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Random matrix model for chiral symmetry breaking
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We formulate a random matrix model which mimics the chiral phase transition in QCD with two light
flavors. Two critical exponents are calculated. We obtain the mean-field vaiag&® andé=3. We also find
that the chiral phase transition can be characterized by the dynamics of the smallest eigenvalue of the Dirac
operator. This suggests an alternative order parameter which may be of relevance for lattice QCD simulations.
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[. INTRODUCTION order phase transition independent of the number of flavors.
Therefore, it only models QCD with two light flavors. How-

In recent years, the QCD phase transition has been studieayer, because of the weak flavor dependence of our model,
in a variety of ways using both numerical simulations andwe expect that the quenched approximation is better than for
analytical methods. Such studies have led to the convictioRCD. For this reason and because unquenched simulations
that it may be a second-order phase transifib]. As has are very expensive even for this simple model the Dirac
been stressed, in particular i8,4], this has important con- SPpectrum and the chiral condensate are studied numerically
sequences because the transition can then be characterizedbySecs. IV and V by using the quenched approximation
critical exponents corresponding to a specific universalityNf=0). In Sec. IV the temperature dependence of the spec-
class. In particular, it was argued that the critical exponent§'um and the dependence of the chiral condensate on the
are those of an @) Heisenberg spin moddlOn a lattice and valence quark mass are calculated. The latter quantity is
with Kogut-Susskind fermions, the relevant model mightfound to be in qualitative agreement with recent lattice cal-
rather be an @) spin model] However, as always, univer- culations[2]. The dynamics of the smallest eigenvalue are
sality arguments must be used with care. According to &tudied in Sec. V.
recent suggestion if6] based on simulations of the three-
dimensional Gross-Neveu model, they may not be valid for Il. FINITE-TEMPERATURE CHIRAL RANDOM
phase transitions involving soft modes composed of fermi- MATRIX MODEL
ons. The reason is that the lowest Matsubara frequency sup-
presses infrared divergences which lead to the universal criti-
cal exponents. Indeed, Kocic and Kogut found that the?S
critical exponents in their model are given by mean-field
theory. ZQCDZE eivonCD(V), (21)

We wish to study the chiral phase transition from the v
perspective of the spectrum of the Euclidean Dirac operatorv.vhere the partition function in tor with tonological
Although initial numerical lattice results regarding this issue h pa f on functio a sector with topologica
have become availablgs,7,2), systematic study is beyond charger andN; fermionic flavors is given by
the reach of present day computers. Thus, we prefer to con- N¢
struct a simple model which not only contains the global Zoco(v) = T IT A2+m2)) . (2.2
symmetries of QCD but also reproduces mean-field critical f=1  'N\;>0
exponents. The zero-temperature version of this model was
considered previously8], and it was showri9] that it is  Here,(--+), denotes the average over all gauge field configu-
equivalent to the finite-volume effective partition function. rations, with topological charge weighted according to the
In particular, it was showf8] that the spectrum of the Dirac QCD action. The eigenvalues,, of the Dirac operator fluc-
operator in this random matrix model obeys the so-calleduate over the ensemble of gauge field configurations. In gen-
Leutwyler-Smilga sum rulegl0]. eral, the complete eigenvalue density is determined in a non-

In this work we consider the nonzero-temperature resultgrivial way by the dynamics of QCD. However, the
of two versions of the random matrix model, for @Jand fluctuations of eigenvalues on microscopic sdake., on the
for SU(N.), N.=3 both with fundamental fermions, which scale of the average level spadiraye believed to display
are characterized by real and complex matrix elements, rasniversal characteristics. It is our conjecture that the eigen-
spectively. In agreement wiflb], temperature dependence is values near zero virtuality respect such microscopic univer-
introduced by complementing the zero-temperature randoraality. This implies that the detailed dynamics of the QCD
matrix model with the temperature dependence of the lowegpartition function are not important for the description of
Matsubara frequencfsee Sec. )l In Sec. lll we show that such fluctuations, and that they can be described equally well
this temperature dependence indeed leads to mean-field critivith a random matrix ensemble which respects the global
cal exponents. Contrary to QCD, our model shows a secondsymmetries of the QCD Dirac operator. In particular, the

