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Searching for nonminimally coupled scalar hairs
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We study the asymptotically flat, static, and spherically symmetric black-hole solutions of the theory de-
scribed by the actionS5* dnxA2g$(12jf2)R2gmn]mf]nf%, with n.3 and arbitraryj. We demonstrate
the absence of scalar hairs forj,0. Forj.jc5 (n22)/4(n21) , we show that there is no scalar hair obeying
uf(r )u,1/Aj or uf(r )u.1/Aj. For 0,j,jc , we prove the absence of scalar hairs such thatuf(r )u,1/Aj or
1/j,f2(r ),jc/j(jc2j) . @S0556-2821~96!02512-X#

PACS number~s!: 04.70.Bw, 97.60.Lf
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The Bekenstein black-hole solution@1# for Einstein grav-
ity conformally coupled to a scalar field in four dimension
has had a prominent role in gravitational physics. It has
extremal Reissner-Nordstro¨m geometry and a 1/r-type scalar
field, and it was one of the first counterexamples to the ‘‘n
hair’’ conjecture@2#. The scalar field diverges in the horizon
and such a divergence is crucial to the violation of the n
hair theorems, as recent works have revealed@3,4#. The Bek-
enstein solution is an asymptotically flat, static, and sphe
cally symmetric solution for the theory described by th
action

S@g,f#5E dnxA2g$~12jf2!R2gmn]mf]nf% ~1!

with j51/6 andn54. The coupling defined by such value
is called conformal because with them the action 1 is inva
ant under the map defined by the conformal transformat
gmn5V2ḡmn , V2.0, and by the field transformation
f5V21f̄. This map can be easily extended fo
n-dimensional space-times; with the coupling given b
jc5 (n22)/4(n21) , the action 1 is conformal invariant
with the field redefinition given byf5V@(22d)/2#f̄.

Although we know that scalar fields are not elementa
fields in nature, they commonly arise in effective actions.
fact, some scalar actions have been considered recentl
astrophysical contexts, see for instance@5#. However, with
the conformally coupled case as the only exception@3,6–8#,
only minimally coupled scalar fields have been examined.
@4# a new theorem is presented which rules out a multico
ponent scalar hair with a non-quadratic Lagrangian, but w
minimal coupling to gravity. As is stressed in@4#, scalar field
effective actions are obtained by integrating the function
integral of the elementary fields in nature over some of t
fields, and more complicated actions involving nonminimal
coupling should arise.

In this line, the first natural question that can arise in t
analysis of 1 is if there exists another nonvacuum (f not
constant! black-hole for somej or n. Such an investigation
has already been started, and the up-to-now data are the
lowing. Long standing results state that for the minimal
coupled case,j50, there is no other black-hole solution tha
the vacuum Schwarzschild one forn.3 @9–12#. For the con-
formally coupled case,j5jc , recent works have establishe
53-2821/96/53~12!/7377~4!/$10.00
s
an

o-
,
o-

ri-
e

s
ri-
ion

r
y
,

ry
In
y in

In
m-
ith

al
he
ly

he

fol-
ly
n

d

that the only static and spherically symmetric nonvacuu
black-hole solution of 1 withn.3 is the four-dimensional
Bekenstein one@6–8#. The present work points toward the
conclusion of this investigation by showing that the only
black-hole solutions of 1 are the Schwarzschild ones fo
n.3 and for very large ranges ofj andf. Hereafter, we
will use the term black-hole solution to denote an asymptot
cally flat, static, and spherically symmetric black-hole solu
tion. We show that the Schwarzschild black-hole solution
the only one forj,0. For j.jc , we prove the absence of
scalar hairs obeyinguf(r )u,1/Aj or uf(r )u.1/Aj. We also
demonstrate the absence of scalar hairs obeyi
1/j,f2(r ),jc/j(jc2j) or uf(r )u,1/Aj for 0,j,jc .
These results are in agreement with the recent results ab
the uniqueness of the four-dimensional Bekenstein blac
hole solution@3,6–8#.

