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Generalized dual symmetry for non-Abelian Yang-Mills fields
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It is shown that classical honsupersymmetric Yang-Mills theory in four dimensions is symmetric under a
generalized dual transform which reduces to the usual dual * operation for electromagnetism. The parallel
phase transpoﬁ#(x) constructed earlier for monopoles is seen to function also as a potential in giving a full
description of the gauge field, playing thus an entirely dual symmetric role to the usual potejtigl
Sources ofA are monopoles of and vice versa, and the Wu-Yang criterion for monopoles is found to yield
as equations of motion the standard Wong and Yang-Mills equations for the classical and Dirac point charge,
respectively; this applies whether the charge is electric or magnetic, the two cases being related just by a dual
transform. The dual transformation itself is explicit, though somewhat complicated, being given in terms of
loop space variables of the Polyakov typ80556-282(196)06410-7

PACS numbefs): 11.15-q, 11.30.Ly, 14.80.Hv

I. INTRODUCTION above question is no. The field tenggy, in the pure Max-

It is well-known that pure electrodynamics is symmetric well theory satisfies the equations

under the interchange of electricity and magnetism: F o (X)=a,A,(x)—d,A,(X) )
E—H,H——E, or equivalently under the Hodge star - v w
operation® and
. . o 3"F ,,(x)=0. 3
F,uu_ 2 Ep,vp(rF . (1)

By virtue of (2), F,, then satisfies the Bianchi identity

This has led to many interesting consequences which have 9"*F ,,(x)=0. (4)
always intrigued physicistf1—9] and have recently again

excited much interest due to the work of Seiberg, WittenMoreover, because the Hodge star operation is reflexive
and many otherf10-13.

In view of the importance of Yang-Mills theories to par- (*Fu)=—Fu )
ticle physics, it is natural to ask whether a similar symmetry ) . ) i
exists also for non-Abelian gauge fields. This question cai® Maxwell equation of3) can similarly be interpreted in
be asked at many different levels. Recently, it is most ofterjiS Abelian case as the Bianchi identity f6F ,,, which
addressed at the level of quantum fields, where the Yanghen implies by the Poincaiemma that there exists a po-
Mills theory is embedded in a larger theory, usually supertential A, such that
symmetric and existing in a high-dimensional space-time, in . ~ ~
which charges, whether electric or magnetic, appear as 't Fun()=30,A,(0) = d,A,(X). (6)
Hooft-Polyakov solitong10]. Here, however, we adopt a
minimalist approach and ask whether strictly four—)}
Slongzgzlsor;aldirgli rs]gnms#lgtertyg; The én&;s;gauv“fl:;;hz%g r;; etric. For 'the pure non—Abe]ia_n theory on the other hand,
charge level. Since it is at this level that the Maxwell theory € Yang-Ml_IIs field tensor satlsfles, in parallel@ and(3)
exhibits the well-known dual symmetry, it seems reasonabl(f,\Or the Abelian case, the equations
to ask first whether Yang-Mills theory might possess a gen- _ _ :
eralized version of this symmetry also at the same level. Fun()= 4,00 = 2,A,00 F1gLALC0.AL0] (D

If duality for non-Abelian theories is taken to mean againgng
just the Hodge star operatiofl), then the answer to the

One sees therefore thiay,,(x) and*F ,,(x) satisfy formally
he same equations, or that electromagnetism is dual sym-

D"F,.(x)=0, (8
Yin our conventiong,,,=(+,—,—,—), €125~ 1. whereD,, denotes the usual covariant derivative
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D,=d,—1g[A.(x), 1. 9) theories, have basically the same dynamics, namely that

given by the standard Maxwell and Yang-Mills equations,

Although (7) implies again the Bianchi identity only formulated in a dual manner. Furthermore, since the
- relation here between the field and the dual field though

D™F,..(x)=0, (10 somewhat complicated is explicitly known, the result may

have brought us one step nearer to realizing the hope of
obtaining the strong coupling limit of one formulation from
the weak coupling limit of its dual by making use of the
generalized Dirac condition

this is not the dual of8), since the covariant derivative in
(10) involves the potentiah ,(x) and not some “dual poten-
tial” appropriate to*F,,(x). Furthermore, the Yang-Mills
equation(8) itself can no longer be interpreted as the Bianchi
identity for *F,,(x), nor does it imply the existence of a 1

“dual potential” A ,(x) satisfying gg= N’ (12)

*Fﬂ,,(x);ay’,&ﬂ(x)—aﬂzv(x)ﬁLiﬁ[ﬂﬂ(x),ﬂv(x)], (11)  relating the magnitudes of electric and magnetic couplings
for a theory with gauge group SNj.

in parallel to(7). Indeed, it has been shown by Gu and Yang

[14] that for certain cases df ,,(x) satisfying(8) there are Il. E,[£]s] AS VARIABLES

no solutions forA(x) in (11), which result shows once and ) ) ]

for all that dual symmetry of Yang-Mills theory under the N our previous papefl5] on Yang-Mills duality we have

Hodge star operation does not hold. relied heavily on a loop space technique developed earlier,
However, it is not excluded that there may be a generalt!sing the Polyakov variables, [ £s] to describe the gauge

ized dual transform which reduces to the Hodge star in théield [16-18. These variables,[£]s] take values in the

Abelian case but for which there is still an electric-magneticdauge Lie algebra, depend on the parametrized poply

dual symmetry for nonabelian Yang-Mills theory. In fact, in Up to the point or¢ labelled by the valus of this parameter,

an earlier papef15], we have already suggested a generalﬁnd have only components transverse to the loop at that

ized dual transform which was able to reproduce many oPoint. They are known to give a complete description of the

what one may call the dual properties of the Abelian theoryYang-Mills theory but are highly redundant as all loop vari-

though not as yet the complete dual symmetry. The missingbles are, and have to be constrained by an infinite set of

link in the arguments there for obtaining a non-Abelian dualconditions which is most conveniently stated as the vanish-

symmetry was again the existence or otherwise of a locdng of the loop space curvatufé7,18

dual potentialA ,(x) for Yang-Mills fields. Although a local

G s]=0, 13
quantity A ,(x) did appear which functioned as the parallel wléls] 3
transport for the phase of color magnetic charges exactly as\ghere
dual potential should, we were unable to show that this
A, (x) can reproduce all field quantities — meaning that it G,.[€ls]=8,(S)F [£]s]—b,.(s)F [€]s]
gives a complete description of the theory. As a result of this ;
failure our treatment there, though having some desirable +Ig[F“[§|S]’F”[§|S]]’ (14
features, remained far from being dual symmetric. and 5,(s) denotes the loop derivativé/ 5¢“(s) at's. One

