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Koebe 1/4 theorem and inequalities ilN =2 supersymmetric QCD
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The critical curve” on which Imr=0, 7=ap /a, determines hyperbolic domains whose Poincaedric can
be constructed in terms af; anda. We describeZ” in a parametric form related to a Schwarzian equation and
prove new relations foN=2 supersymmetric S@2) Yang-Mills theory. In particular, using the Koebe 1/4
theorem and Schwarz's lemma, we obtain inequalities involvin@,, anda, which seem related to the
renormalization group. Furthermore, we obtain a closed form for the prepotential as a functiofioglly,
we show thatdy(trg?).= 1/87Tib1<¢)§, whereb, is the one-loop coefficient of the beta functidi®0556-
2821(96)06810-5

PACS numbgs): 11.30.Pb, 02.36-f, 12.38.Aw

The effective action of the low-energy limit =2 su- In order to specify the functional dependenceuofve set
persymmetric Yang-Mills theory, solved exactly ], is u=%;(a), u=%,(7), andu= %5(7), wherer=ap/a and
described in terms of the prepotential [2], r=927. By Eq.(3) we have

Sur=—im| [ d*xc200790L 3+ = [ d'xcorww o0 B
eff = 2 it 5 WiV (1-3025, + Z(aa:,1)3:o, 7)
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whereCD{DE&.y’f‘/&q)i and Tijz&z_wm)iaq)j _Let us denote that by(S) pro_vide_s recursion relations for the instanton con-
by a;=(¢') andab=(45) the vacuum expectation values trioution and implies

(VEV's) of the scalar component of the chiral superfield. For

the gauge group SW@) the moduli space of quantum vacua, P
parametrized byi=(tr¢?), is 33=C\{—A? A?}, the Rie- &
mann sphereC=CU{=} with punctures at+A? and =,

whereA is the dynamically generated scale. It turns out thaBy (2) we havea(u=—1)=—i4/m anda(u=1)=4/m so

m@diT — 0, 7)°
161+ 7T —ad,712)%]"

7

®

[1] (we setA=1) that the initial conditions for the second-order equatf@n
are & (—idlm)=—1 and %, (4/7)=1.
\/E udxy/X—u \/E 1 dxyX—u In this paper we will investigate some consequences of
ap=0,7 = 7f1 ﬁ a= ?J 1ﬁ' the relation(5). This relation allows us to find the differential

@) equation satisfied by the functiori$, and implies a new
relation which involves theta functions and the prepotential

A crucial property ofap anda is that they satisfy the equa- 7. Furthermore, we investigate the structuresofas func-

tion [3] (see alsd4]) tion of a that, although its explicit expression is still un-
known, we give in a closed form in E¢R2).
[4(u2—1)(93+ 1]aD:O=[4(u2—1)<?ﬁ+ 1]a. €)) In our investigation the Seiberg-Witten critical curve

) o . o ) o on which Imr=0, plays a crucial role. This curve determines
This equation is the “reduction” of the uniformizing equa- hyperbolic domains. In particular, using uniformization
tion for 25 [5,3,4 theory, we will construct the natur&Poincaré metrics on

the quantum moduli space and on the hyperbolic domain
_112\2 492 2 —
[4(1—u%)"9+u"+3]y=0, 4 inside 7. Such metrics should be also useful in finding the

S - — — building blocks for the nonholomorphic pafigher order
whll_c; :Jssssau“rifrlﬁgrige tlhe l:nglijr?[r)ezzﬂ s[iij Il:JirgF?).f all it has derivatives of the effective action. General theorems con-
been shown that ) cerning univalent functions, such as Schwarz’'s lemma and
the Koebe 1/4 theorem, imply inequalities that for the case at

u=mi(7—ad.712), (55 hand tazke a simple form in terms of the VEV's ¢ ¢p,
and trp“. We will suggest that such inequalities are related
that is to the renormalization group and will discuss a possible con-

nection with the uncertainty principle. In obtaining such in-
1 1 equalities we introduce the Euclidean distance between
7 = 2y4 — . : . .
T« $)) = (%) + 5 () ¢p)- ®  points in the quantum moduli spaces. The structure of this
distance is investigated making use of Ef) which also
implies the relationd;(tr¢?);= 1/87Tib1<¢>§, whereb; is
*Electronic address: matone@padova.infn.it the one-loop coefficient of the beta function.
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=—y'3x(y)y}, (19

!

