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Gauge independence of the bubble nucleation 
rate in theories with radiative symmetry breaking 
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In field theories where a metastable false vacuum state arises as a. result of radiative corrections, the 
calculation of the rate of false vacuum decay by bubble nucleation depends on the effective potential 
and the other functions that appear in the derivative expansion of the effective action. Beginning 
with the Nielsen identity, we derive a series of identities that govern the gauge dependence of these 
functions. Using these, we show, to leading nontrivial order, that, even though these functions are 
individually gauge dependent, one obtains a gauge-independent result for the bubble nucleation rate. 
Our formal arguments are complemented by explicit calculations for scalar electrodynamics in a class 
of Re gauges. 

PACS number(s): 03.65.Sq, 11.3O.Qc, 47.55.D~ 
I. INTRODUCTION 

In addition to the minimum energy true vacuum state, 
many quantum field theories have one or more met&able 
“false vacua” that can decay to the true vacuum by the 
nucleation of bubbles of the stable vacuum. Methods 
have been developed for calculating the rate of this pro- 
cess either at zero temperature [l] or at high tempera- 
ture 121. However, these must be modified in the case of 
theories in which symmetry breaking arises as a result of 
radiative corrections [3]. While a scheme for dealing with 
such cases (at zero temperature) has been developed [4], 
it leads to an expression for the bubble nucleation rate 
that is not manifestly gauge independent. In this paper 
we address the issue of this gauge dependence. 

The standard approach [l] to the calculation of the 
bubble nucleation rate at zero temperature is based on 
finding a “bounce” solution of the classical Euclidean 
field equations. The nucleation rate per unit volume r 
may be written as 

r=At~-~, (1.1) 

where B is the Euclidean action of the bounce solution 
and A is an expression involving functional determinants 
that is generally equal to a numerical factor of order unity 
times a dimensionful quantity determined by the charac- 
teristic maas scales of the theory. 

A problem arises if radiative corrections modify the 
vacuum structure of the theory. Theories in which this 
happens generally have no bounce solution; even if a 
bounce does exist, the nucleation rate calculation based 
on the bounce is not reliable. However, by integrating 
out certain fields at the outset, one can derive a modified 
algorithm [4] that can be applied to this situation. The 
results of this method are conveniently expressed in terms 
of the functions that appear in the derivative expansion 
of the Euclidean effective action. (The ellipsis represents 
terms containing four or more derivatives; these do not 
enter the calculation at the order to which we work.) 
These functions can in turn be expanded in power series 
in the couplings. For example, in a gauge theory with 
weak [i.e., O(e4)] scalar self-couplings, the effective po- 
tential is of order e4 and may be written, using an obvious 
notation, as 

V”” = K’* + vy + 

while 

(1.3) 

z=lczez+.~~. (1.4) 

The first step in this approach is to use the leading ap- 
proximation to the effective action to determine a bounce 
solution &,(z) through the equation 

The desired nucleation rate is then given by 

r = A’e-(&+B’) 

where 

Bo = Id% b$R(~b) + ~(~,,#J~,~] 

turns out to be of order e+ while 

(1.6) 

(1.7) 

BI = / d4r ~$%#a) + +‘ea (4$(%6$] (1.8) 

is of order e-‘. The calculation of the prexponential 
factor is much more complicated than in the standard 
case; in particular A’ cannot be expressed solely in terms 
of the functions appearing in Eq. (1.2). Nevertheless, 
one finds that, just as in the standard case, A’ is equal 
to a numerical factor of order unity times a dimensionful 
factor determined by the mass scales of the theory. 
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Like any physically measurable quantity, the nucle- 
ation rate should be gauge independent. Since the lead- 
ing terms in the effective potential are gauge indepen- 
dent, there is no difficulty in this regard with respect to 
either B. or the bounce solution itself. However, both of 
the functions that enter in B1 are known [5] to depend 
on gauge. Our goal is to show that, nevertheless, these 
combine to give a gauge-independent contribution to the 
nucleation rate. Although we $0 not explicitly examine 
the prefactor A’, we expect that our methods could be 
extended, albeit with considerably more technical com- 
plidation, to show that it too is independent of gauge. 

