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Mass inflation in a rotating charged black hole
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The structure of the Cauchy horizon of a charged rotating black hole is analyzed under the combined effect
of an ingoing and outgoing flux of gravitational waves. In particular, by means of an axisymmetric realization
of the Ori model, the growth of the mass parameter near the Cauchy horizon is studied in the slow rotation
approximation. It is shown that the mass parameter inflates, while the angular momentum per unit mass
deflates, but initial deviations from spherical symmetry sunj®556-282(196)01410-5

PACS numbds): 04.70.Bw, 04.20.Dw

Although it is now generally accepted that gravitational A possible insight into the question lies in the nature of
collapse results in the formation of a black hole, the ultimatethe mass-inflation phenomenon. The outgoing flux is a cata-
fate of the collapsing object within the black hole is an openlyzer which causes the generators to contract without a direct
question. The presence of an inner horizon, the Cauchy hdnteraction with the infinitely blueshifted infalling lightlike
rizon (CH), a lightlike surface behind which the predictabil- contribution. The rate of contraction is fully determined by
ity of the field equations breaks down, turns out to be aPrice’s power law damping of the radiative taill/v(P~1),
formidable obstacle to constructing an unambiguous pictur@®=11. Hence one can argue that deviations from the purely
of the complete analytical extension of the geometry. Thisspherical geometry of the CH should be reflected in devia-
fundamental issue is encoded in the peculiar character of tHéon from spherical symmetry in the mass-inflated sector,
CH. since the contraction will not be uniform in a nonspherical

As noted first by Penrogd], ingoing pencils of radiation model. The leading contribution to the mass function should
experience a diverging blueshift as they approach the gerihen be dominated by a very large mass term with a small
erators of the CH. This kind of nonscalar singularity, knownangular dependence. We shall here present an explicit mass-
as a “whimper” [2], is unstable to perturbations. Then a inflation solution in the case of a rotating charged hole that
stronger, scalar singularity can develop when the back rea@xhibits this behavior. Since the model is only qualitative,
tion of the fields on the metric is taken into account. If thethe exact power law correction to the divergence of the mass
additional effect of an outgoing flux is considered, sphericafunction cannot be determined. However, although approxi-
models of the crossflow regiof8] show that the effective mate, the model should capture the qualitative features of the
mass parametem(u,v) exponentially inflates at late ad- geometry of the CH in a nonstationary, rotating black hole.
vanced times, as the CH is approached. In particular the The crossflow region, near the CH, is described by an
Weyl curvature invarian®, diverges, indicating that a sca- outgoing lightlike shell, simulating the outgoing flux, embed-
lar singularity occurs. But this divergence is still “mild,” ded in a continuous flow of infalling gravitational waves; see
since the mass function is an integrable function of theFig. 1. This axisymmetric realization of the Q8] model is
Kruskalized advanced coordinate, and in suitable coordinategerived in the slow rotation approximation wharJ/m is
the metric coefficients stay finite at the CH.

How general are these models in describing the evolution c
of the interior at late advanced times, if the restriction of
spherical symmetry is removed? General arguments based on
the constancy of the surface gravity over a stationary horizon
[3] indicate that the growth of the mass parameter should s
appear uniform on small angular scales. One suspects in par- L
ticular that in a generic axisymmetric collapse the “effective
Kerr parameter” (the angular momentum per unit mass
a=J/m) becomes negligible if the total angular momentum
of the infalling radiation is bounded during the collajgé
The asymptotic structure of the spacetime close to the CH
should look like an axially symmetric geometry with an M- \
enormously inflated mass term. A more realistic analysis of
the instability of the Cauchy horizon for a class of Kerr-

Newmann spacetime has been proposefbif] and in the £

framework of the 2-2 approach if7]. In particular in[5]

the effect of nonlinear perturbations on Kerr background is FIG. 1. A spacetime diagram of the equatorial plane of the axi-
considered, while if7] the resulting asymptotic configura- symmetric black hole interior showing the ingoing flow of gravita-
tion seems not to be that of a Petrov tyPespacetime. tional waves being crossed by an outgoing lightlike shell.
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small compared to the radius of the CiH; =l n#= mMW:l andl , is the repeated principal null di-
o2 rection associated with the infalling field, amddecreases
e=a’lrp<l. @ with time alongv = const:
In particular, as background geometry we consider the non- = —&Mv+asin2ﬂo7ﬂ<p,