The demonstration of our results centers in a covaria
method for generating solutions for 1 starting from the wel
known solutions of the minimally coupled case. It genera
izes the method for generating solutions for the conformal
coupled case inn.3 dimensions presented in@7#. For
n54, our method reproduces the method used in@13# for
generating solutions for arbitraryj in four dimensions. Such
methods are based in conformal transformations andf re-
definitions and they have a long history. Reference@14#, for
instance, presents a good set of references on the subjec
method of this type was early presented by Bekenstein@1#
and used by him for generating solutions for the conformal
coupled case starting from the minimally coupled one in fou
dimensions; this was the way that he obtained his black-ho
solution with conformal hair. We notice also that Maeda i
@15# has used very close machinery to show that the actio
given by*d4xA2g$F(f,R)2gmn]mf]nf% is equivalent to
an Einstein-Hilbert action plus minimally coupled self-
interacting scalar fields, equivalent in the sense that there i
conformal transformation andf-redefinition connecting
them.

The method will provide us with a general asymptotically
flat, static, and spherically symmetric solution of 1. Such
general solution will be given by a two-parameter (l,r 0)
family of solutions, and we will systematically search for
values of (l,r 0) such that the solution corresponds to a blac
hole. To this end, one needs to be capable to identify a blac
7377 © 1996 The American Physical Society
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7378 53BRIEF REPORTS
hole solution. Because of our experience with the Bekenst
solution we will not pay attention to possible divergences
the scalar fieldf. We recall that the general static an
spherically symmetricn-dimensional metric has the follow-
ing form in isotropic coordinates:

ds252efdt21e2hdr21e2hr 2dV2, ~2!

where dV2 denotes for the metric of the unitary (n22)
sphere. The metric 2 describes a black hole if it has a regu
event horizon, say the hypersurfacer5r 0 . The necessary
and sufficient conditions in order for this hypersurface to
a regular horizon are~i! ef vanishes atr5r 0 , so that the
hypersurface is of the null type, and~ii ! the invariants of the
metric are finite inr5r 0 . If condition ~ii ! is not verified the
hypersurfacer5r 0 is said to be a naked singularity. Th
invariant of the metric that we will use in our case is th
scalar of curvatureR, which can be obtained from the Euler
Lagrange equations of 1:

R5
12j/jc

12j~12j/jc!f
2g

rr S df

dr D
2

. ~3!

We will see that for all candidate solutions to be black ho
R will be singular forr5r 0 or such a hypersurface will be
not of the null type, with the only exception of the Schwarz
child solution.

To present the method for generate solutions let us s
pose first that 12jf2(r ).0. We can check that the trans
formations

gmn5~12jf2!2 2/~n22!ḡmn , ~4!

f̄~f!5E
a

f

dx
A11j@~j/jc! 21#x2

12jx2 , ~5!

on the action 1 leads toS@V2ḡ,f(f̄)#5S̄@ ḡ,f̄#, where

S̄@ ḡ,f̄#5E d4xA2ḡ$R̄2ḡmn]mf̄]nf̄% ~6!

is the minimally coupled action. Because of the assumpt
12jf2(r ).0, the right-handed side of 5 is a monotonical
increasing function off, which guarantees the existence o
the inversef(f̄). The constanta is to be determined by the
boundary conditions off andf̄. The conformal transforma-
tion 4 is valid in general only locally. It is the spherica
symmetric in our case that guarantees that a unique con
mal transformation can be used for the whole black-hole e
terior.

The transformation given by Eqs. 4 and 5, therefore, ma
a solution (gmn ,f) of 1 to a solution (ḡmn ,f̄) of 6. The
transformation is independent of any assumption of symm
tries, and in this sense is covariant. Also, we can easily in
that the transformation is one-to-one in general, in the se
that any solution of 1 is mapped in a unique solution of
The transformation preserves symmetries, what that mean
that if ḡmn admits a Killing vectorj such that £jf̄50, then
j is also a Killing vector ofgmn and £jf50. From this, one
concludes if we know all solutions (ḡmn ,f̄) with a given
symmetry we automatically know all (gmn ,f) with the same
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symmetry and obeying 12jf2(r ).0. We will obtain the
general asymptotically flat, static, and spherically symmet
solution of 1 in this way.

