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The one-loop quantum corrections to the geometry and thermodynamics of a black hole are studied 
for the two-dimensional RST model. We choose boundary conditions corresponding to the eternal 
black hole being in thermal equilibrium with Hawking radiation. The equations of motion are exactly 
integrated. One of the solutions obtained is the constant curvature space-time with the dilaton being 
a constant function. Such a solution is absent in classical theory. On the other hand, we derive a 
quantum-corrected metric written in Schwarzschild-like form which is a deformation of the classical 
black hole solution. The space-time singularity is milder than in classical theory and the solution 
admits two asymptotically flat black hole space-times lying at “different sides” of the singularity. 
The thermodynamics of the classical black hole and its quantum counterpart is formulated. The 
thermodynamical quantities (energy, temperature, entropy) are calculated and are the same for both 

the classical and quantum-corrected black holes. So no quantum corrections to thermodynamics are 
observed. The possible relevance of the results obtained in the four-dimensional case is discussed. 

PACS number(s): 04.70.Dy, 04.60.K~ 
I. INTRODUCTION 

Interest in quantum corrections in gravitational the- 
ory is twofold. First, it is commonly believed that a 
successful quantization of gravity will provide us with 
modifications of the theory that are necessary to avoid 
space-time singularities typically predicted by the clas- 
sical theory of gravity [l]. These singularities occur in 
the Universe and inside black holes under rather general 
assumptions about the properties of matter and mani- 

fest themselves in the unlimited increase in the cwva- 
ture of space-time. The classical theory is not applicable 
near a singularity and, in particular, we cannot believe 
in its predictions concerning the complete global struc- 
ture of space-time. Quantum corrections may completely 
change the gravitational equations and the correspond- 
ing geometry on the Planck scale and drastically modify 
the classical, picture [2]. The main problem of this way 
is the nonrenormalizability of Einstein gravity since the 

straightforward exploiting of the standard perturbation 
methods leads to an inconsistent quantum theory. How- 
ever, as a first step, we can consider the semiclassical 
picture when only matter fields are quantized, whereas 
the gravitational degrees of tieedom are treated classi- 
cally. Quantum matter fields, being integrated out in the 

functional integral, induce a term additional to the Ein- 
stein term in the action. The extremum of the complete 
effective action gives us a quantum-corrected solution. 

Unfortunately, in four dimensions the effective action is 
not .known exactly though it can be derived by a nonlocal 
polynomial with respect to curvatures [3]. The situation 
is more hopeful in two dimensions where for conformal 
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The other point where the quantum corrections may 
be important is in the thermodynamics of black holes. 
The most intriguing problem is a dynamical explanation 

of the degrees gf freedom inside a hole that are counted 
by the Bekenstein-Hawking formula [17] relating the en- 
tropy of a hole to the area of its horizon (for a review of 
different approaches, see Ref. [18]). There has been much 
interest in this problem [19-271 in the recent literature. 
One of the ideas is that the entropy of a hole is due to 
quantum matter excitations propagating inside or just 
outside the horizon. So the whole black hole entropy can 

matter the effective action is given by the well-known 
Polyakov-Liouville term. This is the reason why for the 

last few years the two-dimensional models of gravity have 
been intensively studied 141. That the theory predicts 
the existence of two-dimensional black holes was stated 
in 151. Then black-hole-type solutions were discovered 
in the so-called “string-inspired” two-dimensional dila- 

ton gravity [SI. It was believed that in two-dimensional 
toy models one could resolve the old problems of black 
hole evaporation [7] by reducing them to solving differen- 
tial equations of the semiclassical theory. However, the 
original model [7] turned out to be not exactly integrable, 
which resulted in searching for and formulating a number 
of exactly solvable models [8-lo]. Russo, Susskind, and 
Thorlacius (RST) [lo] modified the semiclassical action 

by a local counterterm with which the theory becomes 
exactly soluble. This RST model found wide popularity 
in the context of different aspects of black hole evapora- 
tion [ll] and black hole thermodynamics 112%141. 

The study of two-dimensional models becomes more 
exciting because the four-dimensional Einstein theory in 
the spherically symmetric case reduces to an effective 
two-dimensional theory of dilaton type [15,16]. This al- 
lows one to find the effective action in the spherically 
symmetric case and the corresponding quantum deforma- 

tion of the classical (Schwarzschild) configuration [16]. 
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53 TWO-DIMENSIONAL QUANTUM-CORRECTED ETERNAL BLACK HOLE 825 
be treated as a quantum correction. It has been shown 
that it is ultraviolet divergent [19] and can be removed 
by the standard renormalization of the gravitational con- 
stant [20-251. (For discussions of this problem. see also 
Refs. [26, 271.) Unfortunately, the classical (tree-level) 
Bekenstein-Hawking entropy does not have a dynamical 
explanation in this approach. 

However, in addition to divergent corrections there 

might be finite corrections to the thermodynamical quan- 
tities (mass, entropy, temperature) that are of great in- 
terest since they may be essential at the final stages of 
black hole evaporation when the mass of the black hole 
becomes comparable with the Planck mass. The correc- 
tions, logarithmically dependent on the mass of a hole, 
have recently been observed in two (12,221 and four [28] 
dimensions by means of perturbative calculations on the 
fixed classical background. 

The aim of this paper is to give, within the two- 

dimensional (2D) dilaton gravity modified by the one- 
loop contributions according to RST [IO], a complete and 
detailed investigation of the above-noted problems: the 
form of the quantum-corrected geometry of the eternal 
black hole and a calculation of the corresponding ther- 
modynamical quantities in one loop. 

