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We derive a class of solutions of the field equations of five-dimensional general relativity that 
is static and spherically symmetric in ordinary three-dimensional space. In the induced-matter 
picture, where the extra dimension is responsible for matter in four-dimensional spacetime, the 
solutions represent centrally condensed clouds with density profiles similar to those of clusters of 
galaxies. This class of solutions could be used with data on gravitational lensing to look for a fifth 
dimension. 
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I. INTRODUCTION 

The dimensionality of the world is a subject of contin- 
uing debate, whose theoretical side involves different ap- 
proaches such as Kaluza-Klein theory, superstrings, and 
supergravity. Recently, there has been renewed interest 
in the basic extension from four dimensions to five dimen- 
sions, due to certain developments that are reviewed be- 
low. It has become apparent as the result of recent work 
that distinctions between four- (4D) and five-dimensional 
(5D) physics are subtle, and that the detection of an ex- 
tra dimension will require exact solutions of the 5D field 
equations of new kinds. To this end, we present below 
a class of exact solutions in 5D gravity of astrophysical 
importance, and evaluate its physical properties. 

The reawakening of interest in 5D gravity is largely the 
result of recasting the field equations in a form where 
matter in four dimensions can be seen to be the con- 
sequence of geometry in five dimensions. This induced- 
matter version of 5D general relativity follows by r&&g 
certain conditions that unnecessarily restricted the old 
Kaluza-Klein theory (specifically, the so-called cylinder 
condition is artificial and is dropped; and compactifica- 
tion is not presumed a priori, though it may, if desired, 
be applied later). The resulting theory is not, therefore, a 
K&ma-Klein one, but neither is it Einstein’s theory with 
an extra dimension because there is no explicit matter 
source: the fifth dimension provides a. consistent expla- 
nation for mechanics and matter with field equations that 
are purely geometrical. 

This space-time matter theory has a considerable lit- 
erature that has sprung up in the last three years. Var- 
ious workers have proved different results, and, by way 
of background for the class of solutions presented below, 
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we note the following key items. (a) Wesson and Ponce 
de Leon [l] showed that the 15 5D field equations for 
apparent vacuum can always be written in a form that 
includes as a subset the 10 4D Einstein equations with 
matter. The 5D equations, the 4D ones, and the effec- 
tive or induced 4D energy-momentum tensor are given 
below as Eqs. (l), (2), and (3), respectively. (b) Tavakol 
and co-workers [2,3] used this approach to go from 4D to 
lower-D gravity (which might be more easily quantized 
than Einstein’s theory) and also proved an important the- 
orem: any analytic N-dimensional Riemannian space can 
be locally embedded in an (A’ + l)-dimensional F&ci flat 
space. This result and the preceding one together ensure 
that we can geometrize matter in terms of five dimen- 
sions if we so wish. (c) Kalligas, Wesson, and Everitt 
[4] reworked all of the classical tests of relativity using a 
standard~class of 5D one-body solutions with curvature 
in the extra dimension [5-81, finding no conflict with ob- 
servation [9]. The best way to detect a fifth dimension 
would appear to be via its indirect effects on a spinning 
particle or gyroscope, since these exist even when the ex- 
tra part of the metric has negligible curvature [lo]. (d) 
Mashhoon and co-workers [11,12] introduced the concept 
of a canonical metric and showed that when the metric is 
so expressed, the spacetime components of the geodesic 
equation in five dimensions are identical to what they 
are in four dimensions. Since the five coordinate degrees 
of freedom associated with 5D relativity can always be 
used to put a metric into the canonical form, this result 
means that there is always a coordinate system where 
the motion in the 4D part of the 5D theory is the same 
as it is in general relativity. In other words, not only 
4D solutions but also their dynamics are embeddable in 
five dimensions. (e) Kaluza [13] and Klein 114,151 in their 
original work, and many workers afterwards, showed that 
the 4D Maxwell equations are a subset of the 5D rela- 
tivity equations if the metric is expressed in a certain 
form, where the off-diago&l components involving the 
extra dimension are identified with the scalar and vec- 
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tor potentials of electromagnetism. This property is also 
present in the modern theory (though the metric is then 
not written in the canonical form mentioned in the pre- 
ceding comment), and the equation of motion then in- 
cludes a Lorentz-type term [16]. (f) Many people have 
found cosmological solutions in five dimensions, but in 
the induced-matter picture the right-hand side of the field 
equations is zero, so models of the Universe are more 
unique. The density, pressure, and equation of state of 
matter are determined by the solution, and one class of 
such provides excellent models for the early (radiation) 
and late (dust) Universe [17-191. These models have the 
remarkable property that, while they are curved in four 
dimensions, they are flat in five dimensions. They also 
suggest that the extra dimension, while not directly ob- 
servable in terms of 4D geometry, is connected with rest 
mass and the existence of matter [19,20]. Further, they 
confirm the inference from other work [11,12], that the 
4D work is recovered from the 5D one on a hypersurface, 
where the extra coordinate equals a constant. 

