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Interpretation of time-reparametrization-invariant quantum mechanics: An exactly soluble model
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The classical and gquantum dynamics of simple time-reparametrization-invariant models containing two
degrees of freedom are studied in detail. Elimination of one “clock” variable through the Hamiltonian con-
straint leads to a description of time evolution for the remaining variable which is essentially equivalent to the
standard quantum mechanics of an unconstrained system. In contrast with a similar proposal of Rovelli,
evolution is with respect to a geometrical proper time, and the Heisenberg equation of motion is exact. The
physical phase space contains no coordinate associated with the eliminated “clock” variable. Therefore, time
evolution isnot with respect to the observable readings of a physical clock. Rather, the eliminated variable can
be construed as intrinsic to a particular observer, and, hence, as unobservable, in principle, by this observer.
The possibility of a “test clock,” which would reveal time evolution while contributing negligibly to the
Hamiltonian constraint, is examined, and found to be viable in the semiclassical limit of large quantum
numbers[S0556-282(196)05112-G

PACS numbd(ps): 03.65.Ca, 04.60.Ds, 04.60.Kz

I. INTRODUCTION which can be interpreted as the value>gf when x,=s.
However, the quantum-mechanical operator corresponding
Among the many problems which attend the canonicato x;(s) is approximately self-adjoinfand approximately
guantization of general relativity is the fact that all gauge-obeys a standard Heisenberg equation of motiotly when
invariant quantities, which might qualify as observables, necrestricted to a subspace of the physical Hilbert space which
essarily commute with the Hamiltonian, and are, thereforeRovelli calls the “Schrdinger regime.” Since this is a
constants of motion. This intriguing problem has receivedarge-quantum-number regime, he suggests that the notion of
wide attention, which has been comprehensively reviewedime evolution does not exist at a fundamental level, and
for example, in[1,2] (see alsd3,4]). It seems possible to emerges only as a semiclassical property of macroscopic ob-
obtain some insight into the “problem of time” from simple jects.
quantum-mechanical models which share with general rela- |n this paper, we study a model whose dynamical vari-
tivity the essential feature of time-reparametrization invari-ables are an oscillator and a free particle, the latter serving as
ance, and the purpose of the present work is to explore ia clock whose reading iglassically a measure of geometri-
some detail the interpretation of time evolution in one suchcal proper time. The classical and quantum dynamics of this
model. model are discussed in Sec. Il where, in order to obtain a
It is widely thought that the time evolution of physical well-defined quantum theory, the free particle is treated as
quantities which is apparent to actual observers in our Unithe low-frequency limit of a second oscillator. We find it
verse should be understood, in some sense, as evolution refsessible to define a parametrized family of observables
tive to the state of a physical clock, which provides an obx(7) evolving with a parameter which classically coincides
server’s local definition of time. A particular implementation with the geometrical proper time. The linearity of the clock
of this idea has been proposed by Rovi@h-7], who defines  variable turns out to be inessential for this purpose. More-
“evolving constants of motion” by eliminating the arbitrary over, this evolution is governed by an exact Heisenberg
time coordinatet in favor of the value of a physical clock equation of motion, and is not restricted to a macroscopic
variable. Thus, if5], he considers a model of two harmonic regime. The introduction of a clock variable permits time
oscillators having the same frequency, whose equations @fvolution by relaxing the energy constraint on the oscillator,
motion can be solved for two functions, say;(t) and and indeed the energy of the clock can saturate this con-
X,(t). Neither of these functions gives a gauge-invariant destraint. In Sec. Ill, we investigate the possibility of a “test
scription of time evolution, but, by eliminating Rovelli  clock” by restricting the state of the clock to a narrow range,
arrives at a new functior;(x,) which is gauge invariarfor ~ which approximately reproduces the constraint on the oscil-
almost so — see Sec. IV belgwrovided thatx, is regarded lator alone. This restriction imposes a limit on the resolution
as a real parameter, rather than as a dynamical variable. Clagith which the value ok(7) can be determined, but there is
sically, at least, this defines a family of observabigés) a semiclassical limit in which both the energy of the clock
and the eigenvalues of(7) are fairly sharply defined. The
interpretation of time is discussed in detail in Sec. IV where,
“Present address. in particular, we point out that the clock cannot itself be
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regarded as a physically observed object, but should rather (= w(da;/\da,+dc;/\dc,)
be taken as representing the observer’s intrinsic sense of

time.