_ What we shall do in this paper is to show that a generalyreat virtue ofF ,[£]s] as variables is that they are gauge
ized dual symmetry does exist for non-Abelian Yang-Mills jngependent apart from an innocuoksndependent gauge
theory, and that the dual phase transggrtx) introduced in  rotation at the fixed reference poiRt, for the parametrized
[15] does function also as a dual potential in that it gives Ao0ps.

full description of the theory and plays an entirely dual sym- | discussing dual properties, however, it was found con-

metric role to the standard gauge poten#iglx). This result  yenient to introduce another set of quantitigg £s] which
is achieved by writing down a dual transform between twoyere defined as

new sets of variables which allows us to reformulate the
whole theory in an explicitly dual fashion. Indeed, although E L€ls]=D(s,0F [&s]P;*(s,0), (15
the new results are derived on the basis of results obtained
before, the new dual symmetric formulation is so muchwhere
neater than the old that we shall find it easier to derive some .
of the old results again together with the new than to refer _ : 2 ™
back to the older derivations. We shall therefore work P (52,81 Psexp< '9 Ll dsAE(9)e(s) | (16
throughout with the new dual formulation and only return in
the end to sort out the relationship with the older treatmentis the parallel phase transport from the poinsato the point

A dual symmetry for Yang-Mills fields means in particu- at s, along the loopé. Hence, in order to exhibit more
lar that colour electric chargegge., ordinary color charges clearly the dual properties of the theory, it is our intention
such as quarkswhich are usually taken to be sources of thehere to adopt these [ £s] instead ofF [ £|s] as field vari-
Yang-Mills field can also be considered as monopoles of th@bles. Our first task is to demonstrate that this is possible
dual field in the same way as color magnetic charges arander conditions which we shall have to specify.
monopoles of the Yang-Mills field. It follows therefore that ~ Recall first that the Polyakov variabfe,[ £[s] is defined
electric and magnetic charges, in non-Abelian as in Abeliaras



53 GENERALIZED DUAL SYMMETRY FOR NON-ABELIAN YANG- ... 7295

P

o

PO
FIG. 1. lllustration forF ,[ &|s]. FIG. 2. lllustration forE [ £]s].

i derivative ofE#[gls] is required at the samg then theés
Fﬂ[§|5]= —d 1 ¢] 0,(S)P[£], (17) function inherent in the first derivative has again to be rep-
9 resented by a bump function of finite width, say, so that
the second derivative can be defined on this segment of the
loop. Afterwards, we take first the limé’ — 0, and then the
27 ) limit e—0, in that order. In view of these regularization pro-
O[é]= Psexp< igJ dsA,(&(s))é (s) |, (18 cedures, it is often convenient to picture the quantities
0 F.[&s] andE [ £[s] as in Figs. 1 and 2.
or ®,(2m,0) as defined ir{16), so thatF [ £[s] can be pic- To show now thaEﬂ[gls] do constitute a yahd set of
tured as in Fig. 1, where th&-function 5(s—s') inherent in variables for a full description of the gauge field, we note

our definition of the loop derivati\?eﬁﬂ(s) is represented in first that by (15) and(17) we have
the figure as a bump function centred stwith width , _ , . o
e=s, —s_. In the same spirit, the quantiy,[ £/s] defined SUS")ELLE[s]= P (s.0/{d,(s")F [£]s]+igb(s—s")

in (15) can be pictured as the bold curve in Fig. 2 where the X[F,[&]s'].F [EsI®, (s,0), (2D
phase factorsb,(s,0) in (15 have cancelled parts of the a

Circuit in Flg 1.In contrast tGM[§|S]’ thereforeE#[ﬂS] iS Where 0(3) iS the Heavisidm function, e} that
dependent really only on a “segment” of the lo@pfrom

where

s-1os,. Gl &s]=®;  (s,0{8,(S)E,[&]s]
The reason for representing tidefunction in Figs. 1 and . | ¢ t . |
2 as a bump function is that, as in most functional formula- — 6,(S)E,[¢[s]}D(s,0), (22

tions, our treatment here involves some operations with the
6 function which need to be “regularized” to be given a and the condition(13) translated in terms of ,[ £|s] reads
meaning. Our procedure is to take first thdunction as a as
bump function with finite width, and then afterwards take the
appropriate zero width limit. For example, we shall need 8,(S)E,[€]s]—8,(S)E,[¢[s]=0. (23)
later the loop derivativeé,(s) of the quantityE [ £|s] at the _ _
same value o6. Clearly, a loop derivative has a meaning Hence, since we already know thaj[ £[s] constrained by
only if there is a segment of the loop on which it can operate(13) describes the gauge theory, we want now to show that
Therefore, to define this derivative, we shall first regardgiven a set ofF [£]s] satisfying (13) we recover a set of
E,[£s] as a segmental quantity dependent on the segmef,[ §|s] satisfying(23) and vice versa.
of the loopé from s— e/2 to s+ €/2. We then define the loop ~ The direct statement is easy to see. Gi¥gji£[s] satis-
derivatives,(s) using the normal procedure on this segment,fying (13), we know from the so-called extended Poincare
and afterwards take the limi#—0. In case a repeated loop lemma derived irf17] that we can recover a local potential
A, (x), from which a parallel transpofp .(s,0) by (16), and
hence also arE,[£|s] by (15) can be constructed. This
2For any functional[ £] of the parametrized loog, we defined  E [ €[S] will automatically satisfy(23) as we wanted.
[17] the loop derivatives,(s)= &/ 5¢“(s) as What is less obvious is the converse statement, namely
that given a set oE#[gls] satisfying (23), one can also
6 0 i 1 W e—w 19 recover a set oFH[§|s] satisfying (13). To see this, one
SEX(S) Y= SEM(S) \P['S]_A'TOZ{ [E1=WIED A9 potes first that giveri23), it follows that there exists some
W[ €|s] such that
with
E,[£]s]=8,(s)W[¢]s]. (24)
£ )=¢€%(s" )+ A5 5(s—s"). (20
In case of ambiguity,A5(s—s') in the expression above for Indeed, if one writes symbolically
&'%(s’) is replaced by a bump function with width and height &(s)
h, and the limite—0 with A=eh held fixed is taken first, to be W[§|s]:f 55'#(5)5#[515] (25
followed by the limith—0. £o(s)
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as a line integral with respect & along some path from an lemma of[17] that there exists a local potential,(x) such
arbitrary point&y(s) to the given pointé(s) then a similar  that the parallel transport is indeed given ). In turn,
argument as in the usual Stokes’ theorem would imply bythis implies that

