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Anomalous Ward identities for four-point Green functions containing conserved operators~currents and the
energy-momentum tensor! in D-dimensional conformal field theory are obtained. They contain opera
anomalous terms generalizing the central charge in two dimensions.
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In Refs. @1,2# the principal conditions which define the
class of exactly solvable models inD-dimensional space
were formulated. The solutions to some of these mod
were found in@2#. The defining conditions are represented b
the following two model-independent statements.

~1! The following conformal field algebra exists:

F iFk5(
m

@Fm#, ~1!

where@Fm# is an infinite set of conformal fields.
~2! Locally conserved fields exist, namely, stress-ener

tensor and currents, which define an internal symmetry of
theory:

Tmn~x!, j m~x!. ~2!

These fields also belong to the algebra~1!.
As shown in @2#, under these assumptions the Hilbe

space of the theory represents an infinite direct sum of m
tually orthogonal subspaces, each space being generate
one of the fields from the algebra~1!.

In a Hilbert space there exists a special subspaceH0,H
generated by the fields~2!. This subspace is also a direct sum
of subspaces related to a special set of fieldsPS . The latter
@1,3# have transformation properties similar to those of se
ondary fields in two-dimensional conformal theory. The su
spaceH0 is called below the dynamical sector of a Hilbe
spaceH. Each dynamical model is defined by a set of co
sistent ~regarding a given system of Ward identities! con-
straints@1,2# on the states of the dynamical sector. In work
@4–6# these constraints were formulated for the simplest tw
and four-dimensional models. In aD52 case they reduce
@7–9# to the requirements of vanishing of the null vecto
which define the known exactly solvable models@10–12#. In
recent work@2# the solutions of nontrivial three- and four
dimensional models were discussed. This paper is aimed
the calculation of anomalous terms in Ward identities whi
define the dynamical sector.

In work @1# it was shown that the scalar fields

Pj~x! and PT~x! ~3!
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with dimensions

dPj5dPT5D22

are the analogues of a central charge inD dimensions. One
of these fields,Pj , contributes to the Ward identity for the
Green functions which include two or more conserved c
rents, while the other,PT , contributes to analogous identitie
for the stress-energy tensor. WhenD52, these fields become
constants:

Pj uD525const. PTuD525 const. ~4!

Depending on the choice of anomalous terms in the W
identities~for D.2), different realizations of the dynamica
sector of a Hilbert space arise, thus leading to different d
nitions of the classes of exactly solvable models. In oth
words, every class of exactly solvable models correspond
a definite set of anomalous terms in the Ward identities. H
we restrict ourselves to the calculation ofC-number anoma-
lous terms and anomalous corrections to a stress-energy
sor.

For the sake of simplicity we examine the theory of
charged scalar fieldw(x) with a scale dimensiond. Internal
symmetry~for the same reason! is assumed to be Abelian.

The below results are based on an assumption that
operator product expansions for the fields~2! have the forms.

j m~x1! j n~x2!5@Cj #1@Pj #1@Tmn#1•••, ~5!

Tmn~x1!Trs~x2!5@CT#1@PT#1@Tmn#1•••, ~6!

j m~x1!Trs~x2!5@ j n#1@P#1•••, ~7!
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where @Cj # and @CT# stand forC-number contributions to
the operator products. ConstantsCj andCT define normal-
izations for the ^ j m(x1) j n(x2)& and ^Tmn(x1)Trs(x2)&
propagators. As it is shown below,C-number terms contrib-
ute to the Ward identities in even-dimension spaces only

Based on these assumptions we consider anomalous W
identities for the following four-point Green functions:

^ j m~x1! j n~x2!w~x3!w
†~x4!&, ~8!

^Tmn~x1!Trs~x2!w~x3!w
†~x4!&, ~9!

^ j m~x1!Trs~x2!w~x3!w
†~x4!&. ~10!