Il. CLASSICAL AND QUANTUM DYNAMICS
OF AN OSCILLATOR AND A CLOCK

Consider the Lagrangian
1 N
— V2 1 N2 22 __
L= 2)\(x +q°) 2(w x“—2E), (1)

defined on a (6-1)-dimensional manifold with “time” co-

1
= Ewpgsin(2)()c|)(/\o|y— wpocosydy/Ndc,. (13)

As can be seen fronfll) and (12), time evolution is
generated by the Hamiltonian vector field

g 9
XCZ&_Y JfPoSln)(ﬂ—Cl, (14)

associated with the constraiGt As expected, we find that

ordinatet. The only geometrical variable is the lapse func-Xc annihilates(), ix =0, so the reduced phase space is
tion A(t), which we take to be strictly positive. The action found by identifying all points along each gauge orbit, which
fLdt is easily seen to be invariant under a change of timas an integral curve oX.. Equivalently, points of the re-

coordinate, with x'(t')=x(t), q'(t")=q(t), and
N (t")=(dt/dt")A(t), wheret’ is any increasing function of
t. The equations of motion

19 1(9x_ ) 2
AR @
19 1(9q_0 3
Not\N at) ©)

obtained by varyingc andq, have the general solution
X(t) =ajcosp(t) +azsing(t), 4

q(t)=cy+coy(t), 5)

so that the clock variable is linear in the proper time
o~ Ly(t)= [\ (t")dt’". The constraint

b

obtained by varying\, implies the relation

2
+

q 2
X) +w?x?=2E,, (6)

C=a’+a3+cs=pZ, 7)

wherep3=2E,/ .

For this model, the solution spaignoring the factorA
of gauge functionsn(t), all of whose points are gauge
equivalent is S>X R. With the parametrization

a;= poCOSYCOSY, (8)
a,= — poCOSYSiny, ©)
C2= poSiny, (10

the anglesy and y (—w/2<y<m/2, 0<y<2mw) provide
coordinates orS?, while ¢, is the coordinate orR. The
general solution$4) and (5) can be written as

X(t) = pocosycog (1) + v], (11

q(t)y=cq+ poSiny (1), (12

and the presymplectic form on the solution space is

duced phase space correspond to distinct gauge orbits. The
angley is constant along each gauge orbit. For each value of
x (excepty=0,=«/2), the orbits are helical curves on the
cylinder S'xXR coordinatized byy andc;, with a period
alongR of 27 pgsiny. Distinct orbits can therefore be labeled
by the values o€, in an interval of length Zpysiny, the end
points of which are identified, since they belong to the same
orbit. The set of distinct orbits is thus topologicaly. For
x=0, the gauge orbits are circles on the cylinder, and there
is a distinct orbit for eacle; e R. For y=* 7/2, the ampli-
tude of oscillation in(11) vanishes, so all values af are
equivalent. In this case, tf® of gauge orbits collapses to a
point.

We see that the reduced phase space is the union of three
sets.

(i) The open diskD , , which is the direct product of the
interval 0< y=< /2 with the circleS?, the circle aty= /2
being contracted to a point. Physically, states in this region
are those in which the clock runs forward. The gauge-
invariant observables which distinguish the states yare
which set the amplitude of the oscillation and alsgvia the
constrain} the rate of the clock, and;, which characterizes
the phase of oscillation at which the clock reads zero.

(i) The open diskD _, which is similar toD , , but cor-
responds to the interval- 7/2< y<0 and contains those
states in which the clock runs backwards.

(iii) The lineRy, with ¢, e (—«,+) and y=0. In this
region, the oscillation has its maximum amplitude, while the
clock has a constant readiog, which is the gauge-invariant
observable distinguishing the states.

This reduced phase space rnist a manifod — a fact
which presents serious difficulties for the method of geo-
metrical quantization, and we have not succeeded in obtain-
ing a fully consistent quantum version of this model. A quan-
tum theory of a related model will be described below.
Within the classical theory, we can construct gauge-invariant
observables which evolve with proper time, as measured by
the clock, by restricting attention to the subspace
D, UD_. Consider that region of the solution space where
x#0 and identify the points X,v,c;) and
(x,v,c1+2mpeSiny). On the resulting space, we replace the
coordinatex; and y with

C1
c= —,
PoSiny

(15
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C1
poSiny

aZ( v— )mod 2. (16)

In terms of these coordinates, the generdfigh of gauge
orbits isX.= d/dc and the presymplectic forfl3) becomes
Q= (wpj/2)sin(2))dy/\da. As expected, thig) is indepen-
dent of ¢, and is also the symplectic form on the region

D, UD_ of the reduced phase space, now coordinatized b

x anda.
With the coordinatesy, «,c), the solutions to the equa-
tions of motion read

7
(18

X(t) = pocosycod ¢ (t) + a+tc],

q(t) = posinx[ ¥(t)+c].

