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Vacuum instability in external fields
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We study particle creation from the vacuum by external electric fields, in particular, by fields, which
acting for a finite time, in the frame of QED in arbitrary space-time dimensions. In all the cases special s
exact solutions of the Dirac equation~in and out solutions! are constructed. Using them, the characteristics
the effect are calculated. The time and dimensional analyses of the vacuum instability are presente
shown that the distributions of particles created by quasiconstant electric fields can be written in a form
has a thermal character and which seems to be universal, i.e., is valid for any theory with quasico
external fields. Its application, for example, to particle creation in an external constant gravitational
reproduces the Hawking temperature exactly.@S0556-2821~96!03312-7#

PACS number~s!: 11.10.Kk, 04.62.1v, 12.20.Ds
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I. INTRODUCTION

The effect of particle creation from vacuum by an exte
nal field ~vacuum instability in an external field! ranks
among the most intriguing nonlinear phenomena in quant
theory. Its consideration is theoretically important, since
requires one to go beyond the scope of the perturbat
theory, and its experimental observation would verify th
validity of the theory in the superstrong field domain. Th
study of the effect began, in fact, first in
(311)-dimensional QED in connection with the so-calle
Klein @1# paradox, which revealed the possibility of electro
penetration through an arbitrary high barrier formed by
external field. Then in 1951, Schwinger@2# found the
vacuum-to-vacuum transition probability in a constant ele
tric field. It became clear that the effect can actually be o
served as soon as the external field strength approaches
characteristic value ~critical field! Ec5m2c3/ueu\
.1,331016 V/cm. Although a real possibility of creating
such fields under laboratory conditions does not exist as y
these fields can play a role in astrophysics, where the ch
acteristic values of electromagnetic fields and gravitation
fields near black holes are enormous. One can also men
that Coulomb fields of superheavy nuclei can create electr
positron pairs. General considerations, concrete calculatio
and a detailed bibliography regarding the vacuum instabil
in QED can be found in@3–6#. Particle creation by externa
gravitational fields@5,7,8# and non-Abelian gauge fields@9#
can also be considered in analogy with electrodynami
There are also various problems in modern quantum the
which are closely related to the vacuum instability in que
tion, for example, phase transitions in field theories, t
problem of boundary conditions or topology influence on t
vacuum, the problem of consistent vacuum construction
QCD, string theories, multiple particle creation, and so
@5,7,10–15#.

In spite of the fact that the particle creation effect in e
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ternal fields was calculated in numerous papers, there are s
some problems which are interesting to study and discuss.
the present paper we are going to focus our attention on t
time scenario of the process and to consider it in arbitra
dimensions of space-time to be able analyze its dependen
on the dimension. To satisfy the first part of the program w
consider special external fields which act effectively during
finite time and then compare results with ones in a consta
field. In fact, such a consideration plays also the role of
regularization and helps to solve divergence problems whi
appear in constant external fields. The dimensional analy
may be interesting in relation with the study of multidimen
sional versions of field theories and gravity. Lower dimen
sions, e.g., 211 dimensions can be of a particular interest
Field theoretical models in such dimensions@16# attracted in
the last few years a great attention due to various reaso
e.g., nontrivial topological properties, and especially the po
sibility of the existence of particles with fractional spins and
exotic statistics~anyons!, having probably applications to
fractional Hall effect, high-Tc superconductivity, and so on
@17#.

For calculations we are using the general approach, whi
was elaborated in the framework of the field theory for suc
kind of problems@18–20,6#. According to this formulation
all the information about the processes of particle scatterin
and creation by an external field~in zeroth order with respect
to the radiative corrections! can be extracted from special
complete sets of exact solutions of the relativistic wave equ
tions in the external field~in and out solutions!. A complete
collection of exact solutions of such equations in 311 QED
is presented in the book@21#, in particular, in and out solu-
tions and related bibliography can be found in@6#. That is
why in the beginning we analyze and classify exact solution
of the Dirac equation in uniform external electric fields in
arbitrary space-time dimensions. in and out solutions are pr
sented explicitly forT constant, adiabatic, and constant elec
tric fields. Probabilities of particle scattering, pair creation
vacuum-to-vacuum probability, and mean numbers of pa
ticles created are calculated in arbitrary dimensions for thr
types of electric fields mentioned above. The full conside
ation in the case of theT constant field, which is most im-
portant for the time analysis, has no (311)-dimensional

k,
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53 7163VACUUM INSTABILITY IN EXTERNAL FIELDS
analogue and is presented explicitly for the first time. In sp
of some of the formulas in two other cases havin
(311)-dimensional analogue, theird-dimensional generali-
zation appears to be nontrivial. Moreover, some of these f
mulas were not presented even in (311)-dimensional case,
for example, the total mean numbers of particles created
vacuum-to-vacuum probability in the adiabatic field.