Our approach is based on the Nielsen identity [6], 
which describes the gauge dependence of the effective 
action, and which has been used to show that gauge- 
independent physical quantities can be obtained from a 
gauge-dependent effective potential [7]. In Sec. II we 
present a compact derivation of this identity, following 
the method of Kobes, Kunstatter, and Rebhan [8]. How- 
ever, the usual form of the identity is not quite sufficient 
for our purposes. Instead, what we need is a series of 
identities, each of which gives the gauge dependence of 
one of the functions appearing in the derivative expansion 
(1.2). Although the identity,for the effective potential is 
well known, the remaining identities are, to our knowl- 
edge, new. In Sec. III we derive these from the master 
identity and then use them to give a general proof of the 
gauge independence of BI. To complement this formal 
proof, we have verified the relevant identities by explicit 
calculations for the case of scalar quantum electrodynam- 
ics in RE gauges. These calculations, which expand upon 
the work of Aitchison and Fraser [9], are described in 
Sec. IV. Section V contains some concluding comments. 
Some two-loop effective potential calculations are pre- 
sented in an Appendix. 

II. THE NIELSEN IDENTITY 

In this section we use the method of Ref. [8] to derive 
the Nielsen identity. We consider a gauge theory with 
fields denoted by &. The classical action 5’ is invariant 
under a set of infinitesimal gauge transformations of the 
form 

S,$; = A& , (2.1) 

where the A? are linear operators. (We will henceforth 
suppress thelinda 0; for scalar electrodynamics, which 
we examine in greatest d&ail, there is only a single gauge 
parameter ti in any case.) By choosing a gauge-fixing 
function F(&) and introducing Fadeev-Popov ghosts 0 
and ii, we can write the generating functional of con- 
nected Green’s functions as 

where 
y +?gA;,, (2.3) 
t 

is invariant under the Be&i-Rouet-Stora-Tyutin 
(BRST) transformations 

~RST +i = C Aio, &IRST 4 = -&, 
c 

bRSTv=o, (2.4) 

with C an arbitrary Grassman number. 
In presenting the derivation,~ it is convenient to adopt 

a compact notation where 

P(4) = ciW Jla4lIanlPdw 0,15) 

x exp iI + i 
1 J 

d4yJ”(y)&(y) 1 (2.5) 

for any operator 0. Now note that if 0 is linear in the 
ghpst fields, its odd Grassman character leads to the van- 
ishing of this quantity. In particular, 

(qG) = 0 (2.6) 

for any functional G[~(z)]. Applying the BRST trans- 
formation (2.4) to this equation results in the identity 

( 
hm[il(4 G(z)] 

+i?(z)G(+) 
J 

d4yJ”(ij ~BRST~J~(Y) = 0 (2.7) 
> 

which may be rewritten, using the anticommutivity of 17 
and ?j, as 

- ;F(z) G(z) + G(z)% A,+) 

= 4 
J 

d4yJ”(y) (Aill q(z) G(z)) (2.8) 

Now consider the effect of an infinitesimal change 
F --t F + AF in the gauge-fixing function. Recalling 
Eqs. (2.2) and (2.3), we see that the change in the gen- 
erating functional W[J] is simply the integral over z of 
the left-hand side of Eq. (2.8), with G set equal to AF. 
Hence, 

AW = 4 
J 

d%d4y J’(y)(A<v(y)$r) AF(z)). 