We note that some properties of the critical curve have y"  3(y"\?
been investigated ifl,6,7] whereas related physical aspects {y(x),xt==— 5(—)
have been discussed [ith,8]. y y
The critical curvez” can be seen as the curve on which gne hag &, 71 = — (9:%,)2{7,%,}. To obtain the differen-
the torus with modular parameterdegenerates. Let us con- tjg| equation satisfied bys, we recall that if ¢, i, are
sider the mass of a dyon hypermultiplet linearly independent solutions #2y(x)+ P(X) (x) =0,
. then {4, /y,,x}=2P, which follows by ¥, f 19,f1/?
Mo = Elnmaot neal = Zallngnd, (@ Sy S e 2 i
[note that ¢y(X) =Ay;(X) + By (X) [*¢1 2, B#0]. Thus,
wheren, andn,, are the electric and magnetic charges, re-since7 is the ratio of two solutions of3), we have
spectively.M2 . is related to the eigenvalues of the Laplac-

nmne ~ _
ian on the7 torus. More precisely we have the Sttimger 2(1-95){%,,71=(0:%92)%. (15
equation .
An  explicit computation gives 7T(u=-1)==*1,
A 0 =Ep 0 o (10) 7(u=1)=0 [observe that-1 and +1 are identified after
me mes e factorizing the image of the map byI'(2)], so that
where A=-2479, is the Laplacial:n on the torus and Fo(—1)=Fp(1)=—1,%,(0)=1. (16)
Yn n,=V200S2r(Nex—ngy),  z=x+7y. One  has
En, n, =27 |Nm7+n/?/(IM7)?, so that Therefore the critical curve is given I§§3) with £, solution
of (15 and initial conditions(16). The solutions of Egs.
TrzMﬁ ] (7),(15) should be related to the function. To show this we
m'e

(11) use(14) again so thaf <5, 7= — (9,3)%{ 7, <5} and by(4)

n_n

e Jal(Im7)?’ s L
2(1- 994 03, 11=—(3+45)(d,%9)%. (17

Notice that(10) admits the following interpretation. One can ~ _

consider the theorW=1 in D=6. Compactifying two di- Sincerandr have the same monodromy, it follows bi6)

mensions on the torus one hasZ~ Ps+iPg so that in the  that(see alsq7])

massless sectd??=0

Z3(—1)=23(1)=-1, 230)=1, (18)

2m? hich also foll b licit tatiduse (2) and

O tr= 0= th= Aoth=| 7|2 A= A which also follows by an explicit computatiduise (2) an
s =0=D0lay=A29=12%, 2 lal?(ImT)? recall thatr=ap/a’]. A way to find the solution of17) with

(12)  initial conditions(18) is to consideru as the uniformizing
map. In the case a ; we have[9]

In crossing the curve ¥ a Bogomol'ni-Prasad-
Sommerfield-(BPSJsaturated particle of given charges can 5
appear or disappear. Equatiofi®),(11) show that the tori 9
Te ¢ correspond to critical points for the structure of the u=.g3(7)= -
energy eigenvalues. If6,7] it has been shown that inside gg(—) —p
¢, that is in the domairA containing the poinu=0 and 2
such thatz’= gA, one has Im<0. We will show thatZ” can
be parametrically described by the solution of a Schwarzian =1-2
equation. Eventually we will obtain inequalities which re-
semble a sort of uncertainty relations for quantum field
theory (QFT) and where the critical curve plays a crucial
role. In order to find the differential equation associated to
7~ we first recall that- corresponds to the inverse of the map i
which uniformizes2.; [4]. An important point is that both
7 and7 havel'(2) monodromy implying that the structure of
the associated fundamental domaihsandD,, differ for the
value of the opening angle at the cugf@$ (0 and 27, re-
spectively. To describe the critical curve, we first note that
by definition (see alsq7])

4

0,(0|7) 19

®3(O|7')

that by the “inversion formula”(5) implies the new relation

4

2 7
0047)

03(0]927)

a
T Eaa.f/) =1-2

showing that such a combination of theta-functions acts on
02.7 as integral operators.

