.14) 

where E stands for the Grassmamian parity of the ghost 
pair. The total central charge of the ghost sectors is then 
given by 

C& = -18 . (5.15) 

,Using (5.10) and the BRST transformations for the 
ghosts, we can construct the BRST charge generating 
(5.12) as 
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+7+ 
( 

4ina-x++ + 2ibyc - $+7-x+ 
)I 

> (5.16) 

I 
where normal products among the ghost variables are 
implicitly assumed. 

The BRST invariance of (5.8) implies that (5.12) must 
be consistent with the equations of motion (5.9). We thus 
obtain the supercurvature equations 

a:g++ = 0 ) a2x++ = 0 , a-x+ = 0 (5.17.) 

Then the gravitational stress tensor Tf+ in (5.13) also 
turns out to be conserved, i.e., 

a-q, = 0 (5.18) 

By virtue of (5.9) and (5.17) and the conservation of Tc+ 
and .7+“+,” we can show that the BRST charge (5.16) is 
a constant of motion. 

It remains to show the nilpotency of 4. Before turning 
to tbis issue, we must fix the commutation relations for 
the 2D supergravity sector. This can be done by cornpar- 
ing the BRST transformations (5.12) and (3.1) for g++ 
and x++. We first expand these operators in terms of 
conserved currents by noting (5.17) as 

g++ = -&[J+(z+) - 2z-Jyz+) + (z-yJ-(z+)] , 

x++ = -~p-qz+) + z-cqtT+)] . (5.19) 

The. BRST transformations of g++ and x++ given in 
(5.12) can be transcribed into the transformations of 
these currents as 

&I+ = ;c+a+J+ + a+c+J+ - 2c+J” 

+na+c+ + 4i7+‘I’-“2 - +x+J+ , 

‘The possible anomalies in these currents due to the super- 
Virasoro anomaly indeed vanish in the light-cone gauge where 
A+ = 1 and u- = 0 PS]. 
6J” = ;c+a+J’ + ;a+c+J’ - c+J- 

+;a:=+ - 2iy+w 

+3+(7-x+) + ;(y-)‘(bJ+ - ;fl+Q-‘/‘) , 

6J- = ;c+a+J- + iy-x+J- 

+;(7-)‘(bJ’ + ;/3+X@) + ia+[b(y-)‘I, 

,ppP = $+a+q -If2 + %+c+‘+~ + c+‘?lf’ (5.20) 
4 

-nEJ+y+ +7+J” - ;7-x+@= 

+&P+b)“J+ , 

&p = ;c+a+q1f2 + +QlP 

-7+J- + ;7-x+Q’/’ 

-&(7-)2(fi+Jo + 4ibV’1’) - ;a+[fl+(7-)‘I, 

6x+ = $+a+~+ + +?+c+x+ +28+-f- 

+:,- (J” - be+ + ;O+T+) . 

Then J” and ‘Pr can be shown to satisfy OSp(1,2) Kac- 
Moody current algebra 

[ J”(4 , J%‘) 1 

= ipc Jf(u) 6(u - 0’) - inpacqu - u’), 
[ J”(u) , X”(d) ] = if”‘. ‘P(u) 6(u - CT’) , (5.21) 

I *‘cd > *‘“(J) I 
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where the f’s and 17% are, respectively, the structure 
constants and the Killing metric for OSp(l,Z) algebra. 
They satisfy f”bC = -fbao, f’“, = fer,, qab = qba, and 

II c8 = -)1’* with nonvanishing components f*‘+ = 9~1, 
f+-. = 2, f+ ‘/=-*,2 = -f- -v21,2 = -1, fO ‘/$ = 
-fO --1P- 1,2 = 112, f-112 --1/z+ = -f-l/Z ‘Po = 
fl/z l/z- = -l/4, ,,+- = -2,,oo = 2, and 7-‘/2 l/2 = 

l/Z. 
It is natural to redefine operator ordering for the grav- 

itational sector to ensure the symnietry associated with 
the OSp(l,Z) current algebra. To this end we decompose 
Ja(x+) into positive and negative frequency parts by 

J”(*) (z+) = J dy+b(qz+ - y+)J”(y+) , (5.22) 

and similarly for ‘X”(.z+). We then define operator order- 
ing with respect to tbis decomposition. The gravitational 
stress tensor ‘I’:+ given in (5.13) must be defined by the 
Sugawara form 

where q-6 and qTa are the inverses of 1)“* and re”. The 
parameter n’ is modified from its classical value K. by 

3 
d=K-G. (5.24) 

The stress tensor thus defined not only ensures the BRST 
transformations (5.20) but also satisfies the Virasoro al- 
gebra with the central charge given by 

(5.25) 

where k E 47~ is the central charge of the current al- 
gebra (5.21). The last term in the RHS of (5.25) is the 
contributions due to x+. 