(2.9) 

Recalling that the effective action is related to W[J] by 
the Legendre transformation 

s.rr = W - J 6W 
d%J”(x) m 

= W - 
J 

d%J”(z) &(z) , (2.10) 

we find that 
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Asea = i J 81 d% 64i(y) 6s,R(&v(~) v(z) AF(=)>
(2.11) 

where the subscript 1PI indicates that only the contri- 
butions &am one-particle irreducible graphs are to be 
included. In particular, an infinitesimal change d< in 
the gauge parameter is equivalent to the choice AF = 

-(F/2E)dt. Hence, 

d4x d4y&$i(y) 
SS”R(&v(~) 15(z) F(~))IPI 

(2.12) 

= s d4y6+j(y) ’ 6S,“fw(4,Yl I (2.13) 

where 

I&[$J(z),Y] = -; 1 @+iv(y) 15(z) F(z))m 

(2.14) 
)m  Equation (2.13) is the Nielsen identity. 

III. DERIVATIVE EXPANSION OF THE 
NIELSEN IDENTITY AND FORMAL PROOF 

OF GAUGE INDEPENDENCE 
OF THE NUCLEATION RATE 

To study the gauge dependence of the bubble nucle- 
ation rate, we will need a set of identities that are ob- 
tained by making derivative expansions of both sides of 
Eq. (2.13). For simplicity, consider the case where the ef- 
fective action depends on only a single field 4(z). There 
is then only a single functional H[4(s),y], which can be 
expanded as 

f@(r),Yl = C(6) + wP&)” + “’ > (3.1) 

where all terms on the right are understood to be evalu- 
ated at point y and the dots represent terms with more 
than two derivatives. Inserting this, together with the 
expansion (1.2) of the effective action, into Eq. (2.13), 
gives 
I 

= J [ d% C(~)+D($)(Q~J)~+~.~ 1 [~+~~(s,~)z-o,[Z(~)a,~l+~~~] (3.2) 
If this identity is to hold for arbitrary 4(z), then not 
only must the integrands on the two sides be equal point 
by point, but the terms with equal number of derive 
tives must be separately equal. Thus, the terms with no 
derivatives obey 

(3.3) 

while from the terms with two derivatives we obtain 

az az ave* ac 
t~=C$20~+2Z~. (3.4) 

[Equation (3.3), which can be obtained immediately from 
Eq. (2.13) by choosing +(I) to be a constant, appears in 
Ref. [6].] 

We now specialize to the case of a gauge theory with 
gauge coupling e and scalar self-couplings of order &. As 
indicated in Eq. (1.3), the effective potential begins with 
terms of order e4, while Z(4) = 1 + O(e’). Analysis of 
the relevant graphs shows that C(4) starts at order e2 
and D(4) is of order unity. The terms of order e4 in 
Eq. (3.3) yield 

(3.5) 

Now recall that the bounce solution &(z) is determined, 
through Eq. (1.5), by Vsff. Since Eq. (3.5) shows that 
the latter is gauge independent, both +a(~) and Bo, the 
leading contribution to the exponent of the nucleation 
rate, are independent of <. 
To study the gauge dependence of BI, we need the 

order ee terms of Eq. (3.3), 

as well as the terms of order e2 in Eq. (3.4), 

(3.7) 

These equations, together with Eq. (1.8), imply that 

where all quantities are to be evaluated with 4(z) ‘set 
equal to the bounce solution &,(z). Equation (1.5), which 
determines the bounce, shows that the last expression on 
the right-hand side must vanish, and hence that 

(3.9) 
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This verifies that, at least up to preexponential terms of 
order unity, the bubble nucleation rate is gauge indepen- 
dent. 

IV. SCALAR ELECTRODYNAMICS 

A. Basics 

We now illustrate these formal arguments by explicit 
calculations for the case of scalar electrodynamics. The 
Lagrangian, which we write in the form 

L = - ;F;” + ;(QZy - eA,@# 

+ ;(a,*, + eA,Q# - V(a) (4.1) 

with 

V(@) = +w + $24 (4.2) 

and Q, G (a: f@$‘/‘, is invariant under the gauge trans- 
formation 
If rn2 > 0, the tree-level potential has a minimum at 
@ = 0. In order that one-loop effects be able to change 
the vacuum structure and give a symmetry-breaking min- 
imum at e = (*) # 0, we must require that both X and 
m2 be anomalously small, of order e4 and e’(a)‘, respec- 
tively. tively. 