The above results are significant and form a prima ja- 
tie case for believing that 4D matter can be interpreted as 
5D geometry. However, as noted, the 4D and 5D formu- 
lations often have equivalent aspects (notably as regards 
the equation of motion), and the only way known to date 
to differentiate the two involves a test such as the Stan- 
ford gyroscope experiment, which has yet to be carried 
out [5]. It is therefore important to find other ways of 
investigating a possible fifth dimension, and tbis means 
finding new kinds of 5D solutions. Below we will present 
the 5D field equations in a tractable form (Sec. II), de- 
rive a class of solutions with good physical properties 
(Sec. III), and solve the geodesic equation (Sec. IV). Be- 
fore proceeding, however, a couple of notes are in order. 
First, th: class of 5D solutions we will be concerned with 
is the extension of a class of 4D solutions known to be 
relevant to astrophysics [21-231, but the application of 
the solutions to (say) clusters of galaxies would carry us 
far outside the scope of the present paper, so we defer it 
to the future. Second, the class of 5D solutions we will 
derive, although motivated by the induced-matter pic- 
ture, is of importance for any version of 5D gravity. So 
the results of the main part of this paper, namely, those 
in Secs. II, III, and IV, are useful in other contexts. 

II. FIELD EQUATIONS 

The field equations in five dimensions for an apparent 
vacuum in terms of the Ricci tensor are 

Ra==0 (A,B=O-4). (1) 

The field equations in four dimensions with matter in 
terms of the Einstein tensor and the energy-momentum 
tensor are 

Gap = Tap (a,/3 = O-3) (2) 

These 10 equations are a subset of the preceding 15 [the 
other five comprise one wave equation and four conser- 

vation equations and are, of course, satisfied for any so- 
lutions of (1) like those given below: see Ref. [l]]. The 
effective or induced energy-momentum tensor is 

Here we have written the 5D metric tensor as a 4D block 
g-D plus a diagonal extra part g.+4 = &, where E = &l. 
Also, Q?, = a+f&*, a semicolon denotes the usual 4D 
covariant derivative, and an overasterisk denotes d/8x4. 
[The facts that e = fl and a/&z* # 0 in general, distin- 
guish the induced-matter approach from the traditional 
K&ma-Klein approach. However, we follow the route 
of the latter theory and interpret gda = 0 as meaning 
that the electromagnetic potentials are zero, which is an 
appropriate condition here as we study a neutral fluid.] 
Solutions of (l)-(3) are known that are of the one-body 
type [5-81 and of the cosmological type [17-191. The lat- 
ter admit a range of equations of,state for pressure p 
and density p of the induced matter described by (3), 
and it is known that equations of state other t,han the 
p = p/3 of radiation require dependency of gAB on z4 (see 
Refs. [1,18]: We use units throughout such that c = 1, 
8nG = 1). We wish to find solutions that are of a new 
type but have some relevance to astrophysics, so we pro- 
ceed to write out the components of RUB for a metric 
that is spherically symmetric in ordinary 3D space but is 
otherwise unrestricted. 

The line element ‘can be written 

ds= = e”dt2 - e%= 

-R’(d@ + sin’ 0dp) + e?‘d@ (4) 

Here the metric coefficients v, X, R, and fl can depend 
on the time (t), radius (T), and the extra coordinate (4) 
but not, of course, on the spherical angles (0,$). The 
nonzero components of RUB for metric (4) are 

i ii ii tii cli 9 2 ROO=-Z-Z-2-++++++---- 
R 

+e”-X 

( 
** ** ** ** +te”-p -f-;*!!f+g , 

) 

,(5) 
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Rzz = 1 + R’e-” 

I 

-&-A 

?+#+!i(;+i-;) 
R= R 2R 1 , 

& = (sin’ 6’)Rzz , 
Here an overdot denotes afat and a prime denotes a/&. 
These relations are general in the sense that solutions of 
them such as presented below are relevant to any inter- 
pretation of 5D gravity. 

