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A quantum equivalence principle is formulated by means of a gravitational phase operator which 
is an element of the PoincarC group. This is applied to the spinning cosmic string which suggests 
that it may (but not necessarily) contain gravitational torsion. A new exact solution of the Einstein- 
Cartan-Sciama-Kibble equations for the gravitational field with torsion is obtained everywhere for a 
cosmic string with uniform energy density, spin density, and flux. A novel effect due to the quantized 
gravitational field of the cosmic string on the wave function of a particle outside the string is used 
to argue that spacetime points are not meaningful in quantum gravity. 
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INTRODUCTION: RELATIVITIZING AND 
QUANTIZING GRAVITY 

After the discovery of special relativity by Lorentz, 
Poincark, and Einstein, there was the problem of “rel- 
atividng gravity,” analogous to the problem of “quantiz- 
ing gravity” which exists today. It was clear that Newto- 
nian gravity was incompatible with special relativity and 
it was necessary to replace it with a relativistic theory 
of gravity. While several attempts were made to do this, 
Einstein succeeded in constructing such a theory because 
he used (i) the geometrical reformulation of special rela- 
tivity by Minkowski, and (ii) the operational approach 
of asking what may be learned by probing gravity using 
classical particles. 

An important ingredient in (i) was Einstein’s realiza- 
tion that the times in the different inertial frames, t and 
t’, in the Lorentz transformation were on the same foot- 
ing. That is, the interpretation Einstein gave to spe- 
cial relativity, whose basic equations were already known 
to Lorentz and Poincarh, was crucial to the subsequent 
work of Minkowski. It enabled Einstein to get rid of the 
three-dimensional ether, and thereby pave the way for 
the introduction of the four-dimensional “ether,” called 
spacetime, by Minkowski. By means of (ii), Einstein con- 
cluded that the aspect of Newtonian gravity which should 
be retained when this theory is modified is the equiva- 
lence principle. This principle is compatible with special 
relativity locally. This may be seen from the physical 
formulation of the strong equivalence principle accord- 
ing to which in the Einstein elevator that is freely falling 
in a gravitational field the laws of special relativity are 
approximately valid. But this principle allowed for the 
modification of special relativity to incorporate gravity 
as a curvature of spacetime. 

Today we find that general relativity, the beautiful the- 
ory of gravity which Einstein discovered in this way, is 
incompatible with quantum theory. Can we then adopt 
a similar approach? This would mean that we should 
use (1) a geometrical reformulation of quantum theory, 
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As for (l), the possibility of using group elements as 
“distances” in quantum theory, analogous to spacetime 
distances in classical physics, was studied previously [I]. 
For a particular quantum system, the corresponding rep- 
resentation of these group elements may be used to relate 
points of the projective Hilbert space, i.e., the set of rays 
of the Hilbert space, which is the quantum generalization 
of the classical phase space [2]. Recent work on protec- 
tive observation of the quantum state has shown that the 
points of the projective Hilbert space are real, in the sense 
that they cbuld be observed by measurements on an indi- 
vidual system, instead of using an ensemble of identical 
systems 131. 

As for (2), the question is whether the motion’of a 
quantum system in a gravitational field enables us to 
identify the aspect of general relativity which must be 
preserved when this theory is replaced by a quantum the- 
ory of gravity, i.e., the quantum analogue of the equiva- 
lence principle. In Sec. I, I shall formulate such a prin- 
ciple. This will be applied to cosmic strings, in Sec. II, 
because of their interesting topological, geometrical, and 
quantum gravitational aspects. I shall present an exact 
solution of the Einstein-Cartan-Sc&na-Kibble gravita- 
tional field equations, valid in the ipterior as well as the 
exterior of the cosmic string, whicg’depends on three pa- 
rameters. 