I
M
stationary Vaidya-type generalization of the Kerr metric dis-

cussed in9]. We extend that model to the charged case in n.=— 1 9 v-39 r_asinzﬁéa ®
order to retain a finiténonzero radius for the inner horizon Beox\20#k a 21
even where is small. In the{r,9,¢,v} Eddington-Kerr co- s
ordinate system the metric reczelds m,=— E[iasinﬁgﬂﬁzaﬂa_i(rq a?) sindd,,¢],
2m(v)r—e )
ds?=— 1—T dv“+2drdv (5
_ o where p=—(r—iacos9) 1. The total energy-momentum
+ 3 d92— 2asirfddedr +.722sirf 9d ¢? tensor can be expressed as
2a[2m(v)r — e2]sird To=202d 1= 4b1d (uMyy —~ 4 brdl (M,
— S dvde, (2) _
+4¢1(l Ny +m,my,), (6)
where whereg,,, ¢15, ¢11 are the only nonvanishing tetrad compo-
(r2+a2)2— Aa2sirtd nents of the trace-free part of the Ricci tensor
B2 — —r2 2 .
ST= S . Y=r’+a’cos'd, S.,=R,,—$9,,R (=R, in our casg
A=r24 a2+ €— 2m(v)r. 3 boo=r[2rm(v)—aZsirPdm(v) /432,  $yy=e?/232,
As in the spherical Vaidya model, the mass parameter $1o= —iasindm(v)p/2y23, @)

m(v) is a function of the advanced coordinate Its func-  and the overdots mean differentiation with respect to the ad-
tional dependence near the CH, locatedvat+<«, is as- vanced coordinate. The radiation field consists of a pure
sumed to be of the form null part and a residual term. In particulas, represents the
m=mo+om(v), om(v)=— AP L, potw, (4) contribution of_a static source field generated_ by a charge of
strengthe. Unlike the stationary case, there is only one re-
to reproduce the power law decay of the gravitational wavespeated principal null direction: The spacetime is algebra-
In the following analysis it is convenient to introduce the ically special of Petrov type Il and the only nonzero Weyl

null complex tetrad {l,,n,,m,,m,}, with invariants are

—im(v)pasind im(v)p?rasind v _r'h(v)pzrazsinzﬂ+r'n(v)p3razsin21‘}
223 N V23 s

Let us now consider the equation of motios r (v,9) of an axisymmetric generic outgoing null hypersurface. Close to the
CH, where the functional dependence of the mass function on the advanced coordinate is didjerit bgads

V,=—m(v)p’—e’pp®, V3= ®)

26m(v)r ) ) a’sirt 9 ) (aﬁr)z_
T ez 2Rl 20 S (0 e =0 ©

where « is the surface of gravity of the inner horizon lo- determine the following asymptotic form for the solution as
cated ar =r. To first order in the effective rotation param- v—ce:
etere, the solution has to be of the form

r_rozf(v) l_e(w

2Kol)

—I—O(l/vz)”—i-O(ez),

r—ro=f(v)+eg(v,9)+0(e) (10 13

and (9) is equivalent to the following system of partial dif-
ferential equations for the zeroth and first order terms, reV

spectively: f(v)= (Alkrg)v P Y1+ p—1/kgv +---). (14
kof +f,=— dm(v)/r,

here

This shows that the angular dependence is suppressed by a
1 2 factor 1b to first order ine as we approach the CH.

Kog+9,— zSinFof;=om(v)/r. 11 Now we consider this hypersurface to be the locus of a
lightlike shell embedded in this background. The spacetime
(see Fig. 1is then divided in two regions#Z* and. 7~

lim f(v)=g(v,9)=0 (120  separated by the outgoing shell § whose equation of motion
v is of the form(13) near the CH. We assume that the “past”

The boundary conditions
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side of the shell is described by the radiating Kerr-NewmanIn particular, ifM(v.)/To>1, Eq.(17) reads

metric (2). In general nothing can be said about the future aiMJr:gerg/z, v_—+oo, (20)
side of.”. However, it is reasonable to think that in the slow This latter equation, although approximate, contains the es-

rotation regime the production of gravitational waves can be__ .. . . S . o
neglected and the structure of the resulting “glued” mani_sentlal physics. As observed in the beginning, it explicitly

fold is still Kerr-like at least close to the CH. Thus as “trial” SnowS that the effective Kerr parameger becomes increas-