In the induced-matter interpretation, we can obtain 
the compoqents of the effective 4D energy-momentum 
tensor either by sorting the terms in (5) into parts that 
correspond to the left- and right-hand sides of (2), or by 
computing them from (3). Either way, they are 
We see that, in general, the fluid is anisotropic (Tj # T?) 
and that in the time-dependent case there is a radial flow 
of energy (TJ # 0). In,the future, we believe it would 
be useful to look for time-dependent solutions of (5) that 
would be the 5D analagues of known 4D solutions ([21]; 
presently there is only one time-dependent soliton-type 
solution known, given in Ref. [24]). However, it is appar- 
ent from (5) that considerable simplification occurs if we 
restrict ourselves to the time-independent case, which we 
now do. 

III. A CLASS OF SOLUTIONS AND ITS 
PROPERTIES 

As in four dimensions, there are au infinite number 
of solutions of the general 5D field equations (l), and 
numerous solutions where the 3D part of the metric (4) 
is restricted to spherical symmetry. In the latter case, 
in four dimensions the solutions are relatively easy to 
classify and possess certain generic properties 1211, but 
in five dimensions they are not because of the algebraic 
complexity introduced by the addition of a dimension. 
(For example, the one-body or soliton solutions [5-81 
are a class in five dimensions because Birkhoff’s theo- 
rem breaks down, and even the class is not known to 
be unique.) Thus we present here a one-parameter class 
of solutions that is static but whose other properties we 
need to investigate without 4D preconceptions. Such a 
class of solutions may be confirmed by substitution or 
computer to be given by 

ds2 = L 
0 

2(a+1) 

TO 
q&-+3)/~& - (3 - ,z)&@ 

-@r2(d6’Z + sin2Sd@) 

+3(3a-’ - l)r’d@ (7) 
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Here Q is a constant and a is a parameter related to 
the properties of matter (see below). In this and other 
regards, (7) is similar to the 5D cosmological models 
[IV191. However, (7) represents a cloud of matter that 
is centrally condensed, since on substitution into (6) we 
find 

T;=O, 

(8) 

Using the method of [8], we associate the density p with 
Ti and the pressure p with -(T: +Tz + T.j’)/3 to obtain 

p = (a2 + 2a + 2/3) 

(3 - d)qw (10) 

We see that the equation of state is isothermal. 
The fact that p and p are both proportional to T-’ im- 

plies that this class is the 5D analogue of the 4D one stud- 
ied by Henriksen and Wesson [22,23], which describes in- 
homogeneous spheres of mattwin static isothermal equi- 
librium. In fact, along hypersurfaces z4 = $ = const, (7) 
is very similar to their solutions: 

-7’ (dB2 + sin’ 0 d@) (11) 

Here p = Po/?, p = ~,Jr2, and stability implies 
4P0(l - qO) = (Po + qO)‘. However, although the two 
classes of solutions are similar, (7) has some notable dif- 
ferences from (11). First of all, in the 4D situation, as 
q. + 0 so does Po, so that there is no situation where 
a negative pressure exists for positive density. In the 5D 
case, the density is positive for 01’ < 2 (which physically 
restricts the parameter a). However, it may be verified 
that for -2 5 a < (-1 + l/A) the pressure is negative. 

Furthermore, at a = -1 + l/G (2 -0.42) the pressure 
is zero (dust) although the density is not. This is unlike 
the 4D c&se where the dust solution exists only for p = 0, 
and (11) is just a Minkowski spacetime. Another major 
difference between the 4D solutions and the 5D ones is 
that the former admit the radiation equation of state via 
the choice Po = 90/3 (which with the stability condition 
implies 70 = 3/7), whereas the latter do not. The reason 
for this bears comment. For a = 0, there is a divergence 
in the first and last terms of the 5D metric (7). However, 
the characteristic 5D invariant (Kretschmann scalar) is 
which is well behaved at a = 0 (though not at a = zt&, 
4 = 0, and 1‘ = 0). We have investigated this and find 
that the situation is analagous to what happens with the 
cosmological solutions [17-191, namely, that a radiation 
equation of state can be approached (a + 0), but that 
the precise case (a = 0) takes us outside of the class of 
solutions. This can be confirmed by calculating the mass 
of the fluid described by (8). For this, we can use the 
standard 4D definition of the gravitational mass of a 3D 
volume of fluid [25,26] to obtain 