In (5.23) we have used the x+ rescaled by @x+ + 
x+ satisfying 

[X+(~+)>X+(Y+)l = ;++ -Y+) . 

The &ress tensor (5.23) can be regarded as that given 
in (5.13) v&h all the parameters n replaced by n’. This 
enables one to interpret the result that the quantum mod- 
ifications appear not in the stress tensor but in the cw- 
rent algebra (5.21) and hence in (5.20). Since )c is a free 
parameter both interpretation can be legitimized. 

We are now in a position to investigate the nilpotency 
of the BRST charge. The Q given by (5.16) does not sat- 
isfy the nilpotency even after the substitution of (5.23) 
for T$+. We must replace n appearing in (5.16) by n’ COT- 
responding to the change (5.24). After a rather lengthy 
computation, it can be shown that the BRST charge thus 
defined yet contains a BRST anomaly of trivial type as 
well as the nontrivial one [25]. The former can be re- 
moved by shifting the BRST charge by 

The correct quantum mechanical BRST charge is finally 
given by 
+ 2ib++7- - &(bJ+ - P+W”‘) 1 
+7+ -4% 

( 
w + a&7+ - 9+7-x+ 

)I 

: (5.28) 
The 6’ contains only the cohomologically nontrivial 
anomaly of the type (2.16) given by 

Q” = -2 jdo(c+c+‘” + 8i7-7”) , (5.29) 

where etot = cx + cg + csh is the total Virasoro central 
charge. We thus arrive at the KPZ condition for the 
nilpotent BRST charge in the N = 1 NSR superstring as 

3 2k 
c,,=zD+~+6k+;-18=0, (5.30) 
where use has been made of the results (5.15) and (5.25) 
as well as cx = $D for the string sector. 

VI. SUMMARY AND DISCUSSION 

We have investigated BRST quantization of the NSR 
sup&ring at noncritical dimensions as 2D SUGRA cou- 
pled with the string variables. It is done with special em- 
phasjs pn the point that the super-Liouville mode which 
is decoupled from the theory at the classical level be- 
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comes dynamically active through the superconformal 
anomaly. At noncritical dimensions the super-Virasoro 
anomaly destroying the reparametrization invariance and 
the local supersymmetry can be canceled by introducing 
the BF fields. This naturally leads to a gauge symmetric 
extension of the original system which suffers from the 
super-Virasoro anomaly. 

The gauge-tied effective action thus obtained turns 
out to contain two actions of super-Liouville type. The 
one written only in terms of 2D supergravity fields can be 
regarded as the counterterm remo?ing the super-Virasoro 
anomaly. This action turns out to reproduce the correct 
super-Weyl anomaly as was argued in [25]. The BF fields 
constitute the other one, which cancels the super-Weyl 
anomaly. By introducing the BF fields we have been 
able not only to construct an effective action possessing 
all the classical local symmetries but also to show within 
canonical formalism how the super-Liouville mode ac- 
quires dynamical behavior through the superconformal 
anomaly without invoking particular gauge conditions or 
weak field approximations. 

As we have mentioned in Sec. IV, it is possible to 
gauge-fix the 2D supergravity fields to flat ones as in Refs. 
[23]. These authors ignored the superconformal anomaly, 
and necessarily found that the theory is only co&tent 
at the critical dimensions [19,23]. In the present case, 
the BRST invariance does not lead to any inconsistency 
even at noncritical dimensions but yields the vanishing 
condition of the total central charge and the gravitational 
dressing effect [7] in the superconformal gauge. The well- 
known barrier at D = 1 also arises in our approach as 
cm be seen from (4.12), indicating the breakdown of 
validity of the continuum Liouville approach [34]. The 
superconformal mode does not decouple ftom the the- 
ory and is described by the supersymmetric extension 
of the Liouville action given by DDK [6,7]. By simply 
transcribing our canonical argument into a path integral 
one, the functional measure for the super-Liouville mode 
turns out to be translational invariant. This provides a 
canonical verification of the functional measure ansatz of 
DDK. This can be understood as follows. The essential 
point that leads the authors of [7] to their super-Liouville 
action is the fake super-Weyl invariance arising in the 
decompositions of 2D supergravity fields into a super- 
Liouville mode and fiducial background fields. Requir- 
ing the symmetry not to be broken by the superconfor- 
ma1 anomaly necessarily results in the anomaly-canceling 
super-Liouville action given in (4.3) up to trivial rescal- 
ing of the fields. Since canceling the BRST anomaly in 
our BFV-BRST approach is equivalent to eliminating su- 
perconformal anomaly, we arrive at the effective action 
of Ref. [?I. 

