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It is shown that classical nonsupersymmetric Yang-Mills theory in four dimensions is symmetric unde
generalized dual transform which reduces to the usual dual * operation for electromagnetism. The pa
phase transportÃm(x) constructed earlier for monopoles is seen to function also as a potential in giving a
description of the gauge field, playing thus an entirely dual symmetric role to the usual potentialAm(x).
Sources ofA are monopoles ofÃ and vice versa, and the Wu-Yang criterion for monopoles is found to yie
as equations of motion the standard Wong and Yang-Mills equations for the classical and Dirac point ch
respectively; this applies whether the charge is electric or magnetic, the two cases being related just by
transform. The dual transformation itself is explicit, though somewhat complicated, being given in term
loop space variables of the Polyakov type.@S0556-2821~96!06410-7#
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I. INTRODUCTION

It is well-known that pure electrodynamics is symmetr
under the interchange of electricity and magnetis
E→H,H→2E, or equivalently under the Hodge sta
operation:1

*Fmn52 1
2 emnrsF

rs. ~1!

This has led to many interesting consequences which h
always intrigued physicists@1–9# and have recently again
excited much interest due to the work of Seiberg, Witte
and many others@10–13#.

In view of the importance of Yang-Mills theories to par
ticle physics, it is natural to ask whether a similar symme
exists also for non-Abelian gauge fields. This question c
be asked at many different levels. Recently, it is most oft
addressed at the level of quantum fields, where the Ya
Mills theory is embedded in a larger theory, usually sup
symmetric and existing in a high-dimensional space-time,
which charges, whether electric or magnetic, appear a
Hooft-Polyakov solitons@10#. Here, however, we adopt a
minimalist approach and ask whether strictly fou
dimensional and nonsupersymmetric Yang-Mills theory m
possess a dual symmetry at the classical field and p
charge level. Since it is at this level that the Maxwell theo
exhibits the well-known dual symmetry, it seems reasona
to ask first whether Yang-Mills theory might possess a ge
eralized version of this symmetry also at the same level.

If duality for non-Abelian theories is taken to mean aga
just the Hodge star operation~1!, then the answer to the

1In our convention,gmn5(1,2,2,2),e012351.
53/96/53~12!/7293~13!/$10.00
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above question is no. The field tensorFmn in the pure Max-
well theory satisfies the equations

Fmn~x!5]nAm~x!2]mAn~x! ~2!

and

]nFmn~x!50. ~3!

By virtue of ~2!, Fmn then satisfies the Bianchi identity

]n *Fmn~x!50. ~4!

Moreover, because the Hodge star operation is reflexive

* ~ *Fmn!52Fmn ~5!

the Maxwell equation of~3! can similarly be interpreted in
this Abelian case as the Bianchi identity for*Fmn , which
then implies by the Poincare´ lemma that there exists a po-
tential Ãm such that

*Fmn~x!5]nÃm~x!2]mÃn~x!. ~6!

One sees therefore thatFmn(x) and *Fmn(x) satisfy formally
the same equations, or that electromagnetism is dual sy
metric. For the pure non-Abelian theory on the other han
the Yang-Mills field tensor satisfies, in parallel to~2! and~3!
for the Abelian case, the equations

Fmn~x!5]nAm~x!2]mAn~x!1 ig@Am~x!,An~x!# ~7!

and

DnFmn~x!50, ~8!

whereDm denotes the usual covariant derivative
7293 © 1996 The American Physical Society
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Dm5]m2 ig@Am~x!, #. ~9!

Although ~7! implies again the Bianchi identity

Dn*Fmn~x!50, ~10!

this is not the dual of~8!, since the covariant derivative in
~10! involves the potentialAm(x) and not some ‘‘dual poten-
tial’’ appropriate to *Fmn(x). Furthermore, the Yang-Mills
equation~8! itself can no longer be interpreted as the Bianc
identity for *Fmn(x), nor does it imply the existence of a
‘‘dual potential’’ Ãm(x) satisfying

*Fmn~x!5
?

]nÃm~x!2]mÃn~x!1 i g̃@Ãm~x!,Ãn~x!#, ~11!

in parallel to~7!. Indeed, it has been shown by Gu and Yan
@14# that for certain cases ofFmn(x) satisfying~8! there are
no solutions forÃ(x) in ~11!, which result shows once and
for all that dual symmetry of Yang-Mills theory under th
Hodge star operation does not hold.

However, it is not excluded that there may be a gener
ized dual transform which reduces to the Hodge star in
Abelian case but for which there is still an electric-magne
dual symmetry for nonabelian Yang-Mills theory. In fact, i
an earlier paper@15#, we have already suggested a gener
ized dual transform which was able to reproduce many
what one may call the dual properties of the Abelian theo
though not as yet the complete dual symmetry. The miss
link in the arguments there for obtaining a non-Abelian du
symmetry was again the existence or otherwise of a lo
dual potentialÃm(x) for Yang-Mills fields. Although a local
quantity Ãm(x) did appear which functioned as the parall
transport for the phase of color magnetic charges exactly
dual potential should, we were unable to show that t
Ãm(x) can reproduce all field quantities — meaning that
gives a complete description of the theory. As a result of t
failure our treatment there, though having some desira
features, remained far from being dual symmetric.

What we shall do in this paper is to show that a gener
ized dual symmetry does exist for non-Abelian Yang-Mil
theory, and that the dual phase transportÃm(x) introduced in
@15# does function also as a dual potential in that it gives
full description of the theory and plays an entirely dual sym
metric role to the standard gauge potentialAm(x). This result
is achieved by writing down a dual transform between tw
new sets of variables which allows us to reformulate t
whole theory in an explicitly dual fashion. Indeed, althoug
the new results are derived on the basis of results obtai
before, the new dual symmetric formulation is so mu
neater than the old that we shall find it easier to derive so
of the old results again together with the new than to re
back to the older derivations. We shall therefore wo
throughout with the new dual formulation and only return
the end to sort out the relationship with the older treatme

A dual symmetry for Yang-Mills fields means in particu
lar that colour electric charges~i.e., ordinary color charges
such as quarks! which are usually taken to be sources of th
Yang-Mills field can also be considered as monopoles of
dual field in the same way as color magnetic charges
monopoles of the Yang-Mills field. It follows therefore tha
electric and magnetic charges, in non-Abelian as in Abel
hi
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theories, have basically the same dynamics, namely th
given by the standard Maxwell and Yang-Mills equations
only formulated in a dual manner. Furthermore, since th
relation here between the field and the dual field thoug
somewhat complicated is explicitly known, the result ma
have brought us one step nearer to realizing the hope
obtaining the strong coupling limit of one formulation from
the weak coupling limit of its dual by making use of the
generalized Dirac condition

gg̃5
1

2N
, ~12!

relating the magnitudes of electric and magnetic couplin
for a theory with gauge group SU(N).

