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The critical behavior of black holes in even and odd dimensional spacetimes is studied based on 
Ba~ados-Teitelboim-ZaneUi dimensionally continued black holes. In even dimensions it is found that 
asymptotically flat and anti-de Sitter Reissner-NordstrGm black holes present up to two second-order 
phase transitions. The case of asymptotically anti-de Sitter-Schwarsschild black holes presents only 
one critical transition and a minimum of temperature, which occurs at the transition. Finally, it is 
shown that phase transitions are absent in odd dimensions. 

PACS number(s): 04.70.Dy, 04.50.fh 
I. INTRODUCTION 

The possibility of critical behavior and scaling of clas- 
sical objects such as black holes in general relativity is an 
interesting and open question. Scaling behavior was dis- 
covered by Choptuik [l] in connection with the numerical 
study of gravitational collapse of massless scalar fields. In 
that paper, a universal behavior of the black-hole mass 
described by a critical exponent 0 N 0.37 independent of 
the initial shape of the collapsing scalar field was found. 
Since then, critical behavior and scaling in other collaps- 
ing systems have been reported [z]. 

To study the thermodynamics of black holes, and in 
particular their heat capacity and critical behavior, it is 
assumed that there is an existing analogy between the 
laws of thermodynamics and the laws that govern black- 
hole mechanics derived from general relativity. This was 
first established by Bardeen, Carter, and Hawking [3]. 
To guarantee this analogy one needs to make the formal 
replacements E --t M, 2’ + cn, and S -+ A/8xc, where 
A is the area, n the surface gravity, and c is a constant 
[4]. With these substitutions, the four laws of black- 
hole thermodynamics can be enunciated and the study of 
critical behavior seems to be a plausible natural exten- 
sion of these ideas. Two early contributions to the study 
of critical behavior in gravitational systems are those of 
Davies [s], and Hut [S], who discussed phase transitions 
in Kerr-Newman and Reissner-NordstrGm black holes in 
four spacetime dimensions. In the same direction, Lousto 
[7] has argued in favor of the validity of the scaling laws in 
gravitational systems. He has calculated the critical ex- 
ponents of black holes in four dimensions and has shown 
the validity of the scaling laws in those transitions pre- 
viously found by Davies [5]. However, the relationship 
between the results found in [1,2] and [7] are yet to be 
understood. 
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Bafiados, Teitelboim, and Zanelli have recently re- 
ported Schwarzschild and Reissner-Nordstrb;m anti-de 
Sitter black-hole solutions for even and odd dimensional 
spacetime as a particular dimensional continuation of 
general relativity with nonvanishing cosmological con- 
stant A [8]. By a suitable choice of coefficients in the 
Lovelock action they obtain a unique solution for the 
metric with dressed singularity, although only for positive 
masses. The entropy becomes a monotonically increasing 
function T+, and therefore the second law of thermody- 
namics for black holes remains valid. 

It is our purpose to analytically study the scaling be- 
havior in gravitational systems and provide further re- 
sults to compare with numerical studies in this subject. 
In this sense, Bafmdos-Teitelboim-Zanelli (BTZ) black 
holes seem to be an interesting and relatively accessible 
arena in which to test these ideas. Also the fact that 
these objects are defined in general spacetime dimen- 
sions, seems to be a distinctive feature that might help 
clarify whether the universality hypothesis of scaling be- 
havior is true for gravitational systems; that is, whether 
the critical exponents depend only on the dimensionality 
of the system, on the dimensionality of some order pa- 
rameter and on the range of the gravitational force. In 
addition to this, results on the thermodynamics and crit- 
ical behavior of Reissner-NordstGn anti-de Sitter black- 
hole solutions are scarce in the literature. 

