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The BFKL equation and the k=-factorization theorem are used to obtain predictions for Fa in 
the small Bjarken-z region over a wide range of Q’. The dependence on the parameters, especially 
on those concerning the infrared region, is discussed. After a background fit to recent experimental 
data obtained at DESY HERA and at Fermilab (Et365 experiment) we find that the predicted, 
almost Qa independent BFKL slope X > 0.5 appears to be too steep at lower Q2 values. Thus there 
seems to be a chance that future HERA data can distinguish between pure BFKL and conventional 
field theoretic renormalization group approaches. 

PACS number(s): 13.60.Hb, 12.38.Bx, 12.38.Qk 
I. INTRODUCTION 

The usual kinematic variables used for discussing 
deep-inelastic electron-proton scattering are derived from 
the four-momenta p of the incoming proton and q of 
the exchanged virtual photon: Q2 = -9’ and the 
Bjorken variable z s Qz/2p. q.,, In the region where 
higher-twist effects are likely to be negligible, i.e., for 
W2 z Q”(l/z - 1) 2 10 GeV’, the (Dokshitzer-Gribov- 
Lipatov-)Altarelli-Parisi [(DGL)AP] set of equations [1,2] 
describes the evolution of the structure function Fz 
with Q2 very well. In leading order (LO) all pow- 
ers of a.ln(Q2/$) are sum&d by the AP evolution 
equations, which take into account just strongly or- 
dered parton-kT ladders. Nowadays, usually, the next-to- 
leading order (NLO) set is used, where terms of the form 
Q: ln”-‘(Q”/~2) are also summed, taking nonordewd kJ 
contributions (covariantly) into account as well. Even 
in NLO, the AP equations do obviously not contain all 
leading logarithms in z. Thus one might naively expect 
the AP framework to break down at some small value 
of z, where a resummation of all powers of a,ln(l/z) 
should be necessary, although no perturbative instability 
between LO and NLO has been observed thus far in the 
Presently relevant kinematic regime [3-51. 

Such a resummation in LO is provided by the Balitskii- 
Fadin-Kuraev-Lipatov (BFKL) equation [6]. The equa- 
tion treats the gluons only, which are expected to be the 
dominant partons at small z. This might be deduced 
from the AP splitting functions [I], which become - l/x 
for splitting to gluons and constant for splitting to quarks 
in the small-z limit. It should be remarked, though, that 
this argument may be too simple, as it neglects the influ- 
ence of the particular shape of the parton distributions 
used [4,5] and furthermore does not respect the funda- 
mental energy-momentum conservation constraint. The 
BFKL resummation is formally correct for all Q’, but 
a fixed coupling &, was used in its derivation. Further- 
more, it was based on LO perturbation QCD, using (non- 
covariant) kT cutoff regulariza$ons; thus, we we limited 
to sufficiently large Q2. Since the resummation assumes 
that subleading terms in zz are small, including those in- 
12 
valving logarithms of Q’, it will also not be valid at high 
Q2. 4 conservative range for Q2 would be 4-50 GeV’, 
and the range 0.8-120 GeV2 explored in this work should 
be regarded as the extreme limit. 

To estimate the effects of the subleading terms, a NLO 
resummation in q would be necessary. But even though 
there has been some progress in that direction [7], a final 
result has not yet been obtained. Ultimately, it should 
even be possible to find a unified evolution equation COY- 
ering the whole perturbative region [S-lo]. But a cal- 
culation that can be confronted with experiment is still 
missing; thus, we stay with the usual BFKL formalism 
for the time being. 

Since a fixed coupling constant seems unreasonable 
in view of the running coupling of the AP framework 
we wish to connect to, the replacement 6, --t cx.(Q’) 
is done by hand. There is really no rigorous motiva- 
tion for this step. Some trust in this procedure can be 
gained by considering the representation of the evolu- 
tion equations as ladder diagrams. It is well known that 
the LO AP equations can be represented in a physical 
gauge by a sum of ,ladder graphs which ari strongly or- 
dered in the transverse momentum k2: Q2 > k2 > 
ki-, > kf > ki. In the small-z limit of the AP 
equation, we consider only the dominant gluon ladder 
(Fig. 1) and keep only the terms with double leading 
logarithms (DLL’s), ag ln(l/z) ln(Q”/p’). This copre- 
spends to introducing an additional strong ordering in 
z: 2 < z,-~ < < zO. The BFKL evolution can 
also be described in terms of a (Reggeized) gluon ladder, 
using the strong ordering in 2 only, to get the leading 
logarithms in z. If we let the coupling run, then the 
BFKL evolution will reduce to LO DLL’s upon imposing 
the strong ordering in transverse momentum. 

