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Anomalous Ward identities for four-point Green functions containing conserved opef@iomnts and the
energy-momentum tensgoin D-dimensional conformal field theory are obtained. They contain operator
anomalous terms generalizing the central charge in two dimensions.

PACS numbsdss): 11.30.Ly, 11.25.Hf

In Refs.[1,2] the principal conditions which define the with dimensions
class of exactly solvable models b-dimensional space
were formulated. The solutions to some of these models
were found in2]. The defining conditions are represented by dp=dp_=D—-2
the following two model-independent statements. . T
(1) The following conformal field algebra exists:

are the analogues of a central chargdirdimensions. One

DD =2 [Dp], (1) of these fieldsP;, contributes to the Ward identity for the
m Green functions which include two or more conserved cur-
where[®,] is an infinite set of conformal fields rents, while the othelR;, contributes to analogous identities
m .

(2) Locally conserved fields exist, namely, stress-energ)rorthe stress-energy tensor. Wher- 2, these fields become

tensor and currents, which define an internal symmetry of th&onstants:
theory:

T(X), Ju(X). 2 Pjlp-2=const. Pt|p_,= const. (4)

These fields also belong to the algebia

As shown in[2], under these assumptions the Hilbert  pepending on the choice of anomalous terms in the Ward
space of the theory represents an infinite direct sum of Mugentities(for D>2), different realizations of the dynamical
tually orthogonal subspaces, each space being generated §¥ctor of a Hilbert space arise, thus leading to different defi-
one of the fields from the algebfa). nitions of the classes of exactly solvable models. In other

In a Hilbert space there exists a special subspt¢@H  \yords, every class of exactly solvable models correspond to
generated by the field®). This subspace is also a direct sum g definite set of anomalous terms in the Ward identities. Here

of subspaces related to a special set of fi#¥ds The latter  \ye restrict ourselves to the calculation@fnumber anoma-

[1,3] have transformation properties similar to those of secioys terms and anomalous corrections to a stress-energy ten-
ondary fields in two-dimensional conformal theory. The sub-gqy.

spaceH is called below the dynamical sector of a Hilbert  For the sake of simplicity we examine the theory of a
spaceH. Each dynamical model is defined by a set of con-charged scalar fielgh(x) with a scale dimensiod. Internal
sistent(regarding a given system of Ward identifie=on-  symmetry(for the same reasoris assumed to be Abelian.

[4—6] these constraints were formulated for the simplest tWogperator product expansions for the field@shave the forms.
and four-dimensional models. In@=2 case they reduce

[7-9] to the requirements of vanishing of the null vectors

which define the known exactly solvable modgl§—-12. In i (XD (X)=[CT+[P:T+[T. .1+ .- 5
recent work[2] the solutions of nontrivial three- and four- L)1 () =LC I+ [P+ T ] ’ ©
dimensional models were discussed. This paper is aimed at

the calculation of anomalous terms in Ward identities which

define the dynamical sector. TurXD)Tpo(X) =[CrlF[Pr]+ [Ty, ]+, 6)
In work [1] it was shown that the scalar fields
P](X) and PT(X) (3) j,u,(Xl)Tpa(XZ)z[j V]+[P]+ T (7)
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where[C;] and[C+] stand forC-number contributions to ages to make use of this method for the other functions con-
the operator products. Constarits and Cy define normal-  cerned. The final result of such analysis for functig@s-
izations for the (jﬂ(xl)jv(x2)> and (T,,(x)T,,(x2))  (10) are given below
propagators. As it is shown belo@-number terms contrib- The Ward identity for the Green function
ute to the Ward identities in even-dimension spaces only. (] ,(X1)] LX) e(x3) @' (x4)) reads

