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Skyrme-Maxwell solitons in 2+1 dimensions 
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A gauged (2+1)-dimensional version of the Skyrme model is investigated. The gauge group is U(1) 
and the dynamics of the associated gauge potential is governed by a Maxwell term. In this model 
there are topologically stable s&ton solutions carrying magnetic flux which is not topologically 
quantized. The properties of static, rotationally symmetric solitons of degree axe and two are 
discussed in detail. It is shown that the electric field of such solutions is necessarily zero. The 
solitons’ shape, mass, and magnetic Bux depend on the U(1) coupling constant, and this dependence 
is studied numerically from very weak to very strong coupling. 

PACS number(s): ll.lO.Kk, ll.lO.Lm, ll.Zi’.+d, 12.39.Dc 
I. INTRODUCTION 

The Skyrme model is a generalized nonlinear o model 
in 3fl dimensions [l]. It has soliton solutions which, 
after suitable quantixation, are models for physical nu- 
cleons [2]. The theory is invariant under the group 

SO(3)iso of isorotations, and electromagnetism is intro- 
duced into the model by gauging a U(1) subgroup of 
SO(3)i,,. See [3] for details. The resulting fully cou- 
pled Skyrme-Maxwell system is mathematically hard to 
analyze, but of considerable physical interest: it is here 
that one should compute the Skyrme model’s prediction 
for the proton-neutron mass difference for example. In 
this context it is worth recalling that in quark models 
electromagnetic interactions also break the isospin sym- 
metry and are known to produce a positive mass differ- 
ence rn, - rn, [4]. The computation of the mass gap 
for the Skyrme model (which necessarily involves quan- 
tum theory) was first a$tempted in [5] where the authors 
made various approximations based on the smallness of 
the fine-structure constant. They obtained a mass differ- 
ence of nzp -rn, = 1.08 MeV. 

In this paper we investigate classical properties of a 
(2+1)-dimensional version of the gauged Skyrme model. 
The model, to be introduced in Sec. II, is a gauged version 
of the baby Skyrme model studied in (6,7] and contains 
a dynamical Abelian gauge field. It has soliton solutions 
which are stable for topological reasons and which carry 
magnetic flux. However, the gauge symmetry is unbroken 
and the solitons differ from the much studied flux tubes 
or vortices in the Abelian Higgs model in that their mag- 
netic flux is not quantized. Contrary to the situation in 
(3+1)-dimensional Skyrme-Maxwell theory It is possible 
to compute certain soliton solutions in our model explic- 
itly with moderate numerical effort, and to investigate 
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+ (~08x41 + sinx42, -sinxh + COSX~Z,~~), (1) 

We write SO(2);., for the group of such rotations. 
Here we couple electromagnetism to the baby Skyrme 

model by gauging the SO(Z),,, symmetry. Thus we re- 
quire invariance under local rotations 

their structure quantitatively. Thus we study the depen- 
dence of the magnetic flux and the solitons’ mass on the 
electromagnetic coupling constant, assess the back reac- 
tion of the electromagnetic field on the matter fields, and 
make some semiquantitative statements about the long 
range intersoliton forces. 

Very recently, a gauged (2+1)-dimensional Skyrme 
model has been considered with either Maxwell or Chern- 
Simons dynamics for the gauge field [BI. However, the 
gauge symmetry which is impbsed in that paper leads to 
a model significantly different from ours. 

II. GAUGING THE BABY SKYRME MODEL 

The model we want to study is defined on (2+1)- 
dimensional Minkowski space, whose signature we take 
to be (-, +, +). Points in Minkowski space are written 
as (t,x) or simply 2, with coordinates z*, a = 0,1,2, 
and the v$locity of light is set to 1. We will mostly be 
concerned with static fields and sometimes use the label 
i = 1,2 for the coordinates of the spatial vector x. The 

basic fields are a scalar field I$ describing matter and a 
U(1) gauge potential A, for the electromagnetic field. 
More precisely, @(z) is a three-component vector satisfy- 
ing the constraint 4. # = & + 4; + 4: = 1, thus lying 
on a two-sphere which we denote by S$. 

