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Mass inflation in a rotating charged black hole
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The structure of the Cauchy horizon of a charged rotating black hole is analyzed under the combined effect
of an ingoing and outgoing flux of gravitational waves. In particular, by means of an axisymmetric realization
of the Ori model, the growth of the mass parameter near the Cauchy horizon is studied in the slow rotation
approximation. It is shown that the mass parameter inflates, while the angular momentum per unit mass
deflates, but initial deviations from spherical symmetry survive.@S0556-2821~96!01410-5#
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Although it is now generally accepted that gravitation
collapse results in the formation of a black hole, the ultima
fate of the collapsing object within the black hole is an ope
question. The presence of an inner horizon, the Cauchy
rizon ~CH!, a lightlike surface behind which the predictabi
ity of the field equations breaks down, turns out to be
formidable obstacle to constructing an unambiguous pictu
of the complete analytical extension of the geometry. Th
fundamental issue is encoded in the peculiar character of
CH.

As noted first by Penrose@1#, ingoing pencils of radiation
experience a diverging blueshift as they approach the g
erators of the CH. This kind of nonscalar singularity, know
as a ‘‘whimper’’ @2#, is unstable to perturbations. Then
stronger, scalar singularity can develop when the back re
tion of the fields on the metric is taken into account. If th
additional effect of an outgoing flux is considered, spheric
models of the crossflow region@3# show that the effective
mass parameterm(u,v) exponentially inflates at late ad-
vanced times, as the CH is approached. In particular
Weyl curvature invariantC2 diverges, indicating that a sca
lar singularity occurs. But this divergence is still ‘‘mild,’’
since the mass function is an integrable function of t
Kruskalized advanced coordinate, and in suitable coordina
the metric coefficients stay finite at the CH.

How general are these models in describing the evolut
of the interior at late advanced times, if the restriction
spherical symmetry is removed? General arguments base
the constancy of the surface gravity over a stationary horiz
@3# indicate that the growth of the mass parameter sho
appear uniform on small angular scales. One suspects in
ticular that in a generic axisymmetric collapse the ‘‘effectiv
Kerr parameter’’ ~the angular momentum per unit mas
a5J/m) becomes negligible if the total angular momentu
of the infalling radiation is bounded during the collapse@4#.
The asymptotic structure of the spacetime close to the C
should look like an axially symmetric geometry with a
enormously inflated mass term. A more realistic analysis
the instability of the Cauchy horizon for a class of Ker
Newmann spacetime has been proposed in@5,6# and in the
framework of the 212 approach in@7#. In particular in@5#
the effect of nonlinear perturbations on Kerr background
considered, while in@7# the resulting asymptotic configura
tion seems not to be that of a Petrov type-D spacetime.
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A possible insight into the question lies in the nature
the mass-inflation phenomenon. The outgoing flux is a ca
lyzer which causes the generators to contract without a di
interaction with the infinitely blueshifted infalling lightlike
contribution. The rate of contraction is fully determined b
Price’s power law damping of the radiative tail;1/v (p21),
p>11. Hence one can argue that deviations from the pur
spherical geometry of the CH should be reflected in dev
tion from spherical symmetry in the mass-inflated sect
since the contraction will not be uniform in a nonspheric
model. The leading contribution to the mass function sho
then be dominated by a very large mass term with a sm
angular dependence. We shall here present an explicit m
inflation solution in the case of a rotating charged hole th
exhibits this behavior. Since the model is only qualitativ
the exact power law correction to the divergence of the m
function cannot be determined. However, although appro
mate, the model should capture the qualitative features of
geometry of the CH in a nonstationary, rotating black hol

The crossflow region, near the CH, is described by
outgoing lightlike shell, simulating the outgoing flux, embe
ded in a continuous flow of infalling gravitational waves; s
Fig. 1. This axisymmetric realization of the Ori@8# model is
derived in the slow rotation approximation whena5J/m is

FIG. 1. A spacetime diagram of the equatorial plane of the a
symmetric black hole interior showing the ingoing flow of gravit
tional waves being crossed by an outgoing lightlike shell.
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small compared to the radius of the CH,r 0:

e[ a2/r 0
2 !1. ~1!