The QCD partition function for vacuum angtdas defined
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following properties are includefB]: (i) the chiral struc- nontrivial critical exponents, which are related to the propa-
ture of the Dirac operator leading to an eigenvalue spectrurgation of soft modes. However, the recent work of Kocic and
*\n, (i) the zero-mode structure of the Dirac operafior ~ Kogut [5] suggests that this scenario may not be valid for
the sector of topological charge the Dirac operator has phase transitions involving bosons composed of fermions.
exactly v zero eigenvalues all of the same chirgljt§jii) the  |nstead, the lowest Matsubara frequeneyl,, cures the in-
flavor chiral symmetry and its spontaneous or explicit breakfrared divergences and leads to a mean-field-like second-
ing, (iv) the reality type of the representation of the gaugeprder phase transition. According to their work on the three-
group. For SUN.), N.=3 in the fundamental representation, gimensional Gross-Neveu model, the dynamics of the phase

the gauge field is complex and so are the matrix elements Qfnsition are determined by the lowest Matsubara frequency.
the Dirac operator. The gauge group(@ln the fundamen- (#: this spirit, the only temperature effect we include in our

tal representation is pseudoreal leading to matrix elements odel is that of the lowest Matsubara frequenciesyT,

the Dirac operator that are real. Finally, for gauge grou . : .
SU(N,) in the adjoint representation, the gauge field is re;fetween each pair of sun_ably chosen basis St(.am%)(ﬁ”'
n the sector of topological charge our basis must be

and the matrix elements of the Dirac operator can be orga- | ted b red basis stat fth hiral
nized into real quaternions. complemented by unpaired basis states of the same chiral-

In this work we wish to construct a model which de- ity. Together with the symmetries mentioned above, this

scribes the fluctuations of the smallest eigenvalues as a funl€@ds to the random matrix modgdote that the sign of the
tion of the temperature. Ned,, the theory of critical pne- Negative Matsubara frequency has been absorb&d by a

nomena tells us that the fluctuations are universal wittHnitary transformation

Trww

: 2.3

m* iW+imT nBs.2
. . exp —
Wi +iaT m 2

zB(V,Nf):f IW detr

whereW is annX (n+ v) matrix. The integration oveW is to be performed according to the Haar measure. We also include
an arbitrary complex mass matnx with mass eigenvalues equalig . For QCD withN.=2 the matrix elements oV are
real (8=1). They are complex foN.=3 (8=2). In each case we include fermions in the fundamental representation. In our
model, the number of modes per unit volumen{2v)/V, is identically 1.(Here, the the Euclidean space-time volume is
denoted by.) Therefore, the thermodynamic limit corresponds te« (the topological charge<n). The correct dimensions
of physical quantities are obtained by multiplication with appropriate powers of the density of modes.

The fermion determinant i(2.3) can be written as a Grassmann integral:

—im* W+ 7T
W+aT —im

wk

N¢ . nﬁEZ
zB(V,Nf)zf DN Df* T ex;{i;_‘,l T exp< - Trvva). (2.4)

The quenched approximation is obtained from this model as . . 1 o
in the replica trick. We calculate a property for arbitrasy Zl(V-Nf):f D T exp( ~ons?2B (s PLCURT ik
and take the limitN;—0O at the end of the calculation. In

lgzlartié:)ular, qlljlantities which ans;-independent are valid for + 2yt gl O g+ gl gl gk gl
+=0 as well.
It should be stressed that the partition functi@®) rep- +m?gl/fg? Pt Mgk vl
resents aschematicmodel for the chiral phase transition.
Although the temperature dependence of this model does not FiaT(pl ol + oyl )) (3.1
coincide with that of chiral perturbation theofg1], it will VRi YL+ Y ri