It is known that the form of Ward identities for the Gree
functions containing a conserved operator~such as the cur-
rent or stress-energy tensor! is ruled by the form of equal-
time commutation relations between the time componen
this operator and the other operators entering the Green f
tion. These commutators include two types of terms. T
terms of the first kind are fixed by the property that the tim
components of conserved operators represent the densiti
corresponding generators~charge, translation, Lorentz
boosts, etc.!. The terms of the second kind are the Schwing
terms; both theC-number and the operator quantities m
occur in their expressions. What does actually define
model is the choice of the specific Schwinger terms. Since
the start the only functions under consideration are the co
riant Green functions, the contributions of both kinds
terms into the Ward identity should be put into covaria
form. Let us call the covariant contributions due to the ter
of the first kind theordinary contributions, while those
caused by the terms of the second kind–theanomalousones.
We discuss the Schwinger terms resulting from t
C-number and the operator contributions into the expansi
~5!–~7!.

A regular way to derive conformally invariant Ward iden
tities for functions~8!–~10! is, at first, to write down all the
possible Lorentz-invariant structures with suitable scale
rameters, and then, using the requirements of the invaria
under special conformal transformations, to find out the
lations between the coefficients before these structures
the Appendix we present an application of the above pro
dure to the derivation of a Ward identity for the functio
~10!. The goal of the paper will be achieved after one ma
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ages to make use of this method for the other functions c
cerned. The final result of such analysis for functions~8!–
~10! are given below

The Ward identity for the Green function
^ j m(x1) j n(x2)w(x3)w

†(x4)& reads

]m
x1^ j m~x1! j n~x2!w~x3!w

†~x4!&

52e@d~x12x3!2d~x12x4!#^ j n~x2!w~x3!w
†~x4!&

1cj]n
x1h ~D22!/2d~x12x2!^w~x3!w

†~x4!&

1]n
x1d~x12x2!^Pj

D22~x2!w~x3!w
†~x4!&, ~11!

wheree is the charge of a scalar fieldw(x),

^ j m~x2!w~x3!w
†~x4!&

5eGSD2 D /2p
D

2
lm
x2~x3x4!S x34

2

x23
2 x24

2 D ~D22!/2

^w~x3!w
†~x4!&,

~12!

wherelm
x2(x3x4)5

(x32x2)m

x32
2 2

(x42x2)m

x42
2 ,

lrs
x2 ~x3x4!5lr

x2~x3x4!ls
x2~x3x4!2

1

D
drs

x34
2

x23
2 x24

2 ,

^Pj
D22~x2!w~x3!w

†~x4!&5gj
PS x34

2

x23
2 x24

2 D ~D22!/2

3^w~x3!w
†~x4!& ~13!

and ^w(x3)w
†(x4)&5(x34

2 )2d is the scalar field propagator.
Anomalous terms in this identity contain two free param

eters

cj and gj
P . ~14!

For oddD ’s one should set

cj50, D odd .

The Ward identity for the Green function
^Tmn(x1)Trs(x2)w(x3)w

†(x4)& reads
]m
x1^Tmn~x1!Trs~x2!w~x3!w

†~x4!&52H d~x12x3!]n
x32

d

D
]n
x1d~x12x3!1d~x12x4!]n

x42
d

D
]n
x1d~x12x4!J ~15!

3^Trs~x2!w~x3!w
†~x4!&2H d~x12x2!]n

x22SD22

D
2

8

D
aD ]n

x1d~x12x2!J
3^Trs~x2!w~x3!w

†~x4!&1~112a!H dts]r
x1d~x12x2!1dtr]s

x1d~x12x2!

2
2

D
drs]t

x1d~x12x2!J ^Tnt~x2!w~x3!w
†~x4!&1a]t

x1d~x12x2!

3H dnrdls1dnsdlr2
2

D
drsdnlJ ^Ttl~x2!w~x3!w

†~x4!&
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1cTF]n
x1]r

x1]s
x12

D21

2D
~dnr]s

x11dns]r
x1!hx1

2
1

D2 drs]n
x1hx1Gh ~D22!/2d~x12x2!^w~x3!w

†~x4!&

1Pn;rs„d~x12x2!;]
x2
…^PT

D22~x2!w~x3!w
†~x4!&,

where

^Trs~x2!w~x3!w
†~x4!&52

D

D21
d

GSD2 D
2pD/2 lrs

x2 ~x3x4!S x34
2

x23
2 x24

2 D ~D22!/2

^w~x3!w
†~x4!&, ~16!