One remark is in order. The RST model is exactly 
solvable but the solution is uniquely defined only, up to 
the boundary condition?, which may essentially change 
the character and physical interpretation of the solution. 
This is because the nonlocal, nature of the Polyakov- 
Liouville term in the effective action contains an ambi- 
guity corresponding to different choices of the quantum 
state of the system. The choice made in [lo] describes 
the formation of the black hole from vacuum space-time 
due to incoming matter. There is no Hawking radia- 
tion for the vacuum flat space-time stage; the radiation 
energy-momentum tensor is zero, T,$ = 0, in the asymp- 
totically flat region. Instead, we are interested in the 
already formed eternal black hole being in thermal equi- 
librium with the Hawking radiation. At infinity, we have 
asymptotically flat space-time filled by radiation with the 

energy density Tpd = ENT’. Therefore our choice of 
boundary conditions is different from that of [lo] to en- 
sure this behavior at infinity. 

Our paper is organized as follows. In Sec. II we 
write down the RST equations, explain our choice of the 
boundary conditions describing the eternal black hole, 
and find exactly the general solution in the Schwarzschild 

form. The solution obtained is a quantum deformation 
of the known classical dilaton black hole [6]. The global 
structure of the solution found is studied in Sec. III. In 

Sec. IV, we give some general remarks on the formu- 
lation of the black hole thermodynamics and calculate 
the thermodynamical quantities (mass, entropy, tempkr- 
ature) for the classical black hole’ and its one-loop coun- 
terpart. A comparison with the previous perturbative 

‘The thermodynamics of the classical 2D dilaton black hole 
has been previously studied in 129-311. 
‘The reasons for writing the Polyakov-Liouville term in the 
form (2.3) are analyzed in [32]. 

calculations [12,22] is given. The possible relevance to 
four-dimensjonal black hole physics is discussed in Sec. 
V. The results obtained are summarized in the conclu- 
sion. 

II. ETERNAL BLACK HOLE SOLUTION 
OF THE RST MODEL 

A. Action and fleld equations 

The classical action of dilaton gravity [SI, 

IO=; 
J 

d%fie-yR + 4(Vc#y + 4x7 
M 

+A 
J 

e?“kds, 
x ml 

(2.1) 

on the quantum level, according to [lo], gets modified by 

the terms 

II=-2 J d%J=jibR - F 
M 7r &,.$kds J (2.2) 

and 

Iz=-Z J dW=4$v)2 + $Rl - ; J,, Ilrkds, M 
(2.3) 

where we added in (2.1) and (2.2) the boundary terms 
determined with respect to the second fundamental form 
k in order to have a well-defined variational problem. If 
lzw is an outward vector normal to the boundary 8M, 
then k = V,@. The function $J is the solution of the 

equation 

q $=R 

where 0 = V,V’. 

(2.4) 

The action Iz is the Polyakov-Liouville term’ incor- 
porating both the Hawking radiation of the scalar mat- 
ter N multiplet (6 = g) and its back reaction on the 
black hole geometry. The local term I1 (2.2) is added 
[lo] to preserve, on the quantum level, some symmetry 
of the classical action (2.1). We are working in the semi- 
classical approximation when only the matter fields sur- 
rounding the black hole are quantized while the metric 
of two-dimensional space-time is still classical. Then the 
minimum of the effective action 

I = IO + I1 + I2 (2.5) 

under apj;ropriately defined boundary conditions gives us 
the quantum-corrected black hole configuration. 

tion (Tp” = 2k, 
Varying (2.5 with respect to metric we get the equa- 

sgw 
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where 

2-j;) = $-~“{2v,v,$fJ - Zg&~ - (V4)2 + A”]}, 

(2.7) 

TL:) = -5 (g&4 - V,Vv4) I (2.8) 

T$ = -&Qb,, - 2v,v,$J -Sp,[-2R+ ;(v$)2]]. 

(2.9) 

Variation of (2.5) with respect to 4 gives the dilaton field 
equation 

2e-yIz + 404 - 4(V@2 + 4x21 = -nR. (2.10) 

Taking the trace of the energy-momentum tensor (2.6) 
T,,g’” = 0, we get 

2e-y&fJ - 2(Vqy + 2P] = -n(R + q qs). (2.11) 

Comparing (2.10) and (2.11) we come to the equation 

(R + 20l#J)(n - 2e-24) = 0. (2.12) 

Remarkably, we now have only two possibilities. The 
solution of the first type is characterized by the constant 
value of the dilaton 

2+-ln5=const (2.13) 

and the constant curvature 

R = -2X’. (2.14) 

Then Eq. (2.6) reduces to the theory of induced 2D grav- 
ity with the cosmological term (see [33,34]). This de Sit- 
ter space-time solution is absent in the classical theory 
described by the action (2.1). Nevertheless, the value of 
the curvature (2.14) is “classical” since it does not de- 
pend on n characterizing the quantum effects (K is pro- 
portional to the Planck constant FL). This constant cur- 
vature solution was missed in the previous consideration 
of the model. Note that this solution lies completely in 
the quantum mechanical strong coupling region. There- 
fore one could assume that it is an artifact of one loop 
and is absent in the full quantum theory. However, one 
can show that the de Sitter space (R =const, 4=const) 
is still the solution of the three-loop p-function equation 
in the D = 2 re model [35] that can be treated a6 2D 
quantum gravity [36,37]. 

B. Choice of boundary conditions 

The second possibility following from Eq. (2.12) con- 
sists in that the dilaton &I is a nonconstant function on 
the two-dimensional manifold. Then we have fxom (2.12) 
the key relation3 

3This relation is present in the classical theory described by 
the action 10 (2.1). The one-loop term 11 (2.2) is added in 
order to preserve this relation on the quantum level. 
R = -204 (2.15) 

allowing one to integrate exactly all the field equations 

(2.6)-(2.10). Equation (2.15) means that the function 11 
reads 

ti=-24+uJ, (2.16) 

where w is the solution of the homogeneous equation 
q w = 0. The nonlocal natureof the action 1, (2.3) is 
reflected in the dependence on such an arbitrary func- 
tion M. The concrete choice of UJ is provided by appro- 

priate boundary conditions corresponding to the chosen 
quantum state of the whole system. One natural choice 
is to put a,$ = 0 in the asymptotically flat region. 

