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Koebe 1/4 theorem and inequalities inN52 supersymmetric QCD
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The critical curveC on which Imt̂50, t̂5aD /a, determines hyperbolic domains whose Poincare´ metric can
be constructed in terms ofaD anda. We describeC in a parametric form related to a Schwarzian equation and
prove new relations forN52 supersymmetric SU~2! Yang-Mills theory. In particular, using the Koebe 1/4
theorem and Schwarz’s lemma, we obtain inequalities involvingu, aD , anda, which seem related to the
renormalization group. Furthermore, we obtain a closed form for the prepotential as a function ofa. Finally,
we show that]t̂^trf

2& t̂51/8p ib1^f&t̂
2, whereb1 is the one-loop coefficient of the beta function.@S0556-

2821~96!06810-5#

PACS number~s!: 11.30.Pb, 02.30.2f, 12.38.Aw
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The effective action of the low-energy limit ofN52 su-
persymmetric Yang-Mills theory, solved exactly in@1#, is
described in terms of the prepotentialF @2#,

Seff5
1

4p
ImS E d4xd2ud2ūFD

i F̄i1
1

2E d4xd2ut i jWiWj D ,
~1!

whereFD
i []F /]F i andt i j[]2F /]F i]F j . Let us denote

by ai[^f i& and aD
i [^fD

i & the vacuum expectation value
~VEV’s! of the scalar component of the chiral superfield. F
the gauge group SU~2! the moduli space of quantum vacua
parametrized byu[^trf2&, is S35C\$2L2,L2%, the Rie-
mann sphereĈ5Cø$`% with punctures at6L2 and `,
whereL is the dynamically generated scale. It turns out th
@1# ~we setL51)

aD5]aF 5
A2
p E

1

udxAx2u

Ax221
, a5

A2
p E

21

1 dxAx2u

Ax221
.

~2!

A crucial property ofaD anda is that they satisfy the equa-
tion @3# ~see also@4#!

@4~u221!]u
211#aD505@4~u221!]u

211#a. ~3!

This equation is the ‘‘reduction’’ of the uniformizing equa
tion for S3 @5,3,4#

@4~12u2!2]u
21u213#c50, ~4!

which is satisfied byA12u2]uaD andA12u2]ua.
Let us summarize the main results in@4#. First of all it has

been shown that

u5p i ~F 2a]aF /2!, ~5!

that is

F ~^f&!5
1

p i
^trf2&1

1

2
^f&^fD&. ~6!
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In order to specify the functional dependence ofu we set
u5G 1(a), u5G 2( t̂), andu5G 3(t), wheret̂5aD /a and
t5]a

2
F . By Eq. ~3! we have

~12G 1
2!]a

2
G 11

a

4
~]aG 1!

350, ~7!

that by~5! provides recursion relations for the instanton con
tribution and implies

]a
3
F 5

p2~a]a
2
F 2]aF !3

16@11p2~F 2a]aF /2!2#
. ~8!

By ~2! we havea(u521)52 i4/p and a(u51)54/p so
that the initial conditions for the second-order equation~7!
areG 1(2 i4/p)521 andG 1(4/p)51.

In this paper we will investigate some consequences
the relation~5!. This relation allows us to find the differential
equation satisfied by the functionsG k and implies a new
relation which involves theta functions and the prepotent
F . Furthermore, we investigate the structure ofF as func-
tion of a that, although its explicit expression is still un
known, we give in a closed form in Eq.~22!.

In our investigation the Seiberg-Witten critical curveC ,
on which Imt̂50, plays a crucial role. This curve determine
hyperbolic domains. In particular, using uniformizatio
theory, we will construct the natural~Poincare´! metrics on
the quantum moduli space and on the hyperbolic doma
insideC . Such metrics should be also useful in finding th
building blocks for the nonholomorphic part~higher order
derivatives! of the effective action. General theorems con
cerning univalent functions, such as Schwarz’s lemma a
the Koebe 1/4 theorem, imply inequalities that for the case
hand take a simple form in terms of the VEV’s off, fD ,
and trf2. We will suggest that such inequalities are relate
to the renormalization group and will discuss a possible co
nection with the uncertainty principle. In obtaining such in
equalities we introduce the Euclidean distance betwe
points in the quantum moduli spaces. The structure of th
distance is investigated making use of Eq.~5! which also
implies the relation]t̂^trf

2& t̂51/8p ib1^f&t̂
2, whereb1 is

the one-loop coefficient of the beta function.
7354 © 1996 The American Physical Society
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We note that some properties of the critical curve ha
been investigated in@1,6,7# whereas related physical aspec
have been discussed in@1,8#.