By (19) the problem of finding the explicit solutions of
Egs.(7),(15) is equivalent to the problem of finding the ex-
plicit dependence of as function ofa and 7, respectively.
o AN T In this context we note that once E(Y) is solved, we can
r={u=2(nlre[- 1.1} 19 e Eq.(5) to obtain the explicit dependence of on a,

On the other hand, the dependenceucdn 7 can be deter- "aMelY

mined by solving a differential equation which follows from apo

) : ) . 2i i
(3). Using the following property of the Schwarzian deriva- 7(a)= _IaZJadxg/‘l(x)xﬂ_ iozabr —a? (21
tive T Jag Tag 2a,
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where ug is an arbitrary point on the compactified moduli
space 23=C, and ag=a(ug), apg=ap(ug). Choosing
Ug=1 we have

_ 2i ) a o 3 i 2
Fay=—a?|  dxzi00x - qea’. (22

16
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We now observe that thé& domain can be seen as a
distortion by a regulafnote thate ¢ A) univalent function of
the Poincaredisk A={z||z|<1}. This remark suggests to
apply distortion theorems for hyperbolic domains. A basic
point in our construction is that the Poincaretric onA is
easily identified in terms of the VEVS o and ¢p. In
particular, it can be explicitly expressed in terms of the func-

In [1] it has been emphasized that the properties of théion 7(u) which maps3.; to D,.

metrict

e @l2

ds?=1 &Z'ﬂd 2— dul? 23
=Im| Sz |ldal* =g —ldul®, (29

are at heart of the physics. Actually, the natural framework to

Settingw= 7(u) in ds3= (Imw) ~?|dw|? (which is diver-
gent forw e R), we obtain the Poincamaetric on the hyper-
bolic domainA

investigate these properties is uniformization theory. An in-

teresting aspect of the results fd] is that the classical
moduli space of the theory is the Riemann sphere with
puncture whereas in the quantum case one has the Riem

sphere with three punctures. Thus, since by Gauss-Bonn
formula for n-punctured Riemann spheres one has

fzn\/ﬁRg=27T(2—n), there is a “transition” from posi-
tively (classical modu)i to negatively (quantum moduli

laap—apa’|? . 16 1 )
dsp= 4 laga—agar U T T 7 (apazaga? Y
=e*A|dul?, (27)

a
alihere we used25). We now apply the general construction

Igr hyperbolic domaingsee for exampl¢l1]) to show that
1<e?aU(A \u)2<4, (28)

whereA pu denotes the Euclidean distance from A to the

curved spaces. This transition makes it evident that quantumritical curve = gA.
aspects are related to deep aspects concerning uniformization We note that a similar geometrical uncertainty relation

theory. In particular, one can apply basic inequalities_, suchappears in the description of the cutofhZ,,,)* in two-
as the Koebe 1/4 theorem and Schwarz's lemma, which argimensional quantum gravify10]. In particular, it has been

at heart of the theory of univalent functiofi., uniformiza-
tion, Teichmiller spaces, etg.

We now use the prepotential to construct the positive
definite metric

|°7192%%  , |#°Fldusadal?
P~ imi? 713a22 43 = (ima? 717a2y7 194

=e*|dul?.

2

(24

Let H={w|Imw>0} be the upper half plane endowed with
the Poincaremetric ds5= (Imw) ~?|dw|2. Sincer is the in-
verse of the uniformizing magy:H—23, it follows that
e is the Poincarenetric onX 5 so thate satisfies the Liou-
ville equationg ;= €*/2.

To prove the last equality in(23) observe that
9,027 =(a'a}—apa”)/a’? where'=4,. By (3) and using

[4]

2i
aaD—aDa’:;, (25
it follows that
;T 1
(26)

Judada 2mia 2(1—u?)’

which is equivalent td8). The last equality in23), that is
e ¢?=2xla’'|?|1—u?/Im(s27), follows by the definition
of e? given in(24).

we will show thate* is the Poincaremetric on 33 so that
e #? is a “nonchiral” solution of the uniformizing equatiof¥)
(see[10])).

shown that in a hyperbolic domab one has

(Az)zzze’“D(ADz)z, 29

where e= (ASyin)°=e0"70(Azy,;)? is the minimal invariant
length,e®P is the Poincarenetric onD and oy is the Liou-
ville field. Equation(29) provides the relation between the
minimal length in configuration spaa the structure of the
boundarygD, and the Liouville field.