The model is a gauged version of the baby Skyrme 
model studied in detail in [6,7]. The Lagrangian consid- 
ered there is invariant under global isorotations of the 
field 4 about a fixed axis n E Si. Taking n = (O,O, 1) 
for definiteness such a rot&n can be written in terms 
of the rotation angle x E [O,Zvr) as 
844 0 1996 The American Physical Society 
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4 + 0(=)4, (2) 

where O(z) is an SO(2)i., rotation matrix which depends 
on I. For infinitesimal rotation angles E(Z), this becomes 

4+4+EIlX4. (3) 

The Abelian gauge field Aa transforms as A, + A, - 
i&c, so we define the covariant derivative via 

;~&4=&4+Aanx4. (4) 

Finally we define the curvature or field strength F,p = 
i&A, - +A, with electric components E; = F~o and the 
magnetic component B = FIZ. Thus we can write down 
the Lagrangian of our model: 

L = -H 
J ( 

d2z ;(Da4)” + ;(Da4 x Dp4)’ 

+$(l -n ‘4) + LF2 4$ 4 . 

The first term is a gauged version of the O(3) n model La- 
grangian (see [9]), the second is a gauged Skyrme term, 
the third term may physically be thought of as a pion 
mass term 171, and the last term is the usual Maxwell La- 
grangian. There are four free parameters in this model. 
H has the dimension energy, X and l/p are of dimen- 
sion length while 9 repr&nts the coupling strength to 
the gauge field and is also of dimension length. We will 
discuss our choice of parameters in further detail below, 
but for the time being we fix ow energy scale by setting 
H = 1. 

It is worth recalling that the Skyrme term is necessary 
in the (ungauged) Skyrme model to prevent soliton so- 
lutions from collapsing to singular spikes. In the gauged 
model, however, the Maxwell term has the same scaling 
behavior as the Skyrme term, which suggests that there 
could be stable solitons in a “Skyrme-Maxwell theory 
without a Skyrme term.” This possibility is studied in 
[lo]. Here we retain the Skyrme term because we are also 
interested in properties of soliton solutions in the limit 
of vanishing electromagnetic coupling. The Skyrme term 
ensures the existence of stable s&tons in this limit. 

The Euler-Lagrange equations for this model can be 
written conveniently in terms of 

J, = 4 x D,q5 + X2D,4(Dp4. 4 x D-4) 

and the conserved current 

j,=n.J,. 

They read 

(‘3) 

(7) 

D,J”=$nx4, (8) 
a OI JFfi = g2jP (9) 

The second equation has three components which we 
want to write explicitly in terms of the electric and mag- 
netic field, for later use. The p = 0 component is Gauss’s 
law: 

&Ei = j, . (10) 

The remaining two equations are particularly simple 
when expressed in terms of polar coordiimtes (T, 8) for 
x. Defining polar and radial coordinates of the current j 
viajo = ~lj2-z~j1, j, = (z,j,+z,j,)/T and analogously 
for the electric field Bi, we obtain 

8% lt?B 
at T a0 - s2j, I 

8B 
+F=g2j,. (11) 

The energy E of a conliguration (4, A,) is the sum of 
the kinetic energy 

T = ; 
J ( 

d% (Do4)’ + 9D.4 x D;4)’ + SE: 
) 

(12) 

and the potential energy 

V = ; 
J ( 

d2r (014)~ + (0~4)’ + X’(D14 x D24)’ 

+2&l-n.+)+~B’ 
3 ) 

(13) 

In this paper we are only interested in finite-energy 
conligwations, so we require that for all t 

lim 4(t, x) = n. 
r+cc (14) 

This boundary condition allows the Euclidean space R2 
to be compactified to a topological two-sphere Sz so that, 
at a given time t, fields 4 may topologically be regarded 
as maps 

4:s,+sj. (15) 

Such maps are topologically classified by their degree Q, 
which is an integer and can be calculated via 

Q=kJ,, 
d2z4.(%4x 8~4). 06) 

z 

The degree is a homotopy invariant of 4 and therefore 
conserved during time evolutibn. 