The quantityr=[ #(t) + c]/w can be identified as the proper
time which has elapsed since the clock read zero (aritth
an obvious economy of notatipthe value ofx at this time is
given by

X(7) = poCOSYCOS w7+ a) =Xco wr)+ w Psin(w7),

(19

where
X= poCOSycos, (20)
P=— wpoCosysina. (21

Since they do not depend an the quantitiesX and P are

gauge invariant. Thus, if is regarded as a parameter, rather

than as standing for the expressiof(t) +c]/w, thenx(7)

is a gauge-invariant function af. Classically, this function
can be interpreted as “the value &fat proper timer,”
given that7=0 is located at the event=0. It is similar to
the “evolving constants of the motion” defined by Rovelli
[5,6] but with an important difference: whereas Rovelli's

evolution is with respect to the actual value of a physica

clock variable, 7 refers (at the classical levglto the geo-

metrical proper time. The symplectic form can be expresse

in terms of X and P, with the satisfactory resuld= dX
AdP, soX andP have the canonical Poisson bracket alge
bra. Moreover, the evolution at(7) is easily seen to be
governed by the usual equation of motion

dx(7)
4, ~ X(7).Hoj, (22)
where
2
HO=%(P2+w2X2)=% d;((:) +ox(1?| (29

is the Hamiltonian for the oscillator alone.
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essentially independent &f. The classical analysis is simi-
lar to that given above. If the solutions to the equations of
motion are written as

X(t)=a,cosp(t) +a,sinyg(t), (25
q(t)=bscof N~ 1ys(t)]+bosifN~*i(t)],  (26)
¥hen the quantities
w
a= \@(aﬁiaz), @7
w .
b=/ 5n(P2=1b1) (28)
have Poisson bracket&a,a*}={b,b*}=—i, which will

shortly be promoted to commutators. The constraint
aj+as+N"2(bi+b3)=p3 can be solved in terms of the
coordinatesy, «, andc, replacing(17) and(18) with

X(t) = pocosycod ¥(t) + a+c], (29

q(t) =Npgsinysin{N ™[ ¢(t) +c]}.

For any finite value oN, the reduced phase space of this
model isS?, the anglesy and a (0<y<m/2, O<a<2)
providing coordinates such that the points 0,7/2 are op-
posite poles. In particular, foy=0, the anglex in (29) is
indistinguishable fromc, so all values ofa are gauge
equivalent. Each point of this phase space, of course, corre-
sponds to a periodic oscillation, for which the values
(1) =0,2N7 may be identified. The limiN— o is actually
singular in the following sense. To achieve a finite limit in
(30), with y#0, we may assume thats(t) +c] either has a
finite value, or differs by a finite amount froM. In the
limit, therefore, each point of the phase sp&erepresents
two distinct solutions, corresponding to the half-periods of
ﬁscillation in whichq is an increasing or a decreasing func-

on of ¢(t). Clearly, the two limits of(30) differ by a sign,
which can be regarded as the signyaof and correspond to
“the two regiond .. of the phase space described above. To
reproduce the regioR,, we must first takeN—o with x

#0 and then takee— 0, with c given by (15).

For finite values ofN, the reduced phase spag is a
manifold, and the model can be quantized straightforwardly.
However, since this manifold includes the poipt0, we
may anticipate some difficulty in interpreting the variables
X and P [Egs. (20) and (21)] as operators on the physical
Hilbert space. Since all values af are gauge equivalent at
x=0, X and P [and, hence, alsx(7)] are not gauge-
invariant functions on the reduced phase space, although
they are gauge-invariant functions on any region which ex-

(30)

To obtain a quantum version of this model in a controlledcludes the poinf=0. In any such region, the above expres-

manner, we consider the Lagrangian
1 .. . A
L= (C+0%) — 5 (0*X*+N20’q®~ 2Eo), (24)

whereN is an integer, with a view to recovering the model

(2) in the limit N—o. Somewhat surprisingly, the results are the

sions for the symplectic form are still valid, 30andP still
have the canonical Poisson algebra.

