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Interpretation of time-reparametrization-invariant quantum mechanics: An exactly soluble model
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The classical and quantum dynamics of simple time-reparametrization-invariant models containing two
degrees of freedom are studied in detail. Elimination of one ‘‘clock’’ variable through the Hamiltonian con-
straint leads to a description of time evolution for the remaining variable which is essentially equivalent to the
standard quantum mechanics of an unconstrained system. In contrast with a similar proposal of Rovelli,
evolution is with respect to a geometrical proper time, and the Heisenberg equation of motion is exact. The
physical phase space contains no coordinate associated with the eliminated ‘‘clock’’ variable. Therefore, time
evolution isnotwith respect to the observable readings of a physical clock. Rather, the eliminated variable can
be construed as intrinsic to a particular observer, and, hence, as unobservable, in principle, by this observer.
The possibility of a ‘‘test clock,’’ which would reveal time evolution while contributing negligibly to the
Hamiltonian constraint, is examined, and found to be viable in the semiclassical limit of large quantum
numbers.@S0556-2821~96!05112-0#

PACS number~s!: 03.65.Ca, 04.60.Ds, 04.60.Kz
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I. INTRODUCTION

Among the many problems which attend the canonic
quantization of general relativity is the fact that all gaug
invariant quantities, which might qualify as observables, ne
essarily commute with the Hamiltonian, and are, therefo
constants of motion. This intriguing problem has receiv
wide attention, which has been comprehensively review
for example, in@1,2# ~see also@3,4#!. It seems possible to
obtain some insight into the ‘‘problem of time’’ from simple
quantum-mechanical models which share with general re
tivity the essential feature of time-reparametrization inva
ance, and the purpose of the present work is to explore
some detail the interpretation of time evolution in one su
model.

It is widely thought that the time evolution of physica
quantities which is apparent to actual observers in our U
verse should be understood, in some sense, as evolution
tive to the state of a physical clock, which provides an o
server’s local definition of time. A particular implementatio
of this idea has been proposed by Rovelli@5–7#, who defines
‘‘evolving constants of motion’’ by eliminating the arbitrary
time coordinatet in favor of the value of a physical clock
variable. Thus, in@5#, he considers a model of two harmoni
oscillators having the same frequency, whose equations
motion can be solved for two functions, say,x1(t) and
x2(t). Neither of these functions gives a gauge-invariant d
scription of time evolution, but, by eliminatingt, Rovelli
arrives at a new functionx1(x2) which is gauge invariant~or
almost so — see Sec. IV below! provided thatx2 is regarded
as a real parameter, rather than as a dynamical variable. C
sically, at least, this defines a family of observablesx1(s)

*Present address.
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which can be interpreted as the value ofx1 when x25s.
However, the quantum-mechanical operator correspondi
to x1(s) is approximately self-adjoint~and approximately
obeys a standard Heisenberg equation of motion! only when
restricted to a subspace of the physical Hilbert space whi
Rovelli calls the ‘‘Schro¨dinger regime.’’ Since this is a
large-quantum-number regime, he suggests that the notion
time evolution does not exist at a fundamental level, an
emerges only as a semiclassical property of macroscopic o
jects.

In this paper, we study a model whose dynamical var
ables are an oscillator and a free particle, the latter serving
a clock whose reading is~classically! a measure of geometri-
cal proper time. The classical and quantum dynamics of th
model are discussed in Sec. II where, in order to obtain
well-defined quantum theory, the free particle is treated
the low-frequency limit of a second oscillator. We find it
possible to define a parametrized family of observable
x(t) evolving with a parametert which classically coincides
with the geometrical proper time. The linearity of the clock
variable turns out to be inessential for this purpose. Mor
over, this evolution is governed by an exact Heisenbe
equation of motion, and is not restricted to a macroscop
regime. The introduction of a clock variable permits time
evolution by relaxing the energy constraint on the oscillato
and indeed the energy of the clock can saturate this co
straint. In Sec. III, we investigate the possibility of a ‘‘tes
clock’’ by restricting the state of the clock to a narrow range
which approximately reproduces the constraint on the osc
lator alone. This restriction imposes a limit on the resolutio
with which the value ofx(t) can be determined, but there is
a semiclassical limit in which both the energy of the cloc
and the eigenvalues ofx(t) are fairly sharply defined. The
interpretation of time is discussed in detail in Sec. IV where
in particular, we point out that the clock cannot itself be
7336 © 1996 The American Physical Society
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53 7337INTERPRETATION OF TIME-REPARAMETRIZATION- . . .
regarded as a physically observed object, but should rat
be taken as representing the observer’s intrinsic sense
time.