For calculating the bubble nucleation rate it is sti- For calculating the bubble nucleation rate it is sti- 
cient to evaluate the terms in the derivative expansion of cient to evaluate the terms in the derivative expansion of 
the effective action for C& = A, = 0. With this in mind, the effective action for C& = A, = 0. With this in mind, 
we will consider the class of gauges determined by the we will consider the class of gauges determined by the 
gauge-fixing function gauge-fixing function 

F = (@,A’ + eve,z) (4.4) 

(The gauge dependence of the effective potential~in these 
gauges was studied in detail by Aitchison and Fraser [9]; 
in the following discussion we will make use of a number 
of their results.) The Nielsen identity (2.13) then involves 
only the single functional 
I 

(4.5) 
The effective action can be obtained as the sum of one- 
particle irreducible vacuum graphs in the theory obtained 
tiam the Lagrangian (4.1) by making the shift a1 --t 
&+b and then dropping all terms linear in the quantum 
fields. The vertex factors for these graphs can be simply 
read off from the resulting Lagrangian in the standard 
fashion (see, e.g., Ref. [9]). The propagators require a 
bit more work. Following the usual approach, one would 
obtain from the Lagrangian (together with the gauge- 
fixing and ghost terms) the effective el, ‘Pz, A,, and 
ghost propagators 

(4.6) 

(4.8) 

G,= i 
k= + e%gS (4.9) 

as well as the mixed @z-A,, propagator 

G,&,.) = d@ + v) k, 

D(k) ’ 
(4.10) 

where the momentum is understood to flow from the & 
end to the A, end. In these expressions 
D(k) = k“ - k’(vix; - 2e%c$) + &*(e2v2 + <ti;) 

(4.11) 

and 

Ti&b) = rn2 + ;@ = V”(4) , (4.12) 

?q$) = & + $3 = !y. (4.13) 

These propagators are not quite what we need. Our 
assumption that X is of order e4 not only makes some 
of the one-loop terms comparable to the tree-level terms, 
but also implies that some multiloop graphs are not sup- 
pressed relative to graphs with fewer loops; specifically, 
the insertion of transverse photon loops along a scalar 
propagator does not increase the order of the graph. To 
restore the validity of our expansion, these insertions 
must be summed. This can be done simply by replacing 
the propagators given in Eqs. (4.6)-(4.8) by “dressed” 
propagators in which the Gzz are replaced by 

m?(4) = ci (4) 1 (4.14) 

m;(@ = y??, (4.15) 

(To avoid double-counting, subtractions are needed for 
certain graphs with two or more loops; these corrections 
only affect contributions of higher order than those we 
will be considering.) 

Before we proceed to verify the identities, there is one 
more issue to be addressed. Many of the graphs con- 
tributing to the effective action have divergences that 
must be cancelled by appropriate counterterms. We will 
not display these explicitly, but all divergent integrals 
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should be understood to be made finite by some gauge- 
invariant renormalization scheme (e.g., minimal subtrac- 
tion in the context of dimensional regulariaation); when 
we refer to the magnitude of an integral, this should be 
understood as referring to the magnitude of its finite part. 

B. The identity for the effective potential 

To order ez the function C(b) entering the identity 
(3.3) receives contributions only from the two graphs 
shown in Fig. 1. These combine to give ’ 

ce2 = -z I 
x [e(@ + v) k2 - ev(k2 - &by] 
i&b< 

2 J 

CPk 1 
W4 D(k) (4.16) 

The effective potential is obtained by summing the 
graphs with vanishing external momenta. The one-loop 
contributions may be split into three parts. First, the 
graphs with a transverse photon loop give a contribution 

3i d4k 

-7 (27r)4 J 
~ ln(k’ - e”&) (4.17) 

From dimensional arguments, this integral is clearly of 
order e444. Hence, it combines with the tree-level poten- 
tial to give 

(4.18) 

This is manifestly gauge independent, in accordance with 
Eq. (3.5). A second gauge-independent contribution, 
coming from the graphs with %-loop graphs, is 

i d4k -- 2 
J 

m W2 -*tl. (4.19) 

This is of order rn:, and hence contributes only to Vs*. 
Finally, there is an order e’ contribution 

rJ+ --. \ \ 
6’ \, dy’ ‘; :., ‘... “..., ,.’ ,..’ ./’ “... ,..’ 