Models of this kind can be quantized in several, more or
less equivalent, waysee, for examplgs,8—10). The essen-
tial result is that one can identify gauge-invariant functions
(51,57,83) = (wp§/4)[sin(2)()sina,cos(3(),sin(2>()005a] on
reduced phase space, whose Poisson algebra,
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{si ,sj}:eiiksk, is the Lie algebra of S(2), and the Casimir- These operators are also well defined and gauge invariant,
invariantss+s3+s3 is proportional to the constraigt The  but they have the anomalous commutafér,A']=1—#,
physical Hilbert space is therefore an irreducible representawhere 6  projects onto the maximal state:
tion of SU2) whose dimension is séup to operator order- 6|m))=(1+v)3J, ,/m)). The operators

ing ambiguitie$ by the value ofE,. For our purposes, it is
convenient to construct this Hilbert space according to the
Dirac prescription, taking andb as the basic variablea
similar route is followed i 10]).

On promotinga andb to quantum ladder operators, with
the wusual commutators [a,a’]=[b,b']=1, [a,b] P=—i
=[a,b’]=0, we obtain an unconstrained Hilbert space,
spanned by the vectofsn,n), .wherem andn_label the en- 5re  well defined, gauge invariant, and self-adjoint,
ergy levels qf theg andb oscnlgtors respectively. but they have the anomalous commutatdiX,P]

. The physical H|I_bert space is the subspace of vectors Sa@i[A,AT]=i(1— 9). The anomalous term is nonzero only
isfying the constraint when acting on the maximal stalte)), where the clock has
(a’a+N"1b'b)|y) =7T), (31) the smallgst energy allowed by the constra(_tB_ul). Classi-
cally, the interpretation oK andP as the position and mo-
wherev= wpg/zz Eo/w. Here, it is assumed that any con- mentum of the oscillator “at time=0" is ambiguous in the
stant arising from factor ordering in the constraint operatostate =0, where the clock permanently reads zero, and
has been absorbed |rm Quantiza’[ion C|ear|y requires that therefore does not dIStInQUISh this instant of time, and the

1 1/2
x=(5) (A+AY), (41)

1/2

> (A—A") (42)

Nv be an integer, and we define anomaly can be understood as reflecting this fact in the quan-
tum theory. Formally, the classical versions(8¥) and (38)
v=v+v'IN, (32)  correspond to regularized variables
wherev and v’ are integers, with & v’ <N. This physical 2¢ —Ni2
Hilbert space is spanned by the vectors Xe=poCOsycosy| 1+ NeopZsirfy (43
[my)=|m,N(v—m)+2’), Os=msv. (33

and P.=—wpgtanaX,. These are truly gauge-invariant
We would now like to realiz&X andP as gauge-invariant quantities, having the unique valu¥s=P_=0 at y=0, but
operators, acting in the physical Hilbert space, but, as anticido not have the canonical Poisson algebra. However, they
pated, this is not quite straightforward. Classically, we cardiffer significantly from the originalX and P only where
define variablesA and A*, with the Poisson brackets sir’y is not much greater thaEI/wp(z), and whene is suffi-

{AA*}=—Ii, by ciently small, this is a small neighborhood of the point
_ N x=0. It is straightforward to show that the Heisenberg equa-
A \/§ 4 I—P) =a( b* ) (34 tion of motion
2 ) Jb*b
dx(7) .
Quantum mechanically, the operator ordering ~ar ~ [HoX(7)] (44)
A=a[(b'b) " Y2p™N, (35

reproduces(19) in the expected way, provided that the
t_at Ty — 1/21N Hamiltonian has the factor orderirgy= wATA.
A'=allb(bh)"*] (36) At this point, we have a formalism which, taken at face
ensures that these operators have the expected propertiélue, is equivalent to ordinary time-dependent quantum me-
Alm))=m|m—1)) and Af|m))=m+1|m+1)), except Cchanics. There is a physical Hilbert space, spanned by the
that the action ofA" on the maximal statév)) is not well ~ vectors|m)), a set of operatorsX,P) on this space and a

defined. To proceed, we introduce the regularized operatorslamiltonianH, which generates time evolution through the
standard equation of motio@4). Whether this formalism

A.=a[(b’b+e) YN, (37)  should be taken at face value is, of course, another matter,
- ; P and the interpretation of the model will be discussed in Sec.
Al=a'[b(b™b+e) N, (38 IV. Apparently, one can ask, and answer, questions such as

i . . given that x was determined to have the valye at time
These are well-defined, gauge-invariant operators, and we

o . N _ 71, What is the probability that it has the valug at time
find, in particular, thaf\|v))=0. We can now define opera- 5 » acording to standard quantum mechanics, this ques-

1
torsA andA™ by tion is legitimate only ifx; and x, are eigenvalues of
_ _ _ x(71) and x(7r,). Because the classical range xfis re-
Alm)) llir:) Adm) yim]m L) 39 stricted by the constraint and, correspondingly, the physical
Hilbert space is finite-dimensional, these eigenvalues form a
AT|m))=lim Aflm))= m+1(1— Smy)|M+1)). finite, discrete spectrum, which is easily found. Usidg),
e—0 we can expres(7) asx(7)=(2w) Y Ae 7+ Alel7).