It will be shown in Sec. III that, when the gravita- 
tional field of the string is quantized so that different 
geometries may be superposed, the wave function of a 
test particle even in a simply connected region is affected 
although each of the superposed geometries is flat in this 
region. But a special case of this effect is invariant under 
a quantum diffeomorphism that transforms different ge- 
ometries differently, as discussed in Sec. IV. This freedom 
suggests that the points of spacetime have no invariant 
meaning. So there seems to be a need to get rid of the 
four-dimensional “ether,” namely, spacetimej in order to 
incorporate the quantum diffeomorphism symmetry into 
quantum gravity. 

and (2) an opemtional approach of asking what may be 
learned by probing gravity using quantum particles. 
779 @ 1996 The American Physical Society 
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I. THE EQUIVALENCE PRINCIPLE IN 
CLASSICAL AND QUANTUM PHYSICS 

First, consider the classical weak equivalence princi- 
ple (WEP), due to Galileo and Einstein. This has two 
aspects to it: In a spacetime manifold with a pure gravi- 
tational field, (a) the possible motions of all freely falling 
test particles are the same, and (b) at any point p in 
spacetime, there exists a neighborhood V(p) of p and a 
coordinate system {z”, p = 0, I, 2,3} in this neighbor- 
hood such that the trajectory of every freely falling test 
particle through p satisfies [4] 

at p for a suitable parameter X along the trajectory. This 
is the local form of the law of inertia and the above coor- 
dinate system is said to be locally inertial at p. The con- 
dition (b) is a special property of the gravitational field, 
not shared by any other field. For example, in an electro- 
magnetic field test particles with the same charge to mass 
ratio would satisfy (a) but not (b). (The Lorentz four- 
force is proportional to the electromagnetic field strength 
which, being a tensor, cannot be coordinate transformed 
away, unlike the connection coefficients.) 

Using (b), for massive and massless particles, it may be 
shown that there exists an &ne connection w such that 
the trajectories of freely falling test particles are affinely 
parametrized geodesics with respect to it [4]. Suppose 
6 = dfL, where d - the linear dimensions of U(p) and 
L v the radius of curvature obtained from the curvature 
components of this connection, and we can neglect sec- 
ond orders in 6. Such a neighborhood will be called a 
first-order infinitesimal neighborhood of p, and denoted 
by (i,(p). Using the geodesic deviation equation, it may 
be shown that the velocities of the freely falling test par- 
ticles in Ue(p) are constant in an appropriately chosen 
coordinate system. This is a stronger form of the WEP 
than its usual statement given above, and will be called 
the modified classical weak equivalence principle. It is 
valid in Newtonian gravity as well as Einsteinian gravity. 

The above formulations of WEP’s may be stated us- 
ing only an a&e connection and do not require a met- 
ric. In U,, the affine structure defined by this connection 
has as its symmetry group the &ne group A(4) that 
is generated by the general linear transformations and 
translations in a four-dimensional real vector space. In 
the nonrelativistic limit, as the null cones “flatten,” A(4) 
remains the symmetry group. In classical physics, the 
interactions between the particles restrict the symmetry 
group in U, to the inhomogeneous Galilei group (nonrel- 
ativistic physics), or the Poinc& group P (relativistic 
physics), which are both subgroups of A(4). The exis- 
tence of this residual symmetry group in U, is a form 
of the classical strong equivalence principle (SEP) valid 
for relativistic and nonrelativistic gravity. In this way, 
nonflat spacetime geometry may also in some sense be 
brought into the framework of Felix Klein’s Erlanger pro- 
gram according to which a geometry is determined as the 
set of properties invariant under a symmetry group [l]. 
What fundamental aspects about the gravitational 

field may be learned if it is probed with quantum par- 
ticles, instead of with classical particles as in the above 
treatment? It was shown that the evolution of a freely 
falling wave function is given, in the WKB approxima- 
tion, by the action on the initial wave function by the 
operator [5] 

a7 = P exp (-i&&dz’) , (1.2) 

where 

r,, = 0,=P, + &“sMb,, (1.3) 

which will be called the gravitational phase operator. 
Here the energy-momentum operators P, and the an- 
gular momentum operators Mb,, a, b = 0, 1,2,$ genei-- 
ate the covering group of the Poinc& group P that is 
a semidirect product of SL(2,C) and spacetime trans- 
lations R(4). The fact that rnas rn is a good quantum 
number in curved spacetime and rn2 is a Casimir operator 
of P already suggests that P is relevant in the presence 
of gravity. 

For every space-time point p, let H,(p) be the Hilbert 

space of wave functions in Ue(p) in which i, acts. Ow- 
ing to the linearity of the action of (1.2), it determines 
also the evolution of any freely falling wave packet which 
can be expanded as a linear combination of WKB wave 
functions, provided the size of the wwe packet is small 
compared to the radius of curvature; i.e., it is contained 
primarily inside V, at each point along y which may be 
chosen to be along the center of the wax packet. This 
will be called the quantum weak equivalence principle, 
because (1.2) is a PoincA group element independent of 
the freely falling wave packet. ‘In this respect, it is like the 
classical WEP according to which the affine connection 
determined is independent of the test particle used. 