be shown below that there is considerable qualitative agree-
ment. for =1, and

Ill. ANALYTIC RESULTS — L

20N = [ o i o — o wlt vk,
In this section we evaluate the partition functi¢®.4)

using methods which are standard in the supersymmetric for- MY PR+ My kP
mulation of random matrix theofyd2,13. The first step is to
perform the average ov&¥ by performing a Gaussian inte-
gral. This leads to a four-fermion interaction. After averaging
over the matrix elements of the Dirac operator, the partition
function becomes for B=2. In both cases, each of the four-fermion terms can

TPl o+ ik z,b;k)) 3.2
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be written as the difference of two squares. Each square can - ‘

be linearized by the Hubbard-Stratonovitch transformatiorZz(V’Nf):f TN Ty Tt exp —
according to

n3?
P TrAAT

+ g R (A+m) + g g8 (AT+m*)

0,2

exp(— AQ?) ~ J do exp( - iQo)_ 3.3 Hia TPl gl + ok ki)

. (3.9

For 8=1, six new bosonic matrix variables are required. This
is related to the fact that, for two colors, baryons are com-
For B=2, the partition function, expressed in terms of theposed of two quarks and are bosons. They can be combined
two bosonic variables, can be combined into a single, cominto one antisymmetric, complex\ X 2N; matrix A, result-
plex N¢ X N; matrix, A, resulting in ing in the partition function

n3? 1
zl(v,Nf)=f TN T %p*exp(— BTrAAT)exp[— ( VR (AH/Z*)( ‘[/5”

2 2\ Jr Yr

1({¢g\[0 —1 0 L\ . .
XeXF{E ( wt) ( L o )(—A+//4> 1 of Ly | [T i vtk (35

|

In this case the mass matrix is an antisymmetric matrix given o 1

by (qq)= 20N, dminZ, (3.10

whereZ is evaluated for a diagonal mass matrix with equal
diagonal matrix elements. In the limit—o, the condensate
can be determined with the aid of a saddle-point approxima-

Note also that the temperature-dependent term can be rewrfion. The saddle-point equations fg+=2 are given by

ten as nBs?
iwT [\ (0 —1)[ug
2 (wf)(l 0 )(wﬁ
An arbitrary complex matrix can be diagonalized by per-

- —— A+n(A+ m)((AT+m)(A+m)+72T?)"1=0.
Using this, the fermionic integrals can be performed, andorming the decomposition
the partition function is given by

_(O —m)
M= mo0 (3.6

—(L<R). (3.7 (3.1D

A=UAV™ L, (3.12
) n’B _ . _ _ " : :
Zz(v,Nf)=f A exp — 5 TrAA with all eigenvalues positive and andV unitary matrices.
We find that the solution 0f3.11) yields U=V=1 with

A+m  @iT eigenvalues\ given by the positive roots of
x det’!(A+m)def| . -
mT A'+m S2IA[(A+m)2+ 72T2] -\ —m=0. (3.13
3.8
38 In the chiral limit we find a critical point at
for =2, and 1
TCZE. (314)

, n3%g
zl(v,Nf)sz/»Aex - TrAAT

In order to calculate the condensate, we express the de-
rivative of the partition function in(3.10 in terms of an
average oveA,

AT+ z* T

XPiY(—A+. 7 i
PII—A+. PP o Ay

AT T\t
(3.9 — 1
Q=500 \ T it A - G2
for B=1. In (3.8) A is an arbitrary complex matrix whereas
in (3.9 A is an arbitrary antisymmetric complex matrix. Below T., the masan can be neglected in the saddle-point

In each case the condensate is given by equation, and we find
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(qQ)=3(1—w?T?232)12 (3.16  Whereo” is the variance of the matrix elements. In order to
obtain a finite condensate, the spectral density near zero must
At T, the solution of the saddle-point equation develops &€ proportional t for n—c [see Eq(3.10]. This can be
nonanalytic dependence o resulting in the condensate  achieved by scaling the matrix elements witt/yn. With
this choice of scalindi.e., na>—const forn—x) the effect
(qq)=343m!? (3.17 of the random matrix and the temperature on the spectrum of
(4.1) is of the same order of magnitude, and the spectrum is

Therefore, we reproduce the mean-field value for the criticaptable in the limin—o. Among others, this follows from the
exponents=3. n dependence of the numerical results to be discussed below.