II. CLASSICAL AND QUANTUM DYNAMICS
OF AN OSCILLATOR AND A CLOCK

Consider the Lagrangian

L5
1

2l
~ ẋ21q̇2!2

l

2
~v2x222E0!, ~1!

defined on a (011)-dimensional manifold with ‘‘time’’ co-
ordinatet. The only geometrical variable is the lapse fun
tion l(t), which we take to be strictly positive. The actio
*Ldt is easily seen to be invariant under a change of tim
coordinate, with x8(t8)5x(t), q8(t8)5q(t), and
l8(t8)5(dt/dt8)l(t), wheret8 is any increasing function of
t. The equations of motion

1

l

]

]t S 1l ]x

]t D52v2x, ~2!

1

l

]

]t S 1l ]q

]t D50, ~3!

obtained by varyingx andq, have the general solution

x~ t !5a1cosc~ t !1a2sinc~ t !, ~4!

q~ t !5c11c2c~ t !, ~5!

so that the clock variableq is linear in the proper time
v21c(t)5*0

t l(t8)dt8. The constraint

S ẋl D 21S q̇l D 21v2x252E0 , ~6!

obtained by varyingl, implies the relation

C[a1
21a2

21c2
25r0

2 , ~7!

wherer0
252E0 /v

2.
For this model, the solution space@ignoring the factorL

of gauge functionsl(t), all of whose points are gauge
equivalent# is S23R. With the parametrization

a15r0cosxcosg, ~8!

a252r0cosxsing, ~9!

c25r0sinx, ~10!

the anglesx and g (2p/2<x<p/2, 0<g,2p) provide
coordinates onS2, while c1 is the coordinate onR. The
general solutions~4! and ~5! can be written as

x~ t !5r0cosxcos@c~ t !1g#, ~11!

q~ t !5c11r0sinxc~ t !, ~12!

and the presymplectic form on the solution space is
her
of

c-
n
e

V5v~da1`da21dc1`dc2!

5
1

2
vr0

2sin~2x!dx`dg2vr0cosxdx`dc1 . ~13!

As can be seen from~11! and ~12!, time evolution is
generated by the Hamiltonian vector field

XC5
]

]g
1r0sinx

]

]c1
, ~14!

associated with the constraintC. As expected, we find that
XC annihilatesV, i XCV50, so the reduced phase space
found by identifying all points along each gauge orbit, whic
is an integral curve ofXC . Equivalently, points of the re-
duced phase space correspond to distinct gauge orbits.
anglex is constant along each gauge orbit. For each value
x ~exceptx50,6p/2), the orbits are helical curves on the
cylinder S13R coordinatized byg and c1 , with a period
alongR of 2pr0sinx. Distinct orbits can therefore be labeled
by the values ofc1 in an interval of length 2pr0sinx, the end
points of which are identified, since they belong to the sam
orbit. The set of distinct orbits is thus topologicallyS1. For
x50, the gauge orbits are circles on the cylinder, and the
is a distinct orbit for eachc1PR. For x56p/2, the ampli-
tude of oscillation in~11! vanishes, so all values ofg are
equivalent. In this case, theS1 of gauge orbits collapses to a
point.

We see that the reduced phase space is the union of th
sets.

~i! The open diskD1 , which is the direct product of the
interval 0,x<p/2 with the circleS1, the circle atx5p/2
being contracted to a point. Physically, states in this regi
are those in which the clock runs forward. The gaug
invariant observables which distinguish the states arex,
which set the amplitude of thex oscillation and also~via the
constraint! the rate of the clock, andc1 , which characterizes
the phase of oscillation at which the clock reads zero.

~ii ! The open diskD2 , which is similar toD1 , but cor-
responds to the interval2p/2<x,0 and contains those
states in which the clock runs backwards.

~iii ! The lineR0 , with c1P(2`,1`) andx50. In this
region, the oscillation has its maximum amplitude, while th
clock has a constant readingc1 , which is the gauge-invariant
observable distinguishing the states.

This reduced phase space isnot a manifold — a fact
which presents serious difficulties for the method of ge
metrical quantization, and we have not succeeded in obta
ing a fully consistent quantum version of this model. A quan
tum theory of a related model will be described below
Within the classical theory, we can construct gauge-invaria
observables which evolve with proper time, as measured
the clock, by restricting attention to the subspac
D1øD2 . Consider that region of the solution space whe
xÞ0 and identify the points (x,g,c1) and
(x,g,c112pr0sinx). On the resulting space, we replace th
coordinatesc1 andg with

c5
c1

r0sinx
, ~15!
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7338 53IAN D. LAWRIE AND RICHARD J. EPP
a5S g2
c1

r0sinx
Dmod 2p. ~16!

In terms of these coordinates, the generator~14! of gauge
orbits isXC5]/]c and the presymplectic form~13! becomes
V5(vr0

2/2)sin(2x)dx`da. As expected, thisV is indepen-
dent of c, and is also the symplectic form on the regio
D1øD2 of the reduced phase space, now coordinatized
x anda.

