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Searching for nonminimally coupled scalar hairs
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We study the asymptotically flat, static, and spherically symmetric black-hole solutions of the theory de-
scribed by the actio®= [ d"x \/—_g{(1—§¢>2)R—g“”¢?M¢&,,¢}, with n>3 and arbitrary¢. We demonstrate
the absence of scalar hairs 0. For¢>¢.= (n—2)/4(n—1) , we show that there is no scalar hair obeying
|(r)|<1IVE or | p(r)|>1IE. For 0< &< &, we prove the absence of scalar hairs such|iét)|< 1/ or
L/E< P?(r) <& E(€.— &) . [S0556-282(196)02512-X]

PACS numbgs): 04.70.Bw, 97.60.Lf

The Bekenstein black-hole soluti¢ph] for Einstein grav- that the only static and spherically symmetric nonvacuum
ity conformally coupled to a scalar field in four dimensions black-hole solution of 1 witm>3 is the four-dimensional
has had a prominent role in gravitational physics. It has aBekenstein on¢6—8. The present work points toward the
extremal Reissner-Nordstrogeometry and a fitype scalar  conclusion of this investigation by showing that the only
field, and it was one of the first counterexamples to the “no-plack-hole solutions of 1 are the Schwarzschild ones for
hair” conjecture[2]. The scalar field diverges in the horizon, n>3 and for very large ranges @f and ¢. Hereafter, we
and such a divergence is crucial to the violation of the noyj yse the term black-hole solution to denote an asymptoti-
hair theorems, as recent works have revegBedl. The Bek- o)y fiat, static, and spherically symmetric black-hole solu-
enstein SOIUt'O_n IS an_asymptotlcally flat, statlc_, and SpherlTion. We show that the Schwarzschild black-hole solution is
cally symmetric solution for the theory described by thethe only one foré<0. For > ¢,, we prove the absence of

action scalar hairs obeyingp(r)|<1/\& or |¢(r)|>1/J/€. We also
demonstrate the absence of scalar hairs obeying
S[g,d)]:f d"V=g{(1-€¢7)R—0"0, 09,0} (1) 1/g< $?(r)<EJé(é—E) or |b(r)|<LWE for 0<é<é,.
These results are in agreement with the recent results about
with £é=1/6 andn=4. The coupling defined by such values the uniqueness of the four-dimensional Bekenstein black-
is called conformal because with them the action 1 is invarihole solution[3,6—-§.
ant under the map defined by the conformal transformation The demonstration of our results centers in a covariant
Q,LV:QZQ_M, 02>0, and by the field transformation method for generating solutions for 1 starting from the well-
¢=Q"1¢. This map can be easily extended for known solutions of the minimally coupled case. It general-
n-dimensional space-times; with the coupling given byizes the method for generating solutions for the conformally
&= (n—2)/4(n—1), the action 1 is conformal invariant, coupled case imn>3 dimensions presented if¥]. For
with the field redefinition given byp= Q2= 9721y, n=4, our method reproduces the method used1i8] for
Although we know that scalar fields are not elementarygenerating solutions for arbitragyin four dimensions. Such
fields in nature, they commonly arise in effective actions. Inmethods are based in conformal transformations ének-
fact, some scalar actions have been considered recently definitions and they have a long history. Referefibd, for
astrophysical contexts, see for instai&¢ However, with  instance, presents a good set of references on the subject. A
the conformally coupled case as the only excepi®6-8, method of this type was early presented by Bekendtéjn
only minimally coupled scalar fields have been examined. Irand used by him for generating solutions for the conformally
[4] a new theorem is presented which rules out a multicomeoupled case starting from the minimally coupled one in four
ponent scalar hair with a non-quadratic Lagrangian, but witidimensions; this was the way that he obtained his black-hole
minimal coupling to gravity. As is stressed[uh], scalar field solution with conformal hair. We notice also that Maeda in
effective actions are obtained by integrating the functiona[15] has used very close machinery to show that the action
integral of the elementary fields in nature over some of thegiven byfd4x\/—_g{F(¢,R)—g“”ﬁﬁdqus} is equivalent to
fields, and more complicated actions involving nonminimallyan Einstein-Hilbert action plus minimally coupled self-
coupling should arise. interacting scalar fields, equivalent in the sense that there is a
In this line, the first natural question that can arise in theconformal transformation andp-redefinition connecting
analysis of 1 is if there exists another nonvacuug rfot  them.
constank black-hole for some or n. Such an investigation The method will provide us with a general asymptotically
has already been started, and the up-to-now data are the fdlat, static, and spherically symmetric solution of 1. Such a
lowing. Long standing results state that for the minimally general solution will be given by a two-parametex,i(,)
coupled cases=0, there is no other black-hole solution than family of solutions, and we will systematically search for
the vacuum Schwarzschild one for-3 [9—-12]. For the con-  values of {,r) such that the solution corresponds to a black
formally coupled cas&= &, recent works have established hole. To this end, one needs to be capable to identify a black-
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hole solution. Because of our experience with the Bekensteisymmetry and obeying 4 £¢2(r)>0. We will obtain the
solution we will not pay attention to possible divergences ofgeneral asymptotically flat, static, and spherically symmetric
the scalar field¢. We recall that the general static and solution of 1 in this way.