The critical curveC can be seen as the curve on whic
the torus with modular parametert̂ degenerates. Let us con
sider the mass of a dyon hypermultiplet

Mnmne
5A2unmaD1neau5A2uauunmt̂1neu, ~9!

wherene andnm are the electric and magnetic charges, r
spectively.Mnmne

2 is related to the eigenvalues of the Laplac

ian on thet̂ torus. More precisely we have the Schro¨dinger
equation

Dcnmne
5Enmne

cnmne
, ~10!

where D522] z̄]z is the Laplacian on the torus and
cnmne

5A2cos2p(nmx2ney), z5x1 t̂y. One has

Enmne
52p2unmt̂1neu2/(Imt̂)2, so that

Enmne
5

p2Mnmne
2

uau2~ Imt̂ !2
. ~11!

Notice that~10! admits the following interpretation. One ca
consider the theoryN51 in D56. Compactifying two di-
mensions on the torust̂, one hasZ;P51 iP6 so that in the
massless sectorP250

h6c50⇒h4c5D2c5uZu2c, D25
2p2

uau2~ Imt̂ !2
D.

~12!

In crossing the curve C a Bogomol’ni-Prasad-
Sommerfield-~BPS-!saturated particle of given charges ca
appear or disappear. Equations~10!,~11! show that the tori
t̂PC correspond to critical points for the structure of th
energy eigenvalues. In@6,7# it has been shown that inside
C , that is in the domainA containing the pointu50 and
such thatC5]A, one has Imt̂,0. We will show thatC can
be parametrically described by the solution of a Schwarz
equation. Eventually we will obtain inequalities which re
semble a sort of uncertainty relations for quantum fie
theory ~QFT! and where the critical curve plays a crucia
role. In order to find the differential equation associated
C we first recall thatt corresponds to the inverse of the ma
which uniformizesS3 @4#. An important point is that both
t andt̂ haveG(2) monodromy implying that the structure o
the associated fundamental domainsD1 andD2 differ for the
value of the opening angle at the cusps@7# (0 and 2p, re-
spectively!. To describe the critical curve, we first note tha
by definition ~see also@7#!

C5$u5G 2~ t̂ !u t̂P@21,1#%. ~13!

On the other hand, the dependence ofu on t̂ can be deter-
mined by solving a differential equation which follows from
~3!. Using the following property of the Schwarzian deriva
tive
ve
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$y~x!,x%5
y-
y8

2
3

2 S y9

y8D
2

52y82$x~y!,y%, ~14!

one has$G 2 ,t̂%52(]t̂G 2)
2$t̂,G 2%. To obtain the differen-

tial equation satisfied byG 2 we recall that ifc1 ,c2 are
linearly independent solutions of]x

2c(x)1P(x)c(x)50,
then $c1 /c2 ,x%52P, which follows by f 1/2]xf

21]xf
1/2

5ck
21]xck

2]xck
215]x

22ck9/ck5]x
21P, k51,2, f5c1 /c2

@note that c2(x)5Ac1(x)1Bc1(x)*
xc1

22 , BÞ0#. Thus,
sincet̂ is the ratio of two solutions of~3!, we have

2~12G 2
2!$G 2 ,t̂%5~]t̂G 2!

2. ~15!

An explicit computation gives t̂(u521)561,
t̂(u51)50 @observe that21 and11 are identified after
factorizing the image of thet̂ map byG(2)#, so that

G 2~21!5G 2~1!521,G 2~0!51. ~16!

Therefore the critical curve is given by~13! with G 2 solution
of ~15! and initial conditions~16!. The solutions of Eqs.
~7!,~15! should be related to thè function. To show this we
use~14! again so that$G 3 ,t%52(]tG 3)

2$t,G 3% and by~4!

2~12G 3
2!2$G 3 ,t%52~31G 3

2!~]tG 3!
2. ~17!

Sincet and t̂ have the same monodromy, it follows by~16!
that ~see also@7#!

G 3~21!5G 3~1!521, G 3~0!51, ~18!

which also follows by an explicit computation@use~2! and
recall thatt5aD8 /a8#. A way to find the solution of~17! with
initial conditions ~18! is to consideru as the uniformizing
map. In the case ofS3 we have@9#

u5G 3~t!5

2`S 11t

2 D2`S t

2D2`S 12D
`S t

2D2`S 12D
5122FQ2~0ut!