For B=1 the saddle-point equation for tieintegration is  In particular, we choose both real and imaginary parts of the
matrix elements to be distributed uniformly on the interval

gs? 1 [ —1/2yn,1/2yn]. This results in the variance
- Ats (A+ 2) (AT 2) (A= 7)+ m*T?) " 1=0. .
(3.18 |W;;[2= &n’ 4.3

This equation can be solved by diagonalizing the compleXyheren is the dimension of the off-diagonal blocks. Com-

antisymmetric matrixA asA=UAU, whereU is a unitary  paring this to the variance of the Gaussian distribut@s),
matrix. Here, A is an antisymmetric, standard matrix suchye can make the identification

that Ak,k+1:_Ak+l,k:)\k for k:].,...,Z\If_l W|th a”

other matrix elements equal to zero. A suitable redefinition 1 2 44
of U can always be made such that}/i=0. The condensate 6n npz2’ (4.4

is calculated as in the case B£2 with the same result both
below and aff, . Of course, it comes as no surprise that weWhich yields2?=6 for 8=2. According to(3.14 the critical
obtain the mean field value for the critical exponent in thistemperature is thus'T.=1/\/6=0.408 24.
case as well. In our numerical simulations, we choose=20 for most
calculations. In some cases, we have studied matrix en-
sembles up taa=50 in order to extrapolate ta—c. The
relatively small value ofn allows us to study very large

In the remainder of this paper we describe the results oénsembles. In order to study the temperature dependence, the
numerical investigations of the random matrix modaR3). size of the ensemble farachtemperature is 210, whereas
For N;#0, the determinantal weight must be included in thefor some specific temperatures we take the size of the en-
integration measure which is extremely costly. However, forsemble equal to fomatrices. The diagonalization is carried
N;=0 the distribution functions are simple Gaussians, andut by standard method45].
only this case will be studied. We also restrict ourselves to Like in QCD, the chiral order parameter of our schematic
the sector of zero total topological charges0. Instead of a model is the spectral densip(0). It is related to the chiral
Gaussian distribution we use a rectangular distribution in ourondensateia the Banks-Casher formu(d 6]
calculations. General universality argumefitd] imply that
the shape of the o_listribution of the matrix _elements does not (qg)=lim lim i mp(e), (4.5
affect the properties of our random matrix model, and we €0 noe 2N
expect that the results for a rectangular distribution will be in
complete agreement with those of the Gaussian distributiorvhere the order of the limits cannot be interchangsee
Indeed, our calculations which were all performed usingPelow. Let us first consider the complete spectral density,
rectangular distributions with zero mean, reproduce the ana()). In Figs. Xa)—1(c), we show numerical results for the

IV. THE PHASE TRANSITION

lytical results of the previous section. complete spectral density ferT=0, #T=0.4, andmT=1.0.
We study in the quenched approximation the averagd he full line in Fig. Xa) shows the analytical resu#.2). For
spectral densityp(\), of the operator a nonzero temperature, it is somewhat more difficult to ob-
tain the level density analyticaflf19]. WhenT is large, we
0 iW+inT find that the distribution splits into two semicircles with cen-