Using general expressions obtained for electric field
which act for a finite time, we study the particle creatio
effect at small and large times. Thus, in particular, we c
estimate a stabilization time of the process, the time of a p
formation, and give a quasiclassical interpretation of a p
creation. In addition, this analysis allows one to select a
estimate consistently time divergences, which appear in
constant fields. Comparing results obtained in different tim
configurations of the electric field, we estimate the role
switching on and off effects in the vacuum instability.

We analyze how the effect of the vacuum instability d
pends on the space dimensions, on the possible bound
conditions, and on a nontrivial topology.

We consider the possibility to add an uniform magnet
field to the electric one and calculate the effect. It turns o
that one can formulate universal rules to generalize all t
formulas obtained in the pure electric field to the case wh
the magnetic field is included as well. Its influence on th
vacuum instability is studied.

Finally, it is shown, taking into account the vacuum lev
shift, that the distributions of particles created by the qua
constant electric fields can be written in a form, which has
thermal character and which seems to be universal, i.e.
valid for any theory with a quasiconstant external fields.
application, for example, to the particle creation in extern
constant gravitational field, reproduces the Hawking te
perature exactly.

II. GENERAL CONSIDERATION IN A UNIFORM
ELECTRIC FIELD

The d-dimensional Dirac equation in an external electr
magnetic field with potentialsAm(x) has the form~further
\5c51)

~Pmgm2m!c~x!50 , Pm5 i ]m2eAm~x!, ~1!

wherec(x) is a 2@d/2#-component column,gm areg matrices
in d dimensions@22#,

d

andx5(xm)5(x0,x),x5(xi),m50,1, . . . ,D,i51, . . . ,D.
As usual, it is convenient to presentc(x) in the form

c~x!5~Pmgm1m!f~x!. ~2!

Then the functionsf have to obey the squared Dirac equa
tion in d dimensions:
ite
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smnFmnDf~x!50 , Fmn5]mAn2]nAm ,

smn5
i

2
@gm,gn#. ~3!

Let us consider the fieldFmn with only one nonzero in-

variantI5 1
2FmnF

mn, which supposes to be negative,I,0. In
this case there exists a reference frame where only the co
ponentsF0i of the field differ from zero. That corresponds to
a pure electric field, which is a particular case of extern
fields, violating the vacuum stability~creating particles!. Let
this electric field be uniform. It can be nonstationary, bu
with a constant direction in the space. Then one can alwa
direct it along the axisxD. Thus,

F0i5„0, . . . ,0,E~x0!…, Fik50. ~4!

For such a field we will use the following potentials
A05A15•••5AD2150, AD5AD(x

0). The constant uni-
form electric field is of a special interest, because QED wi
such an external field~as with any free external field! can be
considered as exact QED~without external fields! with some
special initial states of the electromagnetic field@23,24,6#,
which provide the corresponding nonzero mean values of
electromagnetic field. Sometimes, an alternating electric fie
can also be treated as a slight nonuniform free field, which
stipulated by some specific external conditions: existence
a waveguide@25#, interference of two coherent waves@26#,
and so on. However, the study of the constant field shows
existence of divergences related to the infinite action time
the field. More correct consideration demands a regulariz
tion in time. For instance, one can consider a field, whic
acts only a finite timeT, being constant within this interval.
Such an approach allows also to avoid problems with t
definition of in and out states in nonswitching external field
at x0→6`. Another possibility is to consider an alternating
field, which switches on and off adiabatically atx0→6`,
and is quasiconstant at finite times. In the next section we
going to consider all the above-mentioned possibilities
study the time scenario of the particle creation.

Solutions of the Eq.~3! in the field ~4! can be written in
the form

fp,s,r~x!5fp,s~x
0!exp$ ip•x%vs,$r % , r5~r 1 , . . . ,r @d/2#21!,

s561, r j561, ~5!

where vs,$r % are some constant orthonormal spinor
vs,$r %
† vs,$r 8%5d r ,r 8. Equation~3! allows one to subject these

spinors to some supplementary conditions:

S6v71,$r %50, S65
1

2
~16g0gD!, rank S65J~d!

52@d/2#21, ~6!
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R6vs,$71, r̄ %50, R65
1

2 S 16
ig•p'

up'u D ,
rank R65

1

2
J~d! if d.3,

r̄ 5~r 2 , . . . ,r @d/2#21!,

p'
a5pa,a51, . . . ,D21, p'

D50 .