III. STATIC SOLUTIONS 

It is a well-known and important feature of the O(3) 
o model and its generalization to baby Skyrme models 
that the potential energy of a configuration is bounded 
below by the modulus of its degree (or a suitable multiple 
thereof). A similar result holds in our model, but its 
proof requires a little work. In [lo], where the potential- 
energy functional 
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) 
K&4, Ail = ; I d2=((D14)2 + (Dz4)” 

+(I-n.4)‘+B2) (17
is studied in detail, it is shown that V,,,[qS,AiJ is 
bounded below by 4x1&1. Thus, changing v&bleb in 
the expression for V via x + px, and discarding the 
positive definite Skyrme term we have the inequality 

V[4, Ail 2 ; J ( 83: (014)’ + (024)’ 

(18) 

Now note that, since 0 < (1 - n. 4) 5 2, it follows that 
(I -II. 4) 2 ;(I -CI. 4)2. Thus we also deduce 

V[4, Ail 2 ; J ( d2x (%#? + (Dd)’ 

+(I-n.+)‘+$B’ (19) 

If p/g 2 1 it then follows immediately that 

J’l4,Ail 2 v,[4,Ail 2 4*1&l. 

If p/g 5 1, on the other hand, we have 

In both cases we have therefore found a topological lower 
bound for the potential energy V. 

Our next goal is to find static configurations of given 
degree n > 0 which minimize the potential energy V. To 
find these we exploit the symmetries of our model. Both 
V and Q are invariant under spatial rotations and trans- 
lations x + Rx + d, where R is an SO(2) matrix and 
d a translation vector in R2, and under global SO(Z) 
rotations defined earlier (1). They are also invariant un- 
der simultaneous reflections in the Euclidean plane and 
on the S; manifold: 

(41,42,43) -+ (-41,42,43) . P-4 

Physically one may.think of this transformation as si- 
multaneous electric charge conjugation and parity oper- 
ations. 

Translationally &variant fields necessarily have degree 
zero, but it is possible to write down fields of arbitrary de- 
gree which are invariant under the reflection (22) and un- 
der a combination of a rotation by some angle x E [0,2x) 
and an isorotation by -nb. The appropriate ansatz for 
the scalar field C#J is, in terms of polar coordinates (v, 0) 
for x, 

This is a two-dimensional version of the hedgehog ansatz 
used in the three-dimensional Skyrme model [ll]. 

Here we consider configurations with their symmetry 
center, defined by 4 = -II, at the origin. Under the 
reflection (22) the gauge field transforms as 

Ao’t-Ao, RH-A,, As++Ae, (24) 

with the polar and radial coordinates of Ai defined anal- 
ogously to those of j; before Eq. (11). Thus the require- 
ment of rotational symmetry and reflection symmetry im- 
plies the following form for the gauge potential: 

Ao = A, = 0, A,J = na(r), (25) 

where a is an arbitrary function and the factor n is intro- 
duced for convenience. For such a gauge field the electric 
field vanishes, and the magnetic field is given by 

To ensure that the field is regular at the origin we 
impose 

fF’) = kr, k E Z, and a(O) = 0, (27) 

and the finite-energy requirement implies for the fun&ion 

f 

With these boundary conditions the topological charge 
Q of the hedgehog configuration (23) is equal to -n if 
k is odd and zero otherwise [S]. In the following we will 
restrict attention to k = 1. 

For configurations of the form (23) and (25) the current 
j, has only one nonvanishing component, namely j,: 

je = n(1 + a)(1 + XZff2)sin2f. (29) 

The electric field vanishes and the magnetic field is in- 
dependent of b’, so only the 0 component of the Euler- 
Lagrange Eq. (9) is nontrivial. Thus the field equations 
(8) and (9) imply two equations for a and f, which read 
as follows: 
f”(l+ X22sin2f) + ;{[2(8T)’ - Z]X2Zsin2f + X2 .f’-’ r a slnf cos f + 1) - &inf cosf - p’sinf = 0, (30) 
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where ii = n(a + 1)/v, and 

a” - $2 = g2(1 + a)(1 + A2f’z)sin2f. (31) 

Note that a = 0 is not a solution of the second equa- 
tion. Since other constant solutions are forbidden by the 
boundary condition (27) it follows that all solutions will 
have a nontrivial magnetic field given by (26). 