The main feature of the BFKL evolution with fixed 
coupling fia is the growth of the unintegrated gluon 
N 5-i with X = (3&./n)4ln2 N 0.5. Because of the 
dominance of the gluons at small zr, we expect a corre- 
sponding rise at small I in the structure functions too, 
once the off-shell gluons have been appropriately coupled 
to the quark sector. This expectation has been confirmed 
[11,12] for a small range of medium Q2 even in the case 
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of running coupling BFKL evolution, with Fz N & and 
x 2 0.5 for I < 10-Z. 

Experimentally, the situation has improved drastically 
since the advent of the DESY ep collider HERA., Before 
HERA only the Fermilab experiment E665 [13] was able 
to reach the small-s region, but at rather low Q’. Now 
HERA takes data [14,15] with x/Q2 2 3 x lOes over a 
wide range of Q2. The observed strong rise of Fz at small 
z has boosted the interest in the BFKL formalism. On 
the other hand, the dynamically generated AP partons 
[5] create a steep gluon differently, via a long evolution 
length in Q’, and successful parameter-free predictions 
(3,5,16] were given long before HERA started to operate. 
Alternatively, the present data can be fitted using the 
NLO AP evolution equations: Then a term N z-’ has 
to be assumed for the gluon distribution, e.g., in Martin- 
Roberts-Stirling set G (MRSG) 1171. Possibly this term 
mimicks the BFKL behavior. But this is not clear, since 
both methods describe the data equally well. 

We conclude that a detailed comparison of the stan- 
dard BFKL formalism with the new data is necessary. 
Only this can tell us if the BFKL formalism can rival 
conventional field theoretic renormalization group (AP) 
evolution equations in describing the measured structure 
function Fz. Our calculations are based on the meth- 
ods employed by Askew, Kwieciliski, Martin, and Sutton 

FIG. 1. Gluon ladder with the quark box for deep-inelastic 
ep scattering attached. The momenta are shown on the 
left side of the Feynman diagram and the parts of the 
&-factorization theorem, Eq. (3), on the right. 
(AKMS) [11,12,18], which will be described briefly in the 
following. 

A. BFKL equation and kT factorization 

The unintegrated gluon distribution j(z, k2), which is 
related to,the familiar integrated gluon distribution used 
in the AP equations by 

=s(s, Q") = 
I 

Qa $ j(z, k2) , (14 
cl 

depends on the transverse momentum k. Using it, one 
can write the BFKL equation as [19] 

f(d? = f&6 + 
1 dY I J z y dk”K(k’, k’2)j(y, k”?) 

K(k2,k’z) - 3a$*)k’ 

One could use a suitable input jo, the so-called “driving 
term,” and solve the equation iteratively [lo], but this 
procedure allows no simple connection to the known AP 
region. 

Instead we can obtain an evolution equation in z from 
the integral equation by differentiating with respect to 
ln(l/x): 

-,afbm _ 34k2)k2 dk” _ J [ j(r, k”) - j(z, k”) 

ax R k’= )k” - k21 

+ (4k!?; ;:;I,2 1 ’ (‘4 

assuming that the derivative of the driving term j0 can 
be neglected. Since the driving term describes the gluon 
content without any BFKL evolution, it is reasonable 
to assume that it is connected to the nonperturbative 
“soft” Pomeron [ZO]. Because of the soft Pomeron’s weak 
I dependence N x-“.08, we expect ~3j,,/aln(l/z) to be 
small. 