(23) that W[ &|s] is in fact path independent and depends

only on the endpoing(s) as indicated. Furthermore, the de- | _ '_ _— ”
rivative of this integralW[ £|s] would give E [ £|s] as de- lim W ¢[s]=_lim g{¢§(s+ /S-) L =ALESDEH(S),

e—0 Sy —S_
sired. If we now take a product of the¥¢s along the loop . (30
¢, thus

and that

Dy(s0)=Py [l {1-igW¢ls'T}, (26) limE [ £]S]=F,,(£(5)E(s), (31)
s'=0—s e—0
it is seen to satisfy with F,,,(x) given as usual in7) in terms of theA ,(x)
1 , . R defined in(30) above. These two formulas will be of use to
D, 7(5,00,(8")P(s,00=—igb(s—s") D, *(s,0) us later.

XE S|P .(s,0). 2
M[§| l 5( ) @ I1l. GENERALIZED DUAL TRANSFORM

Defining then As noted above in the Introduction, Hodge star duality

does not lead to a dual symmetry for non-Abelian Yang-
Mills theory. We seek therefore a generalized dual transform,
if such exists, which may restore dual symmetry to Yang-
Mills theory. The experience gained in earlier work leads us
to believe that such a transform is best written in terms of the
variablesE [ £|s] introduced in the preceding section.

FulEls]=®; {(S.0E,[£s]P(s,0) (28)
with @ (s,0) given in(26), we have

S8, (SIF LLE]s]— 8,(S)F [€]s]=D; {(,0{S,(S)E [ €[s]

—8,(S)E,[&]s]}P«(s,0) We seek a dual transform with the following three prop-
) erties. First, we want, of course, that the new dual transform
—ig[F[&[s].F,[£[s]], reduces back to the Hodge stay for the Abelian theory, but

(29)  that it should not do so for the non-Abelian case or else the
conclusion of Gu and Yang ifil4] would be violated. Sec-
i.e., (22), which by (23) means thaGuv[f|5] vanishes, as ondly, in order for the new transform to qualify as a dual
required. transform, we want it to be invertible in the sense that, like
In the above argument, however, we have actually glossethe Hodge star, application of the transform twice should
over a rather important point, namely that in writitR7) we  give the identity, apart perhaps from a sign. Thirdly, we want
have used?24) in which, by our procedure detailed above, the transform to be such that, again like the Hodge star in the
W[ &|s] ought first to be regarded as a “segmental quantity” Abelian case, an electric charge defined as a source of the
depending on a segment ¢fwith width e=s, —s_, and direct field should appear as a monopole of the dual field,
only after the loop differentiation has been performed is thevhile a magnetic charge defined as a source of the dual field
segmental widthe to be taken to zero. On the other hand, inshould appear as a monopole of the direct field. This last
defining ®,(s,0) in terms ofW[ £|s], one wants already in Property seems to us to be the crucial feature which gives
(26) to take the limite—0. To assert both statements there-dual symmetry to the Abelian theory and which, we have
fore, we shall need a composition law féf which says that reason to believe from past experience, may give dual sym-
the factor (1-igW[ £|s]) for a small finite segment is in fact Metry also to Yang-Mills fields.
the same as the product of such factors for those infinitesimal Our suggestion is as follows. Given a set of variables
segments which make up this small finite segment. That suck.[£|s] describing the gauge field, we introduce a corre-
a composition law holds can be seen by an argument paralleponding dual set of variabl&M[n|t] labeled by» andt,
to that given in[17] for deriving the composition law for where» is just another parametrized loop with parameter
®[£] by writing it in terms ofF [ £[s] as a surface integral. which are distinguished here by different symbols frgm
Here, the line integral in loop spac€25) representing ands for convenience. For given andt, E [ |t] is defined
W[ &|s] is also in fact a surface integral in ordinary space-as
time for which a similar argument is seen to apply.
That being the case, we conclude tH:'aL[§|s] con- 1 ~ 2 -
strained by(23) do constitute a valid set of variables for @ (”(t))EM[ﬂ“]w(ﬂ(t)):—ﬁpro” (t)
describing the gauge field, which we shall adopt later for

discussing its dual properties. Note that, in contrast to the -
Polyakov variable§ [ £|s], the variable€ [ £|s] are gauge Xf SEdsE[¢]s]£7(s)
dependent quantities and so, though more convenient than )

F[£s] for studying duality, may not be so useful other- X E7%(s) 8(&(s)— n(1)),
wise. We note further that the fact we are able to recover (32)

from E,[&|s] satisfying (23) the Polyakov variables
F #[§|s] satisfying(13) means also by the extended Poincarewherew(x) is just a local rotational matrix allowing for the
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freedom of transforming from theU” frame in which di- it also means a nonvanishing loop divergence
rect quantities likeE [ £|s] are represented to aU” frame  8"(S)E,[£|s] of the variableE [ £]s] adopted here. On the

in which dual quantities likeE [ #|t] are represented, and other hand, a color magnetic charge defined as a monopole

N a normalization factofinfinite) defined ag17,18,15 of the \_(ang—MiIIs field is characterized most easily as a non-
vanishing loop space curvatufe7,18 G,,[ ¢|s] as defined

in (14), or alternatively, by(22) in terms of E [ £[s], as a
(2= . nonvanishing “curl” &,(s)E,[£|s]—6,(s)E,[£]s]. By a
N=1, dSH d*é(s’). (39 monopole of the dual fiel we mean then a nonvanishing
s7s curl 8,(t)E,[7|t]—8,(t)E,[7|t]. Hence to show that a
color electric charge is indeed a monopole of the dual field,
As (32) involves an implicit regularization procedure, i.e., We need to show that a nonvanishing divergencé ofil
a fixed order in which various limits are taken, some explalead to a nonvanishing curl of the dual variaBleas defined
nation is in order. The loop integral on the right-hand side ofoy the dual transfornt32). The parallel for this in the Abe-
(32), as for the loop derivative discussed in the precedindian theory is that an electric charge represented by the non-
section, needs a segment of the Iabpn which to operate. Vanishing divergencé’F ,,(x) of the Maxwell field can also
HenceEp[§|s] has first again to be regarded as a segmentd])e interpreted as the violation of the Bianchi identity for the
guantity depending on a little segment $ffrom s_ to s, dual field * F#V(X), which signifies the presence of a mono-
whose widthe=s, —s_ is taken to zero only after the inte- pole in *F.
gration has been performed. In the same spiiis) in the That a nonvanishing divergence & would generally
integrand is meant to represent the quantitylead to a nonvanishing curl & can be seen by direct com-
[£(s,)—&(s_)]/e which becomes the tangent to the loop putation. From(32), one can write
& ats whene—0. If one is interested only in the value of