^PT
D22~x2!w~x3!w

†~x4!&5gT
PS x34

2

x23
2 x24

2 D ~D22!/2

^w~x3!w
†~x4!&. ~17!

ThePn;rs„d(x12x2);]
x2
… operator has the form

Pn;rs„d~x12x2!;]
x2
…52H ~D22!~11b!]r

x1]s
x1]n

x1d~x12x2!1~b12!~drt]s
x11dst]r

x1!]n
x1~x12x2!]t

x2

2~bD1D12!]r
x1]s

x1d~x12x2!]n
x22

1

D22 SDb1
D212D22

D21 D ~dnr]s
x11dns]r

x1!d~x12x2!hx1

1
D22

2
~dnr]s

x11dns]r
x1!hx1d~x12x2!1hx1d~x12x2!~dnr]s

x21dns]r
x2!

2
D

2
~dns]r

x11dnr]s
x1!]t

x1d~x12x2!]t
x22

D

2~D21!
~drt]s

x11dst]r
x1!d~x12x2!]n

x2]t
x2

1
1

D21
]n
x1d~x12x2!]r

x2]s
x22

D

2~D21!
]t
x1d~x12x2!~dnr]s

x21dns]r
x2!]t

x22traces in r ,s.J ~18!

Anomalous terms in the Ward identity~15! contain four free parameters:

cT ,a,b,gT
P . ~19!

For oddD ’s one should set

cT50, D odd.

The Ward identities for the Green function^ j m(x1)Trs(x2)w(x3)w
†(x4)& reads

]m
x1^ j m~x1!Trs~x2!w~x3!w

†~x4!&52e@d~x12x3!2d~x12x4!#^Trs~x2!w~x3!w
†~x4!&1~11 f !H dst]r

x1d~x12x2!

1drt]s
x1d~x12x2!2

2

D
drs]t

x1d~x12x2!J ^ j t~x2!w~x3!w
†~x4!&

12H S ]r
x1]s

x12
1

D
drshx1D d~x12x2!1

1

D22 S ] r
x1d~x12x2!]s

x21]s
x1d~x12x2!]r

x2

2
2

D
drs]t

x1d~x12x2!]t
x2D J ^PD22~x2!w~x3!w

†~x4!&, ~20!
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]r
x2^ j m~x1!Trs~x2!w~x3!w

†~x4!&

52H d~x22x3!]s
x32

d

D
]s
x2d~x22x3!1d~x22x4!]s

x42
d

D
]s
x2d~x22x4!J ^ j m~x1!w~x3!w

†~x4!&

2H d~x22x1!]s
x12SD22

D
2

2

D
f D ]s

x2d~x22x1!J ^ j m~x1!w~x3!w
†~x4!&1~11 f !]m

x2d~x22x1!^ j s~x1!w~x3!w
†~x4!&

1 fdms]t
x2d~x22x1!^ j t~x1!w~x3!w

†~x4!&1H 2
D22

D
]m
x2]s

x2d~x22x1!2dmshx2d~x22x1!1]m
x2d~x22x1!]s

x1

2
2

D22
]s
x2d~x22x1!]m

x11
D

D22
dms]t

x2d~x22x1!]t
x1J ^PD22~x1!w~x3!w

†~x4!&, ~21!

where

^PD22~x1!w~x3!w
†~x4!&5gPS x34

2

x13
2 x14

2 D ~D22!/2

^w~x3!w
†~x4!&. ~22!

Anomalous terms in the Ward identities~20! and ~21! contain two free parameters:

f ,gP. ~23!

This investigation was supported by the Board of Trustees of ICAST, NATO Linkage Grant No. 931717, and the C. S
Foundation Grant No. 93-236. Two of the authors~E.F. and V.Z.! are grateful to the Russian Foundation for Basic Resea
~Grant No. 93-02-15541! for the support of these investigations.