In this paper we study the occurrence of phase tran- 
sitions in dimensionally continued BTZ black holes. We 
review some of the results found in [8], and particularize 
them for the different cases where the charge Q and A 
are zero or nonvanishing. In our study, as in the BTZ 
paper, we only consider nonrotating (J = 0) black holes. 
The scaling behavior associated with these transitions 
needs further study, and we shall report on that else- 
where 191. In Sec. II we briefly introduce the Lovelock 
action and the particular choice of coefficients from where 
the Schwazschild and Reissner-Nordstr&n anti-de Sitter 
black holes are derived. In Secs. III and IV we study the 
critical behavior of these black holes in even and odd 
dimensions, respectively, by evaluating the full thermal 
capacity at constant Q. We find that phase transitions 
are possible in even dimensions, except for the case of 
816 01996 The American Physical Society 



3 CRITICAL BEHAVIOR OF DIMENSIONALLY CONTINUED 817 
Schwarzschild black holes with zero cosmological con- 
stat. ,We also obtain that odd dimensional scenarios 
do not present transitions. Here, we also study possible 
discontinuities in the derivatives of the thermal capacity 
to assure that there are no phase transitions of any odd 
order. Section V is dedicated to give our conclusions. 

II. DIMENSIONALLY CONTINUED BLACK 
HOLES 

The Lovelock action [ll] in D dimensions, which is 
made by the sum of the dimensionally continued Euler 
characteristics of dimensions less than D (121, is consid- 
ered to be the most general extension of Einstein’s grav- 
ity that keeps the field equations for the metric to second 
order.’ 

The action is written as 

where 

(1) 
Here Rt = dw;+w$; is the curvature two-form, w; is 
the spin connection, and e, is the local frame one-form. 
The action is a local Lorentz-invariant D-form and is 
made of e,,w; and their exterior derivatives. However, 
these conditions do not restrict the values of the aP coeffi- 
cients. To obtain olP B&ados, Teitelboim, and Zanelli 181 
consider the embedding of the Lorentz group SO(D-1, 1) 
into the anti-de Sitter group SO(D - 1,2). We consider 
the choice of coefficients aP that appears in [S] 

if D = 2n , 
ap = (3) 

l-D+2p if D = 2n - 1 , 

where 1 is a length related to the cosmological constant 
by 1 = -a’/A(a > 0). These coefficients are constants 
with dimensions [ITI~..#-~“, n has units of action (di- 
mensionless, if fi = 1) and a; = 0,. , D - 1. 

The authors of [8) restricted their analysis to the cases 
of D = 4k and D = 4k - l(k E Z) in order to avoid 
naked singularities with positive mass in the BTZ model. 
However, black holes with regular horizons exist in the 
remaining dimensions provided one takes only one of 
the two possible branches of real solutions, namely that 
corresponding to the positive root of (2M/~)ll(+~) for 
D = 2n, or the positive root of (M + l)‘/(“-‘1 for 
D = 2n - 1, and similarly for the charged solutions. 

III. EVEN DIMENSIONAL BLACK HOLES 

In even dimensions the action (1) is of the form 
L eve,, = K(R~“~ + I-%?- A P) A.. . A (RaD-laD + 1-2eaD-1 A eaD),~>...~~ , 

and the equations of motion are given by 

(4) 
The factorized form of these equations, due to the par- 
tic&u choice of the coefficients, leads to a much simpler 
study of the physical properties of its solutions [SI. 

To study spherically symmetric solutions of black holes 
we start from the metric 

ds2 = -g’(r)dt’ + g-‘(r)dr’ + rZdC12 , (6) 

where the coefficients g*(r) can be expressed as a function 
ofr,I,M,andQas 
9V) = 1+ ; - 
Q2 

F - (D _ 3)TD-2 
> 

2/V-% 

(7) 

Spherically symmetric solutions for the Einstein- 

‘Other models have been considered in the literature, which 
include string theory based black-hole solutions and two- 
dimensional black holes with a dilaton field [13], but we will 
not go into those approaches here. 
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Lovelock equations have been studied in the literature 
by several authors 1141; we consider here only static and 
spherically symmetric metrics. 