II. Eµ†jzs‡ AS VARIABLES

In our previous paper@15# on Yang-Mills duality we have
relied heavily on a loop space technique developed earli
using the Polyakov variablesFm@jus# to describe the gauge
field @16–18#. These variablesFm@jus# take values in the
gauge Lie algebra, depend on the parametrized loopj only
up to the point onj labelled by the values of this parameter,
and have only components transverse to the loop at th
point. They are known to give a complete description of th
Yang-Mills theory but are highly redundant as all loop vari
ables are, and have to be constrained by an infinite set
conditions which is most conveniently stated as the vanis
ing of the loop space curvature@17,18#

Gmn@jus#50, ~13!

where

Gmn@jus#5dn~s!Fm@jus#2dm~s!Fn@jus#

1 ig†Fm@jus#,Fn@jus#‡, ~14!

and dm(s) denotes the loop derivatived/djm(s) at s. One
great virtue ofFm@jus# as variables is that they are gaug
independent apart from an innocuousx-independent gauge
rotation at the fixed reference pointP0 for the parametrized
loops.

In discussing dual properties, however, it was found co
venient to introduce another set of quantitiesEm@jus# which
were defined as

Em@jus#5Fj~s,0!Fm@jus#Fj
21~s,0!, ~15!

where

Fj~s2 ,s1!5PsexpS igE
s1

s2
dsAm„j~s!…j̇m~s! D ~16!

is the parallel phase transport from the point ats1 to the point
at s2 along the loopj. Hence, in order to exhibit more
clearly the dual properties of the theory, it is our intentio
here to adopt theseEm@jus# instead ofFm@jus# as field vari-
ables. Our first task is to demonstrate that this is possib
under conditions which we shall have to specify.

Recall first that the Polyakov variableFm@jus# is defined
as
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Fm@jus#5
i

g
F21@j#dm~s!F@j#, ~17!

where

F@j#5PsexpS igE
0

2p

dsAm„j~s!…j̇m~s! D , ~18!

or Fj(2p,0) as defined in~16!, so thatFm@jus# can be pic-
tured as in Fig. 1, where thed-functiond(s2s8) inherent in
our definition of the loop derivative2 dm(s) is represented in
the figure as a bump function centred ats with width
e5s12s2 . In the same spirit, the quantityEm@jus# defined
in ~15! can be pictured as the bold curve in Fig. 2 where t
phase factorsFj(s,0) in ~15! have cancelled parts of the
circuit in Fig. 1. In contrast toFm@jus#, therefore,Em@jus# is
dependent really only on a ‘‘segment’’ of the loopj from
s2 to s1 .

The reason for representing thed function in Figs. 1 and
2 as a bump function is that, as in most functional formu
tions, our treatment here involves some operations with
d function which need to be ‘‘regularized’’ to be given
meaning. Our procedure is to take first thed function as a
bump function with finite width, and then afterwards take t
appropriate zero width limit. For example, we shall ne
later the loop derivativedn(s) of the quantityEm@jus# at the
same value ofs. Clearly, a loop derivative has a meanin
only if there is a segment of the loop on which it can opera
Therefore, to define this derivative, we shall first rega
Em@jus# as a segmental quantity dependent on the segm
of the loopj from s2e/2 to s1e/2. We then define the loop
derivativedn(s) using the normal procedure on this segme
and afterwards take the limite→0. In case a repeated loo

2For any functionalC@j# of the parametrized loopj, we defined
@17# the loop derivativedm(s)5d/djm(s) as

d

djm~s!
C@j#5

d

djm~s!
C@j#5 lim

D→0

1

D
$C@j8#2C@j#%, ~19!

with

j8a~s8!5ja~s8!1Ddm
ad~s2s8!. ~20!

In case of ambiguity,Dd(s2s8) in the expression above for
j8a(s8) is replaced by a bump function with widthe and height
h, and the limite→0 with D5eh held fixed is taken first, to be
followed by the limith→0.

FIG. 1. Illustration forFm@jus#.
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derivative ofEm@jus# is required at the sames, then thed
function inherent in the first derivative has again to be re
resented by a bump function of finite width, saye8, so that
the second derivative can be defined on this segment of
loop. Afterwards, we take first the limite8→0, and then the
limit e→0, in that order. In view of these regularization pro
cedures, it is often convenient to picture the quantitie
Fm@jus# andEm@jus# as in Figs. 1 and 2.

To show now thatEm@jus# do constitute a valid set of
variables for a full description of the gauge field, we not
first that by~15! and ~17! we have

dn~s8!Em@jus#5Fj~s,0!$dn~s8!Fm@jus#1 igu~s2s8!

3†Fn@jus8#,Fm@jus#‡%Fj
21~s,0!, ~21!

whereu(s) is the Heavisideu function, so that

Gmn@jus#5Fj
21~s,0!$dn~s!Em@jus#

2dm~s!En@jus#%Fj~s,0!, ~22!

and the condition~13! translated in terms ofEm@jus# reads
as

dn~s!Em@jus#2dm~s!En@jus#50. ~23!

Hence, since we already know thatFm@jus# constrained by
~13! describes the gauge theory, we want now to show th
given a set ofFm@jus# satisfying ~13! we recover a set of
Em@jus# satisfying~23! and vice versa.

The direct statement is easy to see. GivenFm@jus# satis-
fying ~13!, we know from the so-called extended Poincar´
lemma derived in@17# that we can recover a local potentia
Am(x), from which a parallel transportFj(s,0) by ~16!, and
hence also anEm@jus# by ~15! can be constructed. This
Em@jus# will automatically satisfy~23! as we wanted.

What is less obvious is the converse statement, nam
that given a set ofEm@jus# satisfying ~23!, one can also
recover a set ofFm@jus# satisfying ~13!. To see this, one
notes first that given~23!, it follows that there exists some
W@jus# such that

Em@jus#5dm~s!W@jus#. ~24!

Indeed, if one writes symbolically

W@jus#5E
j0~s!

j~s!

dj8m~s!Em@j8us# ~25!