This means that asymptotically Tf”? = 0 and, hence, 
no Hawking radiation is present in the flat Minkowskian 
spac%time. This boundary condition is reasonable in the 
situation when formation of a hole from flat space-time 
due to the incoming matter is considered [lo]. 

Instead, here we assume the hole with nonzero mass to 
be already formed and to be in equilibrium with the envi- 
ronment of the fluctuating quantum fields behaving like 
a thermal gas at infinity. The geometry of such an eter- 
nal black hole is deformed by the back reaction effects 
of this environment. Our choice of the boundary con- 

ditions is regulated by the following two requirements: 

(1) There is no singularity of + (and TL?) at the hori- 
zon for the Hawking temperature T = TH; (2) in the 
asymptotically flat region, the back reaction is negligible 
and we have the semiclassical picture: flat space-time 
filled by thermal Hawking radiation with energy density 

T,o@’ = Tit,, = ;NT2 and temperature T. 

As has ‘been shown in Ref. [22], the solution of 

the equation q $ = R for a metric written in the 
Schwarzschild gauge 

ds2 = -g(z)dt’ + g(l) Ldz2 (2.17) 

takes the form 

+=-lng-b dz 
s rn sb) 

(2.18) 

and the renormalized energy density of the Hawking ra- 
diation is as follows: 

TO 
w = n 

2n 
( 

?&&-b2), 
> 

(2.19) 

The choice of the constant bin (2.18) and (2.19) specifies 
the quantum state of the system. It has been proposed in 
[22] that for the system at the temperature T = (2?rfl):1 
the natural choice is b = $. Then, both ~6 (2.18) and 

To(‘) (2.19) are regular at the horizon [g(zh) = 0] for 
t& Hawking inverse temperature p = fiH z 2[g’(.zh)]-’ 

and, asymptotically, (2.19) gives the energy density of 

the thermal bath with temperature T: To ’ (” + Tit,, = 

%NT’. Thus we have for the system lying in a box ‘with 

size L at the temperature T = (2np)-1 
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where c is constant. 
The form (2.20) for the function $ is general and valid 

for an arbitrary 2D theory describing the eternal black 
hole. Being interested in the concrete, model (2.5), it is 
instructive to give (2.20) the semiclassical consideration 
of the classical black hole configuration [6] which iS the 
minimum of the action I0 (2.1). It takes the form (2.17) 
with 

g(4) = 1 -at?+, 4 = -xz. (2.21) 

Then we obtain that, at the Hawking temperature 
0 = 0~ = &, the function 11 (2.20) considered 

on this classical background takes the form (2.16) with 
w =const: 

ti(5) = -W(~) + W(L) + c> (2.22) 

where 4(L) is the value on the boundary z = L. Equiv- 
alently, (2.22) means the condition a,+\.=~ = 2X. 

The contribution to the entropy due to the Hawking 
radiation is determined by the value of the function ?/, 
on the horizon [13,38]: S = --2nti(rh). We obtain for 
(2.22) that 

s = 4n ($(q) - l#l(L) - ;> 

The, inserting (2.21), we see that this quantity 

s = ~NLT - 2fha - 2%~ (2.23) 

reproduces the entropy of the thermal bath Sth = 
-4m$(L) = $iVLT in the box with size L and temper- 

ature T = &. The second term in the right-hand side 
(RHS) of (2.23), 4nb(z,,), can be interpreted as an addi- 
tion (correction) to the entropy of the black hole itself. 
Thus ?I, in the form (2.20) with the boundary condition 
4(z = L) = 0 [this fixes the indefinite constant in (2.20), 
c = 0] includes automatically the effects of the thermal 
bath of the asymptotically flat space-time. 

We expect that the semiclassical consideration is cot‘- 
rect in the asymptotically flat region. In particular, there 
we have (2.22) for $. Therefore, according to our second 
requirement, we take the gauge (2.22) or, equivalently, 
w =const in (2.16) in the complete one-loop theory. The 
condition (2.22) will guarantee, by the way, the regularity 
of $ on the horizon. 

In two dimensions the”Hawking temperature and, COP 
respondingly, energy density of the Hawking radiation at 
infinity are independent of the mass of a hole. Therefore 
oux requirements (1) and (2) concern only the nonzero 
mass hole. For flat space-time (zero mass) there, are no 
reasons for the radiation and, hence, we need a different 

boundary condition, namely, a,,$ + 0 (T$ --f 0) [or, 
equivalently, w 3 -2X$ in (2.16)]. 

C. Exact integrability 

By taking into account (2.10), (2.16), and (2.22), 
Eq. (2.6) is written in the form 
V,V”F(4) = &W) 
where F is the function of the dilaton 

(2.24) 

F(6) 3 qS - ie’? (2.25) 

An equation like (2.24) normally appears in different 
two-dimensional models of gravity. It means that &, = 
e,“a,F is the Killing vector (V,,<,, = 0). This fact es- 
sentially simplifies the integration of the field equations. 

Indeed, we may use the variable 3: = &F(4) as a space- 

like coordinate on the 2D space-time. Then it follows 
from (2.24) that the metric takes the Schwarzschild-like 
form (2.17) and it is static (independent of the time vari- 
able t). The concrete form of the metric function g(x) is 
found from Eq. (2.15), which reads 

a3 = 2% (s&b). (2.26) 

By integrating (2.26) it is more convenient to find g as a 

function of the dilaton 4 under the assumption that 4(z) 
is given by the equation Qz = F(4). Then we have from 
(2.26) that 

29 = 8,s + &F(4) (2.27) 

where d is constant. The solution of (2.27) is easily found: 

g(4) = 1 - ae2” + n@ (2.28) 

where we have put d = 2Q in order to have g = 1 in the 

asymptotically flat region (4 + -ca); a is the integration 
constant. 