APPENDIX

As already noted above, a regular way to derive conformally invariant Ward identities consists in the following: at fir
the possible Lorentz-invariant structures with suitable scale parameters are written down, and then, from the requirem
the invariance under special conformal transformations, the relations between the coefficients before these struct
obtained. However, in a number of cases, instead of requirement of the invariance under special conformal transforma
proves useful to require the invariance under inversion transformationsR, since

Km5RPmR, Rxm5
xm

x2
,

wherePm andKm are the generators of translations and special conformal transformations.
The fields transformation law underR transformation has the form

w~x!→
R

w8~x!5~x2!2dw~Rx! ~A1!

for the scalar fieldw with the scale dimensiond,

j m~x!→
R
j m8 ~x!5~x2!2~D21!gmn~x! j n~Rx! ~A2!

with gmn(x)5dmn22xmxn /x
2 for the conserved current with the scale dimensionD21, and

Tmn~x!→
R
Tmn8 ~x!5~x2!2Dgmr~x!gns~x!Trs~Rx! ~A3!

for the conserved stress-energy tensor with the scale dimensionD.
The divergence of the conserved current transforms in a way similar to the transformation of the scalar field with dim

D:

U~R!]m
x j m~x!U21~R!5]m

x $~x2!2~D21!gmn~x! j n~Rx!%5~x2!2~D21!gmn~x! j n~Rx!5~x2!2D]n
Rxj n~Rx!,

which is proved with the help of the identities

]m
x $~x2!2~D21!gmn~x!%50, ]n

Rx5x2gnm~x!]m
x . ~A4!
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By analogy, one can check that the divergence of the stress-energy tensor transforms similarly to the vector field of dim
D11:

U~R!]m
x Tmn~x!U21~R!5~x2!2~D11!gnl~x!]m

RxTmn~Rx!. ~A5!

As an example of action of the method let us apply it to the derivation of Eq.~15!.
Taking into account Eqs.~A1!, ~A3!, and ~A5! one may find the invariance condition for the divergence of the Gre

function ^Tmn(x1)Trs(x2)w(x3)w(x4)& underR transformation:

]m
x1^Tmn~x1!Trs~x2!w~x3!w~x4!&

5~x1
2!2~D11!~x2

2!2D~x3
2!2d~x4

2!2dgnt~x1!gra~x2!gsb~x3!]m
Rx1^Tmt~Rx1!Tab~Rx2!w~Rx3!w~Rx4!&. ~A6!

The most general Lorentz and scale-invariant expression for the divergence of the function^Tmn(x1)Trs(x2)w(x3)w(x4)& may
be represented in the form

]m
x1^Tmn~x1!Trs~x2!w~x3!w~x4!&

52$d~x12x3!]n
x31b]n

x1d~x12x3!1d~x12x4!]n
x41b]n

x1d~x12x4!%^Trs~x2!w~x3!w~x4!&

1H 2@d~x12x2!]n
x222a1]n

x1d~x12x2!#^Trs~x2!w~x3!w~x4!&

12a2S drldst1dsldrt2
2

D
drddtlD ]l

x1d~x12x2!^Tnt~x2!w~x3!w~x4!&

12a3S dnrdls1dnsdlr2
2

D
drsdnlD ]t

x1d~x12x2!^Tlt~x2!w~x3!w~x4!&J
2H c1]n

x1d~x12x2!S ]r
x2]s

x22
1

D
drshx2D1c2]l

x1d~x12x2!S dlr]n
x2]s

x21dls]n
x2]r

x22
2

D
drs]n

x2]l
x2D

1c3]l
x1d~x12x2!S dnr]s

x21dns]r
x22

2

D
drs]n

x2D ]l
x21c4]l

x1d~x12x2!S dnrdst1dnsdrt2
2

D
drsdntDhx2

1e1S ]r
x1]s

x12
1

D
drshx1D d~x12x2!]n

x21e2S drl]s
x11dsl]r

x12
2

D
drs]l

x1D ]n
x1d~x12x2!]l

x2

1e3S dnr]s
x11dns]r

x12
2

D
drs]n

x1D ]l
x1d~x12x2!]l

x21e4h
x1d~x12x2!S dnrdsl1dnsdrl2

2

D
drsdnlD ]l

x2

1 f 1S ]r
x1]s

x12
1

D
drshx1D ]n

x1d~x12x2!1 f 2S dnr]s
x11dns]r

x12
2

D
drs]n

x1Dhx1d~x12x2!J ^PT
D22~x2!w~x3!w~x4!&

1cTH F S ]r
x1]s

x12
1

D
drshx1D ]n

x11qS dnr]s
x11dns]r

x12
2

D
drs]n

x1Dhx1Gh
~D22!/2
x1 d~x12x2!J ^w~x3!w~x4!&. ~A7!