The solution of g’(r) = 0 gives us the value of the even 
horizon T = T+: 

Q2 
2M(D - 3) 

+ g ( 1 + 5) (D--2V2 = vy-” , (8) 

which is the constraint relation we will use in following 
expressions to write the relevant thermodynamical quan- 
tities. The above equation has zero, one, or two real 
solutions, depending on the values of M, Q, and 1. We 
will illustrate in some detail how the roots can be ob- 
tained with a reasoning that will be used in the rest of 
the paper. 
. The left-hand side (LHS) in (8) is a polynomial in T+ of 

degree 20-4 with strictly positive coefficients. The RHS 
is a polynomial of order D - 3, with a positive coefficient 
also. Both sides are monotonically increasing functions of 
T+. The LHS is dominant for small (provided Q2/M # 0) 
and large values of T+. The RHS may dominate in the 
intermediate region, depending on the values of Q and M. 
Then, there will be two, one, or zero solutions to (8). For 
very large values of Q2/M the LHS is always dominant, 
and there is no root, which means that we have a naked 
singularity. If we decrease the ratio Q’/M, it will reach a 
value for which the LHS and FCHS curves will be tangent 
to each other at one point. In that case we have only one 
root and therefore one event horizon. Below that value 
of Q2/M the two curves intersect in two points, and thus 
two horizons arise. We take the greater root of the two as 
the black-hole horizon. We will use this kind of reasoning 
later on to get a feeling of how the system behaves in the 
general case where explicit solutions will not be available. 

For 1 + co, that is A = 0, and Q = 0, Eq. (8) gives 
us T+ = 2M for the case of Schwarsschild black holes, 
whereas the finite cosmological constant situation, gives 
T+ < 2M. Therefore the largest Schwarzschild horizon 
happens for the A = 0 scenario. 

From the standard expression for the temperature 

and relation (S), we find 
T= 
$D(l + .+2/p)ww 

277(D - 2) 
l+(D-l)$) (l+$)(D-4i’2-Q2] . (10) 
In the asymptotically anti-de Sitter Schwarzschild case 
(Q = 0 and negative A), it is easy to see that the above 
expression for the temperature reduces to the result ob- 
tained in [8] 

TQ=o = 1 + P - l)(r+/O’ 
27r(D - 2)r+ (11) 

In the asymptotically flat Reissner-NordstrGm solution in 
arbitrary spacetime dimension (A = 0 and Q # 0), the 
expression for the temperature reduces to 

T~=o=2$2) (5-G) (12) 

while for the asymptotically flat Schwarzschild case is 

TA=Q=O = 
1 1 

27r(O :2)‘+ = 4n(D - 2)M (13) 

For D = 4 these results reproduce the standard relations 
found in the literature. 

The expression for the entropy of the black hole in even 
dimensions can be computed in closed form, obtaining [S] 

S(r+)=lrP [(,+$)~D-2)‘2-1] , (14) 
which for the 1 -t 00 case reduces to 

7r 
SA&+) = z(D - 2)~; . (15) 

A. Phase transitions 

For the study of phase transitions we need to assume 
that the system is held in equilibrium at some temper- 
ature T with a surrounding heat bath. In D = 4 and 
A = 0, this condition was proved to be true only for 
supermassive black holes (M 2 105&,) [lo]. Above 
this limit, there is not enough energy for the emission of 
nonzero rest mass particles and the discharge of the black 
hole due to Hawking evaporation is negligible. Hence, the 
assumption of reversible transfer of energy at constant 
charge will be true. 

We will consider a small reversible transfer of energy 
between the hole and its environment in such a way that 
the electric charge Q remains unchanged. The heat ca- 
pacity we calculate is related to this transfer of energy. 

By using expressions (10) and (14) we obtain 



II CRITICAL BEHAVIOR OF DIMENSIONALLY CONTINUED . . 819 
where 

A= 
( 

~T~-~~-2) (l+$)(D-2)‘a 

( 

20-5 
+Q2 lz -++D-1 

> 
(17) 

To study the critical behavior in these black holes, we 
look for solutions of T+ = T$ that make the denominator 
A vanish in the above expression. We shall divide our 
study in different cases. 