Based on these assumptions we consider anomalous Ward

identities for the following four-point Green functions: (9;1(J'M(X1)i S(X2) @(X3) @T(X4))
(5 (X0 (X2) @(X3) @7 (X4)), t) = —e[ 8(x1—X3) — 8(x1—%4) {J ,(X2) @(X3) ¢ (X4))
(X0 Tpo(X2) e(xa) @ (X)), 9 +¢;0, 0P 72125(x, = x2) (¢ (%3) @ (X4))
(J (X)) T po(X2) @(X3) @ T(X4)). (10 + 3,180 =X (PP 2(x2) @(Xa) @' (Xa)), (17)

It is known that the form of Ward identities for the Green wheree is the charge of a scalar fielg(x),
functions containing a conserved operatsuch as the cur-
rent or stress-energy tengas ruled by the form of equal- <JM(X2)¢(X3)‘PT(X4)>
time commutation relations between the time component of
this operator and the other operators entering the Green func-_
tion. These commutators include two types of terms. The — el _)/277 >\ 2(X3X4)( 2, (o(x3)0"(Xa)),
terms of the first kind are fixed by the property that the time (12
components of conserved operators represent the densities of
corresponding generatorgcharge, translation, Lorentz
boosts, etg. The terms of the second kind are the Schwmger
terms; both theC-number and the operator quantities may
occur in their expressions. What does actually define the 1 X3,
model is the choice of the specific Schwinger terms. Since at ~ M,2(XaXa) =\ 2(XaX4) N[ 2(X3X4) — D %oz Z

x2 )(D—Z)/Z

(X3—X2) (Xa—Xy)
here)\XZ(Xale) = ZM —,
X32 X42

) ; . X

the start the only functions under consideration are the cova- 2324

riant Green functions, the contributions of both kinds of W2 |\ (D=2
terms into the Ward identity should be put into covariant (PP 2(x) p(%3) ¢ (X4)) = 07| —pop-
. o j 2)PAR3) P (Xq ilo2 o2
form. Let us call the covariant contributions due to the terms X23X54

of the first kind theordinary contributions, while those % " 13
caused by the terms of the second kind-dhemalousnes. {e(x3)@"(xa)) (13
We discuss the Schwinger terms resulting from the t

C-number and the operator contributions into the expansmns d(e(xs) @ (X4)) = (X34)
5)—(7).

A regular way to derive conformally invariant Ward iden-
tities for functions(8)—(10) is, at first, to write down all the
possible Lorentz-invariant structures with suitable scale pa-
rameters, and then, using the requirements of the invarianqgy, oddD’s one should set
under special conformal transformations, to find out the re-
lations between the coefficients before these structures. In ¢;=0, D odd.
the Appendix we present an application of the above proce-
dure to the derivation of a Ward identity for the function The Ward identity for the Green function
(10). The goal of the paper will be achieved after one man{TW(xl)Tpg(xz)qo(x3)¢T(x4)> reads

is the scalar field propagator.
Anomalous terms in this identity contain two free param-
eters

c; and gf . (14)

d d
321<TW(X1)TW(X2)<P(X3)¢T(X4)>: _[ O(X1—=X3)d, o 15(X1 X3)+ 5(X1_X4)5 - _3 LO(X— )] (15

T . D-2 8
X<TPU(X2)QD(X3)(,D (X4)>_ 5(X1—X2)¢9V2— T_Ba

TrS(Xq— xz)}

X<Tpa(X2)<P(X3)<PT(X4 ))+(1+2a) 5703X15(X1 Xg) + 8,0 L 8(X1— X,)

™o

2
_55,)0‘9 15(X1— Xz)]<Tw(X2 @(X3) @' (X4)) +ad 8(X1—Xy)

2
X 5vp5)\(r+ 5V(7'6)\p D pa’ v)x](TT)\ X2)¢(X3)¢T(X4)>



53 ANOMALOUS WARD IDENTITIES IN D-DIMENSIONAL . .. 7347

D-1
| T S (8,05 8,0

1 8,,0 0%
F PU'&V

+ P o (8(X1—X2); P2 PR 2(%0) @(X3) @7 (X4)),

OP=2125(x; = x2){@(X3) @ (X4))

where

2]