With the coordinates (x,a,c), the solutions to the equa-
tions of motion read

x~ t !5r0cosxcos@c~ t !1a1c#, ~17!

q~ t !5r0sinx@c~ t !1c#. ~18!

The quantityt5@c(t)1c#/v can be identified as the prope
time which has elapsed since the clock read zero and~with
an obvious economy of notation! the value ofx at this time is
given by

x~t!5r0cosxcos~vt1a!5Xcos~vt!1v21Psin~vt!,
~19!

where

X5r0cosxcosa, ~20!

P52vr0cosxsina. ~21!

Since they do not depend onc, the quantitiesX andP are
gauge invariant. Thus, ift is regarded as a parameter, rath
than as standing for the expression@c(t)1c#/v, thenx(t)
is a gauge-invariant function oft. Classically, this function
can be interpreted as ‘‘the value ofx at proper timet, ’’
given thatt50 is located at the eventq50. It is similar to
the ‘‘evolving constants of the motion’’ defined by Rovell
@5,6# but with an important difference: whereas Rovelli’
evolution is with respect to the actual value of a physic
clock variable,t refers ~at the classical level! to the geo-
metrical proper time. The symplectic form can be express
in terms ofX and P, with the satisfactory resultV5 dX
`dP, soX andP have the canonical Poisson bracket alg
bra. Moreover, the evolution ofx(t) is easily seen to be
governed by the usual equation of motion

dx~t!

dt
5$x~t!,H0%, ~22!

where

H05
1
2 ~P21v2X2!5

1

2 F S dx~t!

dt D 21v2x~t!2G ~23!

is the Hamiltonian for the oscillator alone.
To obtain a quantum version of this model in a controlle

manner, we consider the Lagrangian

L5
1

2l
~ ẋ21q̇2!2

l

2
~v2x21N22v2q222E0!, ~24!

whereN is an integer, with a view to recovering the mode
~1! in the limitN→`. Somewhat surprisingly, the results ar
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essentially independent ofN. The classical analysis is simi-
lar to that given above. If the solutions to the equations
motion are written as

x~ t !5a1cosc~ t !1a2sinc~ t !, ~25!

q~ t !5b1cos@N
21c~ t !#1b2sin@N

21c~ t !#, ~26!

then the quantities

a5Av

2
~a11 ia2!, ~27!

b5A v

2N
~b22 ib1! ~28!

have Poisson brackets$a,a* %5$b,b* %52 i , which will
shortly be promoted to commutators. The constrai
a1
21a2

21N22(b1
21b2

2)5r0
2 can be solved in terms of the

coordinatesx, a, andc, replacing~17! and ~18! with

x~ t !5r0cosxcos@c~ t !1a1c#, ~29!

q~ t !5Nr0sinxsin$N
21@c~ t !1c#%. ~30!

For any finite value ofN, the reduced phase space of thi
model isS2, the anglesx anda (0<x<p/2, 0<a<2p)
providing coordinates such that the pointsx50,p/2 are op-
posite poles. In particular, forx50, the anglea in ~29! is
indistinguishable fromc, so all values ofa are gauge
equivalent. Each point of this phase space, of course, cor
sponds to a periodic oscillation, for which the value
c(t)50,2Np may be identified. The limitN→` is actually
singular in the following sense. To achieve a finite limit in
~30!, with xÞ0, we may assume that@c(t)1c# either has a
finite value, or differs by a finite amount fromNp. In the
limit, therefore, each point of the phase spaceS2 represents
two distinct solutions, corresponding to the half-periods
oscillation in whichq is an increasing or a decreasing func
tion of c(t). Clearly, the two limits of~30! differ by a sign,
which can be regarded as the sign ofx, and correspond to
the two regionsD6 of the phase space described above. T
reproduce the regionR0 , we must first takeN→` with x
Þ0 and then takex→0, with c given by ~15!.

For finite values ofN, the reduced phase spaceS2 is a
manifold, and the model can be quantized straightforward
However, since this manifold includes the pointx50, we
may anticipate some difficulty in interpreting the variable
X and P @Eqs. ~20! and ~21!# as operators on the physica
Hilbert space. Since all values ofa are gauge equivalent at
x50, X and P @and, hence, alsox(t)# are not gauge-
invariant functions on the reduced phase space, althou
they are gauge-invariant functions on any region which ex
cludes the pointx50. In any such region, the above expres
sions for the symplectic form are still valid, soX andP still
have the canonical Poisson algebra.