Equation (2) can then be used to evolve the uninte- 
grated gluon to smaller 2, using a suitably modified AP 
input as boundary condition at zo = lo-’ by applying 
Eq. (lb). An obvious problem in Eq. (2) is posed by the 

integration over kr2, which starts at zero. Even for the 
AP gluon distributions we use in this work, the limit of 
validity is about 1 GeV’. We employ a simple ansatz to 
continue the gluon into the in&red (IR) region, which 
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will be described later in this paper. A similar comment 
applies to the upper limit of the k” integration. The 
upper limit introduced by energy conservation is close 
to infinity [ll,lZ], so that for practical calculations an 
artificial ultraviolet cutoff has to be introduced. The de- 
pendence on the IR and UV treatment will be thoroughly 
discussed later on. 

To obtain predictions for F,, we have to convoltite the 
(off-shell) BFKL gluon, i.e., the gluon ladder in Fig. 1, 
with a photon-gluon fusion quark box F(O) using the kJ- 
factorization theorem 19,211 

xF!‘)(y, k”, Q2) , t (3) 

with i = T and L denoting the transverse and longitu- 
dinal parts, respectively. The expressions for F(O) can be 
found in [18] and references therein. The BFKL predic- 
tion for Fz is then simply the sum of the calculated FT 
and FL. Obviously, here the .same probltims with the kj2 
integration occur, which are circumvented by the meth- 
ods mentioned above. 

It is important to notice that the BFKL gluons are off 
shell (k2 # 0). The term F(0)/k2 in the above equation 
then corresponds to the structure function of a virtual 
gluon. In contrast, the AP formalism is based on on- 
shell gluons, which is a good approximation due to the 
strong ordering in transverse momentum encountered in 
the AP evolution in LO. This strong ordering allows us 
to perform the k12 integration in Eq. (3). Thus, ignoring 
complications due to the collinear singularities ,for sim- 
plicity, one arrives at the usual mass factorization equa- 
tion 

Here @; plays the role of the on-shell gluon structure 
function, whose I dependence stems from the AP split- 
ting function Pq9 and 9 is the integrated gluon. In the 
NLO AP evolution, the strong ordering in k* does not 
hold anymore due to the emission of a second gluon, but 
the interacting gluon is still considered to be on shell in 
comparison with the hard scattering scale Q2. 

This shows that it is inconsistent to simply feed the 
evolved BFKL gluon vi& Eq. (la) back into the ‘AP 
equations below the limit set by 10. Calculations at- 
tempting to use BFKL gluons below and AP gluons above 
so within the AP formalism [22]~ ignore the essential o# 
shellness of the BFKL gluons. This casts first doubts on 
a recent BFKL analysis of the HERA Hl data using this 
method [23]. No such problem persists when we use just 
this gluon mixture to drive the general kT factorization, 
Eq. (3), which reduces to the rnas factorization in the 
AP region. 

Even though the dominant contribution at small 2 
should come from the BFKL gluons, a certain amount 
of “background” in Fz due to quarks and nonperturba- 
tive effects should betaken into account. We expect the 
background to be comparatively small and also to vary 
much less with a. We shall use.an ansatz motivated by 
the soft Pomeron C~X-~.“~, where the constant Cp is fit- 
ted to the data. After this general outline of our method, 
we will now proceed to a detailed discussion of the un- 
derlying formalism. 

II. SUITABLE INPUT FOR 
THE BFKL EVOLUTION 

We focus our analysis on the gluon distribution used 
in [12], i.e., a gluon based on the MRSDo set of par- 
ton distributions [24], but evolyed with the leading order 
Altarelli-Parisi equations [25]. Since the BFKL evolution 
deals with an mintegmted gluon distribution, we calcu- 
late its derivative using the well-known singlet Altarelli- 
Parisi equation given by 

where C denotes the quark singlet part and P$,P,(i) 
the usual LO splitting functions. In the same way we 
produce a leading order MRS D- type gluon, based on 
an input given in [26]. 

We also use a dynamically generated gluon, distribu- 
tion, for definiteness the Gliick-Reya-Vogt (GRV) 1992 
LO parametrization [3], which h&s the advantage of (a) 
being based on an explicit LO calculation and (b) being 
positive definite down to a low value of Q2. 