FIG. 2. Illustration forEm@jus#.
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as a line integral with respect todj along some path from an
arbitrary pointj0(s) to the given pointj(s) then a similar
argument as in the usual Stokes’ theorem would imply
~23! that W@jus# is in fact path independent and depen
only on the endpointj(s) as indicated. Furthermore, the de
rivative of this integralW@jus# would giveEm@jus# as de-
sired. If we now take a product of theseW’s along the loop
j, thus

Fj~s,0!5Ps8 )
s850→s

$12 igW@jus8#%, ~26!

it is seen to satisfy

Fj
21~s,0!dm~s8!Fj~s,0!52 igu~s2s8!Fj

21~s,0!

3Em@jus#Fj~s,0!. ~27!

Defining then

Fm@jus#5Fj
21~s,0!Em@jus#Fj~s,0! ~28!

with Fj(s,0) given in~26!, we have

dn~s!Fm@jus#2dm~s!Fn@jus#5Fj
21~s,0!$dn~s!Em@jus#

2dm~s!En@jus#%Fj~s,0!

2 ig@Fm@jus#,Fn@jus##,

~29!

i.e., ~22!, which by ~23! means thatGmn@jus# vanishes, as
required.

In the above argument, however, we have actually glos
over a rather important point, namely that in writing~27! we
have used~24! in which, by our procedure detailed above
W@jus# ought first to be regarded as a ‘‘segmental quantit
depending on a segment ofj with width e5s12s2 , and
only after the loop differentiation has been performed is t
segmental widthe to be taken to zero. On the other hand,
definingFj(s,0) in terms ofW@jus#, one wants already in
~26! to take the limite→0. To assert both statements ther
fore, we shall need a composition law forW which says that
the factor (12 igW@jus#) for a small finite segment is in fac
the same as the product of such factors for those infinitesi
segments which make up this small finite segment. That s
a composition law holds can be seen by an argument para
to that given in@17# for deriving the composition law for
F@j# by writing it in terms ofFm@jus# as a surface integral
Here, the line integral in loop space~25! representing
W@jus# is also in fact a surface integral in ordinary spac
time for which a similar argument is seen to apply.

That being the case, we conclude thatEm@jus# con-
strained by~23! do constitute a valid set of variables fo
describing the gauge field, which we shall adopt later
discussing its dual properties. Note that, in contrast to
Polyakov variablesFm@jus#, the variablesEm@jus# are gauge
dependent quantities and so, though more convenient t
Fm@jus# for studying duality, may not be so useful othe
wise. We note further that the fact we are able to reco
from Em@jus# satisfying ~23! the Polyakov variables
Fm@jus# satisfying~13! means also by the extended Poinca´
by
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lemma of@17# that there exists a local potentialAm(x) such
that the parallel transport is indeed given by~16!. In turn,
this implies that

lim
e→0

W@jus#5 lim
s1→s2

i

g
$Fj~s1 ,s2!21%5Am„j~s!…j̇m~s!,

~30!

and that

lim
e→0

Em@jus#5Fmn„j~s!…j̇n~s!, ~31!

with Fmn(x) given as usual in~7! in terms of theAm(x)
defined in~30! above. These two formulas will be of use to
us later.

III. GENERALIZED DUAL TRANSFORM

As noted above in the Introduction, Hodge star dualit
does not lead to a dual symmetry for non-Abelian Yang
Mills theory. We seek therefore a generalized dual transfor
if such exists, which may restore dual symmetry to Yang
Mills theory. The experience gained in earlier work leads u
to believe that such a transform is best written in terms of th
variablesEm@jus# introduced in the preceding section.

We seek a dual transform with the following three prop
erties. First, we want, of course, that the new dual transfor
reduces back to the Hodge star~1! for the Abelian theory, but
that it should not do so for the non-Abelian case or else t
conclusion of Gu and Yang in@14# would be violated. Sec-
ondly, in order for the new transform to qualify as a dua
transform, we want it to be invertible in the sense that, lik
the Hodge star, application of the transform twice shou
give the identity, apart perhaps from a sign. Thirdly, we wan
the transform to be such that, again like the Hodge star in t
Abelian case, an electric charge defined as a source of
direct field should appear as a monopole of the dual fiel
while a magnetic charge defined as a source of the dual fi
should appear as a monopole of the direct field. This la
property seems to us to be the crucial feature which giv
dual symmetry to the Abelian theory and which, we hav
reason to believe from past experience, may give dual sy
metry also to Yang-Mills fields.

Our suggestion is as follows. Given a set of variable
Em@jus# describing the gauge field, we introduce a corre
sponding dual set of variablesẼm@hut# labeled byh and t,
whereh is just another parametrized loop with parametert
which are distinguished here by different symbols fromj
ands for convenience. For givenh andt, Ẽm@hut# is defined
as

v21
„h~ t !…Ẽm@hut#v„h~ t !…52

2

N̄
emnrsḣn~ t !

3E djdsEr@jus#j̇s~s!

3 j̇22~s!d„j~s!2h~ t !…,

~32!

wherev(x) is just a local rotational matrix allowing for the
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freedom of transforming from the ‘‘U ’’ frame in which di-
rect quantities likeEm@jus# are represented to a ‘‘Ũ ’’ frame
in which dual quantities likeẼm@hut# are represented, and
N̄ a normalization factor~infinite! defined as@17,18,15#

N̄5E
0

2p

ds)
s8Þs

d4j~s8!. ~33!

As ~32! involves an implicit regularization procedure, i.e
a fixed order in which various limits are taken, some expl
nation is in order. The loop integral on the right-hand side
~32!, as for the loop derivative discussed in the precedi
section, needs a segment of the loopj on which to operate.
HenceEr@jus# has first again to be regarded as a segmen
quantity depending on a little segment ofj from s2 to s1

whose widthe5s12s2 is taken to zero only after the inte-
gration has been performed. In the same spirit,j̇(s) in the
integrand is meant to represent the quanti
@j(s1)2j(s2)#/e which becomes the tangent to the loo
j at s when e→0. If one is interested only in the value o

Ẽm@hut# and not, say, in its derivatives, thenẼm@hut# can be
taken as just a function of the pointh(t) labeled byt on the
loop h and of the tangentḣ(t) to the loop at that point. In
that case, thed functiond„j(s)2h(t)… on the right says that
the segmentj has to pass through ats the pointh(t) but is
otherwise freely integrated so thatj̇(s)5@j(s1)2j(s2)#/e
can have any direction relative toḣ(t), except that the con-
tribution to the integral vanishes whenj̇(s) is parallel to
ḣ(t) because of theemnrs symbol in front. However, if we
wish to evaluate the loop derivativeda(t)5d/dha(t) of

Ẽm@hut# using the formula~32!, thenẼm@hut# itself has also
to be regarded as a segmental quantity depending on a
ment ofh from t2 to t1 with width e85t12t2 . After the
differentiation has been performed, one can then take
limit e8→0, and our procedure says that this limit should b
taken before the limite→0 for the integral. That being the
case, we may take e8,e, and the d function
d„j(s)2h(t)… should now be interpreted as saying that th
segmentj coincides froms5t2 to s5t1 with the segment
h, but outside that interval is still freely integrated so tha
j̇(s) can again have any direction relative toḣ(t). Since the
integral receives contributions only fromj segments withj̇
nonparallel to ḣ, we cannot take e85e, otherwise
j̇(s)5ḣ(t) and the integral would vanish.