Here the only Schwinger terms in the commutator of the components of stress-energy tensor taken into account
C-number and thePT

D22(x)-operator ones. Several groups of terms on the right-hand side~RHS! of Eq. ~A7! must satisfy Eq.
~A6! separately from each other: namely, terms proportional tod(x12x3) @or d(x12x4)] and its derivative; terms proportional
to d(x12x2), its derivatives, and to the Green function^Tab(x2)w(x3)w(x4)&; terms proportional to the Green function
^PT

D22(x2)w(x3)w(x4)&, i.e., anomalous terms induced by operator Schwinger terms; terms proportional to the propa
^w(x3)w(x4)&, i.e., anomalous terms induced byC-number Schwinger terms. These terms are nonzero only in the space
even space-time dimensions.

In what follows we consider each group of these terms separately. For example, for the first group one should prov1

1The same is true for the terms proportional tod(x12x4).
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2$d~x12x3!]n
x31b]n

x3d~x12x3!%^Trs~x2!w~x3!w~x4!&5~x1
2!2~D11!~x2

2!2D~x3
2!2d~x4

2!2dgnt~x1!gra~x2!gsb~x3!

3$2@d~Rx12Rx3!]t
Rx31b]t

Rx1d~Rx12Rx3!#

3^Tab~Rx2!w~Rx3!w~Rx4!&%. ~A8!

Taking into account the transformation law for the Green function^Tab(x2)w(x3)w(x4)&

^Trs~x2!w~x3!w~x4!&5~x2
2!2D~x3

2!2d~x4
2!2dgra~x2!gsb~x3!^Tab~Rx2!w~Rx3!w~Rx4!&

as well as the formulas

gmt~x!gtn~x!5dmn , d~Rx!5~x2!Dd~x!,

one can rewrite the RHS of~A8! as

RHS of ~A8 !5~x1
2!2~D11!~x2

2!2D~x3
2!2d~x4

2!2dgnt~x1!gra~x2!gsb~x3!

3$2@~x1
2!Dd~x12x3!x3

2gtl~x3!]l
x31bx1

2gtl~x1!]l
x1
„~x1

2!Dd~x12x2!…#^Tab~Rx2!w~Rx3!w~Rx4!&%

5~x2
2!2D~x3

2!2d~x4
2!2dgra~x2!gsb~x3!H 2F2bD ~x1!n

x1
2 d~x12x3!1d~x12x3!]n

x31b]n
x1d~x12x3!G

3^Tab~Rx2!w~Rx3!w~Rx4!&J
52F ~2bD12d!

~x1!n

x1
2 d~x12x3!1d~x12x3!]n

x31b]n
x1d~x12x3!G$~x22!2D~x3

2!2d~x4
2!2dgra~x2!gsb~x2!

3^Tab~Rx2!w~Rx3!w~Rx3!&%

52H 2~bD1d!
~x1!n

x1
2 d~x12x3!1d~x12x3!]n

x31b]n
x1d~x12x3!J ^Trs~x2!w~x3!w~x4!&%.

For the latter expression to coincide with the LHS of~A8!, the first term in the braces should vanish, implying that

b52
d

D
. ~A9!

Now consider the second group in~A7!. Analogous, but slightly more tedious calculations show that

~x1
2!2~D11!~x2

2!2D~x3
2!2d~x4

2!2dgnt~x1!gra~x2!gsb~x2!@]m
Rx1^Tmt~Rx1!Tab~Rx2!w~Rx3!w~Rx4!&#second group

5@]m
x1^Tmt~x1!Trs~x2!w~x3!w~x4!&#second group1H @22D~122a1!18a218a3#

~x1!n

x1
2 dradsb

1~224a214a3!
~x1!t

x1
2 @~dnrdsb1dnsdrb!dta2~drtdsb1dstdrb!dna#J d~x12x2!^Tab~x2!w~x3!w~x3!&.