Furthermore, we take a look at the MRSA low-Q’ 
gluon (271, which extends the valid Q2 range down to 
0.625 GeV’, using an ad hoc form-factor-like ansatz sim- 
ilar to the one we employ for j. However, as MRSA is 
a NLO analysis, there is no consistent way to implement 
it in our BFKL evolut&n, which is neither a modified 
minimal subtraction (MS) nor deep inelastic scattering 
(DIS) renormalization scheme calculation. 

A. Treatment of the infrared region 

As mentioned in the Introduction, we need a suitable 
description of the infrared region; for our calculations, we 
use the ansatz explained in detail in [11,12]. This ansatz 
introduces three parameters. 

(i) An IR “cutoff” kz, i.e., a parameter which sepa- 
rates the infrared region, where an assumption on the k2 
behavior of j has to be made, from the region where the 
Lipatov equation is solved numerically. 

(ii) A parameter kz that controls the infrared behavior 
of j. For k2 < k,2 we set 

f(G2) = Crkz yk yfh k,2) a 
The proportionality constant is given by 
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c, = k,” + k: 
k,2’ 

to guarantee continuity at k2 = k,2. This ansatz ensures 
that for k2 + 0, f(z, k’) - k2, as required by gauge 
invariance. 

(iii) A scale kz where we “freeze” the running coupling 
constant: i.e., 

a.(k’) + or.(k’ + k;) 

This procedure applies also to our boundary condition 
j(zo, k’), although there is a slight modification to the 
pure AP gluon in order to soften its low-k’ behavior: 

jAP(z,,, k’) -+ fAP(q,, k2 + k,2) (5) 

The only purpose of the additional parameter ki is to 
ensure that we do not approach too closely a region where 
the gluon is unreliable; e.g., the Do-type gluon already 
approaches zero at Q2 = 1 GeV2 and the D--type gluon 
is not defined at all for such a low scale. 

Thus 

f(=o, k2) = 
&fAP(zo, k,2 + k,2) for kz < k,” , 

& fAP(zo, k2 + k,2) for k= > k: 

(‘3) 
This provides an infrared behavior according to (4) and 
for k2 large enough j(z,,, k’) approaches jAP(zo, k’). 

In Ref. [ll], the parameter kz is set equal to ki, 
whereas in [lZ] kz equals kz. We prefer setting k: = kz 
for reasons given below. 

B. Fixing kt 

It seems to be clear that the parameters introduced 
above should be small; so the simplest choice for these 
would be [12] 

k; = k; = k; = k: = 1 GeV’ , (7) 

However, there is a self-consistency constraint on the 
choice of kz, depending on k,2 and ~0. The boundary con- 
dition (6) should inversely be related to the (integrated) 
Altarelli-Parisi gluon g in Eq. (la), that is, 

w(m> Q2) - 
s 

Q2 dk2 
,,.f(d) = 0. (8) 

0 

In a stricter approach, we apply the shift introduced in 
(5) also to the integrated gluon g in this equation. Then 
it is not very difficult to show that 
&,,g(so, Q”) 

8Q2 
= m&o, Q2 + k:) - w(m k: + k,Z) (9) 

Qh,2+b$-k~ 

It is obvious that this equation is satisfied by setting k,2 = kz, hence motivating our previous assumption. Using this 
and the asymptotic behavior of g, 

zg(z Q2 + k”) Q’?’ I LI dr,Q2) > (10) 

we may return to (8) for simplicity, which gives us, upon inserting our boundary condition (6), 

a&o, Q”) = 
J ok’ &fAP(%kf + k:) + s,;’ &jAP(ro, kZ + k:) 

c 

k= fk= 
N fAP(r,,, k: + k;) lri- ki + wh Q2) - wh k: + k:) 
Thus we obtain an implicit equation for kz: 

,nk:+k: 
k;:= 

wb, k: + k:) 

fAP(zo, k: + k:) 
(11) 

One can see that the value of kz mainly depends on the 
ratio g/f in the region of low Q’, and as the variation of 
f for different parton distributions is relatively small in 
that region compared to the variation of g, we conclude 
that it is basically the absolute value of g that determines 
the size of ki. Hence, as a rule of thumb, the higher 
the value of sog(zo,Q2) for small Q2, the smaller the 
resulting kz. It should be emphasized that, although the 
shift in Eq. (5) is taken into account in Eq. (9) for both f 
and g, but in Eq. (11) only for f, the solution of Eq. (11) 
provides a good estimate on k,$ very close to the value we 
get by minimizing the left-hand side of Eq. (8) for Q2 > 
100 GeV’. The result for all the parton distributions 
under consideration is given in Table I, together with the 
value of AQCD for four flavors used with each distribution. 
Figure 2 shows the unmodified gluons and the modified 
boundary conditions according to Table I. 