spherically symmetrii-dimensional metric has the follow- The general asymptotically flat, static, and spherically
ing form in isotropic coordinates: symmetric solution forn>3 dimensions §,,,¢) of the
minimally coupled case 6 was derived[ib2]. It is given in
— fq+2 —hq,2 —h,2 2 =
ds’=—e'dt’+e "dr’+e "r?d0?, (2) isotropic coordinates by the two-parametaer(,) family of
solutions

where dQ? denotes for the metric of the unitanyn{ 2)
sphere. The metric 2 describes a black hole if it has a regular

event horizon, say the hypersurfacer,. The necessary _ n-2

and sufficient conditions in order for this hypersurface to be p=—\ m(l—)\z)lan,
a regular horizon aréi) ef vanishes ar=r,, so that the

hypersurface is of the null type, arfid) the invariants of the

metric are finite ir =r. If condition (ii) is not verified the o ré”‘6 2/(n-3)
hypersurfacer =r, is said to be a naked singularity. The ds?’=g,,,dx*dx’= — RZ dt*+ 1——m)
invariant of the metric that we will use in our case is the '
i i - - 2\/(n-3
scalar of curvatur®, which can be obtained from the Euler X R, MNO=3(dr2+12d02), 7

Lagrange equations of 1:

ae 1-¢&l& ,,(d_¢)2 where R,= (r"3—r§3)/(r"3+r{~3). The parametek
1-¢(1- §I§C)¢Zg dr can take values ih—1,1] in principle, although the negative
range corresponds to solutions with negative Arnowitt-
We will see that for all candidate solutions to be black holepeser-Misner(ADM) mass[12]. For A\=1, the solution is
R will be singular forr=r or such a hypersurface will be the usual exterion-dimensional vacuum Schwarzschild so-
not of the null type, with the only exception of the Schwarzs-|ytion with the horizon ar,=4r,, as one can check by
child solution. using the coordinate transformatiari=r(1+ r,/r)2. For
To present the method for generate solutions let us sUly<)\ <1, 7 does not represent a black-hole because the sur-
pose first that & ¢4%(r)>0. We can check that the trans- facer=r, is not a horizon, i.e., a regular null surface, but it

)

formations is instead a naked singularity, as we can check by calculating
PP — the scalar of curvature
9u=(1—£¢?) %" 2g,,,, 4
— ¢ VI+E(ElE) —1]x° Caon-
¢(¢>>=f dx——3— (5) — 4(n—2)(n—3)r®" 5"
a £x = (rn73+r873)2(n72+>\)/n73
on the action 1 leads t§ Q?g, #(¢) =99, ¢], where 1-)2