(40 The propertieg39) and (40) then imply that
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X, 7)) =N,; ZO (2"m!) " Y2H, (0%x;) ™7 m)) (45)
m= 0.37 .

is an eigenvector ok(7) with eigenvaluex;, whereH, is 0.

the Hermite polynomiall; is a normalizing constant and, in 0.1
order to truncate the seriesrat=v, wl/zxj must be a zero of ]
H,.,. Since there are+1 of these zeros, the staté$h) ] B 0 > pl
span the ¢+ 1)-dimensional Hilbert space. Also, since
p(7)=X(7)=wx(7+ 7/2w), the eigenvalues op(r) are

LL)X]' . 0
The quantum dynamics of this model can be illustrated by

considering the coherent state

Z f — . Zm
[2)=C2e|0)=C(2) 2 J=Im). (46

2 4
where C(z) is a normalizing factor. The time-dependent 04f
wave function for this state is 031
P(xj,7,2)={(X},7|2)) 0%
0.1
"1 z(7)\™
=N;C(z —H (0¥ (—) , (4 0]
i< )mE:o mi Mm@ 7)) V2 @) 4 ) 0 P y

where z(n)=e '“z. If z=\wl2xe+(i/lw)py], then 0.4
2(7) = Vol2[Xo(7) + (i/0)Po(7)], Where (xo(7).po(7)) Is 43
the classical trajectory passing througty (po). For an un-
constrained oscillatofcorresponding to the limit=x), the
coherent state is, of course, a Gaussian wave packet, witho 14
| 4|2 ext] — w(x— V2/wRez)?], whose peak follows the clas- ]
sical trajectory. The wave functig@d7?) is defined only at the ] 2 0 3 p1
discrete valuesx;, and is not simply a function of
X;—2z(7). Nevertheless, ik, is well within the range defined 04}
by the largest and smalles then, even for quite small
values ofv, these discrete values follow the Gaussian packet
rather closely, as illustrated in Fig.1. 0.24
014

. TEST CLOCKS o]

) - . 2 0 2 4
In classical general relativity, one can assess the physical

characteristics of a spacetime by examining the trajectories _ _

of “test particles” which follow timelike geodesics, but do ~ FIG. 1. The squared magnitude of the wave functi@)

not contribute to the stress tensor. Here, we consider theircles for a coherent state of the constrained oscillator, which is
possibility of a “test clock,” which might be used to reveal defined only at the discrete valugg, compared with the corre-

the time evolution of a quantum universe, without itself con-SPonding Gaussian wave packeolid curve for the standard un-
tributing significantly to the quantum dynamics constrained oscillator. The normalization of the Gaussian packet

In the clockless model, obtained froft) or (24) by de- has beeq adjusFed SO that_ the_ peak§ of both wave functions have_ the
leting the variabley, there seems classically to be a sense ir]sziin;s wilahgn?me evolution is depicted over a half cycle of oscil

. L ) . - , plitude slightly smaller than the largest eigenvalue
which remaining oscillator evolves with proper time as, |1 this casey—10
X(7) = \2Eo/w’cos@7), even thoughx(r) cannot be re- - '
garded as a gauge-independent observable. By adding thesolution with which values of(7) can be determined, and
clock, we are able to obtain a genuine observadfle, but  we wish to examine the nature of this limit.
the energy constraint which applied to the original oscillator If there is to be a nontrivial time evolution, several states
is relaxed by the presence of the clock, which can itselimust still be available. We therefore considerlaosely
saturate the constraint. The idea now is to see whether theemiclassical situation, witlr very large, taking a band of
apparent time dependence of the clockless model can be retates withm~ v to be actually available for use. Our calcu-
vealed by restricting attention to those states in which théations will now be approximate, and we begin by finding an
clock has only small energies, so that the energy constrairgpproximation for the eigenstatéd5). It is convenient at
of the clockless model is approximately realized. It may bethis point to use the Schdinger picture, and deal with the
anticipated that this restriction will impose a limit on the eigenstate$x;,0)) of X=x(0). When v is large, thev+1
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zeros ofH ,, 1, corresponding to the eigenvaluesxgf), lie 1

