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Random matrix model for chiral symmetry breaking
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We formulate a random matrix model which mimics the chiral phase transition in QCD with two li
flavors. Two critical exponents are calculated. We obtain the mean-field valuesb51/2 andd53. We also find
that the chiral phase transition can be characterized by the dynamics of the smallest eigenvalue of the
operator. This suggests an alternative order parameter which may be of relevance for lattice QCD simul
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I. INTRODUCTION

In recent years, the QCD phase transition has been stud
in a variety of ways using both numerical simulations an
analytical methods. Such studies have led to the convict
that it may be a second-order phase transition@1,2#. As has
been stressed, in particular in@3,4#, this has important con-
sequences because the transition can then be characterize
critical exponents corresponding to a specific universal
class. In particular, it was argued that the critical expone
are those of an O~4! Heisenberg spin model.@On a lattice and
with Kogut-Susskind fermions, the relevant model mig
rather be an O~2! spin model.# However, as always, univer-
sality arguments must be used with care. According to
recent suggestion in@5# based on simulations of the three
dimensional Gross-Neveu model, they may not be valid
phase transitions involving soft modes composed of ferm
ons. The reason is that the lowest Matsubara frequency s
presses infrared divergences which lead to the universal c
cal exponents. Indeed, Kocic and Kogut found that t
critical exponents in their model are given by mean-fie
theory.

We wish to study the chiral phase transition from th
perspective of the spectrum of the Euclidean Dirac opera
Although initial numerical lattice results regarding this issu
have become available@6,7,2#, systematic study is beyond
the reach of present day computers. Thus, we prefer to c
struct a simple model which not only contains the glob
symmetries of QCD but also reproduces mean-field critic
exponents. The zero-temperature version of this model w
considered previously@8#, and it was shown@9# that it is
equivalent to the finite-volume effective partition function
In particular, it was shown@8# that the spectrum of the Dirac
operator in this random matrix model obeys the so-call
Leutwyler-Smilga sum rules@10#.

In this work we consider the nonzero-temperature resu
of two versions of the random matrix model, for SU~2! and
for SU(Nc), Nc>3 both with fundamental fermions, which
are characterized by real and complex matrix elements,
spectively. In agreement with@5#, temperature dependence i
introduced by complementing the zero-temperature rand
matrix model with the temperature dependence of the low
Matsubara frequency~see Sec. II!. In Sec. III we show that
this temperature dependence indeed leads to mean-field c
cal exponents. Contrary to QCD, our model shows a seco
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order phase transition independent of the number of flavo
Therefore, it only models QCD with two light flavors. How-
ever, because of the weak flavor dependence of our mod
we expect that the quenched approximation is better than
QCD. For this reason and because unquenched simulati
are very expensive even for this simple model the Dira
spectrum and the chiral condensate are studied numeric
in Secs. IV and V by using the quenched approximatio
~Nf50!. In Sec. IV the temperature dependence of the spe
trum and the dependence of the chiral condensate on
valence quark mass are calculated. The latter quantity
found to be in qualitative agreement with recent lattice ca
culations@2#. The dynamics of the smallest eigenvalue a
studied in Sec. V.

II. FINITE-TEMPERATURE CHIRAL RANDOM
MATRIX MODEL

The QCD partition function for vacuum angleu is defined
as

ZQCD5(
n

einuZQCD~n!, ~2.1!

where the partition function in a sector with topologica
chargen andNf fermionic flavors is given by

ZQCD~n!5K )
f51

Nf

mf
n )

ln.0
~ln

21mf
2!L

A

. ~2.2!