“... . . . . . . . . . . ,..,..... ./” “.. . . . . . . . . . . . . . . . . . . ./’ 

FIG. 1. The two graphs that contribute to C.2. Pho- 
ton, %, and ghost propagators are indicated by wiggly, long- 
dashed, and short-dashed lines, respectively. 

‘Apart from an overall sign arising from a difference in the 
definition in C(b), these expressions are the same as those 
appearing in Ref. [9]. 
VT ’ @,I loop = -j ‘J $ [lnD(k) - 21n(k2+e2u$)] , 

(4.20) 

in which the first term arises from graphs with %, lon- 
gitudinal photon, or mixed scalar-photon propagators 
while the second is due to those with a single ghost loop. 

In addition to these one-loop contributions, there are a 
number of two-loop graphs that contribute to V=:‘. Some 
two-loop graphs have already been included in Eq. (4.20) 
as a result of the replacement tif + mf, including in 
particular the E-dependent “figure-eight” graph with one 
transverse photon loop and one @Z loop. In the Appendix 
we show that although a number of the remaining graphs 
are t dependent, they add together’ to give a gauge- 
independent contribution to Vet’. Hence, we can combine 
Eq. (4.20) with Eqs. (4.11), (4.15), and (4.16), to obtain 

thus verifying Eq. (3.6). 

C. The identity for Z(4) 

We now turn to the identity (3.4), which we will verify 
to order e2. We begin by recalling that Z(b) can be cal- 
culated from the sum of one-particle irreducible graphs 
with one external line carrying momentum p, another 
carrying momentum -p, and all others with zero mo- 
mentum. If the contribution of graph j is denoted by 
Ii (p”) , then 

Z=-i&CI, 
p2=0 

(4.22) 

Although there are many one-loop graphs contributing 
to the scalar self-energy, we will need to calculate only a 
few. Those graphs with quartic vertices are independent 
of the external momentum and hence do not contribute 
to Z(4). Because of our assumption that X = O(e4), 
all graphs with a vertex arising from the scalar self- 
interaction are at least of order e4 and can also be ig- 
nored here. Finally, the self-energy graph with a single 
ghost loop, although of order e2, is E independent. Thus, 
the entire [ dependence of 2,~ (4) comes from the four 
graphs shown in Fig. 2. 

It is convenient to consider separately the terms con- 
taining the transverse and the longitudinal parts of the 
photon propagators. The only contribution with two 

‘The cancellation of the gauge dependence among these 
graphs can be understood by considering the case X - e2, 
where the loop expansion is completely equivalent to an ex- 
pansion in e’. Apart from the appearance of IjL: rather than 
rn:, the one-loop approximation to C(4) is precisely the same 
as C,z of Eq. (4.16). Hence, Eq. (3.3) can be satisfied both at 
the one-loop level in that case (as was shown in [9]) and at 
O(e’) in our case only if this cancellation among the two-loop 
graphs occurs. 
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transverse propagators, from Fig. 2(b), is manifestly in- 
dependent of [ and so can be neglected here. Figures 
2(a) - 2(c) each give contributions with a single trans- 
verse propagator; although separately these each contain 
&dependent terms of order e2, their sum is easily seen to 
be F independent to this order. 
This leaves the terms containing only longitudinal pho- 
tons. These may be written as 

where 
J 

b, = -[@ + k)’ - &2@ (ck’ - e2v2) [k (2p + k)]” k-= , 

bb = 2e2@ (<k2 - t?v”) [[(p + k)’ - e%‘][k (p + k)]‘k-’ (p + k)-’ , 

b, = -4e2& (@ + u) ([k’ - e%‘)[k . (p + k)] [k (2~ + k)] k-’ , 

bc, = e2(@ + v)’ (k’ - p”) k (k + 2~). (4.24) 