(4.1 tersat+«T and—=T.
The deviations from a semicircle a0 are not statistical
fluctuations but rather well-understood finnieeorrections

where theW are complex matrix elements with real and 11g] (The statistical errors are about 0.5%hese deviations
imaginary parts distributed according to a rectangular distri-

bution with zero mean and varianoeAll eigenvalues of the
matrix (4.1) occur in pairst\ (or are zero when+#0). At L _ o _ ) _
T=0 it can be shown, using arguments familiar from random The analytical result fop(\) at finite n is a four-dimensional

matrix theory[17], that this density has a semicircular shape/ntégral [19]. For n—e these integrals can be performed by a
in the limit n—oo, saddle-point approximation. The result is given pjn)=—(2n/

m)Im G(A+i0) where the resolvenG(z)=(1/2nTr[1/(z—H)]
1 [with H the matrix in (4.1)] satisfies the third-order polynomial
PO\ = JangZ— 2, (4.7  equation n26*G3(2) — 2na?2G?(2) + G(2) (no?— w°T%+ 2?)
To —-z=0.

iWT+inmT 0 ’
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- Fala P - FIG. 2. The(qq) condensate as calculated fr¢m3) for n=20.
04= - ~ 4 ~ Each point was obtained on the basis of0* matrices, ang(0)
02 - 0 k B was obtained by counting eigenvalues in the ranga€0.02. The
“B ) ; - solid curve is a fit according td4.7) using the parameters
pofaia v il el T.=0.3890 andr=0.7414.
-2.0 -1.0 0.0 A 1.0 2.0

are 0.389 and 0.074, respectively. Using datarfet50 we

performed an extrapolation to—o according to the expres-
FIG. 1. Histograms of the complete spectrum of eigenvaluegsjg

obtained forn=20 at temperatures db) #T=0 (top curve, (b)
7T=0.4 (middle curve, and (c) #T=1.0 (bottom curvé. Each

spectrum was obtained from Lnatrices. ng TZ’ 1+ b , (4.8
n

occur on the the scale of the spacing between two neighbor-

ing eigenvalues and can be expressed analytically in terms dfhere a is a constant to be determined. We find a critical

Bessel functions which show oscillations on this scale. Atemperature ofrT =0.3976 which is in good agreement

the moment, we wish to remark only that the behavior neawith the theore‘ucal value ofrT,=1/\/6=0.4083 for our

zero is given byp(\)~N\ which emphasizes the impor- present numerical parameters.

tance of the order of the limits in the Banks-Casher formula. Recent lattice QCD calculatiori] have studied the con-

In practice we have obtainea(0) from the first few bins densate as a function of the so-called valence mass. In these

beyond the bin containing the average position of the firstattice simulations, the sea-quark mass was much larger than

eigenvalue using a histogram bin size equal to 0.02. the smallest eigenvalue so that the problem is effectively
According to the mean-field argument presented in Secgquivalent to taking\;=0. It is possible to simulate these

I, our model shows a second-order phase transition with calculations within the framework of the present model by

defining
p(0T)~T2—T2, (4.6)
n
In order to account for finiter effects approximately, we <@>m _2m_ 4.9
convolute this expression with a Gaussian i+ m?

Te 5 If we take the limits lim,_ olim,_, ., in this order, we repro-
po(0.1)~ f_T dxyTe—x* exd —(x=T)*0*]. (40 yce the Banks-Casher fc?rmt[mﬁ]. For finiten and maspses
¢ below the smallest eigenvaldsee next section for its distri-
While we offer no analytic justification for this form, we bution) (),,~m. This is indeed what is seen in Fig. 3
note that it provides an excellent fit to the results of simula-where we show a log-log plot of the resulting values for
tions. They? per data point is equal to 1.65. The statistical () as a function ofm for n=20. Our results are qualita-
error in{(qq) follows from the error in the spectral density tively similar to the lattice calculations. At finite the m—0
and is about 1%. A best fit @f1.7) to our results fon=20is limit has to be taken with care in the sense that masses below
shown in Fig. 2. In this case, the fitted values f6F. ando  the smallest eigenvalue cannot be used in the extrapolation
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FIG. 3. The condensate as a function of the so-called valence FIG. 4. The distribution of the eigenvalue of smallest magnitude

quark mass calculated according (t9) at #T=0, #T=0.4, and
7T=1.0. The calculations were performed for=20 and % 10*
matrices were used for each temperature.