To prove(28) we need Schwarz’'s lemma and the Koebe
1/4 theorem(see for exampl§¢12]). Let f(z) be an analytic
and regular function inA vanishing in zero. Schwarz’'s
lemma states that iff(z)|<1, zeA, then |f(2)/z|<1,
ze A, where equality can hold only if and z differ by a
phase. Setting z=0 in the expansion f(2)
=f'(0)z+f"(0)z%/2! + - - -, we obtain

[f'(0)|<=1. (30
Let u be a point inA and F a conformal map ofA onto
A. Since the Poincare metric on A s
dsi=4(1-12/?) ~?|dZ?, we have
e?alU=4|F" (u)|. (31
Setting f(z)=F(u+zA,u), by (300 we have
|F’(u)| A u<1, so that(31) impliese?AW(A ,u)?<4. The
other inequality in(28) is an application of the Koebe 1/4
theorem, a consequence of the area theorem. It states that if
f is a regular and univalent function ik with normalization

2We stress that similar results hold in the complementary domain
C\A.
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f(0)=0, f'(0)=1 (functions with such properties constitute Thus Eq.(36) implies inequalities involving\ d,.7. In [13]
the .”” clasg, then f(A) contains the open disk of radius it has been suggested  that  the relation
1/4 center 0. Leg be a conformal mapping & ontoA with A g,.7= —8wib(tr¢?); should be understood in terms of
g(0)=u; we have renormalization group ideasee[13,14] for relevant gener-
— alizations of this formula anfll5] for other interesting con-
esatY=4|g’(0)| 2. (32 sequencss In a forthcoming papef16] we will argue that
Eq. (36) is related to the beta functiohd, 7 whose structure
can be investigated in the framework of the relatiépand
Eqg. (8). We note thatZz” can be seen as the curve which
separates the local and asymptotic regions. Once the nonper-
. turbative beta function is constructed the ray of convergence
hand, by the Koebe 1/4 theorer®(A) contains the 0pen ot e |ocal expansions should be related to the structure of
disk of radius 1/4 with center 0, so that.u/[g'(0)[=1/4  {he A domain and its boundary. In particular, Eq.(36)
and(32) implies e‘PA(”'“.)(AAU)Z?l. should also play a role in investigating Borel summability.
Up to now we considered unit whefie=1. However, the There is another aspect which should be mentioned in
structure of(28) suggests performing a dimensional analysisgiscussing Eq(33). In ordinary quantum mechanics one has
T e e s Y0~ (1P, (T =h12 e ta th squarc o
may be seen as Euclidean distancéselds ¢ and ¢ play

2 — 2 the role ofx andp, respectively, and# is the analog of the
hAx(r¢)<mIm((¢)(¢bp))<2hAn(tré%), (33 action. Similarly, one should consider the correspondence

2 2\, : : 2\,
where we used the fact that &/a<0. Let us denote by (X >¢?<tr¢ )3 zand , Investigate  whether |(tr¢?);
7, the curve inA on whichAa(tr¢?)=d. On 7, Eq. (33  —(ré%)s | ~[(tr¢%);—(®);], with © some field operator
has the structure [recall that by(35) 7, is 7 dependent To have a deeper
analogy with the uncertainty relation one should identify
h — ( trg3); and investigate the structure of the relation between
> =<mm((¢){dp))<t. (34) (trg?);,, (rd?)s, ()3, (#)> and their duals. The asymp-

totic behavior trq§2>;~<¢>§/2 suggests that a similar rela-

In oro_ler to Investigate the physical meamng(eﬁ) W€ tion should exist. In this context it is interesting to note that
should first discuss two aspects. The first one concerns th

2 . . . .
structure of the Euclidean distanég,u. Let us denote by &b)?o appears in evaluating the Euclidean distance
v the points in% and by x the values ofr such that [(tr¢?);—(tr¢?); |. In particular, deriving Eq(5) with re-
v=9,(x), so that by(13) Imx=0 andx e[ —1,1]. Note that  spect tor we have
by definitionA su=|u—wv¢|, whereu e A anduv is the mini-