Models of this kind can be quantized in several, more
less equivalent, ways~see, for example@5,8–10#!. The essen-
tial result is that one can identify gauge-invariant function
(s1 ,s2 ,s3)5(vr0

2/4)@sin(2x)sina,cos(2x),sin(2x)cosa# on
the reduced phase space, whose Poisson alge
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$si ,sj%5e i jksk , is the Lie algebra of SU~2!, and the Casimir-
invariants1

21s2
21s3

2 is proportional to the constraintC. The
physical Hilbert space is therefore an irreducible represen
tion of SU~2! whose dimension is set~up to operator order-
ing ambiguities! by the value ofE0 . For our purposes, it is
convenient to construct this Hilbert space according to t
Dirac prescription, takinga andb as the basic variables~a
similar route is followed in@10#!.

On promotinga andb to quantum ladder operators, with
the usual commutators @a,a†#5@b,b†#51, @a,b#
5@a,b†#50, we obtain an unconstrained Hilbert spac
spanned by the vectorsum,n&, wherem andn label the en-
ergy levels of thea andb oscillators respectively.

The physical Hilbert space is the subspace of vectors s
isfying the constraint

~a†a1N21b†b!uc&5 n̄uc&, ~31!

where n̄5vr0
2/25E0 /v. Here, it is assumed that any con

stant arising from factor ordering in the constraint opera
has been absorbed intoE0 . Quantization clearly requires tha
Nn̄ be an integer, and we define

n̄ 5n1n8/N, ~32!

wheren andn8 are integers, with 0<n8,N. This physical
Hilbert space is spanned by the vectors

um&&5um,N~n2m!1n8&, 0<m<n. ~33!

We would now like to realizeX andP as gauge-invariant
operators, acting in the physical Hilbert space, but, as ant
pated, this is not quite straightforward. Classically, we c
define variablesA and A* , with the Poisson brackets
$A,A* %52 i , by

A5Av

2 S X1
i

v
PD 5aS b*

Ab* bD
N

. ~34!

Quantum mechanically, the operator ordering

A5a@~b†b!21/2b†#N, ~35!

A†5a†@b~b†b!21/2#N ~36!

ensures that these operators have the expected prope
Aum&&5Amum21&& and A†um&&5Am11um11&&, except
that the action ofA† on the maximal stateun&& is not well
defined. To proceed, we introduce the regularized operat

Ae5a@~b†b1e!21/2b†#N, ~37!

Ae
†5a†@b~b†b1e!21/2#N. ~38!

These are well-defined, gauge-invariant operators, and
find, in particular, thatAe

†un&&50. We can now define opera
torsA andA† by

Aum&&5 lim
e→0

Aeum&&5Amum21&&, ~39!

A†um&&5 lim
e→0

Ae
†um&&5Am11~12dm,n!um11&&.

~40!
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These operators are also well defined and gauge invaria
but they have the anomalous commutator@A,A†#512u,
where u projects onto the maximal state:
uum&&5(11n)dm,num&&. The operators

X5S 1

2v D 1/2~A1A†!, ~41!

P52 i S v

2 D 1/2~A2A†! ~42!

are well defined, gauge invariant, and self-adjoin
but they have the anomalous commutator@X,P#
5 i @A,A†#5 i (12u). The anomalous term is nonzero only
when acting on the maximal stateun&&, where the clock has
the smallest energy allowed by the constraint~31!. Classi-
cally, the interpretation ofX andP as the position and mo-
mentum of the oscillator ‘‘at timet50’’ is ambiguous in the
state x50, where the clock permanently reads zero, an
therefore does not distinguish this instant of time, and th
anomaly can be understood as reflecting this fact in the qua
tum theory. Formally, the classical versions of~37! and~38!
correspond to regularized variables

Xe5r0cosxcosaF11
2e

Nvr0
2sin2xG2N/2

~43!

and Pe52vr0tanaXe . These are truly gauge-invariant
quantities, having the unique valuesXe5Pe50 atx50, but
do not have the canonical Poisson algebra. However, th
differ significantly from the originalX and P only where
sin2x is not much greater thane/vr0

2 , and whene is suffi-
ciently small, this is a small neighborhood of the poin
x50. It is straightforward to show that the Heisenberg equ
tion of motion

dx~t!

dt
5 i @H0 ,x~t!# ~44!

reproduces~19! in the expected way, provided that the
Hamiltonian has the factor orderingH05vA†A.