We will discuss the solutions of (30) and (31) in detail 
in the next sections, but first we want to address another 
question of principal interest. Are there finite-energy so- 
lutions of the field equations (8) and (9) which have a 
time-independent purely radial electric field? First we 
note that, in two spatial dimensions, finite-energy solu- 
tions necessarily have zero electric charge 

q = J d’xjj, (x) (32) 

For it follows from Gauss’s law (10) that the modulus 
of the electric field falls off like q/r for large T. Hence 
the electric energy s d2xE: diverges if q # 0. However, 
this argument does not rule out finite energy solutions 
with a nontrivial but spherically symmetry charge distri- 
bution which integrates to zero. Like, for example, the 
hydrogen atom such a distribution would only produce 
a short-range electric field. We claim that this possibil- 
ity is not realized in our model. To prove this assertion 
we must allow for more general fields than considered so 
far. In particular we can no longer impose the reflection 
symmetry (22) since it eliminates radial electric fields 
f?om the start. Imposing invariance under simultaneous 
spatial rotations and isorotations leads to the following 
general form for the scalar field: 

i 

sinf(r)cos[nO - x(7-, t)] 
I$(P, 0, t) = sinf(r)sin[n0 - x(r, t)] 

c-f(T) ) 

, (33) 

where x(r, t) is an arbitrary function of T and t. How- 
ever, having introduced this function we can immediately 
remove it by a gauge transformation which brings (33) 
into the standard hedgehog form (23). Thus having fixed 
the gauge we write down the most general gauge field 
which gives rise to a purely radial time-independent elec- 
tric field 

A,, = W(T), A, = h(~)t, A.g = na(r), (34) 

where v and h are arbitrary functions of T. The electric 
field is then 

E, = -[d(7) + h(r)]?. (35) 

Inserting this ansatz into the field equations (8) and (9) 
leads to a complicated set of coupled differential equa- 
tions. Let us first consider the %lectromagnetic” equa- 
tions (9). The 0 component of the current j, is still given 
by (29), so the equation implied by the B component of 
(9) is (31) as before. However, both the t and T compo- 
nent of (9) now lead to nontrivial equations which read 
th sin’f = 0, 

# + +I = &(l + f”)sin’f. 

(36) 

(37) 

The first clearly implies that h is identically zero. To 

analyze the second we first note that v has to satisfy the 
boundary condition w’(O) = 0 to ensure that the electric 
field is regular at the origin and that for large r, u’(7) has 
to tend to 0 faster than l/r for the electric field energy 
to be finite. However, under these conditions we can 
multiply (37) by [w(y)], integrate both sides over T from 
0 to ca and finally integrate by parts to obtain 

Jo 
m r-dr[(u’)’ + u2g2(1 + A”f”)sin’f] =,O. (38) 

0 

Since the integrand is positive definite it follows that u = 
0 everywhere. Thus u = h = 0, and the functions f and 
a satisfy the same equations as before. In particular, the 
electric field of the solution vanishes everywhere. 

IV. ASYMPTOTIC PROPERTIES 

To learn more about the minimal energy solutions of 
the rotation and reflection symmetric form (23) and (25) 
we need to solve the boundary value problem posed by 
the coupled second-order equations (30) and (31) and 
the boundary conditions (27) and (28). This requires a 
careful analysis of the equations near the regular singular 
points T = 0 and T = 00 of (30) and (31). 

At the origin, f and a behave as follows: 

where 6; is the Kronecker symbol, cg and do are arbitrary 
parameters and c2 is a function of co, do, n, and p. 

We already know that f tends to zero for large r (28). 
Thus Eq. (31) becomes, for large T, 

pa” = a’ (41) 

which is solved by a constant function or by ~$7) = Ta. 
Since the latter leads to a magnetic field with infinite 
energy we conclude that there exist a number a, such 
that 

lim a(~) = a,. 
r-boo (42) 

Note that the finite-energy requirement does not impose 
any restrictions on the value of a,. Since a, is related 
to the magnetic flux 

@ = 
I 

d%B (43) 

via 

a = 2?raa,, (44) 

there are also no a priori restrictions on the value of 
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the magnetic flux. This should be contrasted with the 
situation in the Abelian Higgs model, for example, where 
the flux is quantized. 