We now selG(z)=[g(z) —g(0)]/g’(0), sothatGe.”, and
observe that since by constructigfA) contains the open
disk of radiusA ,u centeru, it follows that G(A) contains
the open disk of radiua ,u/|g’(0)| center 0. On the other

mum of [u—v|. In order to determine, one should first a1 2

solve the equation oAt >7_877ib1<¢)>7’ S
Ay Zo(T) = £5(X)| =0, (35)  so that Eq(35) becomes

which can be also seen as an equation %¢rso that a2(V)[ Co(1T)— Lo(x)]=a%(v)[ Lo T)— Tr(X)]. (38)

vo=%2(X0), Xo=Xo(7). e _ _ _ _

The second point concerns the parametrization of quan- Finding the solution of Eq(38) is an interesting open
tum vacua. In this context we stress that sinde) is a  Problem which should be possible to solve once the solution
univalent function, that is the equalify(u,) = 7(u,) implies  Of (1) is known. As we said, solving E¢15) is equivalent
u=u,, it follows that the moduli space of quantum vacuato finding the inverse of the map=_7(7) whose explicit
can be equivalently identified with thespace(or its funda- ~ €xpression is given by2),(19). All these aspects show that
mental domairD,). Therefore there is the correspondence the uncertainty relationg33) are described by the Schwar-

zian equation(15).
u—moduli space> 7—moduli space. Another aspect concerns the geometrical origin of the
lower and upper bounds if83). These seem to be a conse-
In the following we will use the subscriptto emphasize the quence of the good infrared and ultraviolet properties of
T parametrization of the vacuum states. The above remarksegatively curved spaces. These aspects have been investi-

suggest writing Eq(33) in the form (here 7o=x,) gated in a different context by Callan and Wilc4dk]. Here
. we have seen that the Koebe 1/4 theorem and Schwarz's
ﬁ|(tr¢2);—(tr¢2);o|$wlm((d:);(qSD);)$2ﬁ|(tr¢>2); lemma applied to hyperbolic geometry explain the origin of
such geometrical regulators. We also observe that the role of
—(tr¢2>;o|. (36)  the Koebe 1/4 theorem in hyperbolic geometry seems related

to the crucial mechanism which arises in the compactifica-
The fact that 7=¢%7 is dimensionless implies that tion of moduli spaces of Riemann surfaces. In particular, the
(2—ad,).7=Ad,7, so that Eq.(5 is equivalent to fact that in the Deligne-Knudsen-Mumfof®KM) compac-
Adr7=—8mib(tr$?); where, as stressed ifi13,14, tification of moduli spaces of punctured Riemann spheres
b,=1/47? is the one-loop coefficient of the beta function. (configuration space of anyonspunctures never collide”
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can be seen as a request for the Weyl-Petersson Hamiltonian (1- |Z|2)2|{g,z}|s6_ (40)
to remain self-adjoint at the DKM boundary. This implies
the mass gap and the exclusion principle for anygnsic-

tures [18]. It can be shown that the constant 2 (89) cannot be re-

There is another physical application of our results.piaced by any larger one. An interesting question is to find
Namelya is a nowhere vanishing function of so that one 4 sharp inequality for the case at hand.

should investigate the role of the lower bound ffa}. This is In conclusion we note that our investigation is related

relevant Idn tch]rder to r(te_covsrr the struhcturethof t;l:nen(t)dull ¢ with the theory of quasidisks. They have interesting struc-
space and the properties bf, ,, (such as the structure of oo o example a generic quasidisk has a fractal boundary

the mass gap Similar arguments should be also useful to[20]. Quasidisks also appear in some nonperturbative aspects
better understand some aspects concerning confinement. string theory[21].

this context we recall that according to Nehari theofé:®)

a sufficient condition for the univalence of a functigrde- It is a pleasure to thank G. Bonelli, P.A. Marchetti, and
fined onA is M. Tonin for useful discussions. Partly supported by the Eu-
ropean Community Research Programfauge Theories,
(1-z1»%l{g.z}|=2, (39 applied supersymmetry and quantum graviBontract No.

e SC1-CT92-0789.
whereas the necessary condition is
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