. L ingly small as the mass function grows. We stress, however,
metric we assume that the spacetime in the future sector Fat the asymptotic geometry close to the @l not be

the shell can be represented with a line element of the type . .
(2) where the coefficients functions, ,a, ,m, depend on Spherically symmetric because thM , anda, M, terms

the coordinates inZ ™. In particular lefv . ,r . , 9.} be the in the metric are not negligible. The dependence ofand

local coordinates of § inZ=, a.. be the value of the angular ﬁh+ "0n thg aoclivtance_:d gf}f’rd'”tites in the pa?t stﬁctor Icl)f the
momentum per unit mass, ama. be the mass functions in shell can be determined from the expression for the null gen-

both the sides of the shell. The stress-energy tensorin J([erir\z/iitﬂrsign btohth sides ?Jiﬁhf d%p(?cir;]de?r::e Qﬁr; onK?I)Ii_n 'SV
contains the contribution i6) and residuals terms arising ton aFrSomehe gﬁg'r??om ag detshe ?:on?’n i S(‘;"f tﬁ éunct'gn ec-
from the fact that, is not stricly constant. Those terms can inru inuity '

be shown to be much smaller than the leading, optical geoc-)ne has

metric contribution in(6). We shall explicitly check the va- v |9

lidity of this approximation at the end of the computation. dfl-=a,f ET (22)
In this model the presence of the outgoing lightlike shell 1) a2 ©)

simply serves to start the contraction of the generators of the €d,g_=a,f| il B a_+ﬁ gl U+ 22)

CH. Thus we consider a pressureless shell so that the solder- eI T gy rg U5 lov_|

ing of the two geometries is affinely conciliabJ&é0]. We 1) A2

remark that since the analysis [11,12 shows that for €dog| =a,f| v+ +a_+(9 gl 23)

spherical symmetry the CH survives the focusing effect of LRt P r% gI

the outgoing flux, it is reasonable to think that this would be h v first order t in the Jacobian determinant h
the case even if the hole is slowly rotating. In order to isolate\t’)" ere only rst order terms In the Jacobian determinant nave
een retained. To relate the dynamics of the two spacetimes

the divergent contribution in the mass function.ix* we . .
defne m,=m+M(v.) where by definion, ©°"€ has to add the condition for matching of normal stresses
- - ’ ' across the shell:

2mr=r?+a’+e? andr, a are the values of . anda, at

the CH. As before, the solution ¢9) in .#" is of the form [T#*s,s,]=0, (24
re—ror=fi(v)+ @5/ gi(vy, ). (15 wheres,, are generators of §. Equati¢24) is a second order

Therefore Eq(15) decouples as a system of the tyjid). In ~ ordinary differential equatiop foM . Thg d'epe'n('jence of
particular, ifM (v )>r, near the CH, at leading order in the {v+.9+} on the local coordinates in7Z_ is implicitly de-

mass term it reduces to fined from(21)—(23), and from the equations of motion of §
p M P M2 in the two spacetimes. The explicit solution @4) is not
LD 4 9+ =Sirtd, (2U+) . (16) available. However, in the slow rotation approximati@4)
v 4 lo+ duyg Mo+ reduces to
The only geometric condition that has to be satisfied [hod ,l,5#s"]=0, (25

along §, the common boundary of the two spacetimes, is that
the two intrinsic degenerate metrics coincide. This impliesvhere the scalar products have to be calculated from the

that the areaZ of the two intrinsic metrics has to be con- SPherically symmetric contribution. Therefore it is important
tinuous across the shell: to stress that in this approximation only the optical, physi-

21=0 1 cally meaningful, part of the energy momentum tensor is

[.7]1=0, _ ( 7)_ relevant. This equation contains the coupling between the
where [.7]=.7,—.7_. In a perturbative expansion in angular momentum and mass function through ahemv .
a. , this condition decouples into two distinct continuity re- term. By using(21) in (25) and by expressing, with the

quirements for the zeroth and first order terms. The spherihelp of Eq.(20), after some simplifications one explicitly
cally symmetric contribution simply states the continuity of finds

ther coordinate across 8§, natpriori guaranteed fronil7). M, 1 [dM,
Thusr  =r_=r and we setry, =ry_=rgy at the CH. We {W”L,\/T(dv
user as a parametefnecessarily affine for a pressureless

shel) along the generators of §. By using E43) in .z~ 4+ kof g3 esirtd

one finds that along the shell the area of any= const cross - KO( 1- DT) M.