If d<3 the quantum numbersr do not appear and for
d52 the perpendicular components of the momenta are a
sent.

Taking into account the conditions~6!, one can write an
equation for the functionsfp,s(x

0):

F d2dx0
2 1@pD2eAD~x0!#21p'

21m21 iseE~x0!Gfp,s~x
0!50 .

~7!

A formal transition to the spinless case, which correspon
to the use of the Klein-Gordon equation instead of the Dira
one, can be done by puttings50 in ~7! andvs,$r %51 in ~5!.

The Eq.~7! has two independent solutions at fixedp and
s. Thus, an additional quantum numberz appears,z56.
Combining the two independent solutions, which correspon
to differentz, one can construct two complete sets of solu
tions zfp,s(x

0) and zfp,s(x
0), obeying the conditions

i
d

dx0zfp,s~x
0!5zEpzfp,s~x

0!, sgnzEp5z, x0→2`,

i
d

dx0
zfp,s~x

0!5zEpzfp,s~x
0!,

sgnzEp5z, x0→1`. ~8!

They provide in turn the behavior

Ho.p.~x
0!zcp,s,r~x!5zEpzcp,s,r~x!, sgnzEp5z,x0→2`,

Ho.p.~x
0!zcp,s,r~x!5zEpzcp,s,r~x!, sgnzEp5z,x0→1`,

~9!

of the corresponding Dirac equation solutions
zcp,s,r(x)5(g•P1m)zfp,s,r(x) and zcp,s,r(x)5(g•P
1m)zfp,s,r(x). In the Eq.~9! Ho.p.5g0(m1g•P) is one-
particle Dirac Hamiltonian, andE are quasienergies. The so-
lutions 6cp,s,r(x) describe particle~1! and antiparticle~2!
in the initial time instant whereas6cp,s,r(x) describe par-
ticle ~1! and antiparticle~2! in the final time instant@19,6#.

One can see that the solutions with differents and fixed
z,p,r are dependent. For example,

zcp,s,r~x!5
m1 ibp,r

zap,2s
zcp,2s,r~x!, ~10!

where bp,r5r 1up'u if d.3, bp,r5p1 if d53, bp,r50 if
d52, and zap,s are some coefficients. To see how~10! ap-
pears one can use~6!–~8! and the following consequence of
the latter two:
b-

ds
c

d
-

,

F i d

dx0
1s@pD2eAD~x0!#G zfp,s~x

0!

5zap,szfp,2s~x
0!, zap,21zap,115m21p'

2 .

Similar relation holds forzcp,s,r(x). The Eq.~10! means, in
fact, that the spin projections of a particle~1! and an anti-
particle ~2! can take on onlyJ(d) values. Taking that into
account, one can only use the independent solutions

6cp,r~x!5~g•P1m!6fp,61,r~x!,

6cp,r~x!5~g•P1m!6fp,71,r~x!. ~11!

Further, we are going to calculate different matrix ele
ments between the solutions~11! by means of the conven-
tional time-independent Dirac scalar produc
(c,c8)5*c̄(x)g0c8(x)dx. In the case under consideration
due to the above-mentioned properties~6! and ~7! of the
spinors zfp,s,r(x) and

zfp,s,r(x), the scalar product can be
reduced to a form which is convenient for calculation and, i
particular, does not containg matrice at all:

~1
2cp,r ,1

2cp8,r 8!5 i ~2p!Dd r ,r 8d~p2p8!1
2fp,11* ~x0!

3]0
↔

~ i ]01pD2eAD~x0!!1
2fp,11~x

0!,

~2
1cp,r ,2

1cp8,r 8!5 i ~2p!Dd r ,r 8d~p2p8!2
1fp,21* ~x0!

3]0
↔

~ i ]02pD1eAD~x0!!2
1fp,21~x

0!,

~1
2cp,r ,2

1cp8,r 8!5 i ~2p!Dd r ,r 8d~p2p8!

3~m2 ibp,r !1
2fp,11* ~x0!]0

↔
2
1fp,21~x

0!,

~12!

where ]0
↔

5]0
→

2]0
←
. @The right side of~12! reproduces the

corresponding Klein-Gordon scalar product if one puts fo
mally z$ i ]06@pD2eAD(x

0)#%5m2 ib51.#
One can see from~8! and~12! that the solutions~11! can

be normalized to obey the orthonormality relations

~ zcp,r ,z8cp8,r 8!5dz,z8d r ,r 8d~p2p8!,

~ zcp,r
z8cp8,r 8!5dz,z8d r ,r 8d~p2p8!. ~13!