roughly between—\2» and y2v and the spacing between pe(a,z)= fﬁldfl/f@,z)cr(a)- (57)
them is therefore of order Y2 We will take these eigen-

values to form a continuum. For large, the asymptotic As in (47), the time evolution of this state is obtained by

formula forHy, [11], making the replacement— z(7).
Cim+1 To obtain approximate analytical results, we define
Hm(z)wezz’z(m—)cos{(Zer1)1’22—m77/2] (48) y=yJa and choose a Gaussian  window  function
I'(m/2+1) f(y)=foexd —(y—0)%2A], where f, is the appropriate

normalization factor. We choosg, to be a little less than the
maximal valuey=1, and assume that is small enough for
[240*T(4n+1)1]" Y2H,, . (2) the limits of integration to be extended to infinity. For the
uncertainty A€, defined by 0A&)?

~(2m) V¥ Ve (VBnz), r=0,....3, (49  ="(&&|e) - (&€& we find

where ¢, (60)=cos(@—r=/2). Taking v to be of the form 1
4v'+3 andm=4v' a+r in (45), replacing the sum or by Aé= 20\2A° (58)
an integral, and defining

yields

12 We see that, for a fixed window width, it is possible to
é:(ﬂ) X (50) make¢ arbitrarily sharp whenv is sufficiently large. On the
2v ’ other hand, whem is made small, in effect imposing the
o - constraint of the clockless model, it becomes impossible to
we obtain eigenstates gfin the form construct sharp eigenstateséofreflecting the fact that, with-
L 3 out the clock, there is no gauge-invariant operator corre-
1£))= /LJ daa ¥ c,(2v\aé)|a,r)), (51  Sponding toX or & Given the_coherent.sta}te»f, we can
2 Jo r=0 estimate the probability amplitude for finding the oscillator
at the positior¢ at time 7. Assuming that the limits of inte-

which are orthonorm(all)in the "mif’_—{)oo- ) __ gration in (57) can be extended to infinity, which will be

Ladder operatoré\"”=A and A" ’=A" are realized in  yq|id if 4 is large enough and ifg|<1, whereé=Rez, we
this approximation by obtain
M0 2A _
] = - v
A1) @(f 2 a§)|§>>' 2 f<<§|z<r>>>f~exr{— S [ E P, (59
M 4 where~ indicates the omission of a hormalization factor and
(m) — 1/2__ " 14__  _1/4 _

A a,r)) \/;(a My >|a,f ®))- of a phase. For a fixed window width, this amplitude

(53 becomes sharply peaked at the classical trajectory in the

) . semiclassical limitv—o. However, whemA becomes very
Because the maximal state annihilatedAynow has zero  gmajl, then(i) there is no longer a sharp peak at the classical

measure, these operators have the canonical commutathiectory andji) the probability becomes time independent.

t_ - 1O, => tme
[A,A']=1. For the same reason, the coherent state is now afgjitatively, at least, we recover the situation in the absence
eigenstate ofA. Corresponding to the rescaled varialfle of the clock, where there is no gauge-invariant operator cor-

(50), we define responding tct and all gauge-invariant amplitudes are time
_ independentexcept possibly for trivial phase factors
Alz)=1vz|2) (54) It is apparent from these results that, as expected, we can-
. ; not fix the energy of the clock without losing both the ob-
ingéﬂﬁo;ﬂa;)rzq_gzée:_z)%sual wave  function #(¢,2) servable¢ and the time dependence which the clock was

gnended to reveal. However, it seems that one can find situ-
ations (for example, by takingv large, with Av fixed) in
which both the energy of the clock and the eigenstate$ of
are fairly sharply defined, and in which the notion of a test
clock is therefore meaningful.