With these clarifications in the interpretation of the du
transform ~32! let us now examine whether color electri
charges do indeed appear as monopoles of the dual fi
Ẽm@hut#, which property, as stated above, we believe to
crucial for dual symmetry. We recall first that a color electr
charge is usually defined as a source of the Yang-Mills fie
namely a nonvanishing covariant divergenceDnFmn(x).
Equivalently, according to Polyakov@16#, it is a nonvanish-
ing loop divergencedm(s)Fm@jus# of the loop variable
Fm@jus#. Alternatively again, since~21! implies that

dm~s!Em@jus#5Fj~s,0!$dm~s!Fm@jus#%Fj
21~s,0!, ~34!
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it also means a nonvanishing loop divergenc
dm(s)Em@jus# of the variableEm@jus# adopted here. On the
other hand, a color magnetic charge defined as a monop
of the Yang-Mills field is characterized most easily as a no
vanishing loop space curvature@17,18# Gmn@jus# as defined
in ~14!, or alternatively, by~22! in terms ofEm@jus#, as a
nonvanishing ‘‘curl’’ dn(s)Em@jus#2dm(s)En@jus#. By a
monopole of the dual fieldẼ we mean then a nonvanishing
curl dn(t)Ẽm@hut#2dm(t)Ẽn@hut#. Hence to show that a
color electric charge is indeed a monopole of the dual fiel
we need to show that a nonvanishing divergence ofE will
lead to a nonvanishing curl of the dual variableẼ as defined
by the dual transform~32!. The parallel for this in the Abe-
lian theory is that an electric charge represented by the no
vanishing divergence]nFmn(x) of the Maxwell field can also
be interpreted as the violation of the Bianchi identity for th
dual field *Fmn(x), which signifies the presence of a mono
pole in *F.

That a nonvanishing divergence ofE would generally
lead to a nonvanishing curl ofẼ can be seen by direct com-
putation. From~32!, one can write

elmabdl~ t !$v21
„h~ t !…Ẽm@hut#v„h~ t !…%

52
2

N̄
elmabemnrsḣn~ t !E djds$dl~s!Er@jus#%

3 j̇s~s!j̇22~s!d„j~s!2h~ t !…, ~35!

where, recalling from the above paragraph that i
d„j(s)2h(t)… on the right,h(t) is first to be interpreted as a
little segment which coincides withj(s) for s5t2→t1 , we
have putdl(t)52dl(s) and then performed an integration
by parts with respect todj. Expressing nextelmabemnrs as a
combination of Kronecker deltas and using the fact that se
mental quantities, like loop quantities, have only transver
loop derivatives so that bothdm(s) j̇

m(s) and dm(t)ḣ
m(t)

vanish, we obtain for~35!

elmabdl~ t !$v21
„h~ t !…Ẽm@hut#v„h~ t !…%

52
2

N̄
E djds$ḣb~ t !j̇a~s!2ḣa~ t !j̇b~s!%

3dr~s!Er@jus#j̇22~s!d„j~s!2h~ t !…. ~36!

On multiplying by 1
2emnab , we obtain

v21
„h~ t !…$dn~ t !Ẽm@hut#2dm~ t !Ẽn@hut#%v„h~ t !…

52
1

N̄
E djdsemnab$ḣb~ t !j̇a~s!

2ḣa~ t !j̇b~s!%dr~s!Er@jus#

3 j̇22~s!d„j~s!2h~ t !…, ~37!
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where the factorsv21
„h(t)… andv„h(t)… can be taken out-

side because loop derivatives vanish for local quantitie3

One sees thus that the divergence ofE is indeed related to
the curl ofẼ and that an electric charge characterized by t
nonvanishing of the former will in general mean a monopo
characterized by a nonvanishing curl of the latter. Co
versely, if dr(s)Er@jus#50 then dn(t)Ẽm@hut#
2dm(t)Ẽn@hut#50, or in other words the absence of sourc
in E will guarantee the absence of monopoles inẼ, which
statement is in fact what is needed for deriving dual symm
try, as we shall see later.

Next, we wish to check that~32! reduces to the Hodge
star relation when the theory is Abelian but not when t
theory is non-Abelian. To see this, we let the segmen
width of Ẽm@hut# in ~32! go to zero so that we can use th
formula ~31! to write the left-hand side in terms of loca
quantities

v21~x!F̃mn~x!v~x!52
2

N̄
emnrs

3E djdsEr@jus#j̇s~s!j̇22~s!

3d„x2j~s!…. ~38!

We recall that our procedure is to do the integral befo
taking the width of the segment inEm@jus# to zero. In other
words, within the integral, the loopj can still vary by a
d-functional bump as illustrated in Fig. 3~a!. For such aj,
Em@jus#, which is obtained by making ad-functional varia-
tion along the directionm, will take on the shape depicted in
s.
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Fig. 3~b!. This last figure can be expressed as the product
three factors, namely Figs. 3~c!,~d!,~e! in the order indicated.
In the Abelian theory, the ordering of the factors is unimpo
tant so that the factors of Figs. 3~c! and 3~e! cancel in the
limit when the segmental widthe→0, leaving only the factor
of Fig. 3~d!, which can as usual be expressed by~31! as
Fma„j(s)…j̇

a(s), giving

F̃mn~x!52
2

N̄
emnrsE djdsFra

„j~s!…j̇a~s!j̇s~s!

3 j̇22~s!d„x2j~s!…52 1
2 emnrsF

rs~x!, ~39!

which is just the Hodge star relation if we identifyF̃mn(x)
with *Fmn(x). On the other hand, for a non-Abelian theory
the factors of Figs. 3~c! and 3~e! cannot be commuted
through the factor of Fig. 3~d! so that the above reduction to
the Hodge star relation will not go through.