The general asymptotically flat, static, and spherical
symmetric solution forn.3 dimensions (ḡmn ,f̄) of the
minimally coupled case 6 was derived in@12#. It is given in
isotropic coordinates by the two-parameter (l,r 0) family of
solutions

f̄52An22

n23
~12l2!lnRn ,

ds25ḡmndx
mdxn52Rn

2ldt21S 12
r 0
2n26

r 2n26D 2/~n23!

3Rn
2 2l/~n23!~dr21r 2dV2!, ~7!

whereRn5 (r n232r 0
n23)/(r n231r 0

n23) . The parameterl
can take values in@21,1# in principle, although the negative
range corresponds to solutions with negative Arnowit
Deser-Misner~ADM ! mass@12#. For l51, the solution is
the usual exteriorn-dimensional vacuum Schwarzschild so
lution with the horizon atr 0854r 0 , as one can check by
using the coordinate transformationr 85r (11 r 0/r )

2. For
0<l,1, 7 does not represent a black-hole because the s
facer5r 0 is not a horizon, i.e., a regular null surface, but
is instead a naked singularity, as we can check by calculat
the scalar of curvature

R̄5
4~n22!~n23!r 2n28r 0

2n26

~r n231r 0
n23!2~n221l!/n23

3
12l2

~r n232r 0
n23!2~n222l!/n23 . ~8!

Note that the solution 7 for generall describes only the
exterior region (r.r 0) of the space-time. However, it is still
valid for the interior region for some values ofl andn. In
these cases, the solution for the scalar field
f̄52A@(n22)/(n23)# (12l2)lnuRnu, and the signature
for the interior region could eventually change t
(1,2,•••,2). Note that cases likel50 andn55 do not
correspond to acceptable interior solutions because the
nature in the interior region would be (2,2,•••,2).

For the rangej,0 the assumption of 12jf2(r ).0 is
automatically verified and we can use the transformation
and 5 for generating the solutions (gmn ,f) starting from 7.
From the regularity of the integrand we have for this ca
limf̄→`f(f̄)5`. The situation is the same ifj.0 and
12jf2(r ).0, but we will have limf̄→`f51/Aj. If
jf2(r )21.0 we can also apply the same formulation wit
minor modifications. It is easy to verify that the transforma
tion given by

gmn5~jf221!2 2/~n22!ḡmn , ~9!
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f̄~f!5E
a

f

dx
A11j~j/jc 21!x2

jx221
, ~10!

maps also a solution (gmn ,f) of 1 to a solution (ḡmn ,f̄) of
6. However, we see from 10 that in this case one needs a
that j>jc . The integrals 5 and 10 can be explicitly solved
see @13# for instance, but the final expressions are rath
cumbersome and in fact we will need only som
asymptotic expansions. To summarize, we are able to gen
ate all solutions of 1 forj,0. Forj.jc , we can generate all
solutions withuf(r )u,1/Aj or with uf(r )u.1/Aj. Finally,
for 0,j,jc we can generate the solutions such th
1/j,f2(r ),jc/j(jc2j) or uf(r )u,1/Aj. Now we will
examine each one of these special ranges ofj.

For j,0, the transformations 4 and 5 can be used f
generating solutions withf of any range. From 4, we see
that the only candidate to null hypersurface for the met
gmn is that one for whichr5r 0 . To search for black-hole
solutions one needs to search for values ofl, j, andn such
that the hypersurfacer5r 0 is a regular one of null type, and
to this end we will evaluate the scalar of curvatureR 3 and
gtt for r5r 0 . Such a work can be simplified considerably
one uses an asymptotic expansion for largef. From 5 we
have thatf̄'A1/jc21/j lnf for largef, and from this we
get thatf(r )'Rn

2a for r5r 01«, where

a5A@~n22!/~n23!# ~12l2!

1/jc21/j
. ~11!

Using thatgrr'(11 r 0
n23/r n23)4/(n23)Rn

2(b2a) , where

b5
12l

n23
, ~12!

and inserting the asymptotic expansion forf in 3 we get
that, for r5r 01«,

R'
4a2~n23!2

jn/~n22!

r 2n24r 0
2n26

~r n231r 0
n23!~4n28!/~n23!