X2\ (D-2)/2
(Tpo(X2) @(X3) 9T (X4)) =~ mdmhﬁ(xf‘x“)(xé_ﬁ%‘) (e(x3)@'(X4)), (16
x§4 (D-2)I2
<P$Z(XZ)<P(X3)<PT(X4)>=9$(X§—3X§4) (@(x3) @ (Xa)). a7

The P, ,,(8(X1—X2);9*2) operator has the form

X

P:po(8(X1—Xz);#2)=—1{ (D—2)(1+ b)azla);laila(xl— Xo)+(b+2)(8,,d 1+ 507ap1)z9’;1(x1— Xp) 32

D?+2D-2 « .
Db+ ————|(8,,0 14 8,,0.1) (X, — X)X

_ X1 X1 _ X T
(bD+D+2)&p ﬂ(r 5(Xl X2)(9V D—2 D-1 vpY & p

vpro vpro

b-2 X1 X1\ X X X2 X2
+T(5 J +5W&p)D 15(X1—Xp) +[0%18(X1—X5)(68,,d +5wr?p)

D
- 5(5Waxl+ 8,p0 ) I E8( Xy —Xp) 2=

X1 X1 _ X2 X2
) vpd (6,:0 1+ 50.7.(9p )6(X1—=X2)d 23]

2(D—1)

I ES(X1—Xp)(8 ax2+5wazz)&’;2—traces inr,o.t (18)

oo

+ L¢9X15(x1—x2)c7X2aX2— S
D-1% p % 2(D-1)
Anomalous terms in the Ward identit{5) contain four free parameters:
cr.a,b,gf. (19
For oddD’s one should set

¢r=0, D odd.

The Ward identities for the Green functiQhM(xl)TpU(xz)<p(x3)<pf(x4)> reads

aﬁ(i ,u,(Xl)TpU(XZ)(P(X3)(PT(X4)> =—e[8(X1—X3) — 5(X1_X4)]<Tpa(xz)<P(X3)QDT(X4)>+ (1+1) 5075215(X1_X2)

2
+ 6p7'07§15(xl_ X2) = D 5p0'a):-15(xl_ Xz)} (I (X2 e(X3) @ T(X4))

+2

axlaxl—ia 0% | 8(x,— X )+L FLE(Xy—Xp) T2+ TLS(Xy— X0) T2
p % D “ro 1 2 D-2 r 1 2)9 4 o 1 2)9,

2 X X —
5 e OXy— Xz)ﬁfz) ] (PP72(x2) (x3) " (X4)), (20
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([ (XD T po(%2) @(Xa) @7 (X))

g _ Xs_g X25 _ S _ X4_E X25 _ ; T
(X2—X3) 9, D'?(, (Xo—X3) + 8(Xo—X4) 0. Dé"’ (X2=X4) [ (] u(X1) @(X3) @' (X4))

D-2 2
- [ 5(X2_X1)<9);1— ( D 5f> r7);250(2_)(1)] (i M(X1)<P(X3)<PT(X4)>+(1+ f)f9;25(X2_X1)<j o(X1) @(X3) 0T (X4))

D-2
18,0200 =X0)(1 x0) @(Xe) @1 (Xa)) + | = —5— 3122 8(Xp=X1) = 8,28 = X0) + I 28X X1) I

2 X2 1 D X2 X1 D-2 T
“D2% S(Xp— Xl)a + ﬁ%aa (Xo—X1) (P77 9(X0) 0(X3) @' (Xa)), (21
where
X§4 (D-2)/2
<PD_2(X1)¢(X3)§DT(X4)>:gp(_2_2_) (o(x3)@"(Xa))- (22
X13X14
Anomalous terms in the Ward identiti€é80) and (21) contain two free parameters:

f.g". (23

This investigation was supported by the Board of Trustees of ICAST, NATO Linkage Grant No. 931717, and the C. S. Mott
Foundation Grant No. 93-236. Two of the auth@&sF. and V.Z) are grateful to the Russian Foundation for Basic Research
(Grant No. 93-02-15541for the support of these investigations.