X(rnf3_r873)2(n727)\)/n73' ®

S, 6]= f d*x\—g{R—0""3,¢3,b} (6)

is the minimally coupled action. Because of the assumptiorge Xgﬁfﬁ :zafotgij?";tffatgefgrffen_ﬁmdfgxgszroﬂlﬁtgt?h
1— £¢2(r)>0, the right-handed side of 5 is a monotonically 9 0 P X '

increasing function otp, which guarantees the existence of valid for the interior region _for some values mfandn._ In .
. — . . these cases, the solution for the scalar field is
the inverseg(¢). The constana is to be determined by the ~——

i =—J[(n=2)/(n—3)](1—\?)In|R,|, and the signature
boundary conditions of and¢. The conformal transforma- for the interior region could| ne|ventually change to

tion 4 is valid in general only locally. It is the spherical £

o . +,—,-++,—). Note that cases likea=0 andn=5 do not
symmetric in our case that guarantees that a unique confo

Lt f i b d for the whole black-hol orrespond to acceptable interior solutions because the sig-
t@ﬁorrans ormation can be used for the whole black-Noe €Xpature in the interior region would be-(—,- - -, —)

o For the rangeé<0 the assumption of 1§¢2(r).>0 is
The transformation given by Eqs. 4 and 5, therefore, map!élutomaticrcxlly verified and we can use the transformation 4

a solution @,,,,¢) of 1 to a solution §,,,,¢) of 6. The 54 5 for generating the solutiong,, , ¢) starting from 7.
transformation is independent of any assumption of SYmmec o the regularity of the integrand we have for this case

tries, and in this sense is covariant. Also, we can easily infeﬁm_ &(d)=o. The situation is the same #>0 and
p—o - .

that the transformation is one-to-one in general, in the Sensg £62(r)>0, but we will have Iirrg%,(ﬁ:ll\/g. it

that any solution of 1 is mapped in a unique solution of 6., > " * ; .

The transformation preserves symmetries, what that means?éz.S (r) 1?.0 We can QISO apply the_same formulation with
— . .. — minor modifications. It is easy to verify that the transforma-

that if g,,, admits a Killing vector§ such that £¢=0, then fi .

. L : ion given by

¢ is also a Killing vector ofg,,, and £¢=0. From this, one

concludes if we know all solutionsg(,, ,¢) with a given -

symmetry we automatically know alb(,, ,#) with the same 0,,=(£p?—1)"2""2g 9
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VI+E(ElE.—1)x2 For £€>¢. we are able to generate solutions with
-1 : (10) | ¢(r)|<1/VE and with|¢(r)|>1/\& by using the transfor-
mations 4 and 5 and 9 and 10, respectively. We begin by the
first case. We can see from 4 that the possible hypersurface
null type corresponds to that one for whickry. We
also will examine the scalar of curvature to search for hori-
see[13] for instance, but the final expressions are rathe ons, bqt in this case we will use an asymptotic e2>(panS|on
cumbersome and in fact we will need only somefOr 2 valid for¢ very close to 1/¢. For small 1-£¢* we
asymptotic expansions. To summarize, we are able to genepPtain ¢(¢); —\J(n—1)/(n—2)In(1-£¢%), what leads to
ate all solutions of 1 foE<0. For¢> £, we can generate all 1~ £¢°~R; for r=ro+e, where

solutions with|¢(r)|<1/\/€ or with | ¢(r)|>1/V&. Finally,
for 0<¢<¢. we can generate the solutions such that 5=2 /§ E(l_)\z). (15)
1/E< ¢*(r) <&cl (£~ €) or |$(r)| <LNE Now we wil “n-3

examine each one of these special rangeé. of L .
For <0, the transformations 4 and 5 can be used forl he derivatived¢/dr present in_3 can be evaluated for

generating solutions witl of any range. From 4, we see _r:r0+89¥ usingd¢/dr= (d¢/d¢) 2(d¢/dr) and calculat-
that the only candidate to null hypersurface for the metridng d¢/d¢ from (5) for small 1-£¢<. One gets
g, is that one for whichr=r,. To search for black-hole

()= fjdx

maps also a solutiorg(,, ,¢) of 1 to a solution §,,, &) of
6. However, we see from 10 that in this case one needs al
thaté=¢.. The integrals 5 and 10 can be explicitly solved,