Inserting now (2.17) and (2.28) into (2.10), we get Q = 
‘-X for the constant. Finally, the general solution of Eqs. 
(2.6)-(2.10) in the gauge (2.22) is 

1 
ds= = -g(z)dt’ + -ds’, 

g(x) 

-AZ = F(4) z C$ - ;e’“, 

g(4) = I- a2” + n&?. (2.29) 

Using the identity (2.27) it is easy to check that $ de- 
fined as (2.20) (at 0 = pb) for the quantum-corrected 
background (2.29) indeed takes the form (2.22). Thus 
the whole integration procedure is self-consistent. 

As we could expect, the’ general solution (2.29) does 
not contain the flat space. Our boundary condition (2.22) 
assumes the presence of a thermal gas with nonzero en- 
ergy density% the asymptotical regiqn that necessarily 
curves the space-time. As a result, at infinity the posi- 

tive thermal energy density, T$‘) = %, is compensated 

b{(to:e_nnegatfve energy density of the gravitational field,4 

TO --EL 
* 

4This is the energy density of the gravitational field de- 
scribed by the metric function 90 = I+ K&‘~ that is valid in 
the asymptotical region. 
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We see that in the limit IC = 0 (2.29) coincides with 
the classical black hole solution (2.21). However, asymp- 
totically (4 + -co ,z + +co), the last (“quantum”) 
term in (2.29) dominates and the solution goes not to 
the classical one (2.21) but to that of (2.29) with a = 0, 

g + go = 1 + ~4e’b. This solution is asymptotically flat 
and is a quantum deformation (with n being the deforma- 
tion parameter) of the classical linear dilaton vacuum. It 
is a natural reference configuration (instead of flat space) 
with respect to which the quantities (like energy) mea- 
sured at infinity are defined. 

III. GLOBAL STRUCTURE OF THE 
QUANTUM-CORRECTED SPACE-TIME 

The dilaton field 4 as a function of z is two valued. 
The critical point &, = $ln; defined as F’(4<,) = 0 
separates its two .branches. So in the regions 4 < & 
or 4 > &, 4(z) is one valued. We call these regions 
the (+) and (-) ones, respectively. The derivatives with 
respect to the variable 2‘ is defined as 0, = -&a+. 

Therefore the point 4 = 4cr is the place where a space- 
time singularity is present. Indeed, the scalar curvature 

for the metric (2.29), 

(3.1) 

takes infinity at 4 = &. 
Thus the singularity of the classical black hole (K = 0), 

located at 4 = +cc is now shifted to the finite value of 
the dilaton, i$ = 4,.. 

Another important point characterizing (2.29) is that 
the flat space-time is not a solution to any parameter a. 
This is obviously due to the boundary condition (2.22) 
and the fact that the back reaction of the Hawking radi- 
ation drastically changes the geometry of space-time. 

The structure of space-time described by the metric 
(2.29) essentially depends on the value of the integration 
constant a (in the next section we relate it to the hole 
mass). For a < acr = $(l,- In 2) the metric function 
g(4) is everywhere positive. So no horizon is present and 

(2.29) describes space-time with a naked singularity. At 
the critical value of a = a,, we have g(&) = g’(&) = 0. 
Nevertheless, g(z) has a simple zero at zCr = -iF(&,) 
since gk(z,,) = 2A. For a > a,, the metric functxm g(d) 

has two zeros, &and I& However, since +h < 4,, < 4h, 
the second zero 4h is “beyond” th& singularity. 

Hence, for a 2 a,, in the region 4 < 4,r a horizon 
appears. For a = a,, it coincides with the singularity. In 
the classical case the point a = 0 separates the solutions 

with and without horizons, the case a = 0 corresponding 
to everywhere regular flat space-time (the vacuum of the 

~theory). The quantum-corrected space with a = a,, is 
also smoother than the other solutions (2.29). Indeed, 
for a > a,, the metric function g(z) at z = zCr reads 
g(z) = -:(a - a,,) +2x 
( 

1+ ;(a - a,,) 
> 

(z - %) 

-$(a - a,,)(z -z,,): (3.2) 

and both g: and gz are singular at 4 = 4cr, the curvature 
going to infinity as 

R P(a,, - a) = _ A+ (acr - a) 

- -44cr - 4Y n(z,, - rc) g 

For a = a,, the metric 

(3.3) 

g(z) = 2X(z - zcr) + iA” (z - ze.)~ (3.4) 

and the first derivative gk are regular at 4 = 4ce, while 
the curvature (or second derivative g:) 

z 
R 

-, - (4 -“;..,, = - ($ -^,,,,: 
One can see that the singularity (3.3) is stronger than 
(3.5). Generally, the metric (2.29) is smoother in compar- 
ison with the classical one. In the latter, the singularity 

is exponential R = -4X2&+ while in the quantum- 
corrected case’the curvature grdws by a power law, (3.3) 
and (3.5). Moreover, the classical singularity manifests 
itself already in the singular behavior of the metric func- 
tion, gC1 - --at+, while the quantum-corrected met- 
ric function (2.29) is regular at 4 = 4,, and only the 
derivatives gk and gg diverge. This circumstance al- 
lows us to formally consider the regions 4 < 4c. and 
4 > &. as different sheets of the same space-time glued 
at 4 = &,. The coordinate 4 naturally parametrwxs 
both sheets while z is appropriate to giving a coordinate 
only on one of them. Both the sheets are asymptotically 
flat though the curvature reaches zero differently: 

RN -4nX24e2~, 4 --t -co, (+) sheet, 

R - -%2+, 4 + +q 
Ic 

(-) sheet. (3.6) 

For a > aer every sheet contains an event horizon: 4,, 
on the (+) sheet and 4h on the (-) sheet. Remarkably, 
the derivative of the metric 92 iS the same for both the 
horizons and is equal to gL(zh) = 2X. 

Of course, this picture looks formal since no observer 
can penetrate through the singularity at 4 = 4,, and ap- 
pear at the second sheet. However, this picture is mainly 
the result of~the back reaction effects within the one- 
loop approximation. We assume that taking the next 
loops into account will make the singularity at 4 = 4.r 
smocither, preserving the same general global structure. 
So, having taken the full effective action, which is the 
result of all loop contributions, the singularity could be 
expected to vanish completely. 