At this point, we have a formalism which, taken at face
value, is equivalent to ordinary time-dependent quantum m
chanics. There is a physical Hilbert space, spanned by t
vectorsum&&, a set of operators (X,P) on this space and a
HamiltonianH0 which generates time evolution through the
standard equation of motion~44!. Whether this formalism
should be taken at face value is, of course, another matt
and the interpretation of the model will be discussed in Se
IV. Apparently, one can ask, and answer, questions such
‘‘given that x was determined to have the valuex1 at time
t1 , what is the probability that it has the valuex2 at time
t2?.’’ Acording to standard quantum mechanics, this que
tion is legitimate only if x1 and x2 are eigenvalues of
x(t1) and x(t2). Because the classical range ofx is re-
stricted by the constraint and, correspondingly, the physic
Hilbert space is finite-dimensional, these eigenvalues form
finite, discrete spectrum, which is easily found. Using~41!,
we can expressx(t) as x(t)5(2v)21/2(Ae2 ivt1A†eivt).
The properties~39! and ~40! then imply that
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uxj ,t&&5Nj (
m50

n

~2mm! !21/2Hm~v1/2xj !e
imvtum&& ~45!

is an eigenvector ofx(t) with eigenvaluexj , whereHm is
the Hermite polynomial,Nj is a normalizing constant and, in
order to truncate the series atm5n, v1/2xj must be a zero of
Hn11 . Since there aren11 of these zeros, the states~45!
span the (n11)-dimensional Hilbert space. Also, sinc
p(t)5 ẋ(t)5vx(t1p/2v), the eigenvalues ofp(t) are
vxj .

The quantum dynamics of this model can be illustrated
considering the coherent state

uz&&5C~z!ezA
†
u0&&5C~z! (

m50

n
zm

Am!
um&&, ~46!

where C(z) is a normalizing factor. The time-dependen
wave function for this state is

c~xj ,t;z!5^^xj ,tuz&&

5NjC~z! (
m50

n
1

m!
Hm~v1/2xj !S z~t!

A2 Dm, ~47!

where z(t)5e2 ivtz. If z5Av/2@x01( i /v)p0#, then
z(t)5Av/2@x0(t)1( i /v)p0(t)#, where „x0(t),p0(t)… is
the classical trajectory passing through (x0 ,p0). For an un-
constrained oscillator~corresponding to the limitn5`), the
coherent state is, of course, a Gaussian wave packet, w
ucu2}exp@2v(x2A2/vRez)2#, whose peak follows the clas-
sical trajectory. The wave function~47! is defined only at the
discrete valuesxj , and is not simply a function of
xj2z(t). Nevertheless, ifx0 is well within the range defined
by the largest and smallestxj then, even for quite small
values ofn, these discrete values follow the Gaussian pac
rather closely, as illustrated in Fig.1.

III. TEST CLOCKS

In classical general relativity, one can assess the phys
characteristics of a spacetime by examining the trajector
of ‘‘test particles’’ which follow timelike geodesics, but do
not contribute to the stress tensor. Here, we consider
possibility of a ‘‘test clock,’’ which might be used to revea
the time evolution of a quantum universe, without itself co
tributing significantly to the quantum dynamics.

In the clockless model, obtained from~1! or ~24! by de-
leting the variableq, there seems classically to be a sense
which remaining oscillator evolves with proper time a
x(t)5A2E0 /v

2cos(vt), even thoughx(t) cannot be re-
garded as a gauge-independent observable. By adding
clock, we are able to obtain a genuine observablex(t), but
the energy constraint which applied to the original oscillat
is relaxed by the presence of the clock, which can its
saturate the constraint. The idea now is to see whether
apparent time dependence of the clockless model can be
vealed by restricting attention to those states in which t
clock has only small energies, so that the energy constra
of the clockless model is approximately realized. It may
anticipated that this restriction will impose a limit on th
e
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resolution with which values ofx(t) can be determined, and
we wish to examine the nature of this limit.

If there is to be a nontrivial time evolution, several state
must still be available. We therefore consider a~loosely!
semiclassical situation, withn very large, taking a band of
states withm;n to be actually available for use. Our calcu-
lations will now be approximate, and we begin by finding a
approximation for the eigenstates~45!. It is convenient at
this point to use the Schro¨dinger picture, and deal with the
eigenstatesuxj ,0&& of X5x(0). When n is large, then11

FIG. 1. The squared magnitude of the wave function~47!
~circles! for a coherent state of the constrained oscillator, which
defined only at the discrete valuesxj , compared with the corre-
sponding Gaussian wave packet~solid curve! for the standard un-
constrained oscillator. The normalization of the Gaussian pack
has been adjusted so that the peaks of both wave functions have
same height. Time evolution is depicted over a half cycle of osci
lation, with amplitude slightly smaller than the largest eigenvalu
xj . In this case,n510.
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zeros ofHn11 , corresponding to the eigenvalues ofx(t), lie
roughly between2A2n andA2n and the spacing between
them is therefore of ordern21/2. We will take these eigen-
values to form a continuum. For largem, the asymptotic
formula forHm @11#,

Hm~z!'ez
2/2

G~m11!

G~m/211!
cos@~2m11!1/2z2mp/2# ~48!

yields

@24n1r~4n1r !! #21/2H4n1r~z!