One of the advantageous points of our canonical ap 
preach is that the effective action (3.18) is a local func- 
tional without referring to any particular gauge and arbi- 
trary gauges can be argued on an equal footing. In par- 
ticular, we can explain the manifestation of OSp(1,2) cur- 
rent algebra from the BRST invariance in the light-cone 
gauge. This is contrasted with the approaches of Refs. 
[13-15, 111. These authors started with the anomalous 
Ward-Takahashi identities corresponding to the super- 
curvature equations (5.17) and then extracted OSp(1,2) 
current algebra. In Re& [ll, 121, BRST analyses were 
carried out for the system with the stress tensor and 
the supercurrent obtained by applying the Sugawara con- 
struction. Although the KPZ condition (5.30) coincides 
with the result of Refs. 114,111 for N=l 2D SUGRA, 
there are crucial differences between om method and that 
in Refs. [14,11] in the ghost content and, consequently, 
the expression of the BRST charge (5.28). In Ref. [ll], 
six ghost-antighost pairs were introduced corresponding 
to the six generators of the residual transformations leav- 
ing the light-cone gauge unchanged. In our case, there are 
four pairs and the rest can be eliminated by the equations 
of motion as multiplier fields. What yields these quali- 
tative differences is the inclusion of the auxiliary fields 
to ensure the off-shell nilpotency of the BRST transfor- 
mations (Al) and their appearance in the effective action 
(3.18) through the super-Weyl anomaly. This leads to the 
nontrivial redefinition of xc- as in (5.7) and the ghost 
higher order terms in (5.28), to which very little atten- 
tion seems to have been paid so far. In this paper the 
inclusion of the supersymmetric auxiliary fields has been 
done only after passing to the configuration space. Sys- 
tematic methods for including such variables in the EPS 
seem to be lacking yet, and it is certainly worth exploring 
them for the BFV-BRST formalism. 
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APPENDIX: BRST TRANSFORMATIONS 

In this Appendix we summarize the BRST transforma- 
tions in the configuration space. The covariant ghosts are 
denoted by C”, CL, w, Cw, and llw for reparametriza- 
tions, local Lorentz, local supersymmetry, Weyl rescal- 
ing, and fermionic transformations, respectively. In ad- 
dition to these, we introduce the auxiliary fields F$, FG, 
FL, and Fw for supermultiplets of string variables, 2D 
supergravity, super-Liouville fields, and Weyl ghosts, re- 
spectively, to ensure the off-shell nilpotency of the BRST 
transformations. The complete list of them is given by 

1 
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, 
1 

1 
JFG=-~CWFG+FW+C=~=F~ 

-4~=%%V=xp f iiJpTp"~=FG , 

SC" = @apc= + GifPw , 
-i~,sePoijp=w(a=epb-ape=*--~=p*Xp)
Scw=c=a=cw+ij,, , 

6~=-a~Wl)~~c=a=~-~~c~~~17~ 

-vwww - ?iwXa) + WFW , 
JFw=C=a=Fw - i~p=[V=q~ 

+if%4apcw - Zplw) -xc&v] (Al) 

In terms of the new variables introduced in Secs. II and 
III these transformations can be rewritten as 
6X = c=a,x - i(w-$+ - w+$-) , 

ah=c=a=h+ 
r- 
x+ ; x-fxw' + ;(c"*x*P)~* f $';I',- {Ti zk XFX' + i(v-$+ - v+$J-)} , 

6x* = c=a=x* * @I* x*&o) - A*(c~' rt x*cy - 4iw++ , 

St = cw + caad + 2e+ co’(x+ - X-) - i(d+ - w+A-J , 

s~=c~+c=a=~+~(~++~-)c~'-~(~-h++~+~_), 

1 

*py- Ii z!z X’S’ - (A+ - x-y - i(z+L - v-A+)} + 4u; ) 

SfG = fw + c=a=fG + ia=c=fo 
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KY = Pa&~ + ,+~x-(w~+wz), 

cc’ = c~a,c - x+ y x- (x+w; - x-w2) , 

1 
&‘I+ = Pa&* - $C” 7 XW’)w* - x+ + x- 2iv* (kJ; + w2) , 

sc, = c-a&, + i 
r- 

x+ ; x- w-w+fG 

+A;~-[-i+x+c’+x+, -iv-h+ - J$ - x+cq] - &+qw- 

+,+“:“y- [-d - X-E’ + A-’ - iv+L + $4 +x-q - ~w-qw+ , 

6Cw = c”aJ.7~ - i(w-qw+ - w+q,-) , 

6qw* = C”d,q,* + $c” * X’CO’)qw* + 
2 

c-- x++x- 
afw 

*,+y- {dw * A-.& + i(Y-qw+ - v+T+)}, 

6fw = c=a,fw + ia,c-fw 

It is straightforward to ascertain the nilpotency of the BRST transformations. 
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