In quantum physics, because the wave packet must 
necessarily have .some spread, the WEP cannot be for- 
mulated by particle trajectories as in conditions (a) and 
(b) above, and it is necessary to use at least the neighbor- 
hood U,. Indeed (1.2) was obtained [5] using the Klein- 
Gordon [6] and Dirac equations [i’] which are covariant 

under P in U.. So, in quantum physics there is a close 
connection between the quantum WEP, as form&ted 
above, and the quantum SEP according to which P is 
the symmetry group of all laws of physics in U,. It is 
well known that (a) cannot be valid in quantum physics, 
because the motions of wave functions depend ofi their 
masses IS]. But the modified classical WEP and the clas- 
sical SEP as stated above have the advantage that they 
have a smooth transition to quantum physics. 

The above approximate concepts may be made &th- 
ematically precise as follows. Each neighborhood Ue(p) 
may be identified with the tangent space at p regarded 
as an &ne space. The motions of freely falling test 
particles relate affine spaces associated with two neigh- 
boring points by a linear transformation and a trans- 
lation, generated by P,. This gives a natural connec- 
tion OR the affine bundle 191 over spacetime which is a 



3 GRAVITATIONAL PHASE OPERATOR AND COSMIC STRINGS 781 
principal fiber bundle with A(4) as the structure group. 
This is the connection used above to express the modified 
classical WEP. Th: quantum WEP requires the P&car& 
sub-bundle with P (to admit fermions) as the structure 
group. Then (1.3) defines a connection in this princi- 
pal fiber bundle. The gravitational phase operator (1.2) 
parallel transports with respect to this connection along 
the curve y, The above Hilbert space bundle, that is, 
the union of H,(p) for all space-time points p, is a vector 
bundle associated with this principal fiber bundle with 
a connection that is the representation of (1.3) in this 
Hilbert space. 

The curvature of the above connection is the Poincare 
Lie-algebra-valued two-form 

F=drfr/\r=&“P,+4RnaMb,, (1.4) 

where, on using (1.3) and the Lie algebra of the Poinc& 

group, 

&” = dB” + wab A 0”, Ra* = du”,, + wac A web, (1.5) 

which are called, respectively, the torsion and the linear 
curvature. If the wave equation used to obtain (1.2) did 
not contain torsion, then the torsion in (1.4), of course, 
is also zero. However, the above modified classical WEP 
and the quantum WEP make it natural to have torsion 
and suggest that if the torsion is zero then there should 
be a good physical reason for it. 

Suppose 7 is a closed curve. Then (1.2) is a holonomy 
transformation determined by the above &ne connec- 
tion. It may then be transformed to an appropriate inte- 
gral over a two-surface C spanned by y as follows. Let 0 
be a fixed point in C. Foliate C by a one-parameter fam- 
ily of curves X(s, t), where s E [0, l] labels the curves and 
t E [0, l] is the parameter along each curve. All curves 
originate at 0, which corresponds to t = 0. The (s, t) are 
smooth coordinates on C excluding 0. Suppose y begins 
and ends at (0,l). Let A(s,t) = ,ZJ~(+, where +,t) rep- 

resents the segment of a curve of the above family that 
begins at 0 and ends at (s,t). Then 

1 1 
~‘(0, I)@,A(o, 1) = P.t exp -i 

[J J 
ds dt A-‘(s, t) 

Cl 0 

xF,,(s,t)A(s,t)l’m” , 1 (1.6) 

where 1’ = az~L/&, WZ~ = d+pfat, and Pet DLWS SW- 
face ordering, i.e., in the expansion of (1.6) terms with 
greater values of s precede terms with smaller values of 
s, and for equal values of s terms with greater values 

of t precede terms with smaller values of t. In (1.6) all 
field variables are transported to the common point 0 
so that the integrals are meaningfully performed in the 
&ne space at 0. 

To prove (1.6), note that the left-hand side (LHS) of 
(1.6) is a holonomy transformation which begins and ends 
at 0, and may be expressed as a product of holonomy 
transformations ap, over triangles whose sides are two 
s =const curves and an infinitesimal segment of y. Each 
@, may be written as a product of @,t over infinitesi- 
mal “rectangles,” bounded by s =const, t =const curves, 
which are transported to 0, which yields (1.6). This ex- 
tends a known result for the Yang-Mills fields and linear 
curvature [lo] to include torsion. 