Lastly, we wish to examine whether the dual transform
~32! is invertible. From~32! we can write

FIG. 3. Illustration for the integrand in dual transform.
2

N̄
eabmlżb~u!E dhdtv21

„h~ t !…Ẽm@hut#v„h~ t !…ḣl~ t !ḣ22~ t !d„h~ t !2z~u!…

52
4

N̄2
eabmlemnrsżb~u!E dhdtḣl~ t !ḣn~ t !ḣ22~ t !d„h~ t !2z~u!…E djdsEr@jus#j̇s~s!j̇22~s!d„j~s!2h~ t !…. ~40!
ow

m

m
s

By integrating first over all directions ofḣ(t) which we re-
call from the explanation given after~32! is admissible, we
obtain a factorN̄dl

n /4, so that the right-hand side reduces t

2

N̄
$dr

ads
b2dr

bds
a%żb~u!

3E djdsEr@jus#j̇s~s!j̇22d„j~s!2h~ t !…. ~41!

3Althoughv„h(t)… does vary whenh is varied att, its variation
is of measure zero compared with the variation of the loop so lo
as thed function in the definition of the loop derivative is given a
finite width, so that the derivative has to be assigned the value z
for consistency with our standard procedure for resolving such a
biguities.
o

Using the argument in the paragraph above, one can sh
that the integral in~41! is antisymmetric in the indicesr and
s giving then just twice the first term where, sinceż and j̇
are no longer forbidden to be parallel, we may put the
equal usingd„j(s)2z(u)… so that the whole expression re-
duces to justEa@zuu#, giving

v„z~u!…Ea@zuu#v21
„z~u!…5

2

N̄
eabmlżb~u!E dhdt

3Ẽm@hut#ḣl~ t !ḣ22~ t !

3d„h~ t !2z~u!…, ~42!

as required.
We have now shown that the generalized dual transfor

suggested in~32! does indeed have all the three propertie
that we desired.
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IV. PURE YANG-MILLS THEORY

With the variablesE andẼ introduced in the two preced-
ing sections, let us now examine the dual properties of
pure Yang-Mills theory. Since the theory in the standard~di-
rect! formulation has a local potentialAm(x), it follows that
if the theory is symmetric under the dual transform~32! in-
troduced above, then there must also be a local poten
Ãm(x) in the dual formulation. Now, in the Abelian theory,
was the equation of motion~3! which guaranteed via the
Poincare´ lemma the existence of the dual potentialÃm(x); so
we can hope that here too in the non-Abelian theory, it is
Yang-Mills equation of motion, namely~8!, which guaran-
tees the existence of the local potentialÃm(x). We shall now
show that this is indeed the case.

According to Polyakov@16#, the Yang-Mills equation~8!
can be written in terms of the loop variablesFm@jus# as

dm~s!Fm@jus#50. ~43!

By ~34! it follows that

dm~s!Em@jus#50. ~44!

Hence by~37! the dual variablesẼm@hut# have to satisfy the
condition

dn~ t !Ẽm@hut#2dm~ t !Ẽn@hut#50. ~45!

However, we know from Sec. II that this is exactly the co
dition for these variables to possess a local potential. Inde
according to the arguments there,~45! implies the existence
of a W̃@hut# such that

Ẽm@hut#5dm~ t !W̃@hut#, ~46!

and the local potentialÃm(x) is given by the dual analogue
of ~30!

Ãm„h~ t !…ḣm~ t !5 lim
e→0

W̃@hut#. ~47!

One sees thus that the existence of a local dual poten
Ãm(x) is indeed guaranteed.

From previous work@17,18,20,15#, we have learned that it
is possible, and in fact even convenient for deriving the d
namics of color charges, to reformulate the Yang-Mi
theory in terms of loop variables. This was done for t
Polyakov variablesFm@jus#. Let us do it now in terms of the
variablesEm@jus#. We have shown already in Sec. II tha
they give a complete description of the theory although th
have to be constrained by the curl-free condition~23!. Sup-
pose then we start with the standard Yang-Mills action:4

AF
052

1

16pE d4x Tr$Fmn~x!Fmn~x!%, ~48!

4For su~2!, our convention isB5Bit i ,t i5t i /2, TrB523 sum of
diagonal elements, so that Tr(t i t j )5d i j . Our results are given ex-
plicitly for su~2! although they can be trivially extended to any s
(N).
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which in terms of the Polyakov variablesFm@jus# takes the
familiar form

AF
052

1

4pN̄
E djdsTr$Fm@jus#Fm@jus#%j̇22~s!, ~49!

we have from~15! in terms ofEm@jus#

AF
052

1

4pN̄
E djdsTr$Em@jus#Em@jus#%j̇22~s!. ~50!

Incorporating the constraint~23! into the action by means of
Lagrange multipliersWmn@jus#, we obtain

AF5AF
01E djdsTr$Wmn@jus#„dn~s!Em@jus#

2dm~s!En@jus#…%, ~51!

the extremization of which with respect to the variable
Em@jus# yields then the equation of motion in parametri
form

Em@jus#52@4pN̄j̇2~s!#dn~s!Wmn@jus#. ~52!

The parameterWmn@jus# being antisymmetric in its indices
m,n, ~52! is easily seen to imply~43!, or in other words the
Yang-Mills equation~8! as expected.

Now earlier work has shown that the Lagrange multiplier
in such a formulation often play the role of a dual potentia
@15#. If so, we expect that the dual potentialÃm(x) should be
expressible in terms of the parametersWmn@jus#. For rea-
sons which will be made clear later when we deal with colo
charges, we anticipate thatÃm(x) is expressible in terms of
Wmn@jus# as

Ãm~x!54pE djdsemnrsv„j~s!…Wrs@jus#v21
„j~s!…

3 j̇n~s!j̇22~s!d„j~s!2x…. ~53!

However, we have already given a formula forÃm(x) in
terms ofW̃@hut# in ~47!. To see that these two expression
agree, substitute the expression~52! above into the dual
transform~32! obtaining

v21
„h~ t !…Ẽm@hut#v„h~ t !…58pemnrsḣn~ t !E djds

3da~s!Wra@jus#j̇s~s!