[In these expressions we have omitted terms proportional to rn; since the contribution of these is at last o(@). Note 
also that we have included a factor of 2 in the contribution from Fig. 2(c) to t&e into account the fact that reversing 
the direction ofp gives a second graph with the same value.] Summing these expressions, we obtain 

b, + ba + b, + bd = [(p’ - 2~. k - k’)D(p + k) - 2# (e2+u + e4,zvz) 

t+b%? 

+2 { [ 
3(k+p)Z-3kZ+@+&]+~[k”-(p+k)“]}+... , (4.25) 

where the ellipsis denotes terms that are either t independent, of order p3, or else proportional to m; and thus of 
Kgher order i* e. Because of their antisymmetry under the interchange k2 H (p + k)2, the contributions of the 
terms i* curly brackets to the i*tw=l in Eq. (4.23) cancel. Inserting the remaining terms into the integral and keeping 
terms proportional to pz, we find that 

I 
+ [-independent terms 

+ &independent terms 

= 2- + E-independent terms. 
a4 

(4.26) 
(In going from the first to the second line, contributions 
proportional to &ni/84 have been neglected as being of 
higher order.) 

Differentiating this with respect to the gauge parame- 
ter < gives 

Cb) 

@) Cd) 

FIG. 2. The graphs that contribute to Z,a. Solid lines 
represent (PI propagators, with all other propagators shown 
as in Fig. 1. 
(4.27) 

This verifies the identity (3.7). 

V. CONCLUDING REMARKS 

In this paper we have shown how the Nielsen identity 
that describes the gauge dependence of the effective ac- 
tion can be converted into an infkite series of identities, 
one for each of the functions appearing in the derivative 
expansion of the effective action. Using these identities, 
we have shown, to leading nontrivial order, that one ob- 
tains a gauge-independent result for the bubble nucle- 
ation rate even in theories where the calculation of this 
rate involves the gauge dependent higher order contri- 
butions to the effective action. This provides one more 
example to show that the gauge dependence of the effec- 
tive action does not prevent it from being a useful tool 
for obtaining gauge-independent physical results. 
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As an explicit example, we have verified the identities 
for the [ dependence of V”“(b) and Z(b) in the class of 
gauges defined by the gauge-fixing function (4.4). In fact, 
these gauges actually depend on a second parameter, v. 
(Note that nothing in our calculations requires that v be 
equal to the vacuum expectation value of 4.) Working 
from Eq. (Z.ll), we find that 

(5.1) 

where C”(4) and D”($) are obtained from the derivative 
expansion of 

(5.3) 

[Note the absence of the factor of l/2 relative to 
Eq. (4.5).] In particular, the leading contributions to 
these identities come from 

cz2 = -& J 

d*k (k2 - &f?) 

(Zn)4 (k2 +&b) D(k) (5.4) 

The Fermi gauges, defined by F = i?,,Ap, can be ob- 
tained from the RE gauges we have considered by setting 
u = 0. However, because of the infrared divergences that 
afflict these gauges, the limit 21 --t 0 is somewhat nontriv- 
ial and the verification of the identities for these gauges 
must be done separately [lo]. To see the cause of these 
difficulties, note that our assumptions about the magni- 
tude of X and rn2 imply that if v = 0 the zeros of D(k) 
occur at values of k2 of order e4@. This has the effect of 
making some two-loop graphs (beyond those resummed 
by the conversion of ??%f to mf) comparable to one-loop 
graphs. For example, in the calculation of the quantity 
6’C,~/@ on the left-hand side of the Nielsen identity for 
Z,z, the terms involving &ng/a4 are no longer higher or- 
der. The corresponding terms on the right-hand side of 
the identity come from contributions to Z,s due to two- 
loop graphs and one-loop graphs with vertices propor- 
tional to-X; both types of contributions can be neglected 
for generic nonzero values of zI. 
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APPENDIX 