Eﬂ[n|t] and not, say, in its derivatives, thEr)L[n|t] can be

taken as just a function of the poin(t) labeled byt on the P8, () {w™ H(p(t)E L nltlo(n(1)}

loop # and of the tangeng(t) to the loop at that point. In 5

that case, the function 6(¢(s) — 5(t)) on the right says that - #””aﬁfﬂvpaﬁ"(t)f Seds( 5, (s)EP[ €]s]}

the segment has to pass through atthe point#(t) but is N

otherwise freely integrated so théts)=[£(s;)—&(s_) ]/ e oD

can have any direction relative tg(t), except that the con- X &7(s)€ “(s)8(&(s) — m(1)), (39

tribution to the integral vanishes whef(s) is parallel to

7(t) because of the,,,,, symbol in front. However, if we  \here  recalling from the above paragraph that in
wish to evaluate the loop derivative,(t)=4/57%(t) of  s5¢£(s)— 5(t)) on the right,z(t) is first to be interpreted as a
E,[ 7/t] using the formula32), thenE [ #|t] itself has also little segment which coincides witf(s) for s=t_—t, , we

to be regarded as a segmental quantity depending on a segave puts, (t)=— 8,(s) and then performed an integration
ment of  from t_ to t, with width e’=t, —t_. After the by parts with respect t6¢. Expressing ne><;1.f”f‘”‘ﬁe,w,,(r asa
differentiation has been performed, one can then take theombination of Kronecker deltas and using the fact that seg-
limit €’ —0, and our procedure says that this limit should bemental quantities, like loop quantities, have only transverse
taken before the limik—0 for the integral. That being the loop derivatives so that botid,(s)é#(s) and 8,,(t) 7(t)
case, we may takee'<e, and the & function vanish, we obtain fof35)

S8(&(s)— n(t)) should now be interpreted as saying that the

segment coincides froms=t_ to s=t, with the segment

7, but outside that interval is still freely integrated so that b5, ()™ *((D)E [ pltlw(n(t)}
&(s) can again have any direction relative#¢t). Since the

integral receives contributions only frohsegments with¢ __ if BN rar ey Larey 2B
nonparallel to », we cannot takee'=¢, otherwise N A" (VE%(8) = 7 (D E(S)}

£(s)= n(t) and the integral would vanish. .
With these clarifications in the interpretation of the dual X 8,(S)EP[&]s]€7%(s) 8(&(s)— n(1)).  (36)

transform (32) let us now examine whether color electric

charges do indeed appear as monopoles of the dual field

Eﬂ[n|t], which property, as stated above, we believe to be :
crucial for dual symmetry. We recall first that a color electric
charge is usually defined as a source of the Yang-Mills field, 1 = _ =

namely a nonvanishing covariant divergenBeF ,,(x). o~ (7OHS,(MEL[7[t]= 9, (DE [7]tT}w(n(1)
Equivalently, according to Polyakdw.6], it is a nonvanish- 1 _ )

ing loop divergences*(s)F ,[£[s] of the loop variable =— =f 6§d56#m,3{775(t)§“(s)

F.[£|s]. Alternatively again, sinc€21) implies that N

multiplying by 3e we obtain

uvapfs

— 7*(1)€%(3)}5,(S)EPL &]s]
S*(S)E,[£s]=D(s,0{8*(s)F [&[s]}D; ' (s,0), (39 X E2(s) 8(£(s)— (1)), (37)
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where the factorss~1(7(t)) and w(7(t)) can be taken out-
side because loop derivatives vanish for local quantities.

One sees thus that the divergencetofs indeed related to s s = o °_
the curl ofE and that an electric charge characterized by the y

nonvanishing of the former will in general mean a monopole s, 5 S S-

characterized by a nonvanishing curl of the latter. Con- a b c d e

versely, if &°(S)E,[£|s]=0 then §,(t)E,[7|t]
—8,(1)E,[ 5|t]1=0, or in other words the absence of sources
in E will guarantee the absence of monopolesEinwhich . ] ]
statement is in fact what is needed for deriving dual symmeFig. 3b). This last figure can be expressed as the product of
try, as we shall see later. three factors, namely Figs(@,(d),(e) in the order indicated.

Next, we wish to check tha32) reduces to the Hodge In the Abelian theory, the ord_ering of the factors is l_Jnimpor-
star relation when the theory is Abelian but not when thefant so that the factors of Figs(c3 and 3e) cancel in the
theory is_non-Abelian. To see this, we let the segmentalimit when the segmental widte—0, leaving only the factor
width of E,[ #|t] in (32) go to zero so that we can use the of Fig. 3(d), which can as usual be expressed BY) as
formula (31) to write the left-hand side in terms of local Fna(£(S))€%(s), giving

FIG. 3. lllustration for the integrand in dual transform.

guantities
_ 2 ~ 2 . :
o0 YXF () 0(X) = — =€,,p0 Fun(X)=— ﬁf,”paf 0£dsPPU(&(s))€a()€°(S)
X f SEdsEP £ls]£7(s) € 2(s) XE2(S)S(X—E(S)=— F€u,,F""(X), (39
X 6(x—&(s)). (38)

which is just the Hodge star relation if we identify, ,(x)
We recall that our procedure is to do the integral beforewith *F,,(x). On the other hand, for a non-Abelian theory,
taking the width of the segment EM[§|S] to zero. In other the factors of Figs. @) and 3e) cannot be commuted
words, within the integral, the loog can still vary by a through the factor of Fig. (8l) so that the above reduction to
S-functional bump as illustrated in Fig(&. For such a¢, the Hodge star relation will not go through.
E_[£|s], which is obtained by making &-functional varia- Lastly, we wish to examine whether the dual transform
tion along the direction, will take on the shape depicted in (32) is invertible. From(32) we can write