In particular, as background geometry we consider the n
stationary Vaidya-type generalization of the Kerr metric d
cussed in@9#. We extend that model to the charged case
order to retain a finite~nonzero! radius for the inner horizon
even whena is small. In the$r ,q,w,v% Eddington-Kerr co-
ordinate system the metric reads

ds252S 12
2m~v !r2e2

S Ddv212drdv

1Sdq222asin2qdwdr1R2sin2qdw2

2
2a@2m~v !r2e2#sin2q

S
dvdw, ~2!

where

R25
~r 21a2!22Da2sin2q

S
, S5r 21a2cos2q,

D5r 21a21e222m~v !r . ~3!

As in the spherical Vaidya model, the mass parame
m(v) is a function of the advanced coordinatev. Its func-
tional dependence near the CH, located atv51`, is as-
sumed to be of the form

m5m01dm~v !, dm~v !52 A/vp21 , v→1`, ~4!

to reproduce the power law decay of the gravitational wav
In the following analysis it is convenient to introduce th
null complex tetrad $ lm ,nn ,mm ,m̄m%, with
on-
is-
in

ter

es.
e

2 lmn
m5mmm̄

m51 and lm is the repeated principal null di-
rection associated with the infalling field, andr decreases
with time alongv5const:

lm52]mv1asin2q]mw,

nm52
1

S S D

2
]mv2S]mr2asin2q

D

2
]mw D ,

mm52
r̄

A2
@ iasinq]mv1S]mq2 i ~r 21a2! sinq]mw#,

~5!

where r52(r2 iacosq)21. The total energy-momentum
tensor can be expressed as

Tmn52f22lml n24f12l ~mm̄n)24f̄12l ~mmn)

14f11~ l ~mnn)1m~mm̄n)! , ~6!

wheref22,f12,f11 are the only nonvanishing tetrad compo-
nents of the trace-free part of the Ricci tensor

Smn5Rmn2 1
4 gmnR (5Rmn in our case!,

f225r @2rṁ~v !2a2sin2qm̈~v !#/4S2, f115e2/2S2,

f1252 iasinqṁ~v !r/2A2S, ~7!

and the overdots mean differentiation with respect to the ad
vanced coordinatev. The radiation field consists of a pure
null part and a residual term. In particularf11 represents the
contribution of a static source field generated by a charge o
strengthe. Unlike the stationary case, there is only one re
peated principal null direction: The spacetime is algebra
ically special of Petrov type II and the only nonzero Weyl
invariants are
e

C252m~v !r32e2rr̄3, C35
2 iṁ~v !rasinq

2A2S
2
iṁ~v !r2rasinq

A2S
, C45

m̈~v !r2ra2sin2q

A2S
1
ṁ~v !r3ra2sin2q

A2S
. ~8!

Let us now consider the equation of motionr5r (v,q) of an axisymmetric generic outgoing null hypersurface. Close to th
CH, where the functional dependence of the mass function on the advanced coordinate is given by~4!, it reads

2
2dm~v !r

r 21a2
22k0~r2r 0!22]vr1

a2sin2q

r 21a2
~]vr !21

~]qr !2

r 21a2
50, ~9!
y a

a
e

n

wherek0 is the surface of gravity of the inner horizon lo
cated atr5r 0 . To first order in the effective rotation param
etere, the solution has to be of the form

r2r 05 f ~v !1eg~v,q!1O~e2! ~10!

and ~9! is equivalent to the following system of partial dif
ferential equations for the zeroth and first order terms,
spectively:

k0f1 f v52 dm~v !/r ,

k0g1gv2
1
2 sin

2q f v
25dm~v !/r . ~11!

The boundary conditions

lim
v→`

f ~v !5g~v,q!50 ~12!
-
-

-
re-

determine the following asymptotic form for the solution as
v→`:

r2r 05 f ~v !F12eS sin2q~p21!

2k0v
1O~1/v2! D G1O~e2!,

~13!

where

f ~v !5 ~A/kr 0! v
2~p21!~11 p21/k0v 1••• !. ~14!

This shows that the angular dependence is suppressed b
factor 1/v to first order ine as we approach the CH.