Moreover, each set of solutionszcp,r(x) and
zcp,r(x) forms

a complete system, thus, we are dealing with the so-called
and out sets of solutions correspondingly@19,20,6#.

Using ~12!, one can find decomposition coefficients
G(zuz8) of the out solutions in the in solutions:

zc~x!51c~x!G~1uz!12c~x!G~2uz!. ~14!

The matricesG(zuz8) obey the relations

G~ zu1!G~ zu1!†1kG~ zu2!G~ zu2!†5~zI !~12k!/2,

G~1u1!G~1u1!†1kG~1u2!G~2u2!†50 , ~15!
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where I is the unit matrix andk561 for fermions and
bosons, respectively. Relations~15! can be derived from the
conditions~13!. Because of Eq.~12! we can easily see that
the matricesG(zuz8) are diagonal:

G~ zuz8!p,r ,p8,r 85d r ,r 8d~p2p8!g~ zuz8!. ~16!

All the information about the processes of particle creatio
annihilation, and scattering in an external field~without ra-
diative corrections!, one can extract from the matrice
G(zuz8) because they define a canonical transformation b
tween in and out creation and annihilation operators in t
generalized Furry representation@19,20,6#,

a†~out!5a†~ in!G~1u1!1b~ in!G~2u1!,

b~out!5a†~ in!G~1u2!1b~ in!G~2u2!. ~17!

Here,an
†(in), bn

†(in), an(in), bn(in) are creation and annihi-
lation operators of in particles and antiparticles, respectiv
and an

†(out),bn
†(out), an(out),bn(out) are ones of out par-

ticles and antiparticles,n presents momentump and spin
projectionsr . For example, the mean numbers of particle
created~which are also equal to the numbers of pairs create!
by the external field from the in vacuumu0,in& with a given
momentump and spin projectionsr is

Np,r5^0,inuap,r
† ~out!ap,r~out!u0,in&5ug~2u1!u2. ~18!

Here, the standard volume regularization was used, so
d(p2p8)→dp,p8. The probabilities of a particle scattering
and of a pair creation have the following forms, respective

P~1u1 !p,r ,p8,r 85u^0,outuap,r~out!ap8,r 8
†

~ in!u0,in&u2

5d r ,r 8dp,p8
1

12kNp,r
Pv , ~19!

P~21u0!p,r ,p8,r 85u^0,outubp,r~out!ap8,r 8~out!u0,in&u
2

5d r ,r 8dp,p8
Np,r

12kNp,r
Pv , ~20!

whereu0,out& is the out vacuum and

Pv5u^0,outu0,in&u25expH k(
p,r

ln~12kNp,r !J , ~21!

is the probability for a vacuum to remain a vacuum. Th
probabilities for an antiparticle scattering and a pair anni
lation are described by the same expressionsP(1u1) and
P(21u0), respectively.

Thus, to be able to calculate the quantities~18!–~21!, in
the case under consideration, one has to find solutions of
ordinary differential equation~7!, which is in fact Schro¨-
dinger equation for a linear oscillator with time-depende
frequency. However, one can make some general con
sions, which do not depend on the concrete time depende
of the electric field in Eq.~7!. First of all, the matrices
G(zuz8) are diagonal in all the quantum numbers introduce
Second, the quantum numbersr do not enter in the Eq.~7!
and, because of the structure of the scalar product~12!, the
n,
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matrices can depend onr via a phase only. That is why all
the probabilities and the mean numbers do not depend
r , so that in the fermionic case the total~summed over all
r ) probabilities and the mean numbers areJ(d) times greater
than the corresponding differential quantities. For exampl
the total number of particles created with a given momentu
p is

Np5(
r
Np,r5J~d!Np,r . ~22!

Finally, it is clear that because of the structure of the Eq.~7!
and the scalar product~12!, the dimensionalityd enters in the
differential probabilities and mean values via the combina
tion p'

2 only.

III. T-CONSTANT, ADIABATIC, AND CONSTANT
ELECTRIC FIELDS

A. T-constant field

To analyze the time dependence of the particle creatio
effects let us consider the field~4! with E(x0) having the
form

E~x0!5H 0, x0PI,

E, x0PII,

0, x0PIII,

~23!

where the time intervals are: I5(2`,t1), II5@ t1 ,t2#, III
5(t2 ,1`), t22t15T, t252t1 , and eE.0 is chosen.
Thus, in fact, we consider a constant electric fieldE, which
is acting a finite timeT. Further, we will call itT constant
field. The corresponding potentialAD(x

0) can be chosen in
the form

AD~x0!5H Et1 , x0PI,

Ex0, x0PII,

Et2 , x0PIII.