Here,~•••!A denotes the average over all gauge field config
rations, with topological chargen weighted according to the
QCD action. The eigenvalues,lk , of the Dirac operator fluc-
tuate over the ensemble of gauge field configurations. In ge
eral, the complete eigenvalue density is determined in a no
trivial way by the dynamics of QCD. However, the
fluctuations of eigenvalues on microscopic scale~i.e., on the
scale of the average level spacing! are believed to display
universal characteristics. It is our conjecture that the eige
values near zero virtuality respect such microscopic unive
sality. This implies that the detailed dynamics of the QC
partition function are not important for the description o
such fluctuations, and that they can be described equally w
with a random matrix ensemble which respects the glob
symmetries of the QCD Dirac operator. In particular, th
7223 © 1996 The American Physical Society
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following properties are included@8#: ~i! the chiral struc-
ture of the Dirac operator leading to an eigenvalue spectr
6ln , ~ii ! the zero-mode structure of the Dirac operator~in
the sector of topological chargen the Dirac operator has
exactlyn zero eigenvalues all of the same chirality!, ~iii ! the
flavor chiral symmetry and its spontaneous or explicit bre
ing, ~iv! the reality type of the representation of the gau
group. For SU(Nc), Nc>3 in the fundamental representatio
the gauge field is complex and so are the matrix element
the Dirac operator. The gauge group SU~2! in the fundamen-
tal representation is pseudoreal leading to matrix element
the Dirac operator that are real. Finally, for gauge gro
SU(Nc) in the adjoint representation, the gauge field is r
and the matrix elements of the Dirac operator can be or
nized into real quaternions.

In this work we wish to construct a model which de
scribes the fluctuations of the smallest eigenvalues as a f
tion of the temperature. NearTc , the theory of critical phe-
nomena tells us that the fluctuations are universal w
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nontrivial critical exponents, which are related to the propa
gation of soft modes. However, the recent work of Kocic an
Kogut @5# suggests that this scenario may not be valid fo
phase transitions involving bosons composed of fermion
Instead, the lowest Matsubara frequency,pT, cures the in-
frared divergences and leads to a mean-field-like secon
order phase transition. According to their work on the three
dimensional Gross-Neveu model, the dynamics of the pha
transition are determined by the lowest Matsubara frequenc
In this spirit, the only temperature effect we include in ou
model is that of the lowest Matsubara frequencies,6pT,
between each pair of suitably chosen basis states~16g5!fn .
In the sector of topological chargen, our basis must be
complemented byn unpaired basis states of the same chira
ity. Together with the symmetries mentioned above, th
leads to the random matrix model~note that the sign of the
negative Matsubara frequency has been absorbed inW by a
unitary transformation!,
de

our
s

Zb~n,Nf !5E DW detNfS m* iW1 ipT

iW†1 ipT m D expS 2
nbS2

2
TrWW†D , ~2.3!

whereW is ann3(n1n) matrix. The integration overW is to be performed according to the Haar measure. We also inclu
an arbitrary complex mass matrixm with mass eigenvalues equal tomf . For QCD withNc52 the matrix elements ofW are
real ~b51!. They are complex forNc>3 ~b52!. In each case we include fermions in the fundamental representation. In
model, the number of modes per unit volume, (2n1n)/V, is identically 1.~Here, the the Euclidean space-time volume i
denoted byV.! Therefore, the thermodynamic limit corresponds ton→` ~the topological chargen!n!. The correct dimensions
of physical quantities are obtained by multiplication with appropriate powers of the density of modes.

The fermion determinant in~2.3! can be written as a Grassmann integral:

Zb~n,Nf !5E DW Dc*Dc expF i(
k51

Nf

ck* S 2 im* W1pT

W†1pT 2 im DckGexpS 2
nbS2

2
TrWW†D . ~2.4!
n

The quenched approximation is obtained from this model
in the replica trick. We calculate a property for arbitraryNf
and take the limitNf→0 at the end of the calculation. In
particular, quantities which areNf-independent are valid for
Nf50 as well.

It should be stressed that the partition function~2.3! rep-
resents aschematicmodel for the chiral phase transition
Although the temperature dependence of this model does
coincide with that of chiral perturbation theory@11#, it will
be shown below that there is considerable qualitative agr
ment.

III. ANALYTIC RESULTS

In this section we evaluate the partition function~2.4!
using methods which are standard in the supersymmetric
mulation of random matrix theory@12,13#. The first step is to
perform the average overW by performing a Gaussian inte-
gral. This leads to a four-fermion interaction. After averagin
over the matrix elements of the Dirac operator, the partiti
function becomes
as

.
not

ee-

for-

g
on

Z1~n,Nf !5E Dc*Dc expS 2
1

2nS2b
~cRi

f*cLk
f cRi

g*cLk
g

12cRi
f*cLk

f cLk
g*cRi

g 1cLk
f*cRi

f cLk
g*cRi

g !