'~2p!21/4ez
2/2n21/4cr~A8nz!, r50, . . . ,3, ~49!

where cr(u)5cos(u2rp/2). Taking n to be of the form
4n813 andm54n8a1r in ~45!, replacing the sum ona by
an integral, and defining

ĵ5S v

2n D 1/2X, ~50!

we obtain eigenstates ofĵ in the form

uj&&5A n

2pE0
1

daa21/4(
r50

3

cr~2nAaj!ua,r &&, ~51!

which are orthonormal in the limitn→`.
Ladder operatorsA(1)[A andA(21)[A† are realized in

this approximation by

A~m!uj&&5AmS j2
m

2n

]

]j D uj&&, ~52!

A~m!ua,r &&5AnS a1/22
m

n
a1/4

]

]a
a1/4D ua,r2m&&.

~53!

Because the maximal state annihilated byA† now has zero
measure, these operators have the canonical commut
@A,A†#51. For the same reason, the coherent state is now
eigenstate ofA. Corresponding to the rescaled variablej
~50!, we define

Auz&&5Anzuz&& ~54!

and obtain the usual wave function c(j,z)
5^^juz&&;exp@2n(j2z)2#.

Supposing that the states actually available for use
those in a narrow range ofa, we introduce a window func-
tion f (a) and define approximate eigenstates ofĵ by

uj&& f5E
0

1

daa21/4f ~a!(
r50

3

cr~2nAaj!ua,r &&. ~55!

In the same way, we can define an approximate coher
state

uz&& f5E
0

1

daa21/4f ~a!(
r50

3

c r~a,z!ua,r &&, ~56!

where
ator
an

are

ent

c r~a,z!5E
21

1

djc~j,z!cr~a!. ~57!

As in ~47!, the time evolution of this state is obtained by
making the replacementz→z(t).

To obtain approximate analytical results, we defin
g5Aa and choose a Gaussian window function
f (g)5 f 0exp@2(g2g0)

2/2D#, where f 0 is the appropriate
normalization factor. We chooseg0 to be a little less than the
maximal valueg51, and assume thatD is small enough for
the limits of integration to be extended to infinity. For the
uncertainty Dj, defined by (Dj)2

5 f^^ju ĵ2uj&& f2( f^^ju ĵuj&& f)2, we find

Dj5
1

2nA2D
. ~58!

We see that, for a fixed window widthD, it is possible to
makej arbitrarily sharp whenn is sufficiently large. On the
other hand, whenD is made small, in effect imposing the
constraint of the clockless model, it becomes impossible
construct sharp eigenstates ofj, reflecting the fact that, with-
out the clock, there is no gauge-invariant operator corr
sponding toX or ĵ. Given the coherent stateuz&& f , we can
estimate the probability amplitude for finding the oscillato
at the positionj at timet. Assuming that the limits of inte-
gration in ~57! can be extended to infinity, which will be
valid if n is large enough and ifu j̄u,1, wherej̄5Rez, we
obtain

f^^juz~t!&& f;expF2
n2D

11nD
@j2 j̄~t !#2G , ~59!

where; indicates the omission of a normalization factor an
of a phase. For a fixed window widthD, this amplitude
becomes sharply peaked at the classical trajectory in t
semiclassical limitn→`. However, whenD becomes very
small, then~i! there is no longer a sharp peak at the classic
trajectory and~ii ! the probability becomes time independent
Qualitatively, at least, we recover the situation in the absen
of the clock, where there is no gauge-invariant operator co
responding toj and all gauge-invariant amplitudes are time
independent~except possibly for trivial phase factors!.

It is apparent from these results that, as expected, we ca
not fix the energy of the clock without losing both the ob
servablej and the time dependence which the clock wa
intended to reveal. However, it seems that one can find sit
ations ~for example, by takingn large, with Dn fixed! in
which both the energy of the clock and the eigenstates ofĵ
are fairly sharply defined, and in which the notion of a tes
clock is therefore meaningful.

IV. DISCUSSION

The absence of time-dependent observables in a tim
reparametrization-invariant system can perhaps be und
stood by recognizing that a complete description of a close
system is inevitably from the point of view of an observe
external to the system. For such an observer, a state of
(d11)-dimensional system (d50 for the models considered
in this paper! corresponds to what an observer internal to th



n
tus

re-
re
an
le,
r

ot

e
n
as
-
e

e
al

-
rol

-
le

te

h
e,
-
be
-
t

h

b-

m

7342 53IAN D. LAWRIE AND RICHARD J. EPP
system might be supposed to regard as an entire history
d-dimensional system. The observable quantities whose v
ues distinguish one state of the system from another the
fore characterize entire histories of the system, and can
evolve with time in any straightforward sense.