Q3~0ut!G
4

, ~19!

that by the ‘‘inversion formula’’~5! implies the new relation

p i S F 2
a

2
]aF D 5122FQ2~0u]a

2
F !

Q3~0u]a
2
F !G

4

, ~20!

showing that such a combination of theta-functions acts
]a
2
F as integral operators.
By ~19! the problem of finding the explicit solutions of

Eqs.~7!,~15! is equivalent to the problem of finding the ex
plicit dependence oft as function ofa and t̂, respectively.
In this context we note that once Eq.~7! is solved, we can
use Eq.~5! to obtain the explicit dependence ofF on a,
namely

F ~a!5
2i

p
a2E

a0

a

dxG 1~x!x232
iu0
pa0

2a
21

aD0
2a0

a2, ~21!
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whereu0 is an arbitrary point on the compactified modu
space S̄35Ĉ, and a0[a(u0), aD0[aD(u0). Choosing
u051 we have

F ~a!5
2i

p
a2E

4/p

a

dxG 1~x!x232
ip

16
a2. ~22!

In @1# it has been emphasized that the properties of t
metric1

ds25ImS ]2F

]a2 D udau25
e2w/2

2pu12u2u
uduu2, ~23!

are at heart of the physics. Actually, the natural framework
investigate these properties is uniformization theory. An i
teresting aspect of the results in@1# is that the classical
moduli space of the theory is the Riemann sphere with
puncture whereas in the quantum case one has the Riem
sphere with three punctures. Thus, since by Gauss-Bon
formula for n-punctured Riemann spheres one h
*Sn

AgRg52p(22n), there is a ‘‘transition’’ from posi-
tively ~classical moduli! to negatively ~quantum moduli!
curved spaces. This transition makes it evident that quant
aspects are related to deep aspects concerning uniformiza
theory. In particular, one can apply basic inequalities, su
as the Koebe 1/4 theorem and Schwarz’s lemma, which
at heart of the theory of univalent functions~i.e., uniformiza-
tion, Teichmüller spaces, etc.!.

We now use the prepotentialF to construct the positive
definite metric

dsP
25

u]3F /]a3u2

~ Im]2F /]a2!2
udau25

u]3F /]u]a]au2

~ Im]2F /]a2!2
uduu2

5ewuduu2. ~24!

Let H5$wuImw.0% be the upper half plane endowed wit
the Poincare´ metric dsP

25(Imw)22udwu2. Sincet is the in-
verse of the uniformizing mapJH :H→S3 , it follows that
ew is the Poincare´ metric onS3 so thatw satisfies the Liou-
ville equationwu ū5ew/2.

To prove the last equality in~23! observe that
]u]a

2
F 5(a8aD9 2aDa9)/a82 where 8[]u . By ~3! and using

@4#

aaD8 2aDa85
2i

p
, ~25!

it follows that

]3F

]u]a]a
5

1

2p ia82~12u2!
, ~26!

which is equivalent to~8!. The last equality in~23!, that is
e2w/252pua8u2u12u2uIm(]a

2
F ), follows by the definition

of ew given in ~24!.

1We will show that ew is the Poincare´ metric on S3 so that
e2w/2 is a ‘‘nonchiral’’ solution of the uniformizing equation~4!
~see@10#!.
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We now observe that theA domain can be seen as a
distortion by a regular~note that̀ ¹A) univalent function of
the Poincare´ disk D5$zuuzu,1%. This remark suggests to
apply distortion theorems for hyperbolic domains. A basi
point in our construction is that the Poincare´ metric onA is
easily identified in terms of the VEVS off and fD . In
particular, it can be explicitly expressed in terms of the func
tion t̂(u) which mapsS3 to D2 .

Settingw5 t̂(u) in dsP
25(Imw)22udwu2 ~which is diver-

gent forwPR), we obtain the Poincare´ metric on the hyper-
bolic domainA

dsP
2524

uaaD8 2aDa8u2

~aDā2āDa!2
uduu252

16

p2

1

~aDā2āDa!2
uduu2

5ewAuduu2, ~27!

where we used~25!. We now apply the general construction
for hyperbolic domains~see for example@11#! to show that2

1<ewA~u,ū!~DAu!2<4, ~28!

whereDAu denotes the Euclidean distance fromuPA to the
critical curveC5]A.

We note that a similar geometrical uncertainty relatio
appears in the description of the cutoff (Dzmin)

2 in two-
dimensional quantum gravity@10#. In particular, it has been
shown that in a hyperbolic domainD one has

~Dz!2>
e

4
e2sD~DDz!2, ~29!

wheree5(Dsmin)
25ewD1sD(Dzmin)

2 is the minimal invariant
length,ewD is the Poincare´ metric onD andsD is the Liou-
ville field. Equation~29! provides the relation between the
minimal length in configuration spacez, the structure of the
boundary]D, and the Liouville field.