It follows from (1.6) that in the absence of gravity in a 
simply connected region (1.2) is path independent. I shall 
take the equivalent statement that the path dependence 
of (1.2) implies gravity as the definition of the gravita- 
tional field even when the region is not simply connected. 
This definition makes the converse of this statement also 
valid. So, by probing gravity using quantum-mechanical 
systems, without paying any attention to gauge fields, 
gravity may be obtained naturally as a P&car& gauge 
field in the sense of Yang’s integral formulation of the 
gauge field [ll]. 

An advantage of this point of view is that it also pro- 
vides a unified description of gravity and gauge fields. If 
a wave function is interacting not only with the gravi- 
tational field but also with other gauge fields, then its 
propagation in the WKB approximation is given by the 
action of an operator of the form (1.2) with 

rp = 6,“P, + $J~“~M~, + AriTi , (1.7) 

where A,j is the Yang-Mills vector potential and Ti gen- 
erate the gauge group G. So (1.2) now is an element of 

the entire symmetry group, namely p x G. Thus, unlike 
the classical WEP, the quantum WEP naturally extends 
to incorporate all gauge fields. 

The above fact that the observation of all the funda- 
mental interactions in nature is via elements of the sym- 
metry group suggests a symmetry ontology. By this I 
mean that the elements of a symmetry group are observ- 
able and therefore real. Moreover, the observables such 
as energy, momentum, angular momentum, and charge, 
which are usually observed in quantum theory, are some 
of the generators of the above symmetry group. Obser- 
vation always requires interaction between the observed 
system and the apparatus. Ultimately, these interactions 
are mediated by gravity and gauge fields. I therefore pos- 
tulate that the only observable which can actually be 
observed are formed from the generators of the symme- 
try group, which according to our current understanding 
of physics are generators of P x G. Symmetry is destiny. 

II. CQSMIC,STRING-AN EXACT SOLUTION 

As an example, consider cosmic strings, which are pre- 
dicted by gauge theories 1121 and are of astrophysical 
,interest because of their possible role in galaxy forma- 
tion 113) and as gravitational lenses [14,15]. Consider 
a cosmic string whose axis is along the I axis. Since 
the torsion and curvature outside the string are zero, 
its exterior geometry is determined entirely by the affine 
holonomy transformation associated with a closed curve 
y going around the string, given by (1.2). But owing to 
the cylindrical symmetry of this geometry, this transfor- 
mation should commute with M21 which generates ro- 
tations about the axis of the string. The most general 
r&ne holonomy transformation that is restricted to the 
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Poincare group by (1.3) which commutes with MZ1 is of 
the form 

a7 = exp[-i(bPo + cP3 + a&F1 + dM3& (2.1) 

Therefore the most general external geometry should de- 
pend on the four parameters a, b, c, and d. This geometry 
has been obtained, from the point of view of &ne holon- 
omy, by Tod [16], although the present argument which 
uses the gravitational phase operator (1.2) is somewhat 
simpler and more physical. 

I shall consider here only the most general stationary 
exterior solution which depends only on three parameters 
(d = 0): 

ds2 = (dt + pd@)’ - dp2 - azp2d& - (dz + rd$)‘, 

(2.2) 

where a, 0, and 7 are constants related to a, b, and c, re- 
spectively. The external metric (2.2) was due to Gal’tsov 
and Let&er [17]. The special case of 7 = 0 was pre- 
viously considered by Deser, Jackiw, and ‘t Hooft [IS] 
and Mazur [19]. It is worth noting that the usual linear 
holonomy around the cosmic string can only determine 
the parameter a, whereas the translational part of the 
affine holonomy distinguishes metrics :(2.2) with differ- 
ent values for (/3,7) [16], which shows the importance of 
affine holonomy even in this purely classical context. It 
follows from (1.4) and (1.5) that the rotational part of 
the &ne holonomy, due to a, requires curvature inside 
the string. The translational part of the affine holon- 
orny, due to p and 7, suggests (but does not require) the 
inclusion of torsion inside the string. 