3d„j~s!2h~ t !…, ~54!
u
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where for

*Wmn@jus#52 1
2 emnrsW

rs@jus#, ~55!

one can rewrite

emnrsda~s!Wra@jus#52$dm~s!*Wns@jus#

1dn~s!*Wsm@jus#

1ds~s!*Wmn@jus#%. ~56!

However, since loop quantities by definition have only loo
derivatives transverse to the loop, the last two terms ins
the bracket on the right-hand side of~56! give zero contri-
butions when substituted into~54! giving

v21
„h~ t !…Ẽm@hut#v„h~ t !…528pdm~ t !E djdsḣn~ t !

3 *Wns@jus#j̇s~s!

3d„j~s!2h~ t !…,
~57!

where we have performed an integration by parts with
spect todj. It follows then from ~46! that, apart from a
constant term
p
ide

re-

v21
„h~ t !…W̃@hut#v„h~ t !…

54pḣm~ t !E djdsemnrsW
rs@jus#

3 j̇n~s!d„j~s!2h~ t !…, ~58!

from which we obtain easily through~47! the relation~53! as
desired.

The structure of the preceding arguments is set out on t
left-hand side of chart I, where theŨ invariance will be
demonstrated later. The similarity with chart I of@15# for the
Abelian case is obvious.

Next, we explore whether a similar structure is also ob
tained if we go over into the dual formulation in terms o
Ẽ. Substituting the expression~42! for E in terms ofẼ into
the actionAF

0 in ~50!, we obtain on integrating overj and
summing over indices

AF
05

1

4pN̄
E dhdt Tr$Ẽm@hut#Ẽm@hut#%ḣ22~ t !, ~59!

where we have used the fact thatẼr@hut# has only compo-
nents transverse to the looph. Apart from a sign, this is
formally the same as the action~50! in terms ofE. Hence, if
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we extremize this action under the constraint~45! ensuring
that Ẽ is curl-free to remove the redundancy of these va
ables, we see that the problem will formally be exactly th
same as for the direct formulation in terms ofE, producing
the structure shown on the right-hand side of chart I. In oth
words, one has an exact dual symmetry as hoped.

V. YANG-MILLS THEORY WITH CHARGES

Monopoles in gauge theories have by virtue of their top
logical nature an intrinsic interaction with the gauge field
and Wu and Yang@1# have suggested a criterion whereb
equations of motion for monopoles can be derived as con
quences of the topology without introducing an explicit in
teraction term into the action. The criterion has already be
repeatedly applied with success in earlier work@17,20,15#. In
case a theory is dual symmetric, then both electric and m
netic charges are monopoles in the appropriate fields so
the Wu-Yang criterion can be applied to both giving du
symmetric equations as the result. This was the case in
Abelian theory, and since we now claim that the Yang-Mil
theory is symmetric under the new generalized duality,
should be true here also, which is what we wish now
demonstrate.

Let us start with a color magnetic charge which is
monopole in the Yang-Mills field, appearing as a topologic
obstruction with nontrivial loop space holonomy, or equiva
lently nonzero loop space curvatureGmn@jus#, constructed
from the Polyakov variableFm@jus# as connection@17,18#.
This in turn means nonzero curl forEm@jus#. The statement
that there is a classical~color! magnetic point chargeg̃ mov-
ing along a worldlineYm(t) can thus be explicitly expressed
as

dn~s!Em@jus#2dm~s!En@jus#524pJmn@jus#, ~60!

with

Jmn@jus#5g̃emnrsE dtK ~t!
dYr~t!

dt
j̇s~s!d„j~s!2Y~t!…,

~61!

whereK (t) is an algebra-valued quantity satisfying th
condition expipK521 @17#.

The Wu-Yang criterion stipulates that equations of m
tion are to be derived by imposing this definition~60! of the
monopole as a constraint on the free action, which is for t
classical point particle

A05AF
02mE dt. ~62!

Incorporating then the constraint~60! by means of Lagrange
multipliersWmn@jus# into the action, we have

A5A01E djdsTr†Wmn@jus#$dn~s!Em@jus#

2dm~s!En@jus#14pJmn@jus#%‡. ~63!
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We notice that at every space-time point not on the wor
line Ym(t) of the monopole, the condition~60! says that the
curl of E vanishes, which is exactly the constraint we need
impose on theE variables to remove their intrinsic redun-
dancy. Hence, in the action~63!, where this constraint has
already been incorporated,Em@jus# can now be taken as in-
dependent variables.

Extremizing thenA in ~63! with respect to the variables
Em@jus# andYm(t), we obtain again~52! together with

m
d2Ym~t!

dt2
528pg̃E djdsemnrsdl~s!

3Tr$Wlr@jus#K ~t!%
dYn~t!

dt
j̇s~s!

3d„j~s!2Y~t!…. ~64!

From these the Lagrange multipliersWmn@jus# can be elimi-
nated giving the Polyakov equation~43! or ~44! together
with

m
d2Ym~t!

dt2
5
2g̃

N̄
E djdsemnrs Tr$Er@jus#K ~t!%j̇s~s!

3 j̇22~s!
dYn~t!

dt
d„j~s!2Y~t!…, ~65!

where one sees thatEr@jus# appears in the combination

2

N̄
E djdsemnrsEr@jus#j̇s~s!j̇22~s!d„j~s!2Y~t!…, ~66!

which is exactly what appeared also in the dual transfor
~32! if one takes there the zero segmental width lim
(e→0) and puth(t)5Y(t). However, the other field equa-
tion of motion ~44! has already been shown via the dua
transform to imply the existence of a local gauge potenti
Ãm(x) for Ẽm@hut#, so that by~31! in the limit of zero seg-
mental width

Ẽm@hut#→F̃mn„h~ t !…ḣn~ t !, ~67!

with

F̃mn~x!5]nÃm~x!2]mÃn~x!1 i g̃@Ãm~x!,Ãn~x!#. ~68!

Whence, it follows that~65! reduces to

m
d2Ym~t!

dt2
52g̃ Tr$K~t!F̃mn„Y~t!…%

dYn~t!

dt
, ~69!

with
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K~t!5v„Y~t!…K ~t!v21
„Y~t!…, ~70!

and F̃mn„Y(t)… as given by~68!, which is the dual of the
Wong equation5 @19#.

Conversely, if we start with a color electric charge co
sidered as a monopole ofẼm@hut#, we will obtain via exactly
the same arguments the dual of the above equations, nam

dm~ t !Ẽm@hut#50, ~71!

which guarantees the existence of the potentialAm(x) and is
equivalent to the ‘‘dual Yang-Mills equation’’:

D̃nF̃mn~x!50, ~72!

with

D̃n5]n2 i g̃@Ãn~x!, #, ~73!

together with the Wong equation

m
d2Ym~t!

dt2
52g Tr$I ~t!Fmn

„Y~t!…%
dYn~t!

dt
. ~74!