For a classical system which isnot time-reparametrization
invariant, this does not normally present a problem. If th
system contains, say,n observable objects, there will be a se
of time-independent phase space coordina
(X1 ,P1 , . . . ,Xn ,Pn) which are the basic observables, sinc
a set of values for these 2n quantities specifies a history o
the system. From these, however, we may construct par
etrized families of observables, sayxi(t)5 f i(t)Xi1gi(t)Pi
which satisfy the equations of motion and may be constru
as representing the time-dependent observations made b
observer internal to the system. In the case of a tim
reparametrization-invariant system, the familiesxi(t) have
no gauge-invariant meaning, since they depend ont through
the undetermined lapse functionl(t).

In elementary applications of general relativity, the tim
dependent appearance of the Universe to an internal obse
is accounted for in roughly the following way. Consider th
reparametrization-invariant model~1! with q omitted. The
solution to its equation of motion is of the form
x(t)5acos@c(t)1g#. The amplitudea is constrained to have
the valuer0 , so there is no gauge-invariant variable, and t
(011)-dimensional system has just one state available to
Nevertheless, it seems intuitively clear that an observer
side the (011)-dimensional universe would perceive an o
cillation of the formX(t)5r0cos(vt), wheret is the proper
time along this observer’s world line. Moreover, this asse
tion seems to be gauge independent, since the lapse func
serves only to relatet to an arbitrary coordinatet, which is
irrelevant to the observer.

To construct gauge-invariant observables correspond
to what an internal observer might perceive, it seems nec
sary to incorporate in our model at least a rudimentary d
scription of the clock from which the internal observer gain
his sense of time. This has long been recognized. In spe
relativity, for example, the dynamics of a free particle can
formulated with an arbitrary time parametrization@12,13,3#
and a physically meaningful measure of time can be p
vided only by a physical clock@14#. Classically, the variable
q, whose behavior is exhibited in~18! mimics an instrument
whose reading is linear in the geometrical proper timet. The
quantityx(t) in ~19! defines a family of gauge-invariant ob
servables which can be construed as giving the value ox
which would be perceived by an internal observer when
proper timet has elapsed since his clock read zero. Mor
over, the evolution ofx(t) with t is governed by an equation
of motion ~22! of the standard Hamiltonian form. Quantum
mechanically, this equation of motion translates to a Heise
berg equation~44!, again of the standard form. It, thus
seems consistent with the Copenhagen interpretation
quantum mechanics to suppose that an external obse
might determine the state of the ‘‘Universe’’ by measurin
the value ofx(t1), say with the resultx1 . The probability
u^^x2 ,t2ux1 ,t1&&u2 that a measurement ofx(t2) will yield
the valuex2 can then plausibly be interpreted as the pro
ability that an internal observer, having determined the po
tion of the oscillator asx1 will obtain the valuex2 from a
of a
al-
re-
not

e
t
tes
e
f
am-

ed
y an
e-

e-
rver
e

he
it.
in-
s-

r-
tion

ing
es-
e-
s
cial
be

ro-

-
f
a
e-

n-
,
of
rver
g

b-
si-

measurement made after an intervalt22t1 of his proper
time.

To this extent, we recover precisely the usual formulatio
of time-dependent quantum mechanics. However, the sta
of the clock variable in this formulation requires further
thought. Indeed, the coordinatesX and P on the two-
dimensional physical phase space are just sufficient to rep
sent the position and momentum of the oscillator, and the
is no further coordinate available to represent the clock as
independent dynamical object. As emphasized, for examp
by Unruh @15#, who has also considered the two-oscillato
model, the variablesa1 andb1 , in ~25! and~26!, which one
would ordinarily want to treat as Schro¨dinger picture opera-
tors representing the oscillator and clock positions, do n
correspond to operators on the physical Hilbert space.

Correspondingly, the Hamiltonian~23! describes the time
evolution of a single object — the oscillator. While there
exists a family of observables
q(t)5Ar0

22X22(P/v)2vt, which might appear to de-
scribe the reading of the clock, the evolution ofq(t) is not
governed by a Hamiltonian~or Heisenberg! equation of mo-
tion, since$H0 ,q(t)%50. Quantum mechanically, the values
of x(t) andq(t) cannot be determined simultaneously, sinc
@x(t),q(t)#Þ0. Consequently, the clock does not exist as a
independent dynamical object and a statement such
x(t1)5x1 cannot be taken as implying that both the oscilla
tor and the clock have been inspected, yielding the valu
x1 for the position of the oscillator and the valuet1 for the
time.

Thus, t cannot be regarded as a phenomenological tim
deduced by an observer from his inspection of a physic
clock which readsq. Rather, the definition ofx(t) reflects a
decision on the part of an external observer~or of a theore-
tician! to study time evolution from a particular point of
view. One might, for example, imagine an observing appa
ratus, which performs a sequence of tasks under the cont
of an internal clockq. To study time evolution ‘‘from the
point of view’’ of this apparatus, it is natural to solve the
Hamiltonian constraint by eliminating the unobserved quan
tity q, in order to arrive at the time-dependent observab
x(t). In this sense,t represents a ‘‘Heraclitian’’ time of the
kind sought by Unruh and Wald@3#, which ‘‘sets the condi-
tions’’ for a measurement to be made. Like the coordina
time t, t itself is not a measurable quantity.