Regarding the Do-type gluon, we see that the opti- 
mized value of kz = 0.95 GeV’ is indeed very close to 
the naive estimate of 1 GeVZ, as was already noticed 
in [12]. It was also mentioned there that a reasonable 
choice of ki should lie in the range of 0.5-2 GeV’, and 
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TABLE I. Parameters for various sets of parton distribu- 

set Ag& (MeV) IO k: (GeV’) k; (GeV’) 
Do-tvw 173.2 0.01 1.0 0.95 
D--&e 230.4 0.01 1.0 1.51 

GRV 199%LO 200.0 0.01 1.0 0.19 
MRSA low Q= 230.2 (rn) 0.01 1.0 0.44 

we see that the D--type value lies well within this range, 
while the MRSA set is already close to its lower edge. 
The most extreme boundary condition in this respect is 
derived from the GRV parametrization, with a value of 
only 0.19 GeV2. 

As the more recent parton distributions favor a larger 
gluon g, the assumption of kz = 1 GeV’ (a good choice 
for the relatively small Do-type gluon) does not appear 
to be the best choice for these gluons. 

Let us now emphasize the importance of the constraint 
(8) on kz: Starting with the simple assumption (7) that 
all the parameters introduced should be equal to 1 GeV’, 
one gets a slope 

= 0.5-0.6 (12) 

for the unintegrated BFKL-evolved gluon distribution, 
as expected, no matter if Do-type, D--type, or GRV is 
chosen as input for the BFKL evolution. If we deviate 
each of the infrared parameters from (7), we see that 
it is kz which has the biggest impact on X. With kz 
decreasing, the slope rises, resulting in a slope X N 0.9 
for GRV partons (ki = 0.19 GeV’) as the extreme limit. 

Keeping these considerations in mind, we will now con- 
centrate our analysis on the structure functions. We will 
demonstrate that the slopes of f and Fz are related in 

FIG. 2. AP inputs as indicated and the corresponding 
boundary conditions constructed via Eq. (6). The unmod- 
ified AP gluons are shown down to kz = 1 GeV’, whereas the 
IR-treated inputs are continued below k,“. 

,. 
such a way that for large X our calculated Fz is too steep 
to match it to the recent HERA data. 

III. VARYING THE PARAMETERS 

We construct the boundary condition at ~0 = lo-‘. 
The consistency constraint (8) determines k$ and as a 
standard value for the other two IR parameters we choose 
k,Z = k,2 = 1 GeV’. The UV cutoff is set to lo4 GeV2 
and we stay with the A~CD of the AP partons. We have 
written an evolution program to solve (2) iteratively. Be- 
low k,2 the necessary integration can easily be done ana- 
lytically; above, we use the Gauss-Legendre quadrature. 
This transforms the integro-differential equation (2) into 
a set of coupled differential equations, allowing us to use 
the standard Runge-Kutta method to calculate the evo- 
lution. The evolved gluon below 10 is combined with 
the unintegrated AP gluon above 10 to obtain predic- 
tions for FT and FL by performing the integration in Eq. 
(3) with Monte Carlo methods. For convenience, a fit of 
Fz = FT + FL is given in the Appendix. Finally, we fit 
the background to the data, as discussed at the end of 
Sec. IA, and obtain our BFKL prediction. 