The dynamics of a classical point charge is thus seen to
entirely dual symmetric.

5This equation~69! should be clearly distinguished from the equ
tion with *Fmn(x) in place of theF̃mn(x) here which we used to
write in previous work@17,20,15# prefaced by a warning that it was
meant only as illustration and should not be taken literally beca
*Fmn(x) is patched and cannot be given a meaning at the posi
Y(t) of the monopole. The present equation~69! does not suffer
from these faults sinceF̃mn(x) is covariant with respect toŨ but
invariant with respect toU transformations so that in the presenc
of the magnetic charge~which is a monopole ofE but only a source
of Ẽ) it need not be patched at all and can exist even at the posi
Y(t) of the magnetic charge, just as in the dual situation the Ya
Mills field Fmn(x) requires no patching when only electric charg
are present. Whatever patching that was needed has been abs
into the transformation matrixv(x) which has itself to be patched
in the presence of the magnetic charge, as was shown in Sec. V
@15#. One notes further that the appearance of*Fmn(x) in ~69!
instead ofF̃mn(x) would make the equation non-dual-symmetr
since according to Gu and Yang@14# a ‘‘dual potential’’ to
*Fmn(x) sometimes cannot exist. On the other hand, by virtue
the Yang-Mills equation or~44!, a potential forF̃mn(x) is known to
exist through the arguments in Sec. II, thus restoring the symm
with Fmn(x) which is endowed with a potential right from the be
ginning of the standard~direct! formulation. Technically, what had
gone wrong in ‘‘deriving’’ the old equation with*Fmn„Y(t)… was
that one had to take first the limit of the segmental widthe→0 and
apply the formula~31! in the expression~66! before performing the
integral, whereas the rule of the game as we understand it n
requires that the integral has to be first performed before
e→0 limit is taken, a rule to which we have now adhered.
n-

ely

be

Consider next a Dirac particle carrying a color magnet
charge. The logical steps for deriving its equations of motio
in the gauge field using the Wu-Yang criterion are the sam
as for the classical point particle, except that the free acti
A0 is now @20,15#

A05AF
01E d4xc̄~x!~ i ]mgm2m!c~x!, ~75!

and the ‘‘current’’Jmn@jus# in ~63! is now the quantum cur-
rent

Jmn@jus#5g̃emnrs$c̄„j~s!…v„j~s!…grt i j̇s~s!

3v21
„j~s!…c„j~s!…%t i , ~76!

both depending on the wave functionc(x) of the particle.
Extremizing the action~63! with respect toEm@jus# yields
again the equation~52! which is equivalent to the Polyakov
equation~43! or the Yang-Mills equation~8!. Extremizing
A with respect toc̄(x) on the other hand yields

~ i ]mgm2m!c~x!52g̃Ãm~x!gmc~x!, ~77!

whereÃm(x) is as given in~53! and has already been shown
there to be the same as the dual potential. This equation
thus exactly the dual of the Yang-Mills-Dirac equation fo
c(x).

Starting with a color electric charge considered as
monopole ofẼ@hut# and following exactly the same argu-
ments will lead easily to the dual equations to the abov
namely the condition~45! which guarantees the existence o
the local gauge potentialAm(x) together with the Yang-
Mills-Dirac equation forc(x):

~ i ]mgm2m!c~x!52gAm~x!gmc~x!. ~78!

We have thus also for the quantum particle exact dual sy
metry as we had hoped.

The result in this section is summarized in chart II, whic
is seen to be quite symmetric on left and right and entire
analogous to the chart II of@15# for electrodynamics.

VI. U3Ũ INVARIANCE

That there is a dual doubling of the gauge symmetry
Yang-Mills theory has already been shown previous
@20,15#. Our task here is merely to outline how this gaug
symmetry operates in terms of the new formulation, whic
turns out in fact to be considerably simpler than it has a
peared before.

Under simultaneous infinitesimalU andŨ local transfor-
mations parametrized respectively by the gauge paramet
L(x) and L̃(x), the variablesEm@jus# and Ẽm@hut# trans-
form as

Em@jus#→@11 igL„j~s!…#Em@jus#@12 igL„j~s!…#, ~79!
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Ẽm@hut#→@11 i g̃L̃„h~ t !…#Ẽm@hut#@12 i g̃L̃„h~ t !…#, ~80!

while the rotation matrixv(x) transforms as

v~x!→@11 i g̃L̃~x!#v~x!@12 igL~x!#. ~81!

It is clear then that the dual transform~32! and its inverse
~42! are both gauge covariant. Further, recalling that t
gauge parametersL„j(s)… and L̃„j(s)…, being local quanti-
ties, have zero loop derivatives~see the footnote in Sec. III!,
one sees that the relation~37! giving the curl ofẼ in terms of
the divergence ofE which is so crucial for our duality argu-
ments is also gauge covariant. That being the case, we n
henceforth consider the invariant properties for only one h
of the dual symmetric charts I and II, since those for th
other half will follow automatically.

Consider first chart I for pure Yang-Mills fields. It is ob-
vious that the free field term in the action~51! is gauge
invariant. The only question then is how the Lagrange mu
tipliersWmn@jus# in the constraint term will transform. We
put

Wmn@jus#→@11 igL„j~s!…#$Wmn@jus#

1 i g̃emnrsdr~s!L̃s@jus#%@12 igL„j~s!…#,

~82!

where we notice that in addition to aU-gauge rotation there
is an inhomogeniousŨ term parametrized by a vector quan
tity L̃s@jus#. Under a pureŨ transformation @i.e., for
L50 in ~82!# the transformation ofWmn@jus# is that of the
tensor potential6 discovered some years ago first in supe
symmetry theory@23#. On substituting~82! into the action
~51!, the U-gauge rotation factors cancel, while the extr
increment due toL̃s@jus#, after an integration by parts with
respect toj, is seen to vanish by virtue of the identity satis
fied by the curl ofE, namely

emnrsdr~s!„dn~s!Em@jus#2dm~s!En@jus#…50, ~83!

leaving thus the whole action invariant.
The Lagrange multiplierWmn@jus#, however, is related to

the dual potentialÃm(x) by the relation~53! so that its trans-
formation in ~82! will induce a transformation in the dual
potential. The result is

Ãm~x!→@11 i g̃L̃~x!#Ãm~x!@12 i g̃L̃~x!#

22i g̃]mE djdsL̃n@jus#j̇n~s!d„j~s!2x…, ~84!

where we have used the fact thatL̃n@jus# has only transverse
derivatives and performed an integration by parts with r
spect toj. Hence we see thatÃm(x) transforms as a gauge
potential should, if we put

6Indeed, the Yang-Mills action when formulated in loop spac
~49! is entirely analogous to the Freedman-Townsend action w
Wmn@jus# here playing the role of the Freedman-Townsend tens
potential@21,22#.
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L̃~x!528pE djdsL̃n@jus#j̇n~s!d„j~s!2x…. ~85!