1mf g* cRi
f*cRi

g 1mf gcLk
f*cLk

g

1 ipT~cRi
f*cLi

f 1cLk
f*cRk

f ! D , ~3.1!

for b51, and

Z2~n,Nf !5E Dc*Dc expS 2
2

nS2b
cLk
f*cRi

f cRi
g*cLk

g

1mf g* cRi
f*cRi

g 1mf gcLk
f*cLk

g

1 ipT~cRi
f*cLi

f 1cLk
f*cRk

f ! D ~3.2!

for b52. In both cases, each of the four-fermion terms ca
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be written as the difference of two squares. Each square
be linearized by the Hubbard-Stratonovitch transformati
according to

exp~2AQ2!;E ds expS 2
s2

4A
2 iQs D . ~3.3!

For b52, the partition function, expressed in terms of th
two bosonic variables, can be combined into a single, co
plex Nf3Nf matrix,A, resulting in
can
on

e
m-

Z2~n,Nf !5E DA Dc Dc* expS 2
nS2b

2
TrAA†

1cLk
f*cLk

g ~A1m!1cRi
f*cRi

g ~A†1m* !

1 ipT~cRi
f*cLi

f 1cLk
f*cRk

f ! D . ~3.4!

Forb51, six new bosonic matrix variables are required. Thi
is related to the fact that, for two colors, baryons are com
posed of two quarks and are bosons. They can be combin
into one antisymmetric, complex 2Nf32Nf matrixA, result-
ing in the partition function
Z1~n,Nf !5E DA Dc Dc* expS 2
nS2b

2
TrAA†D expF12 S cR

cR*
D ~A†1M* !S cR

cR*
D G

3expF12 S cL

cL*
D S 0 21

1 0 D ~2A1M!S 0 1

21 0D S cL

cL*
D Gexp@ ipT~cRi

f*cLi
f 1cLk

f*cRk
f !#. ~3.5!
l

a-

-

e-

t

In this case the mass matrix is an antisymmetric matrix giv
by

M5S 0 2m

m 0 D . ~3.6!

Note also that the temperature-dependent term can be rew
ten as

ipT

2 S cL

cL*
D S 0 21

1 0 D S cR

cR*
D 2~L↔R!. ~3.7!

Using this, the fermionic integrals can be performed, a
the partition function is given by

Z2~n,Nf !5E DA expS 2
nS2b

2
TrAA†D

3detunu~A1m!detnSA1m p iT

p iT A†1m* D
~3.8!

for b52, and

Z1~n,Nf !5E DA expS 2
nS2b

2
TrAA†D

3Pfunu~2A1M!PfnSA†1M* p iT

2p iT 2A1M
D

~3.9!

for b51. In ~3.8! A is an arbitrary complex matrix wherea
in ~3.9! A is an arbitrary antisymmetric complex matrix.

In each case the condensate is given by
en

rit-

nd

s

^q̄q&5
1

2nNf
]mlnZ, ~3.10!

whereZ is evaluated for a diagonal mass matrix with equa
diagonal matrix elements. In the limitn→`, the condensate
can be determined with the aid of a saddle-point approxim
tion. The saddle-point equations forb52 are given by

2
nbS2

2
A1n~A1m!~~A†1m!~A1m!1p2T2!2150.

~3.11!

An arbitrary complex matrix can be diagonalized by per
forming the decomposition

A5ULV21, ~3.12!

with all eigenvalues positive andU andV unitary matrices.
We find that the solution of~3.11! yields U5V51 with
eigenvaluesl given by the positive roots of

S2l@~l1m!21p2T2#2l2m50. ~3.13!

In the chiral limit we find a critical point at

Tc5
1

pS
. ~3.14!

In order to calculate the condensate, we express the d
rivative of the partition function in~3.10! in terms of an
average overA,

^q̄q&5
1

2nNf
K TrS A† p iT

p iT A D 21L . ~3.15!

Below Tc , the massm can be neglected in the saddle-poin
equation, and we find
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^q̄q&5S~12p2T2S2!1/2. ~3.16!