2
solutions one needs to search for valuea p&, andn such d_¢>w_2\/§c(n—3)(n—2)(1—)\ )
that the hypersurface=r is a regular one of null type, and dr 3
to this end we will evaluate the scalar of curvatie3 and ned.n-3
gy for r=ry. Such a work can be simplified considerably if > ™ To RIL (16)
one uses an asymptotic expansion for laggeFrom 5 we (r" 345792 7"
have that¢~ 1/£.— 1/€In¢g for large ¢, and from this we ] B B B B B
get that¢(r)~RrT“ for r=ro+e, where uS|ng that grr%(l'i_ rg 3/rn 3)4/(n S)Rﬁﬁ [2/(n—2)] ¢ we
finally get
[(n—2)/(n—3)](1—\?%) )
= . 4 —&(N—3)(n—2)(1—A
a T —Ti¢ e §2>( )(1-2?)
Using thatg,, ~ (1+ rj 3/r"=3)#(=3R2(E=a) " \where o4 206
>, r "o RZ[(n—l)/(n—Z) 5-p-1]
_ n-3 n—23y(4n—8)/(n—3) n .
1-\ (r"3+r579)
B=1"3 (12)
17
and inserting the asymptotic expansion irin 3 we get p,e to[(n—1)/(n—2)] §—B—1<0 we see that 17 is di-
that, forr=ro+e, vergent for anyn>3, £€>&., and\# = 1. For this case we
4a?(n—3)2 r2n-4,2n-6 also have
~ gn/(n—Z) (rn—3+r8—3)(4n—8)/(n—3) 9= _Rﬁm—za), (18)
X R, Aeln=2) (13)  discarding the possibility ok =—1. Again the only nonsin-

gular situation is the usual vacuum solution.

Expression 13 has a nonremovable singularity inr for The solutions with ¢(r)|>1/J/ are generated by using

anyn>3, £<0, and for anyn # = 1. Thus, for such a hyper- o transformations 9 and 10. The expressionsRoand
surfacer=rg, is a naked singularity and this excludes thegtt valid for r=r,+ ¢ are also given, up to signs, by 13 and

possibility that some solution does represent a black hol ] : >
The only possibility of a black hole corresponds to theeg" what excludes any black-hole solution [ >1//¢ and

: : N+
choicex =1, as we see from the expressiongf We have thafor £>¢. and n>3 there is no other black-
9= _ RAal(n=2) +1] (14) hole solution with the scalar field obeyifg(r)|<1/\/¢ or
n )

|4(r)|>1/\¢ than the Schwarzschild one.

what leads to ¢=a, and this solution is the usual  Finally we have the case<0§<{.. Solutions for which
n-dimensional Schwarzschild one. For completeness, let ukp(r)| <1/\é are generated by 4 and 5, and the asymptotic
analyze the solution generated by the interior solution of 7expressions foR andg;; are 17 and 18, respectively. For the
Again, the unique null hypersurfacefis-r,. We can check range 1£<¢?(r) <& &(&.— €) the asymptotic expressions
that the same asymptotic expansions 13 and 14 are valid féer R andg; are also given by 13 and 14. Thus, we conclude
r=ro—e, and from this we conclude also these solutionsagain thatfor 0<<¢<<¢. and n>3 there is no other black-
cannot give new black holes. hole solution with the scalar field obeyid@(r)|<1/\/g or

We conclude thafor £<0 and n>3 there is no other 1/£6<¢?(r)<é&.é(é.— &) than the Schwarzschild one.
black-hole solution for the action 1 than the Schwarzschild We finish by saying that our “no-go” results for scalar
one hairs with arbitrary coupling buttresses the recent conclu-
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sions that the the four-dimensional Bekenstein black-hole soene more[6], we can say that the essence of the no-hair
lution is truly exclusive and outstandii®,6—§. If we re-  conjecture is not compromised by the conformal scalar hair.
member that the Bekenstein solution has the same number of

free parameters as the Reissner-Norastsmlution and not A.S. was supported by CNPq.
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