It is vital to check the dependence of the results on the 
parameters used for the IR and UV treatment. In Fig. 
3 we varied all relevant parameters, using the Do-type 
gluon. All curves have been calculated at Q2 = 15 GeV’ 

FIG. 3. Variations of the parameters. All curves are calcu- 
lated at Q* = 15 GeV’ with the Do-type gluon input. The 
background Cw-o.08 has already been added to the BFKL 
curves, and statistical and systematic errors of the data have 
been added in quadrature in this and all following figures. 
The legend for lez is the same also for kz and kz. 
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and are already fitted to the shown HERA data with the 
soft Pomeron background C!~X-“~~~. 

The strong dependence on k:, which we expect from 
the corresponding variation in the gluon slope, is obvious. 
The curves for low k; are much too steep. At k; = 0.2 
GeV’, for example, the pure BFKL prediction is too high, 
even without any background. A background fit would 
then give a negative contribution, i.e., Cp < 0, which is 
unphysical. In all such cases, we set the background to 
zero. It is crucial that kz can be precisely determined 
f!om the consistency constraint. Without the constraint, 
we could vary the slope of Fz from 0.5 to 0.8 by choosing 
kz within the shown range of 0.2-2.0 GeV’, rendering 
any serious prediction impossible. In the already men- 
tioned comparison of a BFKL calculation with HERA 
data [23], k, ’ is treated as a jree parameter. If the fitted 
kz should not be close to the consistent value by chance, 
it is doubtful that any strong conclusions can be drawn 
from a successful description of the data. 

The influence of the IR cutoff k,2 is comparably small. 
It should be kept in mind that kz has to be fitted sepa- 
rately for each kz. Actually, the induced variations in kz 
dampen the dependence of the predictions on k,” slightly. 
It is no surprise that variations of the UV cutoff do not 
introduce much uncertainty into the predictions, as the 
running coupling already serves as an effective UV cutoff 
[11,12]. The remaining free IR parameter k,Z has a siz- 
able effect on the curves. The slope of Fz varies from 0.53 
to 0.58 in the shown k,2 range. The standard value of 1 
GeV’ gives a slope of about 0.55, and the variations of 
kz represent an effective error band of our calculations. 

A considerable dependence on &CD is expected and 
can be seen in Fig. 3. Fortunately, this parameter is 
fixed, since we are using AP gluons with a given AQCD 
as the boundary condition. It is interesting to note that 
higher values of hqc~ than the rather low 173.2 .MeV 
used in the Do-type partons give unfavorably steep slopes. 
Finally, we take a look at variations of ~0, noting that 
we have to determine kz separately again. We expect the 
steep curve for.r,, = 5 x lo-’ due to the long evolution 
length in I. But it is daring to use the BFKL equations 
at such high values of I and the data do not support such 
a choice. We can also see that the comparably flat curve 
created by a short evolution in I starting from 10 = IO@ 
does fit the data well. But this success can obviously not 
be claimed by the BFKL evolution, since the data do 
not extend far below that 10. In order to test if the 
BFKL equations can describe the cwrent data, we have 
to choose a larger 3~0 - 10m2. The typical steep BFKL 
slope simply needs enough evolution la&h to develop. 
Small variations to lower z. from the usually used lo-’ 
,do not affect the calculations strongly. The standard val- 
ues [11,12] used for k,2 and z0 give slopes slightly below 
and above the average expected f&n the variations, re- 
spectively. Thus this choice of parameters will give a 
sensible prediction while still allowing comparisons with 
earlier calculations [11,12]. 

The results presented in this section show that the de- 
pendence of the calculations on the parameters is under 
control. This statement wbuld be impossible if kz did 
not obey the consistency constraint (8). 
10 

1 

FIG. 4. Comparison of BFKL results, using MRSA low-@ 
and GRV 1992 LO &on inDut.s. conmared with data at sev- 

- .I. 

era1 Q’. The corresponding curves for the Do-type gluon in- 
put are shown for comparison. 

1 

10 -’ 

1 

10 -’ 

FIG. 5. Low-Q’ data of the Fermilab E665 experiment 1131 
and preliminary data of the HERA experiment [15] in com- 
parison with our BFKL results. The background included in 
the Do-type curves is separately displayed. Note that “GRV 
‘94” refers to the conventional dynamical results based on the 
NLO AP evolution of valencelike input parton densities [SI. 
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A. Using other input distributions 

Besides ow detailed analysis of the D&type gluon, we 
also studied the effect of feeding different parton distribu- 
tions into our evolution, namely, GRV 1992 LO [3] and 
MRSA low Q2 [27]. The results for Fz can be seen in 
Fig. 4. 