It follows from (42) that Eq. (30) can be simplified for 
large T, and becomes 

f” + $ _ (4y+ 1Y +f? 
> 

f =o. (45) 

The solutions of this equation are the modified Bessel 
functions K,,,(/w), rn = n(a, + 1). Thus f is asymptot- 
ically proportional to 

We then deduce from (31) the asymptotic proportionality 

B(r) N -;e 1 -a+,(&)]. 
(47) 

This shows in particular that the magnetic field has no 
long-range component. 

The solution of (30) and (31) for n = 1 corresponds to 
the basic soliton of our model, which we call a gauged 
baby Skyrmion. The profile function f of the gauged 
baby Skyrmion has the same asymptotic behavior (46) 
as that of the ungauged baby Skyrmion discussed in [6]. 
As explained there the resulting asymptotic forms of the 
matter fields & and $2 are the same as those produced by 
two orthogonal scalar dipoles in classical Klein-Gordon 
theory. In addition, however, the gauged baby Skyrmion 
has a nontrivial electric current distribution with a mag- 
netic dipole moment orthogonal to the plane of motion. 
Such a magnetic dipole moment does not produce along- 
range magnetic field in (2+1)-dimensional electromag- 
netism, but it does carry magnetic flux. Our soliton sim- 
ilarly has no long-range magnetic field and also carries 
magnetic flux. Thus from afar a gauged baby Skyrmion 
looks like a triplet of mutually orthogonal dipoles: two 
scalar dipoles in the plane of motion and one magnetic 
dipole orthogonal to it. 

V. NUMERICAL RESULTS 

Having understood the asymptotic properties of 
Eqs. (30) and (31) it is relatively straightforward to solve 
them numerically. We have done this for configurations 
of degree rz< 2 by using a shooting method and a relax- 
ation technique, with identical results. The more general 
study of static multisoliton solutions in the (ungauged) 
baby Skyrme model in [6] suggests that minimal energy 
configurations have the rotationally symmetric form con- 
sidered here for degrees 1 and 2, but are less symmetric 
for higher degrees. We expect that the rotationally sym- 
metric solutions of degree 1~ > 2 are similarly not true 
minima of the potential energy in our gauged model, and 
we therefore do not consider them here. 

To compute explicit solutions of (30) and (31) we need 
to fix the parameters of the model. We can fix the energy 
and length scales by setting H = 1 and X = 1, so that we 
are working in geometric units where all quantities are 
dimensionless. We further choose p2 = 0.1 in order to 
be able to compare our results with the discussion of the 
ungauged baby Skyrme model in [6]. 

The energy of the solutions for n = 1 and 7~ = 2 is 
shown in Fig. 1 as a function of 9. When n = 2, the 
energy is less than twice the energy of the n = 1 soliton 
for all 9, so this solution may be thought of as a bound 
state of two gauged baby Skyrmions. From Fig. 1 it 
is also clear that the energy shows a dependence on 9 
very similar to the Bogomol’nyi bound, compare (20) and 
(21). For both n = 1 and 7~ = 2 it is essentially constant 
in the regime 9 < p, staying approximately 50% above 
the Bogomol’nyi bound. Here we find in particular that 
in the limit 9 --t 0 the energy of the 71 = 1 and n = 2 
solution tends to El = 1.564 x 411 and Ez = 2.936 x 411, 
respectively, which agrees with the calculation for the 
ungauged model in [S]. In the regime 9 2 ti, by contrast, 
the energy, like the Bogomol’nyi bound, decreases rapidly 
as 9 is increased further. However, our numerical results 
suggest that for both n = 1 and n = 2 the energy tends 
to a nonzero limit for 9 + co. 