2 . ~ . .
ﬁf“ﬂ“”ég(u)f Sndtw ™ H(n(t)E [ nltle(n(t) 7, (t) 77 2(t) 8(5(t) — {(u))

4 . R o
L f Sndtan (O 70 721 8(n(t) — £(W) f SEdsE £[S1E7(S)E2() S(E(S)— (D). (40)

By integrating first over all directions af(t) which we re-  Using the argument in the paragraph above, one can show
call from the explanation given aft€B2) is admissible, we that the integral ir(41) is antisymmetric in the indices and
obtain a factoNé6;/4, so that the right-hand side reduces to o giving then just twice the first term where, sinfeand &
are no longer forbidden to be parallel, we may put them
2 . equal usings(&(s)—¢(u)) so that the whole expression re-
N—{5ff5§— 88523 p(u) duces to jusE®[ £|u], giving

2 .
xf SedsEPL€)S1€7(s) & 28(€(s) — n(1). @) @QW)ELu]e H(¢(u)= ﬁea[;m{"w)f Sndt

XE glt] 7Nt 7 (1)

_ 3Although w(7(t)) does vary whem is va_rie_d att, its variation X 8(n(t)—L(w)), (42)

is of measure zero compared with the variation of the loop so long

as thes function in the definition of the loop derivative is given a as required.

finite width, so that the derivative has to be assigned the value zero We have now shown that the generalized dual transform
for consistency with our standard procedure for resolving such amsuggested in(32) does indeed have all the three properties
biguities. that we desired.
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IV. PURE YANG-MILLS THEORY which in terms of the Polyakov variablﬁ[ﬂs] takes the

~ familiar form
With the variable€ andE introduced in the two preced- "

ing sections, let us now examine the dual properties of the

pure Yang-Mills theory. Since the theory in the standatiel 1 .

rec formulation has a local potentidl,, (x), it follows that ng: — __f 5§dsTr{F#[§|s]F“[§|s]}§‘2(s), (49)
if the theory is symmetric under the dual transfof82) in- 47N

troduced above, then there must also be a local potential

Z\M(x) in the dual formulation. Now, in the Abelian theory, it
was the equation of motiofi3) which guaranteed via the
Poincardemma the existence of the dual poten#igl(x); so
we can hope that here too in the non-Abelian theory, it is the 1
Yang-Mills .equatlon of motion, namel{8), which guaran- =/Z(F): _ __f 5§dsTI‘{EM[§|S]E’“[§|S]}§72(S). (50)
tees the existence of the local potenfigl(x). We shall now 47N
show that this is indeed the case.

According to Polyakoy16], the Yang-Mills equatior{8)

can be written in terms of the loop variabIE§[§|s] as Incorporating the constrairi23) into the action by means of
Lagrange multiplieraV,,,[ £|s], we obtain

we have from(15) in terms ofE#[§|s]

o*(s)F [ £]s]=0. (43
By (34) it follows that A= A2+ f SEAs TH{WH£[s](8,(S)E [ £]s]
8(s)E [ &]s]=0. (44)

- — 5u(S)ELLlsD}, (51)
Hence by(37) the dual variableg [ n|t] have to satisfy the

condition o . . .
the extremization of which with respect to the variables

5V(t)E#[77|t]—5M(t)EV[7;|t]=O. (45 E),angls] yields then the equation of motion in parametric
However, we know from Sec. Il that this is exactly the con-
dition for these variables to possess a local potential. Indeed, —
according to the arguments thetd5) implies the existence E.[&ls]=—[4mNEX(9)]8"(S)W,,,[ &]s]. (52
of aW[ #|t] such that

= _ 5 The parameteww[as] being antisymmetric in its indices
ELnlt]= 0, (OWL7[t], (46) u,v, (52) is easily seen to imply43), or in other words the
Yang-Mills equation(8) as expected.

and the local potentiah is given by the dual analogue ; .
P ik, (x) s giv 4 N u Now earlier work has shown that the Lagrange multipliers

of (30 in such a formulation often play the role of a dual potential
A ) P (1) = lim W »lt1. 4 [15]. If so, we expect that the dual potentf),(x) should be
w7 €0 [lt] @) expressible in terms of the parametmv[ﬂs]. For rea-

sons which will be made clear later when we deal with color
One sees thus that the existence of a local dual potenti@harges, we anticipate that,(x) is expressible in terms of
A, (x) is indeed guaranteed. W, [&]s] as
From previous work17,18,20,1% we have learned that it
is possible, and in fact even convenient for deriving the dy-
namics of color charges, to reformulate the Yang-Mills A#(X)=47TJ 5§d56wp,,w(§(s))wp"[§|s]af1(5(3))
theory in terms of loop variables. This was done for the
Polyakov variable& ,[ £[s]. Let us do it now in terms of the X £/(8)E72(3) 8(£(S) — X). (53
variablesEM[§|s]. We have shown already in Sec. Il that
they give a complete description of the theory although they
have to be constrain(_ad by the curl-free condi.t(aﬁ). Sup- However, we have already given a formula ]‘ZL(X) in
pose then we start with the standard Yang-Mills acfion:  tgrms of W[ 7|t] in (47). To see that these two expressions
agree, substitute the expressi@®2) above into the dual

1 -
Ap=— Ef d*x Tr{F ., () FA"(x)}, (48) transform(32) obtaining

| o O Lrltlo(n(1) =80, 7(1) | stds
4For su2), our convention iB=B't; ,t;=7;/2, TB=2X sum of

diagonal elements, so that Tit() = &;; . Our results are given ex- X 8,(S)WP[ §|S] .ga'(s)
plicitly for su(2) although they can be trivially extended to any su “

(N). X 6(&(s)— n(1)), (54)



7300 CHAN HONG-MO, J. FARIDANI, AND TSOU SHEUNG TSUN 53

where for o~ X ()WL 7|l (7(1)
* MV[§|S] ,uvp(er(r[é:|S] (55) .
= M o
one can rewrite 4wy (t)f sédse,,,, W £]s]
€vprOa( S)WPALE[S]= —{6,(5)* W, [ £]s] X £%(s) 8(£(s) — (1)), (58)
0,(8)* Wou[[s] from which we obtain easily througid7) the relation(53) as