With a view towards this, rewrite .(2.2) as ds2 = 
~&%‘b, where the orthonormal coframe field 0’ is 

(2.3) 

Let e, be the frame (vierbein) dual to 6’“: 6’,*e’, = 
62. The connection coefficients in this basis are w,,*b E 
&YV,eYb = 0, for all a, b, p except for 

wJ12 z -w&z’ = -cr, (2.4) 

assuming no torsion in the exterior. This external ge- 
ometry is &ne fiat, i.e., Q” = 0, Rn* = 0 on using 
(1.5), and yet, the aj‘&e holonomy around the string is 
nontrivial 1201. 

Suppose 7 is a closed curve around the string. Then 
from (1.2) 

(2.5) 

The three factors in (2.5) commute with one another. 
On comparing with (2.1) and using (2.3), b = 2np and 
c = 2~7. The first factor in (X5), which is a time trans- 
lation, may be given a physical meaning as follows. Sup- 
pose an optical, neutron, or superconducting interferom- 
eter encloses the string once and is at rest with respect to 
the above coordinate system. Then the above time trans- 
lation gives rise to a ‘%gnac” phase shift [6,21,19,22], 
which in the present case is A~B = 27rPE, where E is 
the frequency of the interfering particle (eigenvalue of 

Po). 
The second factor in (2.5), which is a spatial trans- 

lation, may be given physical meaning by the following 
new effect. Suppose the beam at the beam splitter of the 
above interferometer has a t component of momentum 
p, i.e., p is the approximate eigenvalue of Ps. Then this 
factor gives rise to the phase shift A$ = 2~7~. 

If in (1.6) the coordinates and basis can be chosen such 
that A(s, t) N 1 for all s, t, then C will be called infinitesi- 
mal. It follows from (1.6), (1.4), and (2.5) that, when the 
cross section of the string is infinitesimal in this sense, it 
must necessarily contain torsion in order that the surface 
integral has the time translation contained in the line in- 
tegral. Then A# may be regarded as a topological phase 
shift due to the enclosed torsion inside the string. It is 
possible for the string not to contain torsion, but only by 
violating the above infinitesimality assumption. 

The simplest gravitational field equations in the pres- 
ence of torsion are the Einstein-Cartan-Sciama-Kibble 
(ECSK) equations 1231, which may be written in the form 

[241 

q&3’ A Q” = 87rGsij, (2.7) 

where ti and .sij are three-form fields representing the 
energy-momentum and spin densities. I shall now obtain 
an exact solution of these equations for the interior of the 
cosmic string which matched the, exterior solution (2.2). 
this will then give physical and geometrical meaning to 
the parameters a, /3, and 7 in (2.2). This solution will be 
different from earlier torsion string solutions [25] which 
have static interior metrics. 

The p and z coordinates in the interior will be cho- 
sen to be the distances measured by the metric in these 
directions. Since the exterior solution has symmetries 
in the t, 4, and z directions, it is reasonable to suppose 
the same for the interior solution. Thus all functions in 
the interior will be functions of p only. So I make the 
following ansatz in the interior: 

0’ = u(p)dt + u(p)dd, 8’ = dp, 0’ = f(p)d$, 

(2.8) 
@ = dz + g(p)d+, W=I = k(p)d$ = --wlz, 

all other com$onents of unb being zero, and ds2 = 

%a9Vb E g,,dx’d?‘. Suppose also that there is a fluid 
in the interior whose energy density E and spin density 
v polarized in the t direction are constant, and this spin 
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has a constant current density 7 in the t direction. That 
is, 

to = ~6’ A b’= A %3 = ef (p)dp A d+,/\ dz, 

s12 = -.%, = ~8’ A 8’ A ti3 - 78’ A 0’ A 0’ 

= rf (p)dp A db A dz - ruf (p)dt A dp A d4, (2.9) 

the other components of s;j being zero. In terms of the 
components of the energy-momentum and spin tensors 
in the present basis, this means that too = E =const and 
soI2 = g =const. 

The torsion and curvature components here are defined 
by Q” = QLLykdx” A dxY and Rjk = Rl,jkdx* A dx”. It 
is assumed that there is no surface energy-momentum 
or spin for the string. Then the metric must satisfy the 
junction conditions [26], which in the present case are 

%I- = sLLYI+~ %$&“I+ = ~&A- + 2K(,“)p”, (2.10) 

where Kap-, = $(-Qap.,+QP7a-Q7ao) is the contortion 
or the defect tensor, I+ and )- refer to the limiting values 
as the boundary of the string is approached from outside 
and inside the string, respectively, and the caret denotes 
the corresponding coordinate component. 