The precise dependence of the magnetic flux @ on the 
coupling constant 9 is shown in Fig. 2 for both n = 1 
and 2. In the limit 9 + 0 the magnetic flux tends to 
zero, which is what one expects physically and which one 
can understand analytically by noting that in the limit 
g -i 0 Eq. (31) becomes Eq. (41). As we saw in our 
earlier discussion of that equation, the only finite-energy 
solution is the constant solution. It then follows ftom the 
boundary condition (27) that a and hence also Q vanish 
in this limit. Furthermore, integrating Eq. (31) once and 
using lirn,,&? = 0 we find 

B(0)=~z~mdr(~)(l+XZf’Z)si~Zf. (48) 

Numerically we observe that the dependence of a and f 

‘\\. 
-0 ’ ““L1” “““” 1(111”’ ‘-lu”” I 
0.001 0.01 0.1 1 10 

I2 
FIG. 1. Energy “per Skyrmion” as a function of the cow 

pling constant g for n = 1 and n = 2. The dashed line is a 
plot of the Bogomol’nyi bound, see (20) and (21). 
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0.001 0.01 0.1 1 10 

g 

FIG. 2. The magnetic flux “per Skyrmion” as a fun&n of 
the coupling constant g for n = 1 and 2. 

on g is small for weak coupling, and that the flux * is 
approximately proportional to B(O), so we expect + to 
grow quadratically with g for small g. This is precisely 
what the double logarithmic plot in Fig. 2 shows: there 
is a weak-coupling range (0 5 g < P) where loglo@ is a 
linear function of log,,, g with gradient 2. Thus in this 
region the magnetic flux of the solutions of degree n = 1 
and n = 2 is approximately 

@? 0 -c,g2 , (49) 

where C, % 24.5 and C, z 31.5. 
For large g the flux of the degree n solution tends to 

-2?m for n = 1,2. These are precisely the allowed values 
of the magnetic flux in models such as the Abelian Higgs 
model where the flux is quantized for topological reasons. 
Thus, although there is no such reason for flux quantiaa- 
tion in our model we observe an effective quantization in 
the strong-coupling limit. 

To understand the effective flux quantization and the 
limit of the energy as g + ca better, we look at the de- 
pendence of the gauged baby Skyrmion’s shape on the 
coupling g. The function a characterizing the magnetic 
field is plotted in Fig. 3(a) for several values of g. Note 
in particular that for strong coupling, a tends to a step 
function, taking th6 value 0 at the origin but -1 every- 
where else. Thus at strong coupling the magnetic field 
is increasingly localized at the origin. This is certainly 
consistent with Eq. (31) in the limit of large g, although 
it is not obviously implied by it. Note also that a& = ‘-1 
implies, via (44), our earlier observation that at strong 
coupling the magnetic flux is quantized in units of 27r. 

In Fig. 3(b) we plot the profile function f for a range of 
couplings. We have not included rnor& plots at weak cou- 
pling (g < p) because the profile function barely changes 
in this regime. Thus, as assumed in the calculation of the 
proton-neutron mass difference in [5], the back reaction 
of the electromagnetic field on the scalar field is negligible 
at weak coupling. At strong coupling, however, the pro- 
file function changes significantly, and the configuration 
becomes more localized. We conjecture that f also tends 
to a singular step function in the limit g + co. To jus- 
tify this conjecture, consider Eqs. (30) and (31). When 
a is the step function described above, these equations 
decouple everywhere except at the origin, and the first 
equation becomes the Euler-Lagrange equation derived 
from the functional 

Following Derrick’s theorem 1121, one readily sees that 
tbis functional cannot yield stable soliton solutions be- 
cause of its scaling behavior. 

To sum up, we have the following picture for the n = 1 
and 2 solitons in the strong-coupling limit: both the 
magnetic field and the energy distribution become local- 
ized near the origin, tending to singular distributions as 
g --f co. In this limit, the total energy does not vanish 
because of the contributipns from gradient terms in the 
energy density, and the magnetic flux tends to -2nn. 

To end, let us look at the solutions of (30) and (31) 

rn 

0 

(a) 
g = 0.1 

!i--=l 

g=1 

-0.5 

-- --g zr 10 

w 

-0 5 10 15 20 
r 

FIG. 3. The function a (a) and the profile function f (b) of 
the n = 1 solution for various values of the coupling constant 

9. 
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for a particular value of g in more detail. The basic idea 
is to treat our model as if its solitons described physi- 
cal baryons and its elementary quanta were physical pi- 
ons: tbis allows us to fix the energy and length scale, and 
to compute a definite value for the coupling constant g 
fiom the physical value of the fine structure constant. 