Obviously, by using GRV and MRSA gluons as inputs 
for the BFKL evolution, a structure function is generated 
which is far too steep for the data. Even though we have 
got, in principle, some freedom in fitting an appropriate 
background, this is useless here, since already.the pure 
BFKL part of & is too high for the HERA data, so that 
we must set the background to zero. 

The steepness of K is closely related to the fact that 
the proper kz is much smaller than 1 GeV’, resulting in 
a larger slope X of the BFKL gluon f. As we explained 
above, this is mainly an effect of the size of the inte- 
grated gluon input 9. This suggests the conclusion that 
the whole BFKL procedure has only a chance to work 
with the older (smaller) gluons. Modern parton distribu- 
tions imply small values of the crucial infrared parameter 
kz, and since this has a strong effect on the calculated 
structure functions, it is likely that one does not succeed 
in matching these to present experimental data. 

IV. COMPARISON WITH DATA 

In Fig. 5 we compare our calculations with very-low-Q2 
data from the Fermilab E665 experiment 1131. Prelimi- 
nary data of the HERA ep collider 1151 at low Q2 are 
also shown in this figure. The published 1993 HERA 

x 

FIG. 6. As in Fig. 5, but using the HERA data of Ref. 114). 
data, [14] for low to medium Q2 are presented in Fig. 6 
together with our BFKL predictions. All graphs show 
the BFKL calculations based on the Do-type and D-- 
type partons, as well as the latest.dynamical NLO renor- 
malization group predictions (GRV), as presented in [5]. 
Also shown is the soft Pomeron background, which is 
included in the Do-type curve. A general feature of all 
figures is that the difference between the Do-type and 
D--type BFKL predictions is very small after fitting the 
background. For this reason we do not discuss them sep- 
arately., We have checked that the R = FL/FT values 
used to extract Fz from the experimental data are close 
enough to those predicted by BFKL. Thus it is not nec- 
essary to reanalyze the data in ~terms of RBFKL. 

We fist turn our attention to the E665 data [13]. The 
data do not extend very far into the small-s region, mak- 
ing a check of the BFKL behavior difficult. On the other 
hand, the difference between the GRV (AP) and BFKL 
predictions is potentially large at small z. We also notice 
that the added background is comparable in size to the 
BFKL part at higher +. This flattens the steep BFKL 
behavior, giving a good description of the data. But it 
is just the large contribution of the background which 
makes the very procedure used doubtful. 

A further hint, that the successful description of the 
E665 data should not be taken too seriously, is pro- 
vided by comparing the curves for the E665 data at 2.8 
GeV’ and those for preliminary ZEUS data at 3.0 GeV’. 
While the E665 background is strong (Cp = 0.189) for 
Do type, the optimal ZEUS background would be neg- 
ative (Cp = -0.172) and therefore is set to zero. Thus 
the natural requirement, that the BFKL predictions for 
similar Q2 values should be approximately equal, is only 
fulfilled at very small x. For 2 2 10d4 the influence of 
the background quickly becomes stronger and the curves 
deviate. We conclude that BFKL cannot describe both 
data sets consistently. It is also obvious from the figures 
that just this is possible using the usual NLO renormal- 
ization group equations; see the curves labeled GRV ‘94 
in Fig. 5. 

Turning to the preliminary HERA data in Fig. 5, we 
find that the BFKL slope of Fz is evidently too steep. 
The same tendency can also be found in the 1993 HERA 
data up to approximately 15 GeV’ as shown in Fig. 6. 
Everywhere in this region the background is very small 
or would even be negative, if it were allowed. Because 
of the larger spread in I, the preliminary data show the 
discrepancy rather clearly. The problem is rooted in the 
almost &*-independent slope of BFKL, which is always 
> 0.5 and grows weakly with Q’. The dynamical GRV 
(AP) calculations give on the contrary flat slopes at low 
Q’, which rise significantly with larger Q’. This is ob- 
viously in much better agreement with the data. For 
example, using the preliminary ZEUS data at 4.5 GeV’, 
we get a total x2 of 15.3 (Do-type), 15.0 (D--type), and 
2.81 (GRV 1994 NLO) for the four data points. 