APPENDIX

As already noted above, a regular way to derive conformally invariant Ward identities consists in the following: at first, all
the possible Lorentz-invariant structures with suitable scale parameters are written down, and then, from the requirements of
the invariance under special conformal transformations, the relations between the coefficients before these structures are
obtained. However, in a number of cases, instead of requirement of the invariance under special conformal transformations, it
proves useful to require the invariance under inversion transformafpisince

Xu
K,=RP,R, Rx,= 5,

whereP, andK , are the generators of translations and special conformal transformations.
The fields transformation law und& transformation has the form

R
e(X)— o' (x)=(x?)"%o(RX) (A1)

for the scalar fieldp with the scale dimensiod,

R
(0 —=],00=0x*"®C"Yg,,(x)]j,(RX) (A2)

with g,,,(X) = 5W—2xMxV/x2 for the conserved current with the scale dimendibn 1, and

R
T, (0= T,,00=(x*)"20,,,(X)8,(X) T o (RX) (A3)

for the conserved stress-energy tensor with the scale dimeBsion
The divergence of the conserved current transforms in a way similar to the transformation of the scalar field with dimension
D:

U(R)Fj 00U~ 1 R)=a{(x*) P Vg, (x)] (R} =(x?) P~ Vg,,(x)],(RX)=(x*) P} (RX),
which is proved with the help of the identities

FL(xA) P Vg, (0)}=0, F*=x?g,, (07, (A4)
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By analogy, one can check that the divergence of the stress-energy tensor transforms similarly to the vector field of dimension
D+1:

UR)FLT,,(x)U (R =(x})~P*g,, (x) 95 T ,,,(RX). (A5)

wotpy

As an example of action of the method let us apply it to the derivation of E5}.
Taking into account EqgAl), (A3), and (A5) one may find the invariance condition for the divergence of the Green
function (T ,,(X1) T,+(X2) ¢(X3) ¢(X4)) underR transformation:

T (XD T po(X2) 9(X3) @(X4))

= (D) PI0OE) POG) T U0G) 9,1 (X0) Gpa(X2) up(Xa) Ay T (RX0) Tap(R¥e) 9(RXe) (RXy)) (A6)

The most general Lorentz and scale-invariant expression for the divergence of the fdmgtiony) T,,(X2) ¢(X3) ¢(X4)) may
be represented in the form

T (XD T po(X2) 9(X3) @(X4))
= —{8(x1 = X3) I3+ D3, 1 5(X1—Xg) + 8(Xy — Xg) I+ D3, 8(X1 = Xa) Ty (X2) 9(X3) @(X4) )

+i —[8(Xg—X2) 32— 2315');15(X1_ X2) T po(X2) @(X3) ©(X4))

2
+ 2a2 5p)\ 60’T+ 50’)\ 5;27'_ 5 5;2567'}\) ﬂilﬁ(xl— X2)<TVT(X2)¢(X3) QD(X4)>

+2a3

2
5Vp5)\0'+ 5V0'5)\p_ 5 5;)(751/)\) (9)7(—15()(1_X2)<T}\T(X2)QD(X3)(P(X4)>]

1 2
- ( 19 8(X1— xz)( 9007 5 Gpold2| + 20\ (X1~ xz)( Opd )+ 8, 07— 5p,,¢9’;2a§2)

92+ Cd 1 8(X1— X2)

X1 X2 X2 2 X2 2 X2
+CaN (X, = Xo)| 8,y 2+ 8,502 = Syl 81p8yrt BugBpr= T BpoBur |0

D “ro

d

+e; )

1 2
aj)lafrl— —_— DX1> 8(Xy—Xp) 2+ €| S 0T+ 5(,@21— 5 5paa§1) T EI(X—Xp) 3\

(DIed

+e3 D “ro D “ro

X1 X1 2 X1 | 4X1 X2 X 2 X2
Bupltt 800yt = 8,00t | NLO(X1—Xp) AP+ €411 8(Xy = Xo) | 8,y0nt Gradn— T Spodun | Oy