~A10!

Thus, the second group of terms will beR invariant only when

22D~122a1!18a218a350, 224a214a350.

The solution of the above system can be written as

a15
D22

2D
2

4

D
a, a25

1

2
1a, a35a, ~A11!

wherea is a free parameter.
To derive~A10! we have used the formula

grl1
~x!gsl2

~x!]n
x@gl1a~x!gl2b~x!#522FdabS dnr

xa

x2
2dna

xr

x2D1draS dns

xb

x2
2dnb

xs

x2D G . ~A12!
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Now let us consider the third group in~A7!. Much more cumbersome algebraic calculations lead to the relations betwe
the coefficientsc1 ,c2 , . . . ,f 2 . Here we only mention the basic formulas used in this derivation:

^PT
D22~x2!w~x3!w~x4!&5~x2

2!2~D22!~x3
2!2d~x4

2!2d^PT
D22~Rx2!w~Rx3!w~Rx4!&, ~A13!

1

~x1
2!~D11! gnv~x1!]l1

Rx1d~Rx12Rx2!5gnv~x2!gl1b1
~x2!]b1

x1d~x12x2!12S dnl1

~x2!v

x2
2 1dvl1

~x2!n

x2
2 2dnv

~x2!l1

x2
2 D d~x12x2!,

~A14!

1

~x1
2!~D11! gnv~x1!]l1

Rx1]l2

Rx2d~Rx12Rx2!5x2
2gnv~x2!gl1b1

~x2!gl2b2~x2!]b1

x1]b2

x1d~x12x2!

12H S dnl1
~x2!v1dvl1

~x2!n22
~x2!v~x2!n~x2!l1

x2
2 D gl2t~x2!1S dnl2

~x2!v

1dvl2
~x2!n22

~x2!v~x2!n~x2!l2

x2
2 D gl1t~x2!1dl1l2

~x2!tgnv~x2!J ]t
x1d~x12x2!

12~dnvdl1l2
2dnl1

dvl2
2dvl1

dnl2
!d~x12x2!, ~A15!

1

~x1
2!~D11! gnv~x1!]l1

Rx1]l2

Rx2]l3

Rx2d~Rx12Rx2!

5~x2
2!2gnv~x2!gl1b1

~x2!gl2b2
~x2!gl3b3

~x2!]b1

x1]b2

x1]b3

x1d~x12x2!12x2
2$2gnv~x2!@~x2!l3

gl1b1
~x2!gl2b2

~x2!

1~x2!l2
gl1b1

~x2!gl3
b2~x2!1~x2!l1

gl3b1
~x2!gl2b2

~x2!#1@dnl3
~x2!v1dvl3

~x2!n2dnv~x2!l3
#gl1b1

~x2!gl2b2
~x2!

1@dnl1
~x2!v1dvl1

~x2!n2dnv~x2!l1
#gl3b1

~x2!gl2b2
~x2!1@dnl2

~x2!v1dvl2
!~x2!n2dnv~x2!l2

#gl1b1
~x2!gl3b2

~x2!

1~x2!b1
gnv~x2!@dl1l3

gl2b2
~x2!1dl2l3

gl1b2
~x2!1dl1l2

gl3b2
~x2!#%db1

x1db2

x1d~x12x2!

22x2
2H Fgnl1

~x2!gvl3
~x2!1gnl3

~x2!gvl1
~x2!22dl1l3

~x2!v~x2!n

x2
2 Ggl2t~x2!

1Fgnl2
~x2!gvl3

~x2!1gnl3
~x2!gvl2

~x2!22dl2l3

~x2!v~x2!n

x2
2 Ggl1t~x2!

1Fgnl1
~x2!gvl2

~x2!1gnl2
~x2!gvl1

~x2!22dl1l2

~x2!v~x2!n

x2
2 Ggl3t~x2!