One can find some support for this idea in the study of 
the exact (nonperturbative) two-dimensional space-time 
[40] that emerges from string theory as an exact back- 
ground of the string target space. The analysis of its 
global structure shows [41] the remarkable picture that: 
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two copies of the black hole space-time having an event 
horizon but no singularity are glued together to form a 

wormhole bridging two asymptotically flat regions. This 
is in agreement with our present consideration. It would 

be interesting to find the form of the corresponding (non- 
perturbative) gravitational action of, possibly, dilaton 
type giving the dynamics of the string target space ge- 
ometry and possessing this kind of solution. 

IV. THERMODYNAMICS: 
MASS AND ENTROPY FORMULAS 

The quantum-corrected black hole solution (2.29) re- 

sulted from the one-loop quantum effects. Generally, one 
would expect that these effects lead also to modification 
of all characteristics of the hole (mass, entropy, tem- 
perature) that possess quantuti corrections. This could 
change the thermodynamical relations, say, entropy as a 
function of mass, etc. 

In this section, we study this problem for the RST 
model and for the quantum-corrected black hole solu- 
tion found. To seek completeness we begin our analysis 

with general remarks on the formulation of the black hole 
thermodynamics and a brief description of the thermo- 
dynamics of the classical hole (2.21) (see [29-31,221). 

A. Formulation of the black hole thermodynamics 

Consider the system (gravity plus matter) at arbitrary 
temperature T = (zn@)-‘. The thermodynamics of the 
field system usually has a Euclidean formulation, making 
the Wick rotation t = w, and supposing all fields to be 
periodic with respect to the imaginary time 7 with the 
period 27rp = T-‘, where 7’ is the temperature of the 
system. 

We define the state of the system as any configura- 
tion (4(r),gwu(z)) satisfying some general conditions: 
(a), 4(z) and guy(z) are real fields on the Euclidean man- 
ifold (t = w) with Abelian isometry along the Killing 
vector 8, with the period 2rp; (b) there exists a sub- 
space (horizon) which is a fixed point of the isometry; 
(c) metric SPY(z) is asymptotically flat.. 

The condition (a) in two dimensions means that the 
metric can be written in the form 

d2 = g(z)d? + g-*(+P, 

where 0 5 7 5 2~~3. 

(4.1) 

From condition (b) it follows that the metric function 
has aero g(zh) = 0 at some point I = zh. This means 
that the system includes a black hole with the horizon 
at I ‘= rh. According to (c) the metric function goes 
to g(k) --t 1 if I + co. It should be noted that no 
other constraint on the state (4(~),g,~(z)) is assumed. 
In particular, values on the horizon 4(+h),gk(+h) are ar- 
bitrary. We only assume that the system includes the 
nonextremal hole, i.e., g’(zh) # 0. This is essential; if 

P#h-&p then (4.1) describes a space with a 

conical singularity on the horizon. This singularity man- 
ifests itself in a S-like contribution to the curvature so 
that the complete quantity reads [38] 
s(z - zh) + R, 
0 a = -, 

PH 
(4.2) 

where R = -9” is the regular part of the curvature. Thus 
our statistical ensemble contains both regular and singu- 
lar Euclidean metriw5 

With respect to the action I[p,g,4] one can define 
the free energy F = $1 which is a functional F = 

Fp,g,,(z),4(z)] of the fixed inverse temperature 0-l 

and of the state (4(z),gJz)). Applying the thermody- 
namical formulas 

we may calculate the energy and entropy for an arbitrary 
state (4(z), gHV(z)) at fixed p. These quantities for a sys- 
tem at fixed temperature change until the system reaches 
a thermal equilibrium characterized by the extremum of 
the free energy F = E - TS (or, equivalently, of the ac- 
tion l[~,~(z),gllv(z)]), (bF)p = 0. In this variational 
problem, as follows from the conditions (a)-(c), only the 
behavior of the fields 4,g at infinity or at the boundary 
of the box (z = L) is fixed, &J&L = 6gl,,r, = 0. Re- 

markably, such an equilibrium configuration satisfies the 
second law of thermodynamics: 

6E = TB, (4.4) 

for small variations around the equilibrium state. 
This ex+ne configuration satisfies the field equations 

obtained from the action I, &I = 601 = 0, and for all 
known cases the extremum is reached on the regular man- 

ifold, i.e., the corresponding Hawking temperature coin- 
cides with the fixed temperature of the system, fl= PH. 
Thus the state of the systeni evolves until its Hawking 
temperature becomes equal to the temperature of the 
system fixed from the beginning. 

The entropy (4.3) taken at fl = /?x and satisfying 
(4.4) is the Bekenstein-Hawking entropy which is de- 
termined by the total response of the free energy F of 
the system being in thermal equilibrium on variation of 
temperature.6 

B. Thermodynamics of classical black hole 

We apply now these prescriptions to the classical black 
hole described by the action 10 (2.1) (after Wick rotation 
it changes its ovei all sign) which on an arbitrary metric 
with conical singularity takes the form 

% this point our approach differs from that developed by 
York with collaborators 1391 in which only regular space-times 
of black hole topology are suggested to form a statistical en- 
semble. Nevertheless, for quantities calculable at the Hawking 
temperature both approaches give the same results. 

‘This follows from the condition (6F)p = 0 defining the 
equilibrium state. 
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x [I? + 4(V$J)2 + 4x21 - 1 
J 

e-=+kds. 
x 8M 

(4.5) 

It is a functional of the inverse temperature p. Con- 
sider the configuration which minimizes the action func- 
tional (4.5) under fixed 0. This would be an equilibrium 
configuration for the given temperature. It should be 
noted that only the large distance behavior of the metric 
g(L) + 1, L + co is assumed to be fixed in this vari- 
ational problem. The functions g(z), g’(z), and 4(z) 
and values on the horizon b(zh) and g’(zh) = & are 

supposed to be variable. As a result, the variation with 

respect to S$(Q,) gives the constraint 

(4.6) 

It means that the equilibrium configuration is a regular 
manifold without conical singularities. 