In this appendix we show that, although individual 
two-loop graphs give gauge-dependent contributions to 
Vezff, their sum’is { independent. The first step is to 
identify the relevant graphs. All graphs with vertices 
proportional to X give higher order contributions, and so 
can be omitted. Similarly, any graph with a loop con- 
taining only @I propagators is proportional to a power 
of mf and hence of higher order. Finally, there is a two- 
loop graph containing a ghost loop, but it is manifestly 
gauge independent. The only nonzero graphs remaining 
are shown in Fig. 3. 

It is convenient to decompose the photon propagators 
into transverse and longitudinal parts, and to examine 
separately the contributions from each. Consider first the 
contributions involving transverse photon propagators. 
The part of Fig. 3(a) involving two such propagators and 
the part of Fig. 3(e) involving one transverse photon 
have already been included in the one-loop calculation 
by the resummation that converted the tif to the mf, 
and hence should be omitted. This leaves the portions 
of Figs. 3(a), 3(b), and 3(d) that involve only a single 
transver& photon each. The contribution of these to the 
effective potential is 
x 2e2& (Cp2 - 2v-q - ;(p2 - .$ezqiS2) (k + 2p),(k + 2p)y - 2&(&b + v)(k + 2~)~p,] 

= 2e2 J 
~- 
($4 (iz4 (k2 - e”@) [;k + p)” - mf] 

(l-w)+..., (Al) 
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where the ellipsis represents terms proportional to rni. Not only is this result independent of 5, but examination of 
the integrals shows it to be in fact of order e*. 

This leaves us with the terms involving only longitudinal photons. Let us denote the corresponding contribution 
from graph j of Fig. 3 by .7j. For the first four graphs this may be written in the form 

(A3) 

Omitting terms proportional to rn:, whose effects are of higher order, one finds that 

a, = ez@ (fk’ - e2v2) (&I’ - e%~~) (k P)~ k-2p-2 , 

a~, = -; (fk’ - e%‘) (p” - &?@) (k’ + 2k . P)~ k-2 , 

a,=;(f++v)Z(kZ+2k.p)(pZ+2k.p), 

aci = -2& (f4 + w) (fk’ - e2v2) (k’ + 2k .p) (k p) k-= 

The sum of these is 

a, + as + a, + w = -; (p + k)’ [(k’ - &?@) (cp” - e%?) + (k p) (2p2f - e2&*)] 

+;D(P) [CP+ kj2 -P”] +A(k,p) f... , (A4) 

where A(k,p) is an antisymmetric function of k and p and the ellipsis represents terms that are either proportiod 
to rni, and thus of higher order, or else f independent. 

When this sum is inserted back into the integral, the term containing A(k,p) vanishes because of its antisymmetry. 
The remaining terms give 

J, + Jb + J, + Jd = ; 
s 

d4k d4p 
~ - 
(2n)4 (27r)4 ’ + [(k + p?- rn;] 1 D(k;D(p) 

x [(k” - @#?) (fpp2 - e%“) + (k .p) (Zp’f - e2&)] 

-3 -~ 
I 

d4k d4p NP + kJ2 - ~‘1 
2 (2+ (2+ [(k +P)~ - mt]D(k) + “‘; (A51 

The terms in the first integral that are proportional to mf are at least O(eS) and can be omitted. In the second 
integral, let us make the change of variable p + p - k. The resulting integral is then clearly the product of two 
integrals, one of which is proportional to rn;, and is thus also higher order. Hence, 

Ja + Ja + Jc + Jd = ; 
I 

d4k (kz - .+?c#?) d4P (fz? - e2?J2) 
(21r)4 D(k) 

J (Zn)4 D(p) +... L46) 

This last expression is precisely equal to -J,. Hence, the two-loop c&ribution to Vezff is .$ independent, as was 
claimed. 
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