+f; D “ro vpYo D “ro

X1 9X1 1 X1 | 9%1 X1 X1 2 X1 X D-2
9,10, — 5 Opo 1| 00Xy = Xo) +F5| 8,,0,1+ 8,50 1= = 8,00, | ILO(X1 = X7) 1 {PT~“(X2) @(X3) @(Xa))

1 2
X1 X X X X
( P = = 8,0 Bypdit 8,403 — = 5po.ayl) 0%

+er 5

X
Jl+q

Dz%2)/25(X1_X2)]<CP(X3)QD(X4)>. (A7)

Here the only Schwinger terms in the commutator of the components of stress-energy tensor taken into account are the
C-number and th@? ~?(x)-operator ones. Several groups of terms on the right-hand Rid&) of Eq. (A7) must satisfy Eq.
(AB) separately from each other: namely, terms proportiona(¥g — x3) [or 8(X; —X4)] and its derivative; terms proportional
to 8(x;—Xy,), its derivatives, and to the Green functigi,z(X,) ¢(X3) ¢(X4)); terms proportional to the Green function
<P$’2(x2)<p(x3)go(x4)>, i.e., anomalous terms induced by operator Schwinger terms; terms proportional to the propagator
(p(X3) ¢(X4)), i.e., anomalous terms induced Bynumber Schwinger terms. These terms are nonzero only in the spaces of
even space-time dimensions.

In what follows we consider each group of these terms separately. For example, for the first group one should prove that

The same is true for the terms proportionaldoc; — X,).
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—{8(x1=X3) 72+ b 20Xy = Xa) (T (X2) @(Xa) 9(Xa)) = (x3) ~ P H(X5) ~P(x5) ~U(x0) "99,7(X1) Gpal X2) Grg(Xa)
X{—[8(R¥,— R¥g) 3~ 8+ b3 1 6(Rx — Rxg)]
X(Top(RX) 0(RX3) p(RXg))} (A8)

Taking into account the transformation law for the Green func{ibgs(x,) ¢(X3) ©(X4))

(Tpo(X2) 9(X3) @(Xa)) = (x3) P (x8) " U(X3) ™9, a(X2) Gp(Xa)(Tup(R¥) 9(R¥s) 9 (R %))
as well as the formulas
9u-(X)9r(X)=8,,, S(RX)=(x*)P8(x),
one can rewrite the RHS ¢A8) as
RHS of (A8)=(x}) ™ (x3) ~P(x5) (%) ~9,,(x1)9pa(X2) 9y p(X3)
X { = [(xD)° 8(x1~X3) X5G ra (X3) 437+ DX3G 1\ (X1) H(X5) ° 8(X1 = X2)) (T R¥) @(R¥s) @(R¥4))}

(Xl)V X3 X1
- 2bD X2 5(X1_X3)+ 5(X1_X3)(9V -‘rb&v 6(X1_X3)
1

= (x3)"P(x3) "4x3) UG, a(X2) 9 p(X3)

X <TQB(RX2)<P(RX3)QD(RX4)>]

:_[ (Xl)v

(20D +2d) = 5~ 8%, ~ Xg) + 8(x, ~ X3) 7,2+ b3, 61~ Xa) [{(x5) "P(x3) ~(x5) %G palX2)p(X2)
1

X <Ta,8( RX) @(RX3) @(RX3))}

(Xl)v

=- [ 2(bD+d) ~Z 8(Xg—X3) + 8(Xy —X3)d2+ b¢9?5(X1_X3)] (Tpo(X2) (X3) 9(X4))}-
1

For the latter expression to coincide with the LHS(AB), the first term in the braces should vanish, implying that

b=——. (A9)

Now consider the second group (A7). Analogous, but slightly more tedious calculations show that
)~ PFE(x3) "P0OG) 4K 749, (X0) Gpal X2) Gop(X2) 35 K T4 RX) T s R¥e) @ RXs) 9 RX4)) Isecond group