The variation of (4.5) with respect to 6g’(zh) vanishes 
automatically due to mutual cancellation of the variation 
of & in the first term defined on the horizon z = xh 
and that coming from the second term in the RHS of 

(4.5). Other (volume) variations give the classical dila- 

ton [Eq. (2.10) with n = 0) and gravitational Tjo? = 0 
equations. The solution is given by (2.21). 

For the equilibrium state we have the temperature T = 
1 = & and the Bekenstein-Hawking entropy of the 2*P, 
classical hole’ 

SBH = ze?+fi = 2a. (4.7) 

With the constraint T,(i) = 0 the energy functional (4.3) 
reduces to the boundary term 

7Translating the two-dimensional physics to the 4D language 
it is useful to have in mind the analogy between the dilaton 
field 4 and the radius r* in, the 4D spherically symmetric 
case, T’ - e-‘b (see See. V for details). Then (4.7) is written 
as S - ~2 which is similar to the known four-dimensional 
law relating the entropy of a hole to the area of the horizon 
Ah = XT;. 
where ds = g112dz is the measure induced on the bound- 
ary. This quantity is divergent in the limit L + cc for 
the classical solution (2.29) and, in particular, for the flat 
space (g = 1,4 = -AZ). To regularize the quantity (4.8), 
one must subtract the flat space contribution. With this 
aim, we add to the action I,, the additional boundary 
term 

(4.9) 

where the normal vector ng is defined with respect to 
the flat metric g = 1. Then the expression for the energy 
(4.8) gets modified to 

E = z [e-24g’/2(g1/~.y ~)Q(cz)]~=, (4.10) 

Substituting the solution (2.21) into (4.10) we obtain, in 
the limit L + co, 

This is the well-known result [29-311 for the mass’ of the 
dilaton black hple. 

C. Thermodynamics of the 
quantu&corrected black hole 

The same approach can be applied to the formula- 
tion of the thermodynamics of the quantum-corrected 
hole~described by the action (2.5). To get the terms 
IO and I1 on the manifold with conical singularity we 
can again use formula (4.2) for the complete curvature. 
One must be more careful, however, with the Polyakov- 
Liouville term 1,. It is obtained by integrating the con- 
formal anomaly. It should be noted that the anomaly be- 
comes modified due to the contribution from the conical 
singularity’ which really modifies the action I,. How- 
ever, comparisqn with the exact results shows that up to 
(1 - a)” terms this coincides with the naive application 
of(4.2) to (2.3). 

Taking into account that 4 = -24 + C, where C is 
constant, we finally come to the quantum action I for 
the metric (4.1) for arbitrary 0: 

‘The conformal anomaly is determined by the heat kernel 
coefficient aa, 6-W = SM 6uaz(s), which in the presence of 
a conical singularity has a &like contribution from the tip of 
the cone [42]. 
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I = -& /--[(e-z+ + n$)R + 2(2e-2” - fc)(Vf# +4X%-24] 

1 
-; aM(e-24 + n+)k - 2 

s 
(e-z+h + kc&) + 2nCx(M), (4.12) 
where & = b(zh) is the value on the horizon, PH = 

ii& =*d 

is the Euler number of the manifold M for arbitrary fl 

(22,381. One can easily see that x(M) = 1. 
Fixing p and varying all the variables g,g’, 4 we again 

obtain that the equation &,I = 0 gives the condition 
(4.6) while 6+(.$ = &,,,I = 0 are the field equations 
(2.6)-(2.10). So the quantum-corrected equilibrium state 

is again a regular configuration at the Hawking temper- 
ature fl = fix. As can be s&n from (2.29), on the hori- 
zon we have g’(zh) = 2X. Hence the temperature of the 
quantum-corrected hole is the same as for the classical 

hole, @H = X-’ and TH = &. 
From (4.12) we obtain the expression for the entropy, 

s = 2(e?“h + Kc&) - 2nC, (4.13) 

where C = -24(L) + e [see (2.22)]. The first term in the 
RHS of (4.13) is defined on the horizon and can naturally 
be interpreted as the Bekenstein-Hawking entropy of the 
hole itself? 

sBH = z(~-~Q~ + n4h). (4.14) 

This result up to an additive constant coincides with that 
previously obtained in [12-141. On the other hand, the 
second term in (4.13) coincides (for c = 0) with the en- 

tropy of a thermal bath with temperature TH = %I-’ 

filling the space outside the horizon, 

St, = -4!+L) = qc (4.15) 

Thus the method of the conical singularity being ap- 

plied to the quantum effective action gives us both the 
Bekenstein-Hawking entropy of the quantum-corrected 
hole and the entropy of the thermal gas surrounding the 
hole. This naturally happens when we use the appropri- 

ate boundary condition +(L) = 0 for the function G(z) 
playing an important role in two-dimensional quantum 
gravitational physics. In principle, we may subtract the 
entropy of the gas St,, from the complete entropy by 
putting c = 2+(L) (C = 0) in (2.22). Generally, dif- 
ferent constants c correspond to different choices of the 

‘Taking the analogy with the 4D spherically symmetric case, 
this formula means a modification of the entropy-area relation 
by a logarithmic correction S - Ah - 1c1nAh. 
reference point for computation of the system’s entropy. 
Substituting the solution (2.29) into (4.14) we obtain 

that the entropy of the quantum-corrected hole coincides 
with the classical one, 

SBH = 2a. (4.16) 

Measuring the entropy with respect to that of a vacuum 
defined as solution (2.29) for a = aer we obtain 

San = 2(e+ + n&) - 2(e-2”= + n&r) 

= 2(” - G.)> (4.17) 

which exactly coincides with the expression derived in 

[12-141. 
Using the constraint Too = 0 we obtain (after a short 

calculation) the expression for the energy: 

(4.18) 