To prove~28! we need Schwarz’s lemma and the Koeb
1/4 theorem~see for example@12#!. Let f (z) be an analytic
and regular function inD vanishing in zero. Schwarz’s
lemma states that ifu f (z)u<1, zPD, then u f (z)/zu<1,
zPD, where equality can hold only iff and z differ by a
phase. Setting z50 in the expansion f (z)
5 f 8(0)z1 f 9(0)z2/2!1•••, we obtain

u f 8~0!u<1. ~30!

Let u be a point inA and F a conformal map ofA onto
D. Since the Poincare´ metric on D is
dsP

254(12uzu2)22udzu2, we have

ewA~u,ū!54uF8~u!u2. ~31!

Setting f (z)5F(u1zDAu), by ~30! we have
uF8(u)uDAu<1, so that~31! impliesewA(u,ū)(DAu)

2<4. The
other inequality in~28! is an application of the Koebe 1/4
theorem, a consequence of the area theorem. It states tha
f is a regular and univalent function inD with normalization

2We stress that similar results hold in the complementary doma
Ĉ\A.
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f (0)50, f 8(0)51 ~functions with such properties constitut
the S class!, then f (D) contains the open disk of radius
1/4 center 0. Letg be a conformal mapping ofD ontoA with
g(0)5u; we have

ewA~u,ū!54ug8~0!u22. ~32!

We now setG(z)5@g(z)2g(0)#/g8(0), sothatGPS , and
observe that since by constructiong(D) contains the open
disk of radiusDAu centeru, it follows thatG(D) contains
the open disk of radiusDAu/ug8(0)u center 0. On the other
hand, by the Koebe 1/4 theorem,G(D) contains the open
disk of radius 1/4 with center 0, so thatDAu/ug8(0)u>1/4
and ~32! impliesewA(u,ū)(DAu)

2>1.
Up to now we considered unit where\51. However, the

structure of~28! suggests performing a dimensional analys
setting the Euclidean distance dimensionless. SinceF has
the dimensions of\ and beingaD5]aF , by ~28! we have

\DA^trf2&<pIm~^f&^fD&!<2\DA^trf2&, ~33!

where we used the fact that ImaD /a,0. Let us denote by
C d the curve inA on whichDA^trf2&5d. OnC 1/2 Eq. ~33!
has the structure

\

2
<pIm~^f&^fD&!<\. ~34!

In order to investigate the physical meaning of~33! we
should first discuss two aspects. The first one concerns
structure of the Euclidean distanceDAu. Let us denote by
v the points inC and by x the values oft̂ such that
v5G 2(x), so that by~13! Imx50 andxP@21,1#. Note that
by definitionDAu5uu2v0u, whereuPA andv0 is the mini-
mum of uu2vu. In order to determinev0 one should first
solve the equation

]xuG 2~ t̂ !2G 2~x!u50, ~35!

which can be also seen as an equation forx, so that
v05G 2(x0), x05x0( t̂).

The second point concerns the parametrization of qu
tum vacua. In this context we stress that sincet̂(u) is a
univalent function, that is the equalityt̂(u1)5 t̂(u2) implies
u15u2 , it follows that the moduli space of quantum vacu
can be equivalently identified with thet̂ space~or its funda-
mental domainD2). Therefore there is the correspondence

u2moduli space⇔ t̂2moduli space.

In the following we will use the subscriptt̂ to emphasize the
t̂ parametrization of the vacuum states. The above rema
suggest writing Eq.~33! in the form ~heret̂0[x0)

\u^trf2& t̂2^trf2& t̂0
u<pIm~^f&t̂^fD& t̂!<2\u^trf2& t̂

2^trf2& t̂0
u. ~36!

The fact that t5]a
2
F is dimensionless implies that

(22a]a)F 5L]LF , so that Eq. ~5! is equivalent to
L]LF 528p ib1^trf

2& t̂ where, as stressed in@13,14#,
b151/4p2 is the one-loop coefficient of the beta function
e

is

the

an-

a

rks

.