determined from X1 trials with n=20 for a bin size of 0.02
(pointg. The histogram was obtained frotb.2) with x,=0. The
value of 0=0.020 685 was determined from the average value of
N\, obtained from the simulations. This fitted value is in excellent

them—0. These results show that the SpeCtral denSity yi6|d§greement with the analytic value Ofnm =0.0204 ... . The
a much more accurate determination of the chiral condensaterm of (5.2) provides an excellent fit to the simulation data with

[20].

V. DYNAMICS OF THE SMALLEST EIGENVALUE

In this section we study the distribution of the eigenvalue

of smallest magnitude, denoted hy, as a function of tem-

perature. This distribution is known analytically for a few
special cases of the Laguerre ensemble. The present ca:

defined by the random matrix mod@.3) for N;=0, atT=0

happens to be one of them. With our choice of parameter

the distribution is given by21]

2
n,ele) ) (5.1)

f(x1)~x1exp(—( >

This T=0 result is exact even for finite. (The factor of\;

is readily understood. For every eigenvaltia there is al-
ways a corresponding eigenvalue -of. This factor is sim-
ply a consequence of level repulsipin order to be able to

x*=0.8.

pendence of the parameters of the distribution is shown in
Fig. 5, where we show the ratio;/A\; as a function of the
temperature fom=10. Whenx,=0 this ratio is equal to
[7/(4—m)]"2=1.913 . . . . Surprisingly, we find that this ra-
tio is constant folT<T. This implies thaix, is strictly zero
16 T<T.. Inspection of the corresponding distribution indi-
cates that5.1) remains quantitatively valid in this region.
SAbove this temperaturéand ignoring some finite effects
near threshold x, grows linearly withT. This behavior is
expected since the entire distribution moves linearly With
for sufficiently largeT. What is surprising is that, vanishes
below some finitel, and that the effect is so pronounced for
a matrix of such small dimension.

The behavior oky(T) versusT (shown in Fig. 6 allows
us to extractT; from x(T.)=0. In practice we use a linear
extrapolation of our data fofF > T . Our results for different
size matrices can be summarized by the expression

describe the temperature dependence, we introduce a more

general distribution

_ 2
f()\1)=AleXp< —%@) (5.2

At zero temperaturg,=0 ando=2/nB2.. The average value

of the smallest eigenvalue is given ag= \/;/n,BE. While
this expression is not, in general, exact, it is serviceable.

n+2.513 16

(n) —
mTe =0-40859 =703 46

(5.3

which yields an asymptotic result af T,=0.408 59, which
is very close to the theoretical result of J6=0.408 24.
[The constants in5.3) have been obtained by minimizing
the x° of this expression using the results obtainedT@rfor

In Fig. 4 we show a histogram of the distribution of the n=10, 20, 30, 40, and 5D.

smallest eigenvalue at=0 for the casen=20. The results

As indicated, the form of5.2) is not exact. Similar results

are in excellent agreement wit.1). The temperature de- can be obtained in a model-independent fashion by straight-
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FIG. 5. The ratio of the smallest eigenvalue to its rms deviation,

— ) . FIG. 6. The parametex, of (5.2) as a function ofT for n=10.
N1/AN4, as a function of temperature for=10. Each point repre- Each point representssx@0* matrices. The parameters and
sents % 10% matrices. The average value of this ratio Tox T, is b P — : P " 7

1.9107 which is in good agreement with the expected value ofVere dete(rjmined frlom thef)r\;atDol/L.A)\l (shov;/n inIFig. 3 and thet
I (A—m=1913 ... . corresponding values of\;. Linear extrapolation suggests
(4= 7T,=0.3625 for this case.

line extrapolation of the observed values ©0f/AN; as a
function of the temperature.