At Tc , the solution of the saddle-point equation develops
nonanalytic dependence onm resulting in the condensate

^q̄q&5S4/3m1/3. ~3.17!

Therefore, we reproduce the mean-field value for the critic
exponentd53.

Forb51 the saddle-point equation for theA integration is

2
bS2

2
A1

1

2
~A1M!„~A†1M!~A2M!1p2T2…2150.

~3.18!

This equation can be solved by diagonalizing the compl
antisymmetric matrixA asA5ULŨ, whereU is a unitary
matrix. Here,L is an antisymmetric, standard matrix suc
that Lk,k1152Lk11,k5lk for k51,...,2Nf21 with all
other matrix elements equal to zero. A suitable redefiniti
of U can always be made such that alllk>0. The condensate
is calculated as in the case ofb52 with the same result both
below and atTc . Of course, it comes as no surprise that w
obtain the mean field value for the critical exponent in th
case as well.

IV. THE PHASE TRANSITION

In the remainder of this paper we describe the results
numerical investigations of the random matrix model~2.3!.
ForNfÞ0, the determinantal weight must be included in th
integration measure which is extremely costly. However, f
Nf50 the distribution functions are simple Gaussians, a
only this case will be studied. We also restrict ourselves
the sector of zero total topological charge,n50. Instead of a
Gaussian distribution we use a rectangular distribution in o
calculations. General universality arguments@14# imply that
the shape of the distribution of the matrix elements does
affect the properties of our random matrix model, and w
expect that the results for a rectangular distribution will be
complete agreement with those of the Gaussian distributi
Indeed, our calculations which were all performed usin
rectangular distributions with zero mean, reproduce the a
lytical results of the previous section.

We study in the quenched approximation the avera
spectral density,r̄~l!, of the operator

S 0 iW1 ipT

iW†1 ipT 0 D , ~4.1!

where theW are complex matrix elements with real an
imaginary parts distributed according to a rectangular dis
bution with zero mean and variances. All eigenvalues of the
matrix ~4.1! occur in pairs6l ~or are zero whennÞ0!. At
T50 it can be shown, using arguments familiar from rando
matrix theory@17#, that this density has a semicircular shap
in the limit n→`,

r̄~l!5
1

ps2 A4ns22l2, ~4.2!
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wheres2 is the variance of the matrix elements. In order to
obtain a finite condensate, the spectral density near zero m
be proportional ton for n→` @see Eq.~3.10!#. This can be
achieved by scaling the matrix elements with;1/An. With
this choice of scaling~i.e., ns2→const forn→`! the effect
of the random matrix and the temperature on the spectrum
~4.1! is of the same order of magnitude, and the spectrum
stable in the limitn→`. Among others, this follows from the
n dependence of the numerical results to be discussed belo
In particular, we choose both real and imaginary parts of th
matrix elements to be distributed uniformly on the interva
@21/2An,1/2An#. This results in the variance

uWij u25
1

6n
, ~4.3!

wheren is the dimension of the off-diagonal blocks. Com-
paring this to the variance of the Gaussian distribution~2.3!,
we can make the identification

1

6n
5

2

nbS2 , ~4.4!

which yieldsS256 for b52. According to~3.14! the critical
temperature is thuspTc51/A650.408 24.

In our numerical simulations, we choosen520 for most
calculations. In some cases, we have studied matrix e
sembles up ton550 in order to extrapolate ton→`. The
relatively small value ofn allows us to study very large
ensembles. In order to study the temperature dependence,
size of the ensemble foreachtemperature is 23104, whereas
for some specific temperatures we take the size of the e
semble equal to 105 matrices. The diagonalization is carried
out by standard methods@15#.

Like in QCD, the chiral order parameter of our schemati
model is the spectral densityr~0!. It is related to the chiral
condensatevia the Banks-Casher formula@16#

^q̄q&5 lim
e→0

lim
n→`

1

2n
pr~e!, ~4.5!

where the order of the limits cannot be interchanged~see
below!. Let us first consider the complete spectral densit
r~l!. In Figs. 1~a!–1~c!, we show numerical results for the
complete spectral density forpT50,pT50.4, andpT51.0.
The full line in Fig. 1~a! shows the analytical result~4.2!. For
a nonzero temperature, it is somewhat more difficult to ob
tain the level density analytically1 @19#. WhenT is large, we
find that the distribution splits into two semicircles with cen
ters at1pT and2pT.