+8,(5)*W,,[¢]s]}. (56)  desired. | |
The structure of the preceding arguments is set out on the

However, since loop quantities by definition have only loopleft-hand side of chart I, where the invariance will be
derivatives transverse to the loop, the last two terms insidgdemonstrated later. The similarity with chart |[d5] for the
the bracket on the right-hand side @6) give zero contri-  Abelian case is obvious.

butions when substituted in{&4) giving Next, we explore whether a similar structure is also ob-
tained if we go over into the dual formulation in terms of
w‘l(n(t))EM[ﬂt]w(n(t)): —8775#(t)J Sédsy(t) E. Substituting the expressidd?2) for E in terms ofE into

the action(,q/’;g in (50), we obtain on integrating ovef and

X *W [fls]é”(s) summing over indices

1 ~ ~ i
X 8(E(8) = (V) A= st THE, OBl 720, (59
(57) 47N

where we have performed an integration by parts with rewhere we have used the fact tI%,;[nh] has only compo-
spect to8¢. It follows then from (46) that, apart from a nents transverse to the loop. Apart from a sign, this is
constant term formally the same as the acti@B0) in terms ofE. Hence, if

Chart 1
Pure Yang-Mills Theory

SU(N) invariance | E,= ~Feuwpo A Pl S e () ‘ ‘E)l Ey= lfpupaé”fw—l Brui?ii8(n—8) | | Sm) invariance

|E,, derivable from A, l(=) 8E,—§¢ Ey\ /—6 B, =0 (=)|E derivable from A ]

|A° L [Tr(E, Eﬂ)ﬁl— | A= e [T B

N .

[A = I Te(Fu F*) [A= A+ [T (6,5, - 3,5.) [A= B4 D (6B, —0,B,)]  [2= [T ™)

S E, = 0| &————======|E, = —47NE2*W,, E, = 4arNj2*W,, | =—oees>

8,E,—8,E, =0 8,E,—6,E, =0

AW st By = 8, | ——| W =4repupo [ W w€6(6 ~ 1) | | W = 4meuupo JEF— WPwib(n ~ €) |——[FW st B, = 8,0

e R o v R e o T R

SW) invariance SU(N) invariance
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we extremize this action under the constrai#) ensuring We notice that at every space-time point not on the world
that E is curl-free to remove the redundancy of these vari-line Y#(7) of the monopole, the conditiof60) says that the
ables, we see that the problem will formally be exactly thecurl of E vanishes, which is exactly the constraint we need to

same as for the direct formulation in terms®f producing impose on theE variables to remove their intrinsic redun-
the structure shown on the right-hand side of chart I. In othedlancy. Hence, in the actiof63), where this constraint has

words, one has an exact dual symmetry as hoped. already been incorporateH, [ £[s] can now be taken as in-
dependent variables.
V. YANG-MILLS THEORY WITH CHARGES Extremizing then 7 in (63) with respect to the variables

E#[gls] and Y#(7), we obtain agairt52) together with
Monopoles in gauge theories have by virtue of their topo-

logical nature an intrinsic interaction with the gauge field,

and Wu and Yand1] have suggested a criterion whereby d?Y#(7) _ .
equations of motion for monopoles can be derived as conse-  M—5=— = —8779J' 6édse”?P? 5% (s)
guences of the topology without introducing an explicit in-

teraction term into the action. The criterion has already been R dy,(7)
repeatedly applied with success in earlier wikk,20,15. In XTH{W,, [ £]s].Z(7)}
case a theory is dual symmetric, then both electric and mag-

netic charges are monopoles in the appropriate fields so that X 8(&(s)—Y(7)). (64
the Wu-Yang criterion can be applied to both giving dual

symmetric equations as the result. This was the case in thierom these the Lagrange multiplierg,,[ £/s] can be elimi-
Abelian theory, and since we now claim that the Yang-Millsnated giving the Polyakov equatio@3) or (44) together
theory is symmetric under the new generalized duality, itwith

should be true here also, which is what we wish now to

demonstrate.

Let us start with a color magnetic charge which is a d2Y#(r) 29 oo o
monopole in the Yang-Mills field, appearing as a topological Mgz = W—j sédse " THE [ ¢]s1.Z(1)},(s)
obstruction with nontrivial loop space holonomy, or equiva-
lently nonzero loop space curvatufbw[ﬂs], constructed o
from the Polyakov variablé [ £|s] as connectior17,18]. xX&E(s)
This in turn means nonzero curl fErM[§|s]. The statement
that there is a classicétolor) magnetic point chargg mov- ) o
ing along a worldlineY#(r) can thus be explicitly expressed Where one sees thé,[ £|s] appears in the combination
as

£,(5)

T

dy,(7)

T

8(£(s) =Y (7)), (65

2 . .
SUSELHS]- 3, (SE L6l —dmd, [ds], (60 ] POSVELESIEDE DA V). (@9

with
which is exactly what appeared also in the dual transform
— ) dY’(7) . (32) if one takes there the zero segmental width limit
‘]MV[§|S]296MVWJ dr.72(7) —4;¢7(9)8(&(s) —Y(7), (e—0) and puty(t)=Y(7). However, the other field equa-
(61)  tion of motion (44) has already been shown via the dual
transform to imply the existence of a local gauge potential

A,(x) for E,[ 7]t], so that by(31) in the limit of zero seg-
mental width

where 7Z(7) is an algebra-valued quantity satisfying the
condition expw.7%=—1 [17].

The Wu-Yang criterion stipulates that equations of mo-
tion are to be derived by imposing this definiti®0) of the

monopole as a constraint on the free action, which is for the = = -
classical point particle EL7ltl=F,.(n(1)7"(V), 67

with
A= R—m f dr. (62) _ _ _ L
Fun(X)=3,A,(X) = 3,A,(X) +ig[AL(X),AL(X)]. (68)

Incorporating then the constrai(@0) by means of Lagrange

multipliers WW[§|S] into the action, we have Whence, it follows that65) reduces to

d2ym(r) ~ dy,(7)
.,fz:%%f5§dsTr[W#V[§|s]{5y(s)Eﬂ[§|s] m— =z =9 THK(DF (Y (D)—g— (69

—8u(S)E [¢ls]+4mI, [€ls]}]. (63)  with
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K(7)=o(Y()).Z (7)o XY(7), (70) Consider next a Dirac particle carrying a color magnetic
charge. The logical steps for deriving its equations of motion

and EW(Y(T)) as given by(68), which is the dual of the in the gauge field using the Wu-Yang criterion are the same
Wong equation[19]. as for the classical point particle, except that the free action