Supposing that the states actually available for use ar
those in a narrow range ef, we introduce a window func-
tion f(«) and define approximate eigenstatest dfy

3
|s>>f=Jldaa*”4f<a>2 c(2vag)|a,r)). (55)
0 r=0 IV. DISCUSSION

In the same way, we can define an approximate coherent The absence of time-dependent observables in a time-
state reparametrization-invariant system can perhaps be under-
stood by recognizing that a complete description of a closed
system is inevitably from the point of view of an observer
external to the system. For such an observer, a state of the
(d+1)-dimensional systendE 0 for the models considered
where in this paper corresponds to what an observer internal to the

1 3
)= [ dae (@3, w@Dlan), 6
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system might be supposed to regard as an entire history ofraeasurement made after an interval- 7, of his proper
d-dimensional system. The observable quantities whose vatime.
ues distinguish one state of the system from another there- To this extent, we recover precisely the usual formulation
fore characterize entire histories of the system, and cannaff time-dependent quantum mechanics. However, the status
evolve with time in any straightforward sense. of the clock variable in this formulation requires further
For a classical system whichr®ttime-reparametrization thought. Indeed, the coordinateés and P on the two-
invariant, this does not normally present a problem. If thedimensional physical phase space are just sufficient to repre-
system contains, sag,observable objects, there will be a set sent the position and momentum of the oscillator, and there
of  time-independent phase space coordinatess no further coordinate available to represent the clock as an
(X1,Pq, ... X,,Pn) which are the basic observables, sinceindependent dynamical object. As emphasized, for example,
a set of values for thesen2quantities specifies a history of by Unruh[15], who has also considered the two-oscillator
the system. From these, however, we may construct paranmodel, the variablea; andb;, in (25 and(26), which one
etrized families of observables, say(t)=f;(t)X;+g;(t)P;  would ordinarily want to treat as Schtimger picture opera-
which satisfy the equations of motion and may be construetors representing the oscillator and clock positions, do not
as representing the time-dependent observations made by aarrespond to operators on the physical Hilbert space.
observer internal to the system. In the case of a time- Correspondingly, the Hamiltoniaf23) describes the time
reparametrization-invariant system, the familigét) have  evolution of a single object — the oscillator. While there

no gauge-invariant meaning, since they depend tmough  exists family of observables
the undetermined lapse functiart). q(r)= \/p02 —(P/w)sz which might appear to de-

In elementary applications of general relativity, the time-scribe the reading of the clock, the evolutiongifr) is not
dependent appearance of the Universe to an internal observgoverned by a Hamiltoniator Heisenbergequation of mo-
is accounted for in roughly the following way. Consider thetion, since{Hq,q(7)}=0. Quantum mechanically, the values
reparametrization-invariant modél) with g omitted. The of x(7) andg(r) cannot be determined simultaneously, since
solution to its equation of motion is of the form [x(7),q(7)]#0. Consequently, the clock does not exist as an
x(t)=acog y(t)+ y]. The amplitudea is constrained to have independent dynamical object and a statement such as
the valuepg, so there is no gauge-invariant variable, and thex(r,) =x; cannot be taken as implying that both the oscilla-
(0+1)-dimensional system has just one state available to itor and the clock have been inspected, yielding the value
Nevertheless, it seems intuitively clear that an observer inx, for the position of the oscillator and the valag for the
side the (O+ 1)-dimensional universe would perceive an os-time.
cillation of the formX(7) = pgocosw7), wherer is the proper Thus, 7 cannot be regarded as a phenomenological time
time along this observer’s world line. Moreover, this asser-deduced by an observer from his inspection of a physical
tion seems to be gauge independent, since the lapse functigiock which reads). Rather, the definition af(7) reflects a
serves only to relate to an arbitrary coordinate which is  decision on the part of an external obseryar of a theore-
irrelevant to the observer. tician) to study time evolution from a particular point of