Given that it is this dual potentialÃm(x) which is coupled
to the wave functionc(x) of the magnetic charge, it is clear
then that the action~63! on chart II is also invariant when the
above transformations are coupled with the usual transform
tions for the Wong ‘‘charge’’

K~t!→@11 i g̃L̃~x!#K~t!@12 i g̃L̃~x!#, ~86!

and for the wave function

c~x!→@11 i g̃L̃~x!#c~x!. ~87!

This last observation then completes our task.

VII. CONCLUDING REMARKS

Compared with our earlier work@15# the present paper
has gone further in yielding an actual dual symmetry whic
had previously eluded us and in giving simpler derivations
the old results. The basis for this improvement is the du
transform of~32! which allows one to switch at will from
one formulation of the theory to its dual. In terms of this
language, our previous treatment is only a half-way hou
where only part of the dual transform has been carried o
Thus, for example, the so-called dual potentialTmn@jus# of
@15#, which is essentially ourWmn@jus# here, has in the
present treatment to undergo a further transform, name
~53! which is analogous to~32!, in order to give the genuine
dual potentialÃm(x). It is the realization of this step which
eventually reveals the full dual symmetry.

Since the relationship between the two treatments can
worked out, given the relation~15! between the variables
Em@jus# used here and the Polyakov variablesFm@jus#
adopted in the earlier paper, no detailed comparison need
given.7 There is one point, however, concerning the pha
factor Fj(s1,0) occuring only in@15# which puzzled us at
first and deserves perhaps a mention. The factorFj(s1,0)
appeared first in@15# in the defining constraint for the ‘‘mag-
netic’’ current

Gmn@jus#524pJmn@jus#, ~88!

where for a classical point charge we had

Jmn@jus#5g̃k@jus#emnrsE dt
dYr~t!

dt
j̇s~s!d„j~s!2Y~t!…,

~89!

with

k@jus#5Fj
21~s1,0!K ~t!Fj~s1,0!, ~90!

andK (t) a local quantity, while for a Dirac point charge we
had

e
ith
or

7We note that, for convenience, we have used the same symbol
some cases to denote related but not identical quantities in the t
papers, but this we think should not lead to any confusion.
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d,
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gly
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un-

e
an-
ual
Jmn@jus#5g̃emnrs@c̄„j~s!…v„j~s!…grt i

3v21
„j~s!…c„j~s!…#Fj

21~s1,0!t iFj~s1,0!.

~91!

These expressions differ from~61! and~76! of this paper by
the factorFj(s1,0) and its inverse, where we note that th
argument iss1 and nots as elsewhere in this paper.8 That
these factors should be there in~89! and~91! for consistency
but not in ~61! and ~76! can be seen as follows. The loop
space curvatureGmn@jus# as exhibited in~14! satisfies the
Bianchi identity

emnrsDr~s!Gmn@jus#50, ~92!

whereDm(s) denotes the ‘‘covariant loop derivative’’

Dm~s!5dm~s!2 ig†Fm@jus#, ‡. ~93!

Hence the currentJmn@jus# on the right-hand side of~88!
must also satisfy this identity, which it does if it contains th
factorsFj(s1,0) andFj

21(s1,0) as shown in~89! and~91!,

8In @15,20#, we had actually writtenv„j(s1)… instead of
v„j(s)… as we do here to indicate that it was not affected by loo
differentiation, but this is in fact unnecessary in view of the foo
note of Sec. III.
e

e

but will not do so without these factors. On the other han
although in the equation~60! which is the equivalent to~88!
in terms ofEm@jus#, the current must also satisfy a simila
identity ~83!, this involves only the ordinary loop derivative
dm(s), and not the covariant loop derivativeDm(s). The
expressions~61! and ~76! have thus no need for the phas
factorsFj(s1,0) andFj

21(s1,0). This difference between
the ‘‘currents’’ in the two treatments means that the corr
sponding Lagrange multipliers, namelyLmn@jus# in the old
andWmn@jus# in the new, are also related by a conjugatio
with respect toFj(s1,0), from which it follows that the dual
potentialÃm(x) defined in@15#, in spite of appearances, is in
fact identical to that defined here in~53!.

The above observation serves as a further example for
delicate handling often required in loop space operatio
which we consider as a weakness of the whole loop sp
approach. Although we believe we have considerably i
proved our understanding in the present work, sufficiently
fact to clarify one or two subtle points such as that in th
Wong equation noted in the footnote of Sec. V which w
have not been able to make clear before, we still feel stron
the lack of a general calculus for handling complex loo
space operations, the construction of which however is
fortunately beyond our present capability.

Apart from this reservation, we find the result of th
present paper rather gratifying in that it seems to have
swered the long-standing question whether there is a d

p
t-
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symmetry for Yang-Mills theory and gives even an explic
though rather complicated, transformation between dual v
ables, which is being sought for in other duality contexts. F
us in particular, it seems to have answered also a ques
that we have been asking on and off for some years conc
ing the dynamical properties of non-Abelian monopoles. T
answer to this turns out to be staggeringly simple, nam
that monopole dynamics is the same as that described by
standard theory for Yang-Mills sources, only formulated
the dual fashion. In consequence, one need not enquire
least at the classical field level so far studied, whether
charges one sees in nature are sources or monopoles u
both types exist, for otherwise there will be no way to di
tinguish them. This is a rather unexpected result in view
the fact that sources and monopoles are initially conceived
it,
ari-
or
tion
ern-
he
ely
the
in
, at
the
nless
s-
of
as

very different objects, the former being essentially algebra
and the latter topological, and that the dynamics is dete
mined here via the Wu-Yang criterion by the topology in an
entirely different fashion from the manner that interaction
for sources are usually introduced.
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