The deviations from a semicircle atT50 are not statistical
fluctuations but rather well-understood finite-n corrections
@18#. ~The statistical errors are about 0.5%.! These deviations

1The analytical result forr~l! at finite n is a four-dimensional
integral @19#. For n→` these integrals can be performed by a
saddle-point approximation. The result is given byr~l!52~2n/
p!Im G(l1 i0) where the resolventG(z)[~1/2n!Tr@1/(z2H)#
@with H the matrix in ~4.1!# satisfies the third-order polynomial
equation n2s4G3(z)22ns2zG2(z)1G(z)(ns22p2T21z2)
2z50.
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53 7227RANDOM MATRIX MODEL FOR CHIRAL SYMMETRY BREAKING
occur on the the scale of the spacing between two neighb
ing eigenvalues and can be expressed analytically in term
Bessel functions which show oscillations on this scale.
the moment, we wish to remark only that the behavior ne
zero is given byr̄(l);Nl which emphasizes the impor-
tance of the order of the limits in the Banks-Casher formu
In practice we have obtainedr~0! from the first few bins
beyond the bin containing the average position of the fi
eigenvalue using a histogram bin size equal to 0.02.

According to the mean-field argument presented in S
III, our model shows a second-order phase transition with

r~0,T!;ATc22T2. ~4.6!

In order to account for finite-n effects approximately, we
convolute this expression with a Gaussian

rs~0,T!;E
2Tc

Tc
dxATc22x2 exp@2~x2T!2/s2#. ~4.7!

While we offer no analytic justification for this form, we
note that it provides an excellent fit to the results of simul
tions. Thex2 per data point is equal to 1.65. The statistic
error in ^q̄q& follows from the error in the spectral density
and is about 1%. A best fit of~4.7! to our results forn520 is
shown in Fig. 2. In this case, the fitted values forpTc ands

FIG. 1. Histograms of the complete spectrum of eigenvalu
obtained forn520 at temperatures of~a! pT50 ~top curve!, ~b!
pT50.4 ~middle curve!, and ~c! pT51.0 ~bottom curve!. Each
spectrum was obtained from 105 matrices.
or-
s of
At
ar

la.

rst

ec.
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al

are 0.389 and 0.074, respectively. Using data forn<50 we
performed an extrapolation ton→` according to the expres-
sion

Tc
n5Tc

`S 11
a

n D , ~4.8!

wherea is a constant to be determined. We find a critica
temperature ofpT c

`50.3976 which is in good agreement
with the theoretical value ofpTc51/A650.4083 for our
present numerical parameters.

Recent lattice QCD calculations@2# have studied the con-
densate as a function of the so-called valence mass. In th
lattice simulations, the sea-quark mass was much larger th
the smallest eigenvalue so that the problem is effective
equivalent to takingNf50. It is possible to simulate these
calculations within the framework of the present model b
defining

^c̄c&m5
1

n (
k51

n
m

lk
21m2 . ~4.9!

If we take the limits limm→0limn→` in this order, we repro-
duce the Banks-Casher formula@16#. For finiten and masses
below the smallest eigenvalue~see next section for its distri-
bution! ^c̄c&m;m. This is indeed what is seen in Fig. 3
where we show a log-log plot of the resulting values fo
^c̄c& as a function ofm for n520. Our results are qualita-
tively similar to the lattice calculations. At finiten them→0
limit has to be taken with care in the sense that masses bel
the smallest eigenvalue cannot be used in the extrapolat

es

FIG. 2. The^q̄q& condensate as calculated from~4.3! for n520.
Each point was obtained on the basis of 23104 matrices, andr~0!
was obtained by counting eigenvalues in the range 0<l<0.02. The
solid curve is a fit according to~4.7! using the parameters
Tc50.3890 ands50.7414.
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7228 53A. D. JACKSON AND J. J. M. VERBAARSCHOT
them→0. These results show that the spectral density yie
a much more accurate determination of the chiral conden
@20#.