Considering (4.18) on (2.29) we see that E is divergent in 
the limit L + rn. Subtracting from the action the same 
boundary term (4.9) as in the classical case we obtain 

that the energy 

E = ;[(2+ - n)gf$ - 2e-24gqb’],=L (4.19) 

is still divergent, 

EA$qL)+g 

Xa XZNL An 
=-+- 

77 24x + ?i’ 
(4.20) 

Up to the last, irrelevant, term Eq. (4.20) can be inter- 
preted as the sum of the mass of the hole itself, 

M=$ (4.21) 

and of the (divergent) energy of the thermal gas sur- 
rounding the hole, 

X2N.L 
Eth = 24?r. (4.22) 

We may exclude this contribution of the thermal gas and 

obtain the finite energy if instead of (4.9) we subtract 
from the action the quantum-corrected boundary term: 

(4.23) 

where the normal vector TI: is defined with respect to the 
metric go, the solution (2.29) corresponding to a = 0, 
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which replaces the flat space at large distances in the 

quantum case. Then the energy reads 

E = $(2e-‘” - n)g’/‘(g’/’ - g;‘“)&].=~ (4.24) 

where 90 = 1 + I+?~. This quantity is finite and equal 
to (4.21), E = M. 

We may measure the mass of the hole with respect 
to the vacuum [solution (2.29) for a = a,,]. Then in 
the boundary term (4.23) the normal vector ni must 
be defined with respect to the vacuum metric. The ex- 

pression,for the energy takes the form (4.24) where now 
go = gvae q 1 - a&‘+ + n#&. The resulting energy 

E= +.d 

differs from (4.21) by a constant and vanishes for the 
vacuum configuration (a = ac:.). 

There is an alternative derivation of the amass advo- 

cated in [31]. Let us assume that all field equations ex- 
cept the gravitational one (2.6) are satisfied. The coor- 
dinate invariance of the action (2.5) implies that 

V/i-‘” = 0 (4.25) 

where Z’,,u is given by (2.6)-(2.9). Let the gravitational 
field be static and allow a timelike Killing vector &. 
Then one has 

V,(T’“f,) = 0. (4.26) 

In tivo dimensions (4.26) implies that there exists such a 
scalar function M that 

V,M = -e,,,T’Y(,. (4.27) 

In our case &, = -~E/c%F(~) and in the gauge (2.16)- 
(2.22) after simple calculations we get 

M=&+.? -24) - +4(VF)2. (4.28) 

When the gravitational field equations Tpy = 0 (2.6) are 
satisfied, Eq. (4.28) implies that M=const. So (4.28) 

gives the first integral of the gravitational field equations. 
Indeed, for the configuration (2.29) we obtain the result 
(4.21), M = %. It is worth noting that (4.28) allows one 
to write the mass formula, relating M to the values at 
the horizon: 

x 
M=;(nh,+e -24h). (4.29) 

D. Comparison with perturbative calculations 

The most important conclusion from the above consid- 
erations is that in the exact one-loop semiclassical theory 
the thermodynamical characteristics (the Hawking tem- 
perature, mass, and entropy) of the quantum-corrected 
black hole do not possess any quantum corrections. So 
all the characteristics coincide with the classical ones. 

In the previous consideration within the perturbative 
approach with respect to n (or, equivalently, the Planck 

constant) a logarithmic, In M, correction to the entropy 
has been observed [12, 221. Therefore it is worth com- 
paring these perturbative results with the present exact 

calculation. 
On the one-loop level the classical expression for the 

Bekenstein-Hawking entropy (4.7) as a function of dates 
on the horizon is modified by the term in (4.14) propor- 
tional to IC. This additional term can be treated as a 
quantum correction, S, = 2n&. Expanding the value on 
the horizon with respect to IC, & = 42 + w$“,, we obtain 

This is the result obtained in [12, 221 and interpreted 
as a quantum correction to the classical entropy (4.7). 
The correction (4.30) is essentially due to modification 
of the entropy formula in the one-loop theory. However, 
in the consistent approach we must also expand the first 

(“classic+‘) termlo SC, = 2ec2+h in (4.14) with respect 

to n: 

sc, = 2~24;: (1 - ~~44,). (4.31) 

From (2.29) we obtain that 2& = c&?~. Then (4.31) 
reads 

sc, = ze-2”;: - 2n&. (4.32) 

This correction is due to the deformation of the geome- 
try of the black hole and of the horizon “location,” &, in 
the one-loop theory. We see that the two one-loop mod- 
ifications of the entropy formula and of the black hole 

geometry are mutually compensated and the complete 
entropy, which is the sum of (4.30) and (4.31), remains 
uncorrected.” 

There are arguments similar to that leading to (4.30) 
concerning quantum corrections to the entropy of the 
four-dimensional black hole 1281. However, our present 
consideration shows that one-loop calculations on the 

fixed classical background must be accompanied by an 
analysis of the changing of the black hole geometry due 
to the back reaction effects. The latter can be important 
to make a final conclusion about quantum corrections to 
the black hole thermodynamics. 

V. RELEVANCE TO FOUR DIMENSIONS 

In four dimensions we face a much more difficult prob- 
lem. First, we do not have complete knowledge about 
the one-loop effective action (more exactly, about its fi- 
nite nonlocal pat). Therefore the modifications of the 

“I thank V.P. Fr&v for this important remark. 

“This, however, does not exclude that the entropy as a func- 
tion of & gets modified. Taking the an&gy r2 - eezo, this 
means that the entropy as a function of the horizon area is 
really modified by quantum corrections. 
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maw and entropy formulas are not exactly known. On 

the other hand, attempts to find quantum-corrected solu- 
tions minimizing the effective action look hopeless. How- 
ever, many things are simplified when space-time’symme- 
tries are present. For example, the structure of the renor- 
malized energy-momentum tensor for a static spherically 
symmetric background has been studied in more detail 
[43]. This allows one to find a quantum-corrected black 
hole configuration in some approximation [44]. In this 
section we illustrate the considerations of the previous 
section in a somewhat different approach developed in 

[IS] and allowing the reduction of the 4D problem to the 
two-dimensional one. 