Now we consider this hypersurface to be the locus of
lightlike shell embedded in this background. The spacetim
~see Fig. 1! is then divided in two regionsM1 andM2

separated by the outgoing shell § whose equation of motio
is of the form~13! near the CH. We assume that the ‘‘past’’
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side of the shell is described by the radiating Kerr-Newm
metric ~2!. In general nothing can be said about the futu
side ofS . However, it is reasonable to think that in the slo
rotation regime the production of gravitational waves can
neglected and the structure of the resulting ‘‘glued’’ man
fold is still Kerr-like at least close to the CH. Thus as ‘‘trial’
metric we assume that the spacetime in the future secto
the shell can be represented with a line element of the ty
~2! where the coefficients functionsr1 ,a1 ,m1 depend on
the coordinates inM2. In particular let$v6 ,r6 ,q6% be the
local coordinates of § inM6, a6 be the value of the angular
momentum per unit mass, andm6 be the mass functions in
both the sides of the shell. The stress-energy tensor inM1

contains the contribution in~6! and residuals terms arising
from the fact thata1 is not stricly constant. Those terms ca
be shown to be much smaller than the leading, optical g
metric contribution in~6!. We shall explicitly check the va-
lidity of this approximation at the end of the computation.

In this model the presence of the outgoing lightlike she
simply serves to start the contraction of the generators of
CH. Thus we consider a pressureless shell so that the sol
ing of the two geometries is affinely conciliable@10#. We
remark that since the analysis in@11,12# shows that for
spherical symmetry the CH survives the focusing effect
the outgoing flux, it is reasonable to think that this would b
the case even if the hole is slowly rotating. In order to isola
the divergent contribution in the mass function inM1 we
define m15m̄1M (v1) where, by definition,
2m̄r̄5 r̄ 21ā21e2 and r̄ , ā are the values ofr1 anda1 at
the CH. As before, the solution of~9! inM1 is of the form

r12r 015 f1~v1!1 ~a1
2 /r 2! g1~v1 ,q1!. ~15!

Therefore Eq.~15! decouples as a system of the type~11!. In
particular, ifM (v1)@r 0 near the CH, at leading order in the
mass term it reduces to

] f1

]v1
.2

M1

r 01
,

]g1

]v1
.sin2q1

M2~v1!

r 01
2 . ~16!

The only geometric condition that has to be satisfie
along §, the common boundary of the two spacetimes, is t
the two intrinsic degenerate metrics coincide. This impli
that the areaA of the two intrinsic metrics has to be con
tinuous across the shell:

@A#50, ~17!

where @A#5A12A2 . In a perturbative expansion in
a6 , this condition decouples into two distinct continuity re
quirements for the zeroth and first order terms. The sphe
cally symmetric contribution simply states the continuity o
the r coordinate across §, nota priori guaranteed from~17!.
Thus r15r25r and we setr 015r 025r 0 at the CH. We
use r as a parameter~necessarily affine for a pressureles
shell! along the generators of §. By using Eq.~13! in M2

one finds that along the shell the area of anyv25const cross
section reads

A254pr 0
2~11e!1O~1/vp!, v2→1`, ~18!

where only linear terms ine have been retained in the de
generate metric. Similarly inM1, close to the CH and up to
linear terms toa1

2 , one has

A154p@r 0
21a1

2 ~11 2M ~v1!/3r 0!#. ~19!
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In particular, ifM (v1)/r 0@1, Eq. ~17! reads

a1
2 M1.3er 0

3/2, v2→1`. ~20!

This latter equation, although approximate, contains the
sential physics. As observed in the beginning, it explicit
shows that the effective Kerr parametera1 becomes increas-
ingly small as the mass function grows. We stress, howev
that the asymptotic geometry close to the CHwill not be
spherically symmetric because thea1

2 M1 anda1M1 terms
in the metric are not negligible. The dependence ofv1 and
q1 on the advanced coordinates in the past sector of
shell can be determined from the expression for the null ge
erators on both sides of §~the dependence ofw1 on w2 is
trivial since these coordinates define the same Killing ve
tor!. From the chain rule and the continuity of ther function
one has

]v f u25]v f u1F]v1

]v2
G ~0!

, ~21!

e]vgu25]v f u1F]v1

]v2
G ~1!

1
a1
2

r 0
2 ]vgu1F]v1

]v2
G ~0!

, ~22!

e]qgu25]v f u1F ]v1

]q2
G ~1!