(Xl)v
:[521<TM7(X1)Tpu(X2)<P(X3)(P(X4)>]secondgroup"_ [—2D(1—-2a,)+8a,+8as] X2 6p0150',8
1

(Xl) T
+(2— day+ 4a3)7[( 5Vp 60',8+ 5vo'5pﬂ) 51'a_ ( 5p7'50',8+ 507'5;)3) 51/&] 5()(1_ X2)<Ta,8(x2) QD(X3) (P(X3)>-
1
(A10)
Thus, the second group of terms will Beinvariant only when
The solution of the above system can be written as
P2 A ami+ta ag= A1l
a=—5-—pa a=;+a a=a (A11)
wherea is a free parameter.
To derive(A10) we have used the formula
X Xuz Xp XB XU’
gp)\l(x)go’)\z(x)(9v[g)\la(x)g)\2ﬁ(x)] =-2 5aﬂ 5Vp;2 - 51101)(_2 + 5;)0( 51/0';2 - 51/6;2 . (A].Z)
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Now let us consider the third group {#7). Much more cumbersome algebraic calculations lead to the relations between

the coefficientc,,c,, . .. ,f,. Here we only mention the basic formulas used in this derivation:
(PP 2(%2) @(Xa) @(xa)) = (x3) P 72(x3) ~4(x3) ~UPT *(R%) ¢(R¥a) o(RX4)), (A13)
1 Rxq _ X1 (X2)w (XZ)V (XZ))\l
ngw(xl)a)\l S(RX=RX) =0,u(X2)On, 5, (X2) 75 (X1 =X2) +2| Syp, X 0o, Z 5vwx—§ 8(X1—Xa),

(A14)

1 R R
— 57D Jre(X1) 9y 200 28(R¥ — RX9) = X50,0(X2) Ox, g, (X2) O, (x,) 5 0 ot S(X1 = X)
(Xl)( 1 M 181 282(%2)7B,9 B,

(X2) o(X2) (X2)

+ 2{ ( O, (X2) ot i, (X2),— ZT) O, r(X2) +

S, (X2) o
2 (X2

(X2) w(X2) (X2) N
2

+ 6, -2
w)\Z(XZ)V X2

) Ox,(X2) + 5>\1>\2(X2)Tgm(xz)] THo(x1—Xp)

+ 2( 5vw 5)\1)\2_ 5V)\15w)\2_ 6¢u)\15v)\2) 6(Xl_ X2)1 (A15)
Rx; -RX .R
(_XWng(xl)‘?)\:la)\zxza)\;(za(Rxl_ Rxo)

= (Xg)29Vw(X2)g)\lﬂl(XZ)g)\zﬁz(x2)g)\333(x2) 3211321252135(& —Xz)+ 2X§{ngw(X2)[(XZ))\sg)\lBl(XZ)g)\zﬁz(XZ)
T (X2)x, x5, (X2)On ,B2(X2) + (X2)x, Or 5, (X2) O, 8, (X2) T T [ 800 [(X2) T Bon (X2) = 8,0(X2)2 1O 5, (X2) O, (X2)
FLO,(X2) T B (X2) = Suu(X2)x 10,8, (X2) On 8, (X2) T [ 6,0 (X2) o+ O ,) (X2) , = Buen(X2), 10, 8, (X2) O 3, (X2)

+(X2) g, 900(X2)[ O\ 1 ,On,,(X2) T S\ On, g, (X2) 5>\1>\29>\352(X2)]}521152125(&_ X2)