(1) Asymptotically flat Schwarzschild solution in D di- 
mensions. This case does not present transitioris, since 
there are no values of T+ that make A = 0. ?‘aking the 
limit 1 + 03 in Eq. (16) we obtain CQ = -?r(D - Z)P-~, 
which is always negative for any value of D; In D = 4, 
T+ = 2M = 1/(47rT) leading to C, = -M/T. The nega- 
tive heat capacity implies that a slight drop in black-hole 
temperature will cause a further drop as energy is ad- 
sorbed. The process will continue indefinitely, with the 
l$ack-hole feeding on the surrounding heat bath. The 
fact that the temperature of Schwarzschild black holes 
increases as they radiate energy [5,6] is also realized for 
BTZ black holes, independently of the dimensionality D. 

(2) Asymptotically flat Reissner-NordstrGm solutions. 
This case corresponds physically to retaining only the 
highest-order dimensionally continued Euler density in 
the action (4), for example, the Einstein-Hilbert term,for 
D = 4. Making A = 0 in (17) we find 

T; = [p2(D - l)]11(D-2) (18) 

As the value of D goes to infinity, it is easy to see that 
T$ + 1 independent of the charge of the black hole. For 
any dimension equal or greater than four we find that the 
value of the critical event horizon becomes smaller as the 
dimension of spacetime increases. However, this critical 
horizon will never become zero. Substituting (18) into 
Eq. (12) we find the value for the critical temperature to 
be 

1 

Te = Z?r(D - 1)~; ’ 
(19) 

From Eq. (8) we have 

Mc=2 ‘+(~-lf(~-3) 
( > 

’ (20) 

so we can write the critical temperature in terms of the 
critical maas as 

> 
(21) 

The entropy is 
Sc = ;(D - 2)[s’7D - l)]‘/(=‘) c-32) 

For the case of D = 4 black holes, the critical values 
reduce to re+ = &‘A, Tc = l/(S?r4) = l/(SnM’) (since 
MC = 2r;/3), and Sc = ,,p = 37rQ”. These results 
coincide with those of [7] where 

Tc = (2?rM[3 + -])-I 

and pj satisfies the constraint 

(23) 

jj + Sj, + 4qJ = 3 . 

Since we are only concerned with the case of nonrotating 
black holes, J = 0 and then q = 2. Hence, one finds 

T’ = (SnMG)-‘. 
We should note here that T, S, and Mall remain finite 

through the transition. Since 

A = Q2(D - 1) - v,“-” , (24) 

the heat capacity CQ presents two branches, going from 
positive to negative values through an infinite disconti- 
nuity which we can classify as of second order. 

As we mentioned before, we need to check whether 
these values lie in the thermodynamical region, or if su- 
perradiant discharge modes become important. Follow- 
ing Gibbons and Carter [lo], for D = 4 we see that 
Qe/MC = a/Z >> rn& M 1O-21 and therefore the 
critical point lies within the region for which emission 
of charged particles is energetically favored. However, 
the condition for the superradiant modes to be negligi- 
ble, @/MC2 5 m,Z/e implies MC 2 1O48 c 105Ma. This 
imposes a lower limit for the value of the black-hole rnas 
for spontaneous discharge through superradiant modes 
to, be negligible and the previous expressions to give a 
valid critical transition. Then for D = 4 it is possible 
to have critical transitions in Reissner-Nordstriim black 
holes provided Me > 105Mo. We expect that the situ- 
ation would be similar for the more general BTZ black 
holes with A # 0 and general D. However, it is still 
necessary to show that the Coulomb barrier arguments 
presented in [lo] will still hold for any D. 