Substitute (2.8) and (2.9) into the Cartan equations 
(2.7). The (i,j) = (0,2), (0,3),(2,3) equations are auto- 
matically satisfied. The (i,j) = (0,1),(1,3),(1,2) equa- 
tions yield 

f’(P) = k(P), U’(P) = 0, 

(2.11) 

U’(P) = 8TG,.7f(P), S’(P) = 8nG7f(pL 

where the prime denotes differentiation with respect to p. 
Therefore the continuity of the metric [Eq. (2.10)] implies 
that since u = 1 at the boundary u(p) = 1 everywhere. 
Now substitute (2.8) and (2.9) into the Einstein equations 
(2.6). The i = 0 equation yields 

k’(p) = -S?rGcf(p). 

The i = 1,2,3 equations yield, respectively, 

(2.12) 

tl = 0, tz = 0, 

(2.13) 

t3 = &dt A dp A db = -~6’ A t” A @, 

using (2.12). Hence, t33 = E = too. From (2.11) and 

w‘4, 

f”(P) + $f(PJ = 0, (2.14) 

where p* = (s~G~)-~/~. In order for there not to 
be a metrical “cone” singularity at p = 0, it is nec- 
essary that e2 - pd4 near p = 0. Hence the solu- 
tion of (2.14) is f(p) = p’sinp/p*. Then from (2.11) 
k(p) = cosp/p*, and requiring v(O) = 0 = g(0) to avoid 
a conical singularity, v(p) = S?rGop*‘(l - cosp/p*), and 
g(p) = 8?rGTp’2(1- cosp/p’). 
This gives the metric in the interior of the string as 

ds2 = 
[ 
dt + 87rGap*’ (l-ccns$)d~]z 

-dp2 - p*’ sin’ 
0 

’ d@ 
2 

- 
1 
dz + 87rGrp*= (l--cna$d~]z, (2.15) 

and the connection is w21 = (cosp/p*)dc#~. The only non- 
vanishing components of torsion and curvature in the in- 
terior are 

Q” = 87rGop’sin p dp A dd, 
( > P’ 

Q3 = 87rGrp’sin + dp A dq5, 
( > 

(2.16) 

R1z = $ sin 
( > 

s dp A dqb = -Rzl. 

I apply now the junction conditions (2.10), which will 
show that p is discontinuous across the boundary. De- 
note the values of p for the boundary in the internal and 
external coordinate systems by p- and p+, respectively. 
From (2.1) and (2.15), g;$ gi+, and g&4 are respectively 

continuous if and only if (iff) 

p = 87rGop*2 (1s+), (2.17) 

7 = 87rGTP’2 (d%$), (2.18) 

crp+=p*sinP-. 
P’ 

(2.19) 

The remaining metric coefficients are clearly continu- 
ous. The only nonzero contortion terms which enter into 
(2.10) are obtained from (2.16) to be 

Kcggp = -4nGap* sin +, Kc~i,p = 4nGrp* sin $, 

I$& = (87rG)2(72 - 2)/P (I-sos:)sin:. (2.20) 

Using (2.19) and (2.20), it can now be verified that the re- 
maining junction conditions (2.10) are satisfied provided 
a = cosp-/p*. The mass per unit length is 

where C is a cross section of the string (constant t,e). 
Therefore o[ = 1 - 4Gp. The angular momentum per 
unit length due to the spin density is 
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(2.22) 

Hence, from (2.17), p = 4G.J. Thcangular momentum 
flux, which is along the t axis, is 

(2.23) 

Hence, from (2.18), ^I = 4GF. 
The Sagnac phase shift and the new phase shift ob- 

tained earlier are therefore AC$E = ET’ and A& = pT3, 
where To and T3 are the fluxes of Q” and Q3 through C. 
These are both topological phase shifts, analogous to the 
Aharonov-Bohm effect with the string playing the role of 
the solenoid, in that they are invariant as the curve 7 is 
deformed so long as it is outside the string. 

It was recently pointed out to me that the special case 
of the above solution corresponding to 7 = 0 = 7 was 
found by Soleng [27]. If torsion is absent so that the spin 
density is zero in the above solution, then fl= 0 = y, and 
the above solution reduces to the exact static solution 
of Einstein’s theory found by Gott [IS] and others 1281, 
whose linearized limit was previously found by,Vilenkin 

[141. 