22
~x2!t

x2
2 F ~x2!v~dnl1

dl2l3
1dnl2

dl1l3
1dnl3

dl1l2
!1~x2!n~dvl1

dl2l3
1dvl2

dl1l3
1dvl3

dl1l2
!

22
~x2!v~x2!n

x2
2 @~x2!l1

dl2l3
1~x2!l2

dl1l3
1~x2!l3

dl1l2
#G J ]t

x1d~x12x2!. ~A16!
e

Again, resultantly we get the system of algebraic equatio
having the solution which can be written in the form

c15
2

D21
, c252

D

2~D21!
, c352

D

2~D21!
,

c452
1

D22 S bD1
D212D22

D21 D , e152~bD1D12!,

e25b12, e352
D

2
, e451,
ns,
f 15~D22!~11b!, f 25

D22

2
, ~A17!

whereb is a free parameter.
Finally, consider the fourth group in~A7!, which is pro-

portional to the propagator of the fieldw. It is evident that
the factor beforêw(x3)w(x4)& in ~A7! should transform in
the same manner as]m

x1^Tmn(x1)Trs(x2)& under theR trans-
formation. So our aim is to derive the expression for the
divergence of the propagator of stress-energy tensor. Th
latter reads
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^Tmn~x1!Trs~x2!&5NH gmr~x12!gns~x12!

1gms~x12!gnr~x12!2
2

D
dmndrsJ

3~x12!
2D. ~A18!

This function is ill defined in the spaces of even dimension
However, the matter of our concern is its divergence. So
us consider the regularized expression for the propagato

^Tmn~x1!Trs~x2!& reg5N$gmr~x12!gns~x12!1~r↔s!

2trace in r,s%~x12!
2dT. ~A19!

The divergence of this function equals to

]m
x1^Tmn~x1!Trs~x2!& reg52N~dT2D !S ~x12!r

x12
2 gns~x12!

1~r↔s!2trace inr,s D
3~x12!

2dT. ~A20!
s.
let
r

Here we used the formulas

]m
x F 1

~x2! l
gmn~x!G52~ l2D11!

xn

~x2! l11 ,

grm~x!]m
x gns~x!522Fxs

x2
gnr~x!1drs

xn

x2G .
The RHS of~A20! may be put into the form

^Tmn~x1!Trs~x2!& reg5N
~dT2D !

~dT21!dT~dT11! H ]n
x1]r

x1]s
x1

2
~dT21!

4~dT2D/2!
~dnr]s

x11dns]r
x1!

2trace inr,sJ ~x12
2 !2~dT21!.

~A21!

This expression is already well defined for all dimension
D. Taking the limitdT↔D, we get
e type
lim
dT→D

^Tmn~x1!Trs~x2!& reg5H 0 for odd D,

2
pD/2

2D22G~D/2!G~D12!
N$]n

x1]r
x1]s

x1

2
D21

2D
~dnr]s

x11dns]r
x1!hx12trace inr,sJ hx1

~D22!/2d~x12! for even D. ~A22!

Here we used

hk~x2!2 l54k
G~ l1k!GS l2 D

2
111kD

G~ l !GS l2 D

2
11D ~x2!2~ l1k!, lim

e→0
e~x2!2~D/21e!52

pD/2

GSD2 D d~x!.

Comparing this result with the RHS of~A7! one finds

cT52
pD/2

2D22GSD2 DG~D12!

N, q52
D21

2D
. ~A23!

Substituting now expressions~A9!, ~A11!, ~A17!, and~A23! into ~A7! we finally get the result, which coincides with~15!.
Proceeding analogously one can derive the Ward identities for all the other functions. No additional relations of th

~A14!–~A17! are necessary. The only fact which remains to be stressed is that the evident relation

]m
x1]r

x2^ j m~x1!Trs~x2!w~x3!w~x4!&5]r
x2]m

x1^ j m~x1!Trs~x2!w~x3!w~x4!&

should be satisfied in the derivation of the Ward identities for the Green function^ j m(x1)Trs(x2)w(x3)w(x4)&.
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