Mg = 
J 

(T,o - T; - T; - T,“)Gd& 

= Wa + 1) 
2+,X 

m @+3’a TO (13) 

Here g4 is the determinant of the 4D part of the metric. 
It is apparent that a = 0 is not allowed. Also, Mg < 0 
for a < -1, and so a is, furthermore, restricted to the 
range [-I, 41. With such a restriction, we see that p 2 
-p/3. In general, a variety of equations of state can be 

obtained for a2 5 2, ranging from that for stiff matter 
(p = p, Q = m - l/2 N 0.46) through various softer 
forms. The latter are relevant to various situations in 
astrophysics, but the density (9) and pressure (11) have 
forms similar to those seen in clusters in galaxies (27-301 
or protogalaxies, which may therefore be a realization of 
this class of solutions. 

IV. GEODESIC MOTION 

The five components of the velocity of a test particle 
moving in the 5D manifold (7) may be obtained by solv- 
ing the geodesic equation 

d2xC dxA dxB 
ds2+r$B--=o. 

ds ds 

When we substitute into this for the nonzero Christoffel 
symbols listed in the Appendix, we obtain 

$= -2(a+l)&- 2(1+3/a)t?). 
T 1/, 1 

(14=) 

(14c) 

(144 
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2i7j a2 $P 

T 3 r2 (14e) 

Here an overdot denotes d/ds, with s as the proper time 
for particles and as some other affine parameter for pho- 

Cb) 

FIG. 1. Simultaneous numerical solutions of (18) and (19) 
for two values of oL. For a = 0.016, by (9) and (IO), p = 0.35~. 
For a = -0.407, p = 0.01~ (the numbers on the axes in 
parentheses are for this case). Other constants in (18)-(20) 
are set to E = 1, L = 0, Z = 1, ~0 = 1 to describe the radial 
motion of a massive particle in the metric (7). For OL = 0.016, 
the initial values of the integration are bi = 5, +; = 5, ii = IO, 
l/li = 0.09. For a = -0.407, they are T< = 0.05, & = 0.05, 
Ti = I”, yi = 3.0. 
We have derived a class of solutions of the appar- 
ently empty field equations of SD gravity (7) that in the 
induced-matter picture where the extra dimension man, 
if&s itself as matter in spacetime has physically rea- 
sonable density and pressure (9),(10). These solutions 
appear to be the analogues of the known astrophysically 
relevant 4D ones (22),(23). By solving the geodesic equa- 

tons. 
It may easily be verified that 

-2(1+U) 
?jl-2(1+3,a) 

(15) 

8= (16) 

satisfy (14a), (14c), and (14d) above. The constant L is 
the angular momentum (per unit rest mass for massive 
particles), and E is an energy (per unit rest mass for 
massive particles). As in the Schwarzschild solution, we 

see that if the particle is in the 0 = 7r/2 plane with 4 = 0, 
then it will remain there. Hence, we can set the constant 
in (16) to W = 1 for this case. The other two equations, 
namely, (14b) and (14e) are harder to deal with, but it 
may be verified that they are satisfied by 

and k1, kz are arbitrary constants. The other constant E 
is 0 for photons and 1 for massive particles. Represen- 
tative solutions of (18) and (19) are illustrated in Fig. 1. 
Equations (18) and (19) could be analyzed in more detail, 
notably in regard to gravitational lensing. Previously, 
gravitational lensing has been studied in five dimensions 
mainly in relation to solitons [4], but a preliminary in- 
vestigation applied to clusters of galaxies [31] indicates 
that the soliton metric is not a good approximation in 
this case. Conversely, the solutions (7) have density and 
pressure profiles closer to those of real clusters, so the 
geodesics (18) and (19) could be studied to see if there is 
evidence from gravitational lensing for a fifth dimension. 

V. CONCLUSION 
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tion, we have obtained the five components of the velocity 
of a particle moving in the 5D space, (15)-(19). The class 
of 5D solutions derived here has numerous astrophysical 
implications, since it extends the class of 49 solutions. 
The latter have a density profile and equation of state 
relevant to observed (rich or Abell) clusters of galaxies 
and might also be applicable to the condensations from 
which galaxies formed. The 5D solutions have the same 
density profile and equation of state, but the freedom to 
choose the constant that defines the class means that the 
latter can describe a wider range of physical situations. 
In combination with the geodesics, we have noted that 
the 5D solutions can in the future be used with gravita- 
tional lens data to see if there is astrophysical evidence 
for an extra dimension. 
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