While it is generally recognized that time parameters suc
ast andt are not directly measurable, the view reached her
that the readings of a clock which provides an intrinsic no
tion of time are also unobservable, does not seem to
widely held. For example, interpretations of the kind ad
vanced by DeWitt@16# and elaborated by many subsequen
authors~see, in particular, Ref.@17# for a discussion of the
role of quantum decoherence! consider a wave function
C(x,q), for which the Hamiltonian constraint is realized by
the Wheeler-DeWitt equationHC50. Roughly speaking,
solutions suitable for describing a universe evolving wit
time are identified~for example, through a WKB approxima-
tion! as those which peak along a classical trajectory, esta
lishing a strong correlation betweenx andq, both of which
are regarded as measurable quantities. In a suitable approxi-
mation, the Wheeler-DeWitt equation can be cast in the for
of a Schro¨dinger equation in whichq plays the role of time.



e,

-

of
-

n
or
ot
le

r-

f
lly
s

ns

e-
ce,
-

n

s.

-
ts

-
d
i-

53 7343INTERPRETATION OF TIME-REPARAMETRIZATION- . . .
An alternative route to describing evolution with respect to
phenomenological time is described by Page and Woot
@18#.

It also appears quite unnecessary for the eliminated clo
variable to be linear int. The physical Hilbert space assoc
ated with the model~24! and the algebra of the gauge
invariant operatorsX and P obtained by eliminatingq are
independent of the parameterN which determines the fre-
quency of theq oscillator, and for finiteN, q is of course a
nonlinear function oft. The role of the clockq in passing
from either ~17! and ~18! or ~29! and ~30! to the gauge-
invariant observable~19! is that it distinguishes a history in
which, for example,x5r0cosxcosa whenq50 from one in
which some other value ofq corresponds to this value of
x. In essence, the definition of a gauge-invariant observa
x(t) becomes possible when an origint50 can be specified
in a coordinate-independent manner, and the role ofq is to
provide this origin. Note, however, that for finiteN, our
model describes a completely periodic universe, in whi
this origin is repeated indefinitely. Indeed, any state co
structed from the basis~45! will be periodic int with period
2p/v. Since the clock oscillates with a frequency ofv/N,
only one instance of the origin~at whichq increases through
0! occurs within this period. For this reason, we obtain a
unambiguous account of time evolution within one period
thex oscillator. The occurrence of more than one instance
this origin ~corresponding toN,1) would pose serious
problems in defining the operators~37! and~38! from which
the time-dependent observables were constructed.

The view of time evolution described here differs in se
eral respects from that proposed by Rovelli@5–7#. In @5#,
Rovelli considers essentially the model~24! with N51. He
defines a gauge-invariant classical observable given, in
notation, by

x~s!5r0cosxcosFa1arccosS s

r0sinx
D G , ~60!

which classically is the value ofx when q5s. Like our
x(t), this x(s) is gauge variant atx50, since it depends on
a, though in fact onlyx(s50) is well defined. The discus-
a
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sion given in @6# suggests that Rovelli wishes to regard
x(s) as representing the evolution ofx relative to the time
recorded by a physical clock. For the reasons given abov
however, a pair of valuess andx(s) cannot be construed as
the results of inspecting a clock and an oscillator simulta
neously.

The operator corresponding to~60! is approximately self-
adjoint, and obeys an approximate Heisenberg equation
motion only when restricted to a region of the physical Hil
bert space which Rovelli calls the ‘‘Schro¨dinger regime,’’
corresponding roughly to states in which the wave functio
c(x,q) is sharply peaked around the classical trajectory. F
this reason, Rovelli contends that the notion of time does n
exist at a fundamental level, but emerges only in a suitab
semiclassical limit. By contrast, our operatorx(t) is exactly
self-adjoint, and obeys the exact Heisenberg equation~44!,
with respect to the variablet which classically corresponds
to the geometrical proper time, and this provides a counte
example to Rovelli’s contention.

We would like, of course, to speculate that the view o
time evolution proposed here can be extended to canonica
quantized general relativity. In such an extension, it seem
likely that the role oft would be played by the proper time
along the trajectory of an observer for whose observatio
we wish to account, whilex(t) would correspond to local
observables defined on this trajectory. To define, say, tim
dependent observables throughout a spacelike hypersurfa
one would presumably need to introduce a space-filling fam
ily of observers~or, at least, their clocks!. These might cor-
respond to a reference fluid of the kind described by Brow
and Kucharˇ @19#, though the relationship of our interpretation
to that proposed by these authors is not entirely clear to u
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