V. DYNAMICS OF THE SMALLEST EIGENVALUE

In this section we study the distribution of the eigenval
of smallest magnitude, denoted byl1, as a function of tem-
perature. This distribution is known analytically for a fe
special cases of the Laguerre ensemble. The present
defined by the random matrix model~2.3! for Nf50, atT50
happens to be one of them. With our choice of paramet
the distribution is given by@21#

f ~l1!;l1exp X2S nbSl1

2 D 2 C. ~5.1!

ThisT50 result is exact even for finiten. ~The factor ofl1
is readily understood. For every eigenvalue1l there is al-
ways a corresponding eigenvalue of2l. This factor is sim-
ply a consequence of level repulsion.! In order to be able to
describe the temperature dependence, we introduce a m
general distribution

f ~l1!5l1expS 2
~l12x0!

2

s2 D . ~5.2!

At zero temperaturex050 ands52/nbS. The average value
of the smallest eigenvalue is given asl15Ap/nbS. While
this expression is not, in general, exact, it is serviceable.

In Fig. 4 we show a histogram of the distribution of th
smallest eigenvalue atT50 for the casen520. The results
are in excellent agreement with~5.1!. The temperature de

FIG. 3. The condensate as a function of the so-called vale
quark mass calculated according to~4.9! at pT50, pT50.4, and
pT51.0. The calculations were performed forn520 and 23104

matrices were used for each temperature.
lds
sate

ue

w
case,

ers,

ore

e

-

pendence of the parameters of the distribution is shown
Fig. 5, where we show the ratiol1/Dl1 as a function of the
temperature forn510. Whenx050 this ratio is equal to
@p/~42p!#1/251.913 . . . . Surprisingly, we find that this ra-
tio is constant forT,Tc . This implies thatx0 is strictly zero
for T,Tc . Inspection of the corresponding distribution indi
cates that~5.1! remains quantitatively valid in this region.
Above this temperature~and ignoring some finiten effects
near threshold!, x0 grows linearly withT. This behavior is
expected since the entire distribution moves linearly withT
for sufficiently largeT. What is surprising is thatx0 vanishes
below some finiteT, and that the effect is so pronounced fo
a matrix of such small dimension.

The behavior ofx0(T) versusT ~shown in Fig. 6! allows
us to extractTc from x(Tc)50. In practice we use a linear
extrapolation of our data forT.Tc . Our results for different
size matrices can be summarized by the expression

pTc
~n!50.408 59

n12.513 16

n14.103 46
, ~5.3!

which yields an asymptotic result ofpTc50.408 59, which
is very close to the theoretical result of 1/A650.408 24.
@The constants in~5.3! have been obtained by minimizing
thex2 of this expression using the results obtained forT c

n for
n510, 20, 30, 40, and 50.#

As indicated, the form of~5.2! is not exact. Similar results
can be obtained in a model-independent fashion by straig

nce FIG. 4. The distribution of the eigenvalue of smallest magnitud
determined from 23105 trials with n520 for a bin size of 0.02
~points!. The histogram was obtained from~5.2! with x050. The
value ofs50.020 685 was determined from the average value
l1 obtained from the simulations. This fitted value is in excellen
agreement with the analytic value of 2/nbS50.020 41 . . . . The
form of ~5.2! provides an excellent fit to the simulation data with
x250.8.
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53 7229RANDOM MATRIX MODEL FOR CHIRAL SYMMETRY BREAKING
line extrapolation of the observed values ofl1/Dl1 as a
function of the temperature.

Finally, we study the scaling of the smallest eigenval
with n. For temperatures of 0.9Tc , Tc , and 1.1Tc we study
ensembles of each 23104 matrices with dimensionsn510,
12, 15, 19, 24, 30, 37, 45, and 54.

For T,Tc , the Banks-Casher formula suggests th
lmin;1/n leading to the samen dependence for the expecta
tion value and the variance oflmin . Numerically, the expo-
nent of the leadingn dependence of the mean and the va
ance for is obtained by fitting the expression

a

ng 1
b

ng11 ~5.4!

to the data forT50.9Tc . For the mean we findg51.013
60.020 ~a52.058 andb523.429!, and for the variance
g51.01260.020~a51.228 andb522.390!. Both results are
in agreement with the theoretical value ofg51.