3Rn
22@a/~n22! 1b11# . ~13!

Expression 13 has a nonremovable singularity inr5r 0 for
anyn.3, j,0, and for anylÞ61. Thus, for such a hyper-
surfacer5r 0 is a naked singularity and this excludes th
possibility that some solution does represent a black ho
The only possibility of a black hole corresponds to th
choicel51, as we see from the expression ofgtt:

gtt52Rn
2@a/~n22! 1l# , ~14!

what leads to f5a, and this solution is the usua
n-dimensional Schwarzschild one. For completeness, let
analyze the solution generated by the interior solution of
Again, the unique null hypersurface isr5r 0 . We can check
that the same asymptotic expansions 13 and 14 are valid
r5r 02«, and from this we conclude also these solutio
cannot give new black holes.

We conclude thatfor j,0 and n.3 there is no other
black-hole solution for the action 1 than the Schwarzsch
one.
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For j.jc we are able to generate solutions wit
uf(r )u,1/Aj and with uf(r )u.1/Aj by using the transfor-
mations 4 and 5 and 9 and 10, respectively. We begin by
first case. We can see from 4 that the possible hypersurf
of null type corresponds to that one for whichr5r 0 . We
also will examine the scalar of curvature to search for ho
zons, but in this case we will use an asymptotic expansi
for 5 valid for f very close to 1/Aj. For small 12jf2 we
obtain f̄(f)'2A(n21)/(n22)ln(12jf2), what leads to
12jf2'Rn

d for r5r 01«, where

d52Ajc
n22

n23
~12l2!. ~15!

The derivativedf/dr present in 3 can be evaluated fo
r5r 01« by usingdf/dr5 (df/df̄) (df̄/dr) and calculat-
ing df/df̄ from ~5! for small 12jf2. One gets

df

dr
'22Ajc~n23!~n22!~12l2!

j

3
r n24r 0

n23

~r n231r 0
n23!2

Rn
d21 . ~16!

Using that grr'(11 r 0
n23/r n23)4/(n23)Rn

2b2 @2/(n22)# d we
finally get

R'
4jc~jc2j!~n23!~n22!~12l2!

j2

3
r 2n24r 0

2n26

~r n231r 0
n23!~4n28!/~n23! Rn

2@~n21!/~n22! d2b21# .

~17!

Due to @(n21)/(n22)# d2b21,0 we see that 17 is di-
vergent for anyn.3, j.jc , andlÞ61. For this case we
also have

gtt52Rn
2~l22d! , ~18!

discarding the possibility ofl521. Again the only nonsin-
gular situation is the usual vacuum solution.

The solutions withuf(r )u.1/Aj are generated by using
the transformations 9 and 10. The expressions forR and
gtt valid for r5r 06« are also given, up to signs, by 13 and
14, what excludes any black-hole solution forufu.1/Aj and
lÞ1.

We have thatfor j.jc and n.3 there is no other black-
hole solution with the scalar field obeyinguf(r )u,1/Aj or
uf(r )u.1/Aj than the Schwarzschild one.

Finally we have the case 0,j,jc . Solutions for which
uf(r )u,1/Aj are generated by 4 and 5, and the asympto
expressions forR andgtt are 17 and 18, respectively. For the
range 1/j,f2(r ),jc/j(jc2j) the asymptotic expressions
for R andgtt are also given by 13 and 14. Thus, we conclud
again thatfor 0,j,jc and n.3 there is no other black-
hole solution with the scalar field obeyinguf(r )u,1/Aj or
1/j,f2(r ),jc/j(jc2j) than the Schwarzschild one.

We finish by saying that our ‘‘no-go’’ results for scala
hairs with arbitrary coupling buttresses the recent conc
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sions that the the four-dimensional Bekenstein black-hole
lution is truly exclusive and outstanding@3,6–8#. If we re-
member that the Bekenstein solution has the same numbe
free parameters as the Reissner-Nordstro¨m solution and not
so-

r of

one more@6#, we can say that the essence of the no-ha
conjecture is not compromised by the conformal scalar ha
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