Conversely, if we start with a color electric charge con--7° is now[20,15

sidered as a monopole Bf,[ 7|t], we will obtain via exactly
the same arguments the dual of the above equations, namely

A=+ f d&ﬁx)(iaﬂyﬂ—m)w(x), (75

SM(OE,L[7]t]=0, (79) o
and the “current”JM[§|s] in (63) is now the quantum cur-
which guarantees the existence of the potetiglx) and is  rent
equivalent to the “dual Yang-Mills equation”:

3L ESI=Tepod YES) 0 (£(3))YLE(S)

P70 (72 X o~ HES)HEO, 76
with _ _ ]
both depending on the wave functiaf(x) of the particle.
Extremizing the actior(63) with respect toE [ £|s] yields
D,=d,—ig[A,(x), ], (73  again the equatiofb2) which is equivalent to the Polyakov
equation(43) or the Yang-Mills equatior(8). Extremizing
together with the Wong equation 7 with respect toy(x) on the other hand yields
d2YH(r dvy,(r P9,y —m)g(x) = —GA ,(X) y“¥(x), 7
o dT; )=—gTr{|(T)F'U‘V(Y(T))} dyfr )_ (74 (19,7 =m)p(X) = —gA,(X) y*$h(X) (77)

whereA ,(x) is as given in(53) and has already been shown
The dynamics of a classical point charge is thus seen to bidere to be the same as the dual potential. This equation is
entirely dual symmetric. thus exactly the dual of the Yang-Mills-Dirac equation for
().

Starting with a color electric charge considered as a
5This equation(69) should be clearly distinguished from the equa- monopole ofE[ 7|t] and following exactly the same argu-
tion with *F ,,(x) in place of theEW(x) here which we used to ments will lead easily to the dual equations to the above,
write in previous work17,20,15 prefaced by a warning that it was namely the conditior{45) which guarantees the existence of

meant only as illustration and should not be taken literally becauséhe local gauge potentiah ,(x) together with the Yang-
*F ,.,(x) is patched and cannot be given a meaning at the positioMills-Dirac equation fory(x):

Y(7) of the monopole. The present equati@9) does not suffer

from these faults sincgw(x) is covariant with respect to but

invariant with respect tdJ transformations so that in the presence (id,y*—m)h(X)=—gA,(X) Y*i(X). (78

of the magnetic charg@vhich is a monopole of but only a source

of E) it need not be patched at all and can exist even at the positiolVe have thus also for the quantum particle exact dual sym-
Y(7) of the magnetic charge, just as in the dual situation the Yangmetry as we had hoped.

Mills field F,,(x) requires no patching when only electric charges ~ The result in this section is summarized in chart I, which
are present. Whatever patching that was needed has been absorf@deen to be quite symmetric on left and right and entirely
into the transformation matrix(x) which has itself to be patched analogous to the chart Il ¢fL5] for electrodynamics.

in the presence of the magnetic charge, as was shown in Sec. VI of

[15]. One notes further that the appearance*#f,,(x) in (69) VI. UxU INVARIANCE
instead ofF,,(x) would make the equation non-dual-symmetric ] ) ]
since according to Gu and Yangl4] a “dual potential” to That there is a dual doubling of the gauge symmetry in

*F,,(x) sometimes cannot exist. On the other hand, by virtue ofYang-Mills theory has already been shown previously
the Yang-Mills equation of44), a potential forF ,,(x) is knownto ~ [20,15. Our task here is merely to outline how this gauge
exist through the arguments in Sec. II, thus restoring the symmetrgymmetry operates in terms of the new formulation, which
with F ,,(x) which is endowed with a potential right from the be- turns out in fact to be considerably simpler than it has ap-
ginning of the standar¢irect formulation. Technically, what had Peared before. _

gone wrong in “deriving” the old equation wittf F (Y (7)) was Under simultaneous infinitesimél andU local transfor-
that one had to take first the limit of the segmental wigth0 and ~ mations parametrized respectively by the gauge parameters
apply the formulg(31) in the expressiofi66) before performing the  A(x) and A(x), the variablesE [ £|s] and E [ 7|t] trans-
integral, whereas the rule of the game as we understand it noform as

requires that the integral has to be first performed before the

€—0 limit is taken, a rule to which we have now adhered. E [€]s]=[1+igA(&(s)]IE,[£]sI[1—igA(&(s)], (79
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E,[7ltl=[1+igA(p())IE,[ 7t 1-iGA((1)],  (80)
while the rotation matrixo(x) transforms as
o(X)—=[1+iGAX) ]@(X)[1—igA(X)]. (82)

It is clear then that the dual transfor(82) and its inverse
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A(x)=—8m f sédsA [ £s]€(s)8(£(s)—x).  (85)

Given that it is this dual potenti& ,(x) which is coupled
to the wave functiony(x) of the magnetic charge, it is clear
then that the actiof63) on chart Il is also invariant when the
above transformations are coupled with the usual transforma-

(42) are both gauge covariant. Further, recalling that theions for the Wong “charge”

gauge parameters (£(s)) and A(&(s)), being local quanti-
ties, have zero loop derivativeésee the footnote in Sec. JJI
one sees that the relati¢®7) giving the curl ofE in terms of
the divergence oE which is so crucial for our duality argu-

ments is also gauge covariant. That being the case, we need

henceforth consider the invariant properties for only one hal

K(7)—[1+igA)IK(D[1-igA(X)], (86)
and for the wave function
Y()—[1+HIGAX) P(X). (87)

f

of the dual symmetric charts | and Il, since those for theThis last observation then completes our task.

other half will follow automatically.
Consider first chart | for pure Yang-Mills fields. It is ob-
vious that the free field term in the actighl) is gauge

invariant. The only question then is how the Lagrange mul-

tipliers WW[§|S] in the constraint term will transform. We
put

W, [é[s]—[1+igA(E(s) KW, [ £ls]

+iG€,,08°(S)ATE[STI1—iIgA(£(9)],
(82

where we notice that in addition told-gauge rotation there
is an inhomogenioud term parametrized by a vector quan-
tity A“[&|s]. Under a pureU transformation[i.e., for