—2x5 (X2) (X2) + 9o, (X2) (X2) =206 (2ofX2). (X2)
2) [ 9, (X2)Gun,(X2) T G (X2)Gn (X2 M 2 Oy, X2
(X2) o(X2)
+ gyxz(xz)gms(xz)+gy>\3(X2)9w>\2(X2)_25>\2>\3T O, ~(X2)
2
(XZ)w(XZ)V
+ gV}\]_(XZ)ga))\Z(XZ)+gV)\2(X2)gw)\1(X2)_25}\17\2—)(2_ Or,r(X2)
2
—Z(XZ)T ) OOt 0,00 + Oor. Onra T Oun. Ox 2t Oun. O
X_g (X2) w(8n Oxng b SunyOr ng T OungOn n,) T (X2) (S, Oxny T On, On ng T FunyOapn,)
_pXulXe)y Syt Syt s TS(xq — A16
x—g[(XZ))‘l Aohg (Xz)xz AAs (Xz)xs )\1)\2] HO(X1—X2). (A16)
|
Again, resultantly we get the system of algebraic equations, D-2
having the solution which can be written in the form f1=(D-2)(1+b), fo=——, (A17)
.= 2 . Cp=— b . Ca=— _D , whereb is a free parameter.
D-1 2(D-1) 2(b-1) Finally, consider the fourth group i(A7), which is pro-
) portional to the propagator of the field. It is evident that
1 D°+2D-2 the factor beford o(x3) ©(X4)) in (A7) should transform in

bD+ , e=—(bD+D+2),
D-2 D-1 1= ) the same manner @& T ,,(X1) T (X)) under ther trans-
y22

formation. So our aim is to derive the expression for the
divergence of the propagator of stress-energy tensor. The

e=b+2, ez=-— latter reads

D
51 e4:la
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Here we used the formulas
<T/.LV(X1)TPU'(X2)> =N g,u,p(XlZ)gva'(X12)

Xy
2 a;(l, (X_Z)rg;LV(X) :Z(I_D+1) (XZ) 1
+ g,ua'(XIZ)ng(Xlz) - 6 5;1.V5p0']
X2, (A18) 9p(X) 75 8,0(X) = —2{§gm<x>+ 5,,,,%}.

This function is ill defined in the spaces of even dimensions.
However, the matter of our concern is its divergence. So let The RHS of(A20) may be put into the form
us consider the regularized expression for the propagator

_ - (dr—D)
(XD T 6 (X2) hreg= N{9 (X129 (X12) + (P> 0) (T (X)) T po(X2) dreg=N @D (D) T
—trace inp,o}(Xyp) 9T, (A19)
(dr—1) X1 X1
The divergence of this function equals to - m(gwjaa' +8,49,)
X1 B (X12), ; 2\ —(dr—1)
I HT (X)) Tpo(X2) reg= 2N(d7— D) 2 9,0(X12) —trace inp, o (x3,) @Y,
(A21)

+(p<—>0')—tl'aceinp,0')
This expression is already well defined for all dimensions

X (X1p) 9T, (A20)  D. Taking the limitdr—D, we get
|
0 for odd D,
llm <T,uV(X1)Tp0'(X2)>reg: _ WD/Z N{axlaxlaxl
dr—D 2P 2r(D/2)I(D+2) v % %o
D-1 X X X . (D—-2)/2
—W(éypég“r 5map1)D 1—trace inp,o ( O 1 d(Xq,) for evenD. (A22)
Here we used
D
rda+kr I—§+1+k) D2
Dk(XZ)—|:4k 5 (XZ)—(H—k), lim E(XZ)—(D/2+E):_ 5 5(X)
r(|)r(|—§+1 0 r(5

Comparing this result with the RHS @A7) one finds

7o D-1
N, gq=——5=. (A23)

CT:_ D
2D‘2F<§)F(D+2)

Substituting now expressiori89), (A1l), (A17), and(A23) into (A7) we finally get the result, which coincides with5).
Proceeding analogously one can derive the Ward identities for all the other functions. No additional relations of the type
(A14)—(A17) are necessary. The only fact which remains to be stressed is that the evident relation

9,19 X (X)) T po(X2) @(X3) 9(Xa)) = 9729, K . (X1) T po(X2) @ (X3) 9(Xa))

should be satisfied in the derivation of the Ward identities for the Green fun@tjgm,) T ,,(X2) ¢(X3) ¢(X4))-
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