Indeed, the gravitational Einstein-Hilbert action 

18’ = (5.1) 

being considered on the four-dimensional spherically 
symmetric metric of general type 

ds2 = & g$d2Bdt”dzP + ~~(z)(d8~ + sin20d~‘), (5.2) 
o,p=o 

is reduced to the effective two-dimensional theory 

I,, = & / d~‘~[r~R(~) + Z(Vr)’ + CU] 

(5.3) 

of the dilaton gravity type. g = ~‘4 plays the role of 
the dilaton field. The “dilaton” potential U(T) is con- 
stant, U(T) = 1, in the classical theory. Quantizing only 
the spherically symmetric excitations in the original the- 
ory (5.1) we come to the quantum theory of dilaton grav- 
ity (5.3). The potential U(T) changes its form due to 
quantum corrections, which was found by solving the cor- 
responding renormalization-group equation (for details 
see [16]). The ultraviolet divergences have been shown to 

be absorbed in the redefinition of the gravitational cou- 
pling G. Though in [16] we considered the more general 
case, we restrict ourselves here, just for illustration, to 
the simple case when one neglects the possible anoma- 
lous terms in the quantum version of the action (5.3). 
This approximation is good for large enough mass of the 
hole, M > 1OMpl. The corrected dilaton potential then 
reads 

where I& = 8G,,, is a distance of the Planck order. Then 
the quantum-corrected metric takes the form 

ds= = -g(r)dt’ + Ldr2 + r2df12, 
sb) 

(5.5) 

For T > Ipl the classical Schwarzschild black hole solution 
is restored. 
Remarkably, the space-time described by the metric 

(5.5) and (5.6) is quite similar to the two-dimensional 
space-time (2.29) considered in the previous sectmns. In- 
deed, (5.5) and (5.6) can be written in a form similar to 
(2.29): 

ds2 = -g(r)dt’ + g-+)dr’ + r-2(c,5)dQ2, 

2 = F(c)) E cash+, 

g(b) = tanhb - 2M(cdsh$)-‘. (5.7) 

The classical singularity at T = 0 (4 = +co) is now 

shifted to the finite distance T = Ipl (4 = &.). It was pro- 
posed in [16] that the metric (5.5) and (5.6) is ‘formally 
extended behind the singularity T = Zpl to the second 
asymptotically flat sheet (6 + +ca) and the singular- 
ity becomes smoother due to contributions of ghosts and 
matter fields. The general structure of the full space- 
time is similar to that discussed in Sec. III: The essential 
difference from (2.29) is that there is no extra horizon on 
the second sheet. 

At large T > Ipl the space-time is no longer Ricci flat 
and the curvature falls as follows: 

R(4)=-? !E y 

( ) T2 r 
(5.8) 

The second term in the RHS of (5.6) at large T falls as 
1 + O(s). Therefore the mass M of the hole does not 
possess any corrections. Nevertheless, the horizon de- 
fined by g(T,,) = 0 is now shifted, 

Th = &iqsg (5.9) 

compared with the classical one T~,~I = 2M. How- 

ever, the Hawking temperature TH = * remains un- 
changed: 

TH=& 
87rM 

(5.10) 

The entropy derived from the action (5.3) reads 

SC% (5.11) 

where Ah = 4~: is the area of the quantum-corrected 
horizon (5.9) and G is the renormalized gravitational cou- 
pling. One can see that S (5X), being expressed via 
the corrected quantities, takes the classical Bekenstein- 
Hawking form. In terms of the classical horizon area, 
however, one observes a constant correction to the clas- 
sical law: 

4, e, Sr2 
4G +” 

(5.12) 

The concrete value of the constant 7 = 8?r is irrele- 
vant. Expressions (5.10)-(5.12) illustrate the idea that 
the thermodynamical characteristics of a hole (M, S, TH, 
etc.) being expressed in terms of the quantum-corrected 
quantities may take the classical form. As we have seen, 
this is realized for the black hole in the two-dimensional 
RST model. In this section we found also partial support 
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for this idea for the 4D Schwarzschild black hole. How- 

ever, it should be noted that the approximation within 
which one gets (5.5) and (5.6) works well for large enough 
mass M > lOMp1. In principle, the correction terms 
- (%)” to the classical laws could be expected. This 
needs somewhat more accurate investigation. 

VI. CONCLUSION 

In this paper, we have analyzed the eternal black hole 
solution of the two-dimensional RST model giving us 
an example of exactly solvable one-loop effective theory. 
The quantum-corrected geometry of the black hole pos- 
sesses remarkable properties. Though the singularity is 
still present in the general solution, it becomes milder 
than in the classical case. Moreover, the equations ad- 
mit two copies of the asymptotically flat black hole space- 
time defined on “different sides” of the singularity. One 
of them (which is behind the singularity) does not have 
a classical analog. We propose that the complete space- 
time is a gluing of both copies. It should be noted that a 
similar picture appears in different quantum models [16, 
411. The singularity is probably absent in the complete 
quantum theory as happens for the exact (nonperturba- 

tive) black hole background of the string theory [41]. But 
the global structure of the black hole space-time remains 
the same. 

Generally, quantum corrections are expected to change 
the thermodynamical relations of a black hole. However, 
our consideration based on the exact solution of the RST 
model shows that this does not happen there. The mass, 
entropy, and temperature of the quantum-corrected black 

hole are the same as in the classical case. So there are 
no quantum corrections. In principle, one can argue that 
this fact is a feature of this particuIar model but not a 
general property of black hole physics. This problem is 
worth studying on a number of examples. On the other 
hand, it follows from our considerations that the rela- 
tion of entropy and dates on the horizon (in our case it 
is I$,,) is really modified due to quantum correction [see 
(4.14)]. In terms of 4D black hole physics this can be in- 
terpreted to mean that the Bekenstein-Hawking entropy 
is really a more complicated function of the area of the 
(quantum-corrected) horizon, SBH - % - nlnAh, than 
in the classical theory. The direct derivation of this result 
in four dimensions needs further investigation. 
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