In the study of the temperature and mass as func- 
tions of the event horizon, the maximum value of the 
temperature is reached at the critical point TC and the 
minimum happens at T = 0, which corresponds to 
T+ = Q2/(D-2). This value of the horizon takes place 
for Q2/cDm2) = 2M(D - 3)/(D - Z), which is the limit- 
ing case of a degenerate horizon. If Q exceeds this value 
there is a naked singularity. 

In (22) we encounter a limiting value for the zero-point 
entropy 

S(o) = ;(D - 2)Q4@-9 , (25) 

or $1, = aQ2. We thus expect the ground state of 
these BTZ black holes to be de@nerate. 

As the black hole horizon goes over T; given by Eq. 
(IS), the black-hole temperature decreases, reaching the 
zero value for infinite horizon. The mass behaves as a 
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tionotonically increasing function of T+ for those values 
that make the temperature positive. The region where 
the mass is monotonically decreasing corresponds to neg- 
ative values of T, which lacks of physical meaning. The 
heat capacity as a function of the temperature presents 
two branches, depending on the value of the event hori- 
zon being greater or smaller than 1‘;. CQ is positive for 
T+ < T; and negative otherwise. 

(3) Let us now study asymptotically anti-de Sitter 
Schwarzschild black holes in arbitrary dimensions. The 
critical value we obtain for the Schwarzschild horizon is 

From relation (8) the critical mass is 

1 D(D-Z)/z 

Mc = 5 (D - #D-l)/2 ’ 

and Eq. (11) gives us 

T&, = 
1 

n(D - 2)~; 

+JT7z 
= lr(D - 2)l 

1 D 

( > 

P-W/2 

=2?rMC(D-2) D-l 

The critical entropy at the horizon is given by 

S”(r+)=?rP [(gJD-2)‘2-1] 

(9 

(27) 

(28) 

(29) 

The critical entropy is a monotonically increasing func- 
tion of D, which reaches its maximum value when the 
dimensionality approaches infinity: 

SC(T+) = d”[& - l] 

The sign of the thermal capacity is determined by the 
sign of A: 

A+ry(r:-&T-) (l+$)(D-2)‘a 

(30) 

We s&e that there is only one transition, which takes place 
at 7; given by (26), and the heat capacity goes from neg- 
ative to positive values as T+ increases. As in the asymp 
totically R&&er-NordstrGm flat case, CQ is infinite and 
the rest of the thermodynamical variables remain finite 
during the transition. Thus we can characterize it as a 
second-order phase transition. 

Following Hawking and Page [15] we use the Helmholtz 
free energy to characterize the equilibrium of the,,system. 
In anti-de Sitter space, the gravitational potential causes 
confmement of particles and one can consider the system 
formed by the black hole and radiation as confined in a 
box. In addition, we are taking the superradiant C&&s to 
be negligible, and the Schwarzschild to be in equilibrium 
with the thermal bath. The free energy can be written 
as 

F=M-TS= 

(31) 

v&re we have used the expressions of M, T, and S com- 
ing from (8), (ll), and (14), respectively. 

The expression for the D = 4 free energy is 

with rT=” = 1 the only strictly pqsitive root. 
For the particular case of four-dimensional spacetime, 

we find the following critical results: T$ = 1/v’& M’ = 
21/3&, Tc = d/(2&) = 1/(3aMC), and Sc = 

n12/3. Since A < 0 we can write 1 = a, C, = 

m, Tc = ,dw, and S’(T+) = a?r/31111, 
which agrees with the results obtained in 1151, provided 
we take a = 3 and the mass and entropy of the BTZ 
black hole in units of rn;, where nap is the Planck mass. 

Some interesting results in D dimensions can now be 
obtained. First of all, there is a minimum temperature a 
Schwarzschild anti-de Sitter black hole can have in any 
dimension. This can easily be Seen from Eq. (11) upon 
derivation. The minimum value of the temperature turns 
out to be at T:, and thus is given by relation (28). Above 
Te, there are two possible black-hole radii for each tem- 
perature, respectively, smaller and larger than rf. The 
black hole with smaller horizon lies in the region CQ < 0 
and therefore is unstable decaying into pure thermal ra- 
diation or to a larger black-hole state. The larger black 
hole has CQ > 0 and hence is locally stable, although we 
need to study the free energy to determine it,? behavior. 