Finally, we study the scaling of the smallest eigenvaluer, N, =
with n. For temperatures of 019, T., and 1.7, we study
ensembles of eachx2l0* matrices with dimensiona=10,
12, 15, 19, 24, 30, 37, 45, and 54. (i) ~n~ L+, (5.7

For T<T., the Banks-Casher formula suggests that
Amin~1/n leading to the same dependence for the expecta- From the analytical result fors [see (3.17)] we find
tion value and the variance of,;,. Numerically, the expo- (A\miny~n "% Numerically, & is obtained by fitting our re-
nent of the leading dependence of the mean and the vari-sults for different values oh by the expressionv/n”. By

(Nin)~n~ Mozt D), (5.6)

0, the eigenvalue density cannot dependnoand
we thus havex,=1/6 and a;=0 for N;=0. This yields

ance for is obtained by fitting the expression minimizing they” we find y=0.753+0.004(a=1.228, lead-
ing to 6=3.05+0.07, in perfect agreement with the theoreti-
a B cal result. The ratio of the mean and the variance of the
WJF n’tl (5.9 smallest eigenvalue at this temperature is constant within

0.5% resulting in the same value offor the variance(a

to the data forT=0.9T,. For the mean we fing=1.013  —0-558 in this case o _
+0.020 (@=2.058 andB=—3.429, and for the variance For T>T, the average position of the smallest eigenvalue

7=1.012+0.020(a=1.228 ands=—2.390. Both results are  deParts from zero and scales lik& We expec(22] that its
in agreement with the theoretical value g£1. variance will have the scaling behavior . yvhlch is typlcal' .
At T=T, we haves,(m)~m®. This leads to the eigen- for elgenvalues near the edge 01_‘ a semicircle. Indeed, flttlng
value density(for A—0) our numerical results for the variance of the smallest eigen-
value for T=1.1T. with a/n” yields y=0.677+0.003 («
=0.519, in perfect agreement with the theoretical expecta-
p(N)~m*I\*2  with a;+ ar=7. (5.5 tion. The average position of the smallest eigenvalue has
been fitted bya+g/n?. We find «=0.0356-0.0016 and

. . =0.723+0.009(B8=1.246.
Smaller masses suppress the eigenvalue density near zero,%o # 9

we must havey;>0. For a fixed mass, the eigenvalue density
should not diverge, so we must also haume-0. It is possible
thata; and«, depend orN¢, but we were not able to inves-  |n this paper, we have studied a random matrix model
tigate this point within the present framework. The scalingwhich possesses the global symmetries of the QCD action
behavior of the smallest eigenvalue is obtained fromand the temperature dependence suggested by the form of the
fgm‘”p()\)d)wl/n which leads to lowest Matsubara frequency. At=0 this model is com-

VI. CONCLUSIONS
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pletely soluble; it reduces to what is known in the math-equivalent to the distribution obtained fér=0. ForT>T_,
ematical literature as the Laguerre ensemble. For nonzerthe centroid of its Gaussian distribution grows linearly with
temperatures, we have succeeded in extracting some intere3t- The behavior af =0 agrees well with known analytical
ing properties analytically. In particular, we have shown thatresults.

the model undergoes a second-order phase transition with Our results suggest an alternative method for obtaining
mean-field critical exponent8=1/2 and §=3. The lattice the critical temperature; namely, from the distribution of the
result[1] for QCD with two light flavors for 185 is 0.77  eigenvalue of smallest magnitude. It would be interesting to
+0.14, which is closer to these mean-field values than to thetudy the dynamics of the smallest eigenvalues in lattice
results for either the @) or O(2) Heisenberg spin models. QCD as well.
For three or more light flavors, QCD shows a first-order

chiral phase transition, whereas for one flavor there is no

transition at all. Our model does not contain such flavor de-

pendence: It has a second-order phase transition for any The reported work was partially supported by the US
number of flavors. If our model has anything to say aboutDOE Grant No. DE-FG-88ER40388. We would like to thank
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