III, INTERACTION OF A QUANTUM COSMIC 
STRING WITH A QUANTUM PARTICLE 

Suppose now that the cosmic string is treated quantum 
mechanically. Then its gravitational field also should be 
treated quantum mechanically. It is then possible to form 
a quantum superposition of the gravitational fields COP 
responding to different values of (a, 0, y) of the solution 
obtained above. 

It was shown [29] that the following new physical effect 
is obtained when the cosmic string is iri a superposition bf 
quantum states corresponding to different values of 0: A 
measurement on a quantum cosmic string that puts it in 
this superposition of geometries will change the intensity 
of the wave function of a particle in’s simply conn+cted 
region near the cosmic string, even though each of the 
superposed flat geometries in this region has no effect on 
the wave function. This is unlike the Aharonvo-Bohm 
effect in which the wave function needs to go all the way 
around the multiply connected region surrounding the 
solenoid in order to be affected,by the solenoid. 

I shall now treat this effect using the variables 6” and 
w-b, and generalize this effect further. Owing to the 
translational symmetry along the direction of the string, 
its gravitational field is equivalent to that of a point 
particle in (2+1)-dimensional gravity. Using the latter 
variables, Witten [30] has constructed a quantum the- 
ory of (2+1)-dimensional gravity which is finite. The ef- 
fect which will be treated now is therefore also obtained 
in and provides physical meaning to (2+1)-dimension+1 
quantum gravity. 

In the gravitational phase operator (1.21. 0” and w”* 
are now operators owing to the fact that the gravitational 
field they represent is quantized. Using (2.3) and (2.4), 
(1.2) may be written in terms of a, 0, and y, which are 
also operators, as the product of two commuting expo- 
nentials: 

k,=exp -i [ J (dtPo+Pd4Po+dtP3+yd4P3) 

xPexp Ti 

1 
[ J 7 

(dpP1 +apd$Pz -~dqU&)] 

(3.1) 

From the end of Sec. II it follows that 

a=l-4G2, @=4Gj, y=4G@, (3.2) 

where p, j, and @ are the quantum-mechanical opera- 
tors corresponding to the mass, angular momentum, and 
angular momentum flux per unit length of the string. 
The latter operators are assumed to commute with one 
another. 

Suppose that the quantum state of the cosmic string 
is initially in the superposition 

I40) = $+I) + w+ (3.3) 

where 1+1) and I&) are normalized eigenstates of 01, p, 
and 7 with the same eigenvalue for a and the other eigen- 
values being (P1,rl) and (& rz), respectively. According 
to (3.2), these different values of (0,~) correspond to dif- 
ferent eigenstates of j and @, respectively, of the fluid 
that the string is made of. So the superposition (3.3) may 

be obtained by putting the quantum-mechanical parti- 
cles which constitute this fluid in the corresponding su- 
perposition by, say, letting them interact with another 
quantum-mechanical system. Suppose also that a test 
particle outside the string is approximately an eigenstate 
of its energy Po and momentum in the t direction P3, 
with eigenvalues E and p, respectively. This is possi- 
ble because the last two operators commute with each 
other due to the symmetry of the gravitational field of 
the string in the .z direction. 

The test particle is initially far away from the string in 
the normalized state I&,0) and is slowly brought towards 
the string without changing E or p. Suppose the inter- 
action of Icoo) with I&) and 1112) changes the state of the 
combined system to 1$1)1[1) and I$&~), respectively. 
Then by the linearity of quantum mechanics the interac- 
tion of Ico) with 140) gives rise to the entangled state for 
the combined system 

Ix) = &h,lc, +~I?i2)lcz)). (3.4) 

Now a measurement is made on the string and it is 
found to be in the superposition 

14) = 4tid + Wz), 
where la[‘+ lbI = 1. .The corresponding state of the test 
particle, after normalization, is 
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IO = JZMX) = a*143 + JJ*Icz). (3.5) 

The wave function corresponding to this state is to a good 
approximation 

C(x,t) = a* ex~{--@d + TIP)(+ - 40)) 
i-b’ =P{-WE + YZP)(~ - +o)}&(x, t), (3.6) 

where <h(x, t) is independent of fl and y. To obtain (3.6), 
one may solve the wave equation for the interaction of the 
test particle with the cosmic string in each of the states 
141) and I&) and superpose the two solutions, or one 
may act on the state of the combined system by (3.1). 
Then ch is seen to be the result of the action on co of 
the part of (3.1) that does not depend on fi and y and 
is therefore the same for both of the superposed states. 
The constant 40 depends on the phase difference between 
these states, which in turn depends on the details of the 
interaction. 