The roots and sign of Eq. (31) are determined by 

T5 I+(D-l),= (33) 

We can show that the above equation has only one root 
r$” because both sides are monotonically increasing 
functions of T+, and the LHS is greater than the RHS 
for small T+, and smaller for large T+. Then, F is pos- 
itive for T+ < v$=” and negative for T+ > br=“. By 
evaluating the free energy at T; we obtain F(r;) > 0 

for all D, and therefore T$ < T:=“. For general D, if 

T(r;) 5 T 5 T(rf=“) the heat capacity and free energy 
are positive.. For a given temperature the largest black- 
hole solution tends to reduce its free energy by evapo- 
rating completely. For T > T(TF”O), the free energy of 
the black hole will be less than that of the pure radi- 
ation, which will then tend to tunnel to the black-hole 
state. Similar effects have been previously noticed in the 
literature for D = 4 [15]. 

(4) AsymptoticalIy anti-de Sitter Reissner-NordstrGm 
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in D dimensions. The roots of the denominator of Eq. 
(16) are given by 

> 
=O (34) 

or, equivalently, by 

f(+ = ,y-)/Z ( 

where 

(35) 

f(r+) = Qz (D - 1 + yri) 

+~(Dki2)(2k-1)(~)*,lDa)iz. (36) 

This is a polynomial with strictly positive coefficients 
and there will be then two solutions for values of Q 
such that 0 < Q < Q,,it, and one solution for Q = 
Qcritr where Qcrit is the value of the charge for which 
fy) = T~w2v~ and f’(r;) = (D - 2)rttD+/2. 
For Q > Q,,it there will be no transitions. 

As in pievious cases; the full thermal capacity is infi- 
nite and it corresponds,to second order phase transitions. 

In Fig. 1 we plot the full thermal capacity C, as a 
function of T+ for the case D = 8. The cases of two, one, 
or zero phase transitions are shown. 

It is possible to show for sufficiently large values of 
Q2/M that a naked singularity arises. The condition for 
this to occw turns out to be Q2/M > (Q2/M)ma*, where 

2(D - 3) D--3 1 + (D - l)r;,,/P 
(Q2/ML = D _ 2 ~+max 1 + 2r2 

+ mXCP 

(37) 
-‘lo- 

o 1 2 3 4 5 8 

r+ 

FIG. 1. Thermal heat far D = 8 and Q = 1. Branches (a), 
(b), and (c) correspond respectively to zero, one, or two phase 
transitions, for three different values of A. 

and T+,, is the radius for (Q2/M),,,, where the inner 
and outer horizons are degenerate and T = 0. We also 
found, as in the asymptotically flat case, a limiting value 
of zero-point entropy, so the black-hole ground state is 
expected to be degenerate. 

IV. ODD DIMENSIONAL BLACK HOLES 

In odd dimensions D = 2n - 1 the action (1) is con- 
structed by considering the Euler density (basically the 
product of n Ricci tensors) in D + 1 dimensions. This 
density ED+~ is an exact form and thus can be written 
as the exterior derivative of a D form: 

ED+1 = wa,...OD+, R”l”’ A A R”D”D+’ 

=dLD, (38) 

with 
n-l 

cp = ,, , . ,, R-P-‘% ,, e2~+l ,, ,, ,D 
(39) 

The Lovelock coefficients are those given in (3). The equations of motion are given by 

(RW% + l-%“’ A P) A.. A (RaD-znD-l + I-Ze”D-s A eDD-l) A PE,,...,,,, = 0 . (40) 
As in the previous section, to study odd dimensional 
black holes we start from the expression of the metric 
(6), where 

gZ(T)=l+$- Q2 Z/(D-1) 

2(D - 3)rD-3 > ’ 

(41) 
with D odd. The value of the horizon T+ is obtained 
from 

2/F--1) 
lw+1- Q2 

2(D - 3)~$-~ 
(42) 

The relation above tells us that there are no 
Schwarzschild black holes in odd dimensions when we 
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restrict ourselves to the case of zero cosmological con- 
stant, the reason being that M becomes zero. However, 
for the ca.se of 2 finite, there is the possibility for such 
black holes, since in this case M takes positive values. 