A =0 in (82)] the transformation OWMV[§|S] is that of the
tensor potentidl discovered some years ago first in super-
symmetry theory[23]. On substituting(82) into the action
(51), the U-gauge rotation factors cancel, while the extra
increment due to\“[ £|s], after an integration by parts with
respect teg, is seen to vanish by virtue of the identity satis-
fied by the curl ofE, namely

€77 5,(8)(8,(S)E,[]s]— 5,(S)E,[&]s)=0, (83
leaving thus the whole action invariant.
The Lagrange~multiplieWW[§|s], however, is related to
the dual potentiah ,(x) by the relation53) so that its trans-

formation in (82) will induce a transformation in the dual
potential. The result is

AL ()= [1+HIGAX)TA,L(O[1—iFAX)]
~2i0, | staskidslE s aEe -0, (8

where we have used the fact tkﬂa,][ £|s] has only transverse

derivatives and performed an integration by parts with re-

spect toé. Hence we see tha}#(x) transforms as a gauge
potential should, if we put

Sindeed, the Yang-Mills action when formulated in loop space

VII. CONCLUDING REMARKS

Compared with our earlier workl5] the present paper
has gone further in yielding an actual dual symmetry which
had previously eluded us and in giving simpler derivations of
the old results. The basis for this improvement is the dual
transform of(32) which allows one to switch at will from
one formulation of the theory to its dual. In terms of this
language, our previous treatment is only a half-way house
where only part of the dual transform has been carried out.
Thus, for example, the so-called dual potenm’gly[§|s] of
[15], which is essentially outV,,[£[s] here, has in the
present treatment to undergo a further transform, namely
(53) which is analogous t¢32), in order to give the genuine
dual potentialA ,(x). It is the realization of this step which
eventually reveals the full dual symmetry.

Since the relationship between the two treatments can be
worked out, given the relatiofl5) between the variables
E,[£[s] used here and the Polyakov variablBs][ |s]
adopted in the earlier paper, no detailed comparison need be
given! There is one point, however, concerning the phase
factor ® (s, ,0) occuring only in[15] which puzzled us at
first and deserves perhaps a mention. The fadtg(s, ,0)
appeared first if15] in the defining constraint for the “mag-
netic” current

GMV[§|S]=_47T‘]/LV[§|S]1 (88)

where for a classical point charge we had

- dy?(r).
JMV[§|s]=gK[§|s]e,w,wf dr—g—£€7(5)8(&(s) = (7)),
(89

with
K[ Els]=@; (54,00 7(1) P (s+.,0), (90

and.7%(7) a local quantity, while for a Dirac point charge we
had

(49) is entirely analogous to the Freedman-Townsend action with "We note that, for convenience, we have used the same symbols in
WM[§|S] here playing the role of the Freedman-Townsend tensosome cases to denote related but not identical quantities in the two
potential[21,22. papers, but this we think should not lead to any confusion.
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E,, derivable
from potential

Sm) invariance

3, ES1=Tepol H(E(S) 0 (E(S)) ¥t

X 0 HE(S)PES)]P; (1,0t D(s,,0).
(91)

These expressions differ fro(61) and(76) of this paper by

E, derivable
from potential

SU(N) invariance

but will not do so without these factors. On the other hand,
although in the equatio(60) which is the equivalent t¢388)

in terms of E [ £|s], the current must also satisfy a similar
identity (83), this involves only the ordinary loop derivative
6,(s), and not the covariant loop derivative,(s). The
expressiong61) and (76) have thus no need for the phase

the factor®(s,,0) and its inverse, where we note that thefactors ® (s ,0) and@gl(s+,0). This difference between

argument iss, and nots as elsewhere in this pap&hat
these factors should be there(BB) and(91) for consistency
but not in (61) and (76) can be seen as follows. The loop
space curvaturé W[§|s] as exhibited in(14) satisfies the
Bianchi identity

e’ ,(s)G [ £]s]=0, (92
where 7, (s) denotes the “covariant loop derivative”
Z,(s)=46,(s)—ig[F [ £[s], 1. (93

Hence the currenﬂw,[§|s] on the right-hand side of88)

the “currents” in the two treatments means that the corre-
sponding Lagrange multipliers, namély, [ £[s] in the old
andW,,[£|s] in the new, are also related by a conjugation
with respect tab (s ,0), from which it follows that the dual
potentialA ,(x) defined in[15], in spite of appearances, is in
fact identical to that defined here {63).

The above observation serves as a further example for the
delicate handling often required in loop space operations,
which we consider as a weakness of the whole loop space
approach. Although we believe we have considerably im-
proved our understanding in the present work, sufficiently in
fact to clarify one or two subtle points such as that in the

must also satisfy this identity, which it does if it contains theWong equation noted in the footnote of Sec. V which we

factors®(s..,0) andtbgl(s+,0) as shown in89) and(91),

8In [15,20, we had actually writtenw(é(s,)) instead of

have not been able to make clear before, we still feel strongly
the lack of a general calculus for handling complex loop

space operations, the construction of which however is un-
fortunately beyond our present capability.

w(&(s)) as we do here to indicate that it was not affected by loop Apart from this reservation, we find the result of the
differentiation, but this is in fact unnecessary in view of the foot- present paper rather gratifying in that it seems to have an-
note of Sec. IIl. swered the long-standing question whether there is a dual
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symmetry for Yang-Mills theory and gives even an explicit, very different objects, the former being essentially algebraic
though rather complicated, transformation between dual variand the latter topological, and that the dynamics is deter-
ables, which is being sought for in other duality contexts. Foimined here via the Wu-Yang criterion by the topology in an
us in particular, it seems to have answered also a questicgntirely different fashion from the manner that interactions
that we have been asking on and off for some years concerfior sources are usually introduced.

ing the dynamical properties of non-Abelian monopoles. The
answer to this turns out to be staggeringly simple, namely
that monopole dynamics is the same as that described by the
standard theory for Yang-Mills sources, only formulated in
the dual fashion. In consequence, one need not enquire, at One of us(T.S.T) thanks the Wingate Foundation for
least at the classical field level so far studied, whether thgartial support, while anothefJ.F) thanks the Particle
charges one sees in nature are sources or monopoles unl@3wory Group of the Rutherford Appleton Laboratory for
both types exist, for otherwise there will be no way to dis-hospitaility during her summer visit there when part of this
tinguish them. This is a rather unexpected result in view ofwork was done. We are also indebted in many ways to Pro-
the fact that sources and monopoles are initially conceived agssor Rudolf Peierls.
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