section reads N . .
/ ) note that?d_ =3, in this approximation. Hence we write
A_=47mry(l+e)+O0(1P), v_—+w, (18

where only linear terms i have been retained in the de- M, =m. +om, @7
generate metric. Similarly inZ", close to the CH and up to and we have, frong26),

H 2
linear terms taa? , one has M, =(1/0P ) eov-, y_—s+oo, 28)

Ay =4a[r§+a% (1+ 2M(v ,)/3r)]. (190 This has the Israel-Poisson behavior, and

2] Bergsirtd  dM.,

49, f_  du_

(26)
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Sm, ~consX v _ esirP9e o’ - ~ esirt e o’ -,  y_—», namics of a spacetime with a nonspherical CH. It is
(29 important to check the consistency of the approximations

o ) that have been done. In fact had wtarted with the line
The relevant point is that the effective mass parametegiement(36), with m, =v 7 *In"P|v, | we would find

exponentially inflates with a residual angular dependence,

. Ay =41+ e)=_7_+O(1hP
M., ~e - (1+ ce Sir?®), (30 Fr=Amy(lte) =7+ O(1h) G
to first order ine, which does not effect the exponentially ];ct)rratihﬁt?;\%:rlgt}!oo\jetge Iprfgpfﬁ%asrﬁ:sﬁﬁzsr theieiiill' ;g:ﬁ
divergent prefactor [3]. We therefore set 9 fy 9y

puted from(36) close to CH satisfies the matching condition

M, =m, (1+ce sirt9). From Eqgs.(21)—(23) one finds for the normal stresses, E@4):

(0) (1)

J J
az_+ ~e Kov-, az_+ ~ esirtd_e <0 [T#"s,s,]=0(€?), (39)
- - wheres,, are the generators of the shell.
v, | . o0 The Komar-invariant quantity associated with the rota-
79| " €Ko sin2de - (3D tional Killing vector field & is not conserved since matter is

flowing into the system. It is indeed divergent in our model,

We see that the radial coordinate tends to a finite |ineit but with a much slower rate:

hind the shell. Indeed, from Eq16), we have

{0 )~ 1Plo, ], 0,0, 5 § o~ @9
v

2 — r2ci p .
alg(v )~ rgsitd /Inflos], v =05 (32 hore the integral is taken over the two-dimensional bound-

thus, ary of anyv_=const hypersurface, with _— +oo. It is,
lim r(v,.)=rg. (33 however, hard to judge, from the analysis here presented,
vy—0 whether one can expect this latter result to occur in a more

The geometry in the mass-inflated sector is asymptoticallgeneral framework than that of our modeI: In particular at the
dominated by the large mass term, and the metric, to a googresent we do not see any deeper physical argument to ex-

approximation, explicitly reads plain it.
om As in the spherically symmetric models, at the CH a
ds? ~ = (1+ce si?d)dv2 +2drdv , +r2d 92 strong, scalar singularity develops, whose character can be
r read off from the Weyl curvature invariants (8). One finds

. . that to the future of the shell, th Il di t
+r2(1+ 3esit®)dp?— 4\3em, r/2sirtddv . de. atto the fulure ot the shetl, they are afl divergen

(34) N - v !
2~ e Vs :
The following “mild” twist of the ¢ coordinate(sincem, is v In?lo| vN[o[InP?o |
an integrable function of the advanced coordinatg
’ Rom r /0/r2 . Wy~ 1/(UZ+V|U+||np/2|U+|)- (40
. d(P_. de+ (2 . 3em..rof2/rg) du, (39 Although¥; andV, are tetrad dependent, the divergence of
brings the metric in the final form the boost-invariant quantity’, has the same “mild” trait as
2m in the spherically symmetric case.

ds? ~ = (1+cesir?d)dv? +2drdv , +r2d 92
r The author would like to thank Werner Israel for his con-
+12(1+ 3esind)sirtddd? (36)  stant advice and many enlightening discussions, as well as
Valery Frolov, Sharon Morsink, Charles Torre, David Ho-
to linear terms ine. This result is interesting, we believe, bill, Roberto Balbinot, and Eric Poisson, for many useful and
because it explicitly shows that deviations from sphericalimportant comments. This work has been supported by the
symmetry at the Cauchy horizon are reflected in the masdtalian Minister for the University and Scientific Research,
inflated sector, in accordance with the remarks at the begirand by the Astrophysical Observatory of the University of
ning. This phenomenon should be characteristic of the dyCatania.
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