At Q2 higher than 15 GeV’, we see that the slope of 
the data becomes compatible with the one predicted by 
BFKL. The rising slope of the dynamical GRV prediction 
fits the data at least as well. It is interesting to note 
that even at higher Q2 a slight extension in the z range 
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could provide an indication which evolution should be 
used. If future data should conform to the already visible 
tendency that a Lipatov-like slope is only obtainable at 

high Q2, say, 2 50 GeV2, then the simple LO BFKL 
formalism would become implausible, since its nlidity 
at such high Q2 is questionable. 

V. CONCLUSIONS 

We have shown that the AKMS method for calculating 
BFKL predictions of Fz remains stable under variations 
of the introduced parameters if the consistency constraint 
Eq. (8) on kz is applied. As boundary conditions, one 
has to choose older, i.e., smaller, gluon densities, since the 
large recent AP gluons lead to small ki, which in turn 
produces overly steep slopes of Fz. The BFKL boost 
at small z is simply too large for gluons constructed to 
produce the measured large Fz slope via the conventional 
renormalization group (AP) evolution equations. 

Thus we use the old Do-type and D--type gluons with 
con.sist&ntly fixed kz as input for the BFKL evolution. 
A further complication is introduced by the necessity to 
add a background contribution to the BFKL prediction 
for Fz. Then it seems reasonable to require that the main 
growth of Fz be not driven by the chosen background 
and that tbis background be comparably small. The last 
condition is not satisfied in the region of the E665 ex- 
periment, casting serious doubts on the good agreement 
with the data. 

In the HERA region, we find in contrast small back- 
ground contributions, allowing for reliable comparisons 
with experiment. Especially the preliminary HERA data 
in Fig. 5 show that the almost Qz-independent BFKL 
slope is too steep for Q2 s 15 GeVs. But even up to the 
expected limit of applicability ins Q2 of the BFKL evo- 
lution, we find that the predicted slope is somewhat too 
steep. With improved statistics and maybe a slightly ex- 
tended coverage in z, HERA should be able to assess the 
LO BFKL predictions for Fz. If the tendency visible in 
the current data is an indication for future developments, 
we expect the LO BFKL equation to fail the test. It re- 
mains to be seen whether extensions of the LO BFKL 
equation-inclusion of the quark sector, NLO BFKL 
or theoretically consistent (energy-momentum conserva- 
tion, etc.) unified evolution equations--can improve the 
agreement with the data. Our results also indicate that 
conventional (dynamical) renormalization group evolu- 
tions are still the best method for calculating and ana- 
lyzing Fz. 
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APPENDIX:’ PARAMETRIZATION 

It should be convenient to have a simple parametriza- 
tion of our theoretical results for Fz. The following is 
a parametrization of the BFKL part only, to which an 
appropriate background still has to be added. 

We use an ansatz of the form 

FFFKL = a~-~ + px + y , P-1) 

which describes all curves showti in Figs. 3-6 well. It 
is even possible to parametrize all pure BFKL results 
for the Do-type and D--type gluons shown in Figs. 5 
and 6 by choosing the following Q2 dependence of the 
coefficients [t = ln(Qa/A&,,)]: 

a(Q2)=A+Bt+Ct2+4t3, 

P(Q’) = Et2 + Ft3 , 

WI 

y(Q’) = G + H(Q2/GeVZ) + It , 

A(Q”)=J+Kt. 

The corresponding coefficients are given in Table II. It is 
interesting to note that a small growth of X with Q2 has 
to be taken into account. 

It has to be stressed that this parametrization is only 
valid within the range lOes 5 2 5 lo-’ and 0.8 GeV’ 
2 Q2 I 120 GeV2. On the one hand, BFKL evolution 
is not expected to be applicable even at the edges of this 
region. On the other hand, we note that the form of the 
ansatz has been tailored for this region only. The term 
ox, for example, will lead to,wrong results for I > IO-‘. 
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