First we 6x the energy scale H by identifying the mass 
of a gauged baby Skyrmion with the physical nucleon 
mass of 940 MeV. Since for small g the ma.w of the gauged 
baby Skyrmion is virtually independent of g, we pick the 
value of the mass at g = 0; this leads to H = 48 MeV. 
To find a physical length scale X we note that l/(r is the 
equivalent to the Compton wavelength of the pion in the 
Skyrme model. Thus we choose X such that 11~ = 1.41 
MeV, i.e., X = &ix 1.41 fm = 0.45 fm. To compute 
Planck’s constant in geometric units we write 

li = 197.3 MeVfm = 9.1(48 MeV)(0.45 fm) (51) 

and deduce that ii = 9.1 in geometric units. Finally 
we use the physical value of the fine structure constant 
a = e74nfi) u & . Here e is the electron’s charge which 
is related to the coupling constant g via e = gti. With 
fi = 9.1 we conclude g = 0.1 in geometric units. 

At this value for g the gauged baby Skyrmion is lighter 
than the baby Skyrmion at g = 0 by A& = 0.12, which 

-0 2 4 6 6 10 
1‘ 

FIG. 4. The energy density (a) and the magnetic field (b) 
for rz = 1 and II = 2 at g = 0.1; the function e plotted in (a) 
is the integrand of (13) divided by 4n. 
is 5.9 MeV in physical units. For the solution with n = 2 
the corresponding energy difference is AEz = ‘0.56, which 
is 27 MeV in physical units. It is also interesting to look 
at the g dependence of the difference between the energy 
of the n = 2 solution and twice the energy of the n = 1 
solution, which may be interpreted as a binding energy. 
In the g = 0 case, tbis is about 6.6%, but it is 14% when 
g = 0.1. Thus the inclusion of the electromagnetic field 
leads to a more strongly bound n = 2 soliton. 

The precise shape of the solutions for g = 0.1 can be 
seen in Fig. 4, where we plot the energy density and 
the magnetic field for both rz = 1 and 2. The baby 
Skyrmion’s energy distribution is bell-shaped and peaked 
at the origin, whereas the energy distribution for the soli- 
ton of degree 2 is maximal on a ring with radius T = 1.78. 

VI. CONCLUSIONS 

In this paper we have studied soliton solutions of the 
coupled Skyrme-Maxwell system in 2fl dimensions. The 
rotationally symmetric solitons we have considered nec- 
essarily carry a magnetic field but the electric field is 
zero. The magnetic flux can take arbitrary values, but 
in the strong-coupling limit we observe an effective flux 
quantisation. The soliton mass decreases when the elec- 
tromagnetic coupling constant is increased and all the 
other parameters of the model are kept fixed. Thus a 
baby Skyrmion can lower its mass by interacting with 
the electromagnetic field. 

Although the U(1) gauge group is unbroken the baby 
Skyrmions’ magnetic field is short-ranged. The reason 
for this is that the electromagnetic current carried by 
the baby Skyrmion only has a magnetic dipole compo- 
nent; in 2+1 dimensions static magnetic dipoles, how- 
ever, have no long-range fields in Maxwellian electromag- 
netism. This observation has important consequences 
for the interaction of gauged baby Skyrmions. Since the 
scalar fields fall off like exp(-pr) and the magnetic field 
like exp(--2pr), the magnetic forces will be negligible 
compared to the scalar forces between two well-separated 
gauged baby Skyrmions. Thus, to first approximation, 
the forces should be the scalar dipole-dipole forces be- 
tween purely scalar baby Skyrmions discussed in detail 
in [7]. 

It teems to be possible to modify the model in a way 
such that the solitons obtain an electric field. This could 
be done by replacing the Maxwell term by a Chern- 
Simons term. In a recent publication it was shown that a 
gauged O(3) g model with Chern-Simons term supports 
both topological and nontopological self-dual soliton so- 
lutions 1131. Alternatively, one could add an antisym- 
metric term which couples gauge and matter fields; like 
a Chern-Simons term, such a term is metric independent 
and does not contribute to the energy. The investiga- 
tion of such a model is in progress and will be reported 
elsewhere. 
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