Thus Eq.~36! implies inequalities involvingL]LF . In @13#
it has been suggested that the relatio
L]LF 528p ib1^trf

2& t̂ should be understood in terms o
renormalization group ideas~see@13,14# for relevant gener-
alizations of this formula and@15# for other interesting con-
sequences!. In a forthcoming paper@16# we will argue that
Eq. ~36! is related to the beta functionL]Lt whose structure
can be investigated in the framework of the relation~5! and
Eq. ~8!. We note thatC can be seen as the curve which
separates the local and asymptotic regions. Once the non
turbative beta function is constructed the ray of convergen
of the local expansions should be related to the structure
the A domain and its boundaryC . In particular, Eq.~36!
should also play a role in investigating Borel summability.

There is another aspect which should be mentioned
discussing Eq.~33!. In ordinary quantum mechanics one ha
A^x2&c2^x&c

2A^p2&c2^p&c
2>\/2 ~note that the square roots

may be seen as Euclidean distances!. Fieldsf andfD play
the role ofx andp, respectively, andF is the analog of the
action. Similarly, one should consider the corresponden
^x2&c→^trf2& t̂ and investigate whether u^trf2& t̂

2^trf2& t̂0
u;u^trf2& t̂2^Q̂&t̂u, with Q̂ some field operator

@recall that by~35! t̂0 is t̂ dependent#. To have a deeper
analogy with the uncertainty relation one should identif
^ trfD

2 & t̂ and investigate the structure of the relation betwe
^trf2& t̂0

, ^ trf2& t̂ , ^f&t̂0
, ^f&t̂ and their duals. The asymp-

totic behavior^ trf2& t̂;^f&t̂
2/2 suggests that a similar rela-

tion should exist. In this context it is interesting to note tha
^f&t̂0

2 appears in evaluating the Euclidean distanc

u^trf2& t̂2^trf2& t̂0
u. In particular, deriving Eq.~5! with re-

spect tot̂ we have

]t̂^trf
2& t̂5

1

8p ib1
^f&t̂

2, ~37!

so that Eq.~35! becomes

a2~v !@G 2~ t̂ !2G 2~x!#5a2~v !@G 2~ t̂ !2G 2~x!#. ~38!

Finding the solution of Eq.~38! is an interesting open
problem which should be possible to solve once the soluti
of ~15! is known. As we said, solving Eq.~15! is equivalent
to finding the inverse of the mapt̂5H(t) whose explicit
expression is given by~2!,~19!. All these aspects show that
the uncertainty relations~33! are described by the Schwar-
zian equation~15!.

Another aspect concerns the geometrical origin of th
lower and upper bounds in~33!. These seem to be a conse
quence of the good infrared and ultraviolet properties
negatively curved spaces. These aspects have been inv
gated in a different context by Callan and Wilczek@17#. Here
we have seen that the Koebe 1/4 theorem and Schwa
lemma applied to hyperbolic geometry explain the origin o
such geometrical regulators. We also observe that the role
the Koebe 1/4 theorem in hyperbolic geometry seems rela
to the crucial mechanism which arises in the compactific
tion of moduli spaces of Riemann surfaces. In particular, t
fact that in the Deligne-Knudsen-Mumford~DKM ! compac-
tification of moduli spaces of punctured Riemann spher
~configuration space of anyons! ‘‘punctures never collide’’
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can be seen as a request for the Weyl-Petersson Hamilto
to remain self-adjoint at the DKM boundary. This implie
the mass gap and the exclusion principle for anyons~punc-
tures! @18#.

There is another physical application of our result
Namelya is a nowhere vanishing function ofu so that one
should investigate the role of the lower bound foruau. This is
relevant in order to recover the structure of thea-moduli
space and the properties ofMnmne

~such as the structure of
the mass gap!. Similar arguments should be also useful
better understand some aspects concerning confinemen
this context we recall that according to Nehari theorem@19#
a sufficient condition for the univalence of a functiong de-
fined onD is

~12uzu2!2u$g,z%u<2, ~39!

whereas the necessary condition is
nian
s

s.

to
t. In

~12uzu2!2u$g,z%u<6. ~40!

It can be shown that the constant 2 in~39! cannot be re-
placed by any larger one. An interesting question is to find
the sharp inequality for the case at hand.

In conclusion we note that our investigation is related
with the theory of quasidisks. They have interesting struc-
tures. For example a generic quasidisk has a fractal bounda
@20#. Quasidisks also appear in some nonperturbative aspec
of string theory@21#.

It is a pleasure to thank G. Bonelli, P.A. Marchetti, and
M. Tonin for useful discussions. Partly supported by the Eu-
ropean Community Research ProgrammeGauge Theories,
applied supersymmetry and quantum gravity, Contract No.
SC1-CT92-0789.
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