To construct gauge-invariant observables correspondingiew. One might, for example, imagine an observing appa-
to what an internal observer might perceive, it seems necesatus, which performs a sequence of tasks under the control
sary to incorporate in our model at least a rudimentary deef an internal clockg. To study time evolution “from the
scription of the clock from which the internal observer gainspoint of view” of this apparatus, it is natural to solve the
his sense of time. This has long been recognized. In speci&amiltonian constraint by eliminating the unobserved quan-
relativity, for example, the dynamics of a free particle can betity g, in order to arrive at the time-dependent observable
formulated with an arbitrary time parametrizatipt2,13,3  x(7). In this senser represents a “Heraclitian” time of the
and a physically meaningful measure of time can be prokind sought by Unruh and Wal@], which “sets the condi-
vided only by a physical clockl4]. Classically, the variable tions” for a measurement to be made. Like the coordinate
g, whose behavior is exhibited {18) mimics an instrument time t, 7 itself is not a measurable quantity.
whose reading is linear in the geometrical proper tim&he While it is generally recognized that time parameters such
quantityx(r) in (19) defines a family of gauge-invariant ob- ast andr are not directly measurable, the view reached here,
servables which can be construed as giving the value of that the readings of a clock which provides an intrinsic no-
which would be perceived by an internal observer when aion of time are also unobservable, does not seem to be
proper timer has elapsed since his clock read zero. More-widely held. For example, interpretations of the kind ad-
over, the evolution ok(7) with 7 is governed by an equation vanced by DeWit{16] and elaborated by many subsequent
of motion (22) of the standard Hamiltonian form. Quantum authors(see, in particular, Ref.17] for a discussion of the
mechanically, this equation of motion translates to a Heisenrole of quantum decoherenceonsider a wave function
berg equation(44), again of the standard form. It, thus, ¥(x,q), for which the Hamiltonian constraint is realized by
seems consistent with the Copenhagen interpretation ahe Wheeler-DeWitt equatiotd ¥ =0. Roughly speaking,
guantum mechanics to suppose that an external observeolutions suitable for describing a universe evolving with
might determine the state of the “Universe” by measuringtime are identifiedfor example, through a WKB approxima-
the value ofx(71), say with the resulk,. The probability tion) as those which peak along a classical trajectory, estab-
[({Xz,72|%;,7))|? that a measurement of( 7,) will yield lishing a strong correlation betweenandq, both of which
the valuex, can then plausibly be interpreted as the prob-are regarded as measurable quantitiés a suitable approxi-
ability that an internal observer, having determined the posimation, the Wheeler-DeWitt equation can be cast in the form
tion of the oscillator ax; will obtain the valuex, from a  of a Schrainger equation in whicly plays the role of time.
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An alternative route to describing evolution with respect to asion given in[6] suggests that Rovelli wishes to regard
phenomenological time is described by Page and Wooters(s) as representing the evolution »frelative to the time
[18]. recorded by a physical clock. For the reasons given above,
It also appears quite unnecessary for the eliminated clockowever, a pair of values andx(s) cannot be construed as
variable to be linear inr. The physical Hilbert space associ- the results of inspecting a clock and an oscillator simulta-
ated with the modek24) and the algebra of the gauge- neously.
invariant operatorX and P obtained by eliminatingy are The operator corresponding (60) is approximately self-
independent of the paramethr which determines the fre- adjoint, and obeys an approximate Heisenberg equation of
guency of theq oscillator, and for finiteN, q is of course a motion only when restricted to a region of the physical Hil-
nonlinear function ofr. The role of the clocky in passing bert space which Rovelli calls the “Schtimger regime,”
from either (17) and (18) or (29) and (30) to the gauge- corresponding roughly to states in which the wave function
invariant observabl€19) is that it distinguishes a history in #(x,q) is sharply peaked around the classical trajectory. For
which, for examplex= py,cosycose wheng=0 from one in  this reason, Rovelli contends that the notion of time does not
which some other value of corresponds to this value of exist at a fundamental level, but emerges only in a suitable
X. In essence, the definition of a gauge-invariant observableemiclassical limit. By contrast, our operatdrr) is exactly
x(7) becomes possible when an origir O can be specified self-adjoint, and obeys the exact Heisenberg equaddh
in a coordinate-independent manner, and the rolg & to  with respect to the variable which classically corresponds
provide this origin. Note, however, that for finitd, our  to the geometrical proper time, and this provides a counter-
model describes a completely periodic universe, in whichexample to Rovelli's contention.
this origin is repeated indefinitely. Indeed, any state con- We would like, of course, to speculate that the view of
structed from the basig5) will be periodic in 7 with period  time evolution proposed here can be extended to canonically
27l w. Since the clock oscillates with a frequencyofN,  quantized general relativity. In such an extension, it seems
only one instance of the origifat whichq increases through likely that the role ofr would be played by the proper time
0) occurs within this period. For this reason, we obtain analong the trajectory of an observer for whose observations
unambiguous account of time evolution within one period ofwe wish to account, while(r) would correspond to local
the x oscillator. The occurrence of more than one instance opbservables defined on this trajectory. To define, say, time-
this origin (corresponding toN<1) would pose serious dependent observables throughout a spacelike hypersurface,
problems in defining the operatof®7) and(38) from which  one would presumably need to introduce a space-filling fam-
the time-dependent observables were constructed. ily of observers(or, at least, their clocks These might cor-
The view of time evolution described here differs in sev-respond to a reference fluid of the kind described by Brown
eral respects from that proposed by Rov@li-7]. In [5], and Kuchaf19], though the relationship of our interpretation
Rovelli considers essentially the mod@¥) with N=1. He  to that proposed by these authors is not entirely clear to us.
defines a gauge-invariant classical observable given, in our
notation, by
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