As we did in Sec. III, we will write the general expres- 
sions for the temperature and entropy of the black hole 
as a function of the dimensionality. From (9) and (41), 
the temperature is found to be 

T = & + - (D _ l)r+ Q2 D--2 (1+ $)'3-D"2] , 

(43) 

where we have used again the implicit approach coming 
&am the constraint equation (42). Here one can see that 
for 1 + co and Q # 0 we arrive at a negative value of the 
temperature, for any value of D. 

For the case of Schwarzschild black holes, the relation 
found in [8] is recovered, 

T+,, = - 
4s (44) 

In odd dimensions the expression for the entropy of the 
black hole given in [8] does not have a close form, being 

s=2rr(D--l)~*+ds(1+~)‘D-3”z (45) 

For the case of D = 4 the previous expression reduces to 
the usual S = 4m+. 

A. Phase transitions 

The full thermal capacity at constant Q is given by 

,,=~~~D-l)(l+~)D-2r~-‘] , (46) 

where 

(47) 

We are interested in the following cases. 
(1) Asymptotically anti-de Sitter Schwarzschild black 

holes. h reduces to a polynomial expression in T, which 
is finite and nonzero for all T # 0. This implies that C, 
is finite and regular for any temperature. Therefore there 
are no critical transitions. 

(2) The general case, I finite and Q # 0, does not 
present any transitions either. It is easy to see, by in- 
spection of (46) that there is no transition Cg divergent 

(A # 0) for any value of T, Q, or 1. For finite values 
of the heat capacity there is no transition either, as the 
derivatives will be regular to any order. This can be seen 
tiam the fact that one can write 

The fist term on the right-hand side is equal to CQ/T 
and it is finite, since it is the ratio of two polynomials in 
T+ with positive coefficients. The second term reduces to 

1 a 
-4 > 

52 
aar, T ’ 

where the ratio Q/T and its derivative with respect to 

T+ are both finite. Because A never vanishes in odd di- 
mensions, the second term in (48) is also finite. Doing a 
similar analysis for the following derivatives of Cg we find 
them all to be finite. Therefore in odd dimensionally con- 
tinued BTZ black holes there are no critical transitions; 
the full thermal capacity and all its derivat&s remain 
finite for all values of T and Q. This result is general for 
any dimension. 

V. CONCLUSIONS 

In this paper we studied the possibility of critical tran- 
sitions in Ba&ados, Teitelboim, and Zanelli dimensionally 
continued black holes. In even dimensions there exist 
transitions depending on the value of the charge and the 
cosmological constant. Asymptotically flat Schwaraschild 
black holes do not present phase transitions with the spe- 
cific heat being always negative. In this case T = 0 is 
asymptotically reachable as the horizon approaches in- 
finity. For the Schwarzschild anti-de Sitter case there is 
one critical transition, with C, being negative (unstable) 
or positive depending on the horizon being respectively 
smaller or larger than the critical horizon. These objects 
present a minimum temperature, which is different from 
%X0. 

For Reissner-NordstrGn black holes with zero cosmo- 
logical constant there is only one second-order transition, 
while the anti-de Sitter case presents two. A character- 
istic feature of the latter case is that there could exist up 
to three black-hole radii for a given temperature. 

Odd dimensional BTZ black holes do not present crit- 
ical behavior. The full thermal capacity remains finite 
with finite derivatives for any value of the temperature. 

Further study is still needed to fully understand the 
physical meaning of these different transitions and the 
scaling behavior associated with them [9]. 
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