The intensity is 

C’Cb, 0 = (1+ w 4{(/% - P2P 
+(71 - 7ZlPH4 - 40) + max, w. (3.7) 

If follows that the intensity will oscillate as a function of 
4. The number of oscillations per unit angular distance 
qb is 

v = &PI - P2)E + (71 - 7Z)P} 

= ~{(JI - Jz)E + (FI - Fz)P}, (3.6) 

on using (3.2). This effect may be regarded geometri- 
cally as being due to the difference between two &ne 
connections, which is a tensor field. This explains why 
this effect may occur for a wave function that is in a sim- 
ply connected region outside the string, because unlike 
each affine connection which has zero curvature, and can 
therefore have physical influence only through its non- 
trivial holonomy around the string, the above tensor field 
may have local influences. 

IV. QUANTUM GENERAL COVARIANCE AND 
SPACETIME POINTS 

In general, if there is a quantum superposition of gravi- 
tational fields, by a quantum diffeomorphism, or simply a 
p diffeomorphism, I mean performing different diffeomor- 
phisms on the superposed gravitational fields. Then the 
physical effect described in Sec. III may be shown to be 
invariant under a particular Q diffeomorphism performed 
on the quantized gravitational field when 7 = 0 (29,311. 
I postulate that all physical effects are invariant under 
all q diffeomorphisms. This suggests a generalization of 
the usual principle of general covariance for the classi- 
cal gravitational field to the following prine~ple of pan- 
turn general covatiance in quantum gravity: The laws of 
physics should be, covariant under 4 diffeomorphisms. 

On the other hand, the usual principle of general co- 
variance requires covariance of the laws of physics under 
classical diffeomorphisms, or c diffeomorphisms. A c dif- 
feomorphism is a diffeomorphism that is the same for all 
the superposed gravitational fields, and is thus a special 
case of a Q diffeomorphism. Therefore the above princi- 
ple of quantum general covariance generalizes the usual 
general covariance due to Einstein. Under a c diffeomor- 
phism, a given spacetime point is mapped to the same 
spacetime point for all of the geometries corresponding 
to the superposed gravitational fields. This is consis- 
tent with regarding the spacetime manifold as real, i.e., 
a four-dimensional’ether. 

It is instructive in this context to examine Einstein’s 
resolution of the hole argument [32]. In 1913, Einstein 
and Grossmann [33] considered the determination of the 
gravitational field inside a hole in some known matter 
distribution by solving the gravitational field equations. 
If these field equations are generally covariant, then there 
are an infinite number of solutions inside the hole, which 
are isometrically related by diffeomorphisms. These ge- 
ometries, which I shall call Einstein copies, may, however, 
be regarded as different representations of the same ob- 
jective physical geometry. This follows if a spacetime 
point inside the hole is defined operationally as the in- 
tersection of the world lines of two material particles, 
or geometrically by the distances along geodesics joining 
the point to material points on the boundary of the hole. 
Under a c diffeomorphism, such a point in one Einstein 
copy is mapped to a unique point in another Einstein 

copy. Both points may then be regarded as different rep- 
resentations of the sane physical spacetime point or an 
event. So, if we restrict ourselves to just c diffeomor- 
phism freedom, spacetime may be regarded as objective 
and real. 

But the spacetime points associated with each of the 
superposed gravitational fields, which are defined above 
in a c diffeomorphism invariant manner, transform dif- 
ferently under a q diffeomorphism. This means that 
in quantum gravity spacetime points have no invariant 
meaning. However, protective observation suggests that 
quantum states are real [3]. Consequently, the spacetime 
manifold, which appears to be redundant, may be dis- 
carded, and we may deal directly with the quantum states 
of the gravitational field. This is somewhat analogous to 
how the prerelativistic ether was discarded because it did 
not permit the Lorentz boost symmetries, or if it did it 
was redundant. But. then the curve 7 in the gravitational 
phase operator (1.2) cannot be meaningfully defined as a 
curve in spacetime. The resolution of this difficulty may 
be expected to lead us to a quantum theory of gravity 
that may be operational and geometrical. 
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