At T5Tc we haveS(m);m1/d. This leads to the eigen-
value density~for l→0!

r~l!;ma1la2 with a11a25
1

d
. ~5.5!

Smaller masses suppress the eigenvalue density near zer
we must havea1.0. For a fixed mass, the eigenvalue densi
should not diverge, so we must also havea2.0. It is possible
thata1 anda2 depend onNf , but we were not able to inves-
tigate this point within the present framework. The scalin
behavior of the smallest eigenvalue is obtained fro
*0

lminr(l)dl;1/n which leads to

FIG. 5. The ratio of the smallest eigenvalue to its rms deviatio
l1/Dl1, as a function of temperature forn510. Each point repre-
sents 23104 matrices. The average value of this ratio forT,Tc is
1.9107 which is in good agreement with the expected value
Ap/(42p)51.913 . . . .
ue

at
-

ri-

o, so
ty

g
m

^lmin&;n21/~a211!. ~5.6!

For Nf50, the eigenvalue density cannot depend onm and
we thus havea251/d anda150 for Nf50. This yields

^lmin&;n2d/11d. ~5.7!

From the analytical result ford @see ~3.17!# we find
^lmin&;n23/4. Numerically, d is obtained by fitting our re-
sults for different values ofn by the expressiona/ng. By
minimizing thex2 we findg50.75360.004~a51.228!, lead-
ing to d53.0560.07, in perfect agreement with the theoreti
cal result. The ratio of the mean and the variance of th
smallest eigenvalue at this temperature is constant with
0.5% resulting in the same value ofg for the variance~a
50.558 in this case!.

ForT.Tc the average position of the smallest eigenvalu
departs from zero and scales liken0. We expect@22# that its
variance will have the scaling behaviorn22/3 which is typical
for eigenvalues near the edge of a semicircle. Indeed, fittin
our numerical results for the variance of the smallest eige
value for T51.1Tc with a/ng yields g50.67760.003 ~a
50.519!, in perfect agreement with the theoretical expecta
tion. The average position of the smallest eigenvalue h
been fitted bya1b/ng. We find a50.035660.0016 and
g50.72360.009~b51.246!.

VI. CONCLUSIONS

In this paper, we have studied a random matrix mod
which possesses the global symmetries of the QCD acti
and the temperature dependence suggested by the form of
lowest Matsubara frequency. AtT50 this model is com-

n,

of

FIG. 6. The parameterx0 of ~5.2! as a function ofT for n510.
Each point represents 23104 matrices. The parametersx0 and s
were determined from the ratiol1/Dl1 ~shown in Fig. 5! and the
corresponding values ofl1. Linear extrapolation suggests
pTc50.3625 for this case.
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pletely soluble; it reduces to what is known in the mat
ematical literature as the Laguerre ensemble. For nonz
temperatures, we have succeeded in extracting some inte
ing properties analytically. In particular, we have shown th
the model undergoes a second-order phase transition w
mean-field critical exponentsb51/2 andd53. The lattice
result @1# for QCD with two light flavors for 1/bd is 0.77
60.14, which is closer to these mean-field values than to
results for either the O~4! or O~2! Heisenberg spin models
For three or more light flavors, QCD shows a first-ord
chiral phase transition, whereas for one flavor there is
transition at all. Our model does not contain such flavor d
pendence: It has a second-order phase transition for
number of flavors. If our model has anything to say abo
QCD, it is for QCD with two light flavors.

Numerically, we found one surprising result: The distr
bution of the smallest eigenvalue belowTc is ~numerically!
h-
ero
rest-
at
ith

the
.
er
no
e-
any
ut

i-

equivalent to the distribution obtained forT50. ForT.Tc ,
the centroid of its Gaussian distribution grows linearly with
T. The behavior atT50 agrees well with known analytical
results.

Our results suggest an alternative method for obtainin
the critical temperature; namely, from the distribution of th
eigenvalue of smallest magnitude. It would be interesting
study the dynamics of the smallest eigenvalues in lattic
QCD as well.
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