1
a1
2

r 0
2 ]qgu1 , ~23!

where only first order terms in the Jacobian determinant ha
been retained. To relate the dynamics of the two spacetim
one has to add the condition for matching of normal stress
across the shell:

@Tmnsmsn#50, ~24!

wheresm are generators of §. Equation~24! is a second order
ordinary differential equation forM1 . The dependence of
$v1 ,q1% on the local coordinates inM2 is implicitly de-
fined from~21!–~23!, and from the equations of motion of §
in the two spacetimes. The explicit solution of~24! is not
available. However, in the slow rotation approximation~24!
reduces to

@f22lml ns
msn#50, ~25!

where the scalar products have to be calculated from
spherically symmetric contribution. Therefore it is importan
to stress that in this approximation only the optical, phys
cally meaningful, part of the energy momentum tensor
relevant. This equation contains the coupling between t
angular momentum and mass function through thea1M̈1

term. By using~21! in ~25! and by expressinga1 with the
help of Eq. ~20!, after some simplifications one explicitly
finds

Fd2M1

dv2
2 1

1

M1
SdM1

dv2
D2G 3er0sin

2q

4]v f2
2
dM1

dv2

52k0S 12p
41k0r 03esin2q

4k0v2
DM1 ; ~26!

note thatq25q1 in this approximation. Hence we write

M15m11dm1 ~27!

and we have, from~26!,

m15~1/v2
p ! ek0v2, v2→1`. ~28!

This has the Israel-Poisson behavior, and
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dm1'const3v2esin2qek0v2;esin2qek0v2, v2→` .
~29!

The relevant point is that the effective mass parame
exponentially inflates with a residual angular dependence

M1;ek0v2~11ce sin2q!, ~30!

to first order ine, which does not effect the exponentiall
divergent prefactor @3#. We therefore set
M15m1(11ce sin2q). From Eqs.~21!–~23! one finds

F]v1

]v2
G ~0!

;e2k0v2, F]v1

]v2
G ~1!

;esin2q2e
2k0v2,

F ]v1

]q2
G ~1!

;ek0
21sin2qe2k0v2. ~31!

We see that the radial coordinate tends to a finite limitbe-
hind the shell. Indeed, from Eq.~16!, we have

f ~v1!; 1/lnpuv1u , v1→0,

a1
2 g~v1 ,q1!; r 0

2sin2q1/ ln
puv1u , v1→0; ~32!

thus,

lim
v1→0

r ~v1!5r 0 . ~33!

The geometry in the mass-inflated sector is asymptotica
dominated by the large mass term, and the metric, to a go
approximation, explicitly reads

ds1
2 '

2m1

r
~11ce sin2q!dv1

2 12drdv11r 2dq2

1r 2~113esin2q!dw224A3em1r /2sin
2qdv1dw.

~34!
The following ‘‘mild’’ twist of the w coordinate~sincem1 is
an integrable function of the advanced coordinatev1!

dw5dF1 ~2A3em1r 0/2/r 0
2! dv1 , ~35!

brings the metric in the final form

ds1
2 '

2m1

r
~11cesin2q!dv1

2 12drdv11r 2dq2

1r 2~113esin2q!sin2qdF2 ~36!

to linear terms ine. This result is interesting, we believe
because it explicitly shows that deviations from spheric
symmetry at the Cauchy horizon are reflected in the ma
inflated sector, in accordance with the remarks at the beg
ning. This phenomenon should be characteristic of the d
ter
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namics of a spacetime with a nonspherical CH. It
important to check the consistency of the approximatio
that have been done. In fact had westartedwith the line
element~36!, with m15v1

21ln2puv1u we would find

A154pr 0
2~11e!5A21O~1/vp! ~37!

for the continuity of the intrinsic area across the shell. It
straightforward to verify that the stress-energy tensor co
puted from~36! close to CH satisfies the matching conditio
for the normal stresses, Eq.~24!:

@Tmnsmsn#5O~e2!, ~38!

wheresm are the generators of the shell.
The Komar-invariant quantity associated with the rota

tional Killing vector fieldjm is not conserved since matter is
flowing into the system. It is indeed divergent in our mode
but with a much slower rate:

1

8p R jm;ndsmn;Am1, ~39!

where the integral is taken over the two-dimensional boun
ary of any v25const hypersurface, withv2→1`. It is,
however, hard to judge, from the analysis here present
whether one can expect this latter result to occur in a mo
general framework than that of our model. In particular at th
present we do not see any deeper physical argument to
plain it.

As in the spherically symmetric models, at the CH
strong, scalar singularity develops, whose character can
read off from the Weyl curvature invariants in~8!. One finds
that to the future of the shell, they are all divergent:

C2;
1

v1ln
puv1u

, C3;
1

v1Auv1u lnp/2uv1u
,

C4; 1/~v1
2 Auv1u lnp/2uv1u! . ~40!

AlthoughC3 andC4 are tetrad dependent, the divergence
the boost-invariant quantityC2 has the same ‘‘mild’’ trait as
in the spherically symmetric case.
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