~24!

In each interval I, II, III the Eq.~7! has two independent
solutions, which are correspondingly in I: exp$2ip0(t1)x

0%
and exp$1ip0(t1)x

0%, in II: Dn2(11s)/2@(12 i )j# and
D2n2(12s)/2@(11 i )j#, and in III: exp$2ip0(t2)x

0% and
exp$1ip0(t2)x

0%, whereDn(z) are Weber parabolic cylinder
~WPC! functions@27#, and

n5
il

2
, l5

m21p'
2

eE
, j~x0!5

eEx02pD

AeE
,

p0~x
0!5Am21p'

21@pD2eAD~x0!#2.

Using them and conditions~8!, one can construct in and out
solutions 2cp,r(x) and

1cp,r(x) ~see Sec. II!. The corre-
sponding expressions for2fp,21(x

0) and 1fp,21(x
0) are

of the form
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2fp,21~x
0!5C1H exp$1 ip0~ t1!~x

02t1!%, I,

a1Dn@~12 i !j#1a2D2n21@~11 i !j#, II,

g~1u2!exp$2 ip0~ t2!~x
02t2!%1g~2u2!exp$1 ip0~ t2!~x

02t2!%, III,

~25!

1fp,21~x
0!5C2H g~1u1!exp$2 ip0~ t1!~x

02t1!%1g~2u1!exp$1 ip0~ t1!~x
02t1!%, I,

a18Dn@~12 i !j#1a28D2n21@~11 i !j#, II,

exp$2 ip0~ t2!~x
02t2!%, III,

~26!
e
r

-

e

y

-

-
t

where the normalization constants are

Ci5~2p!2D/2~2p0~ t i !qi !
21/2,

qi5p0~ t i !2~21! i@pD2eAD~ t i !#, i51,2.

To provide the continuity of the solutions in the time-instan
t1 and t2 one has to impose the conditions

2
1fp,21~ t i10!52

1fp,21~ t i20!,

d

dx02
1fp,21~ t i10!5

d

dx02
1fp,21~ t i20!,

which allow one to define step by step all the coefficien
ai ,ai8 , andg(6u1), g(6u2). The first ones are

ai52~21! i
p0~ t1! f i

~1 !~ t1!

MA2eE
, ai85~21! i

p0~ t2! f i
~2 !~ t2!

MA2eE
,

where

M5Dn~z!
d

dz
D2n21~ iz!2D2n21~ iz!

d

dz
Dn~z!

5expH 2~n11!
ip

2 J
is the Wronskian determinant@27#, and

f 1
~6 !~x0!5S 16

i ]0
p0~x

0! DD2n21@~11 i !j#,

f 2
~6 !~x0!5S 16

i ]0
p0~x

0! DDn@~12 i !j#.

They can be used to define the latter coefficients. From th
we need to know explicitly onlyg(2u1) andg(1u2), which
are

g~2u1!5expH ~n11!
ip

2 J S p0~ t1!q1p0~ t2!8eEq2
D 1/2

3@ f 2
~2 !~ t2! f 1

~2 !~ t1!2 f 1
~2 !~ t2! f 2

~2 !~ t1!#,
ts

ts

ose

g~1u2!5expH ~n11!
ip

2 J S p0~ t1!q2p0~ t2!8eEq1
D 1/2

3@ f 2
~1 !~ t2! f 1

~1 !~ t1!2 f 1
~1 !~ t2! f 2

~1 !~ t1!#. ~27!

One can see that the coefficients~27! obey the properties

g~1u2!upD→2pD
52g~2u1!, g~1u2!5g~2u1!* .

~28!

The first one can be verified directly, whereas the second on
is easy to derive comparing representations of the scala
product ~12! in the time-instantst1 and t2 . Thus, one can
conclude thatug(2u1)u is an even function of the momentum
pD .

To calculate the probabilities and the mean numbers ac
cording to the formulas~18!–~21! we need really to know
only the coefficientsg(2u1). Comparing~14! and ~25! and
~26!, we conclude that the relations~16! hold and we have
the expression for the mean numbers of pairs created in th
form ~18!, in which g(2u1) is defined by~27!. In fact, the
mean numbersNp,r define all the probabilities via the formu-
las ~19!–~21!. As it was shown above, this function is even
in all the momentap, includingpD and does not depend on
the spin quantum numberr . Using the recipe presented in
Sec. II, it is easy to get an explicit formNp for the the
bosonic case from the fermionic ones~18! and ~27!.

Now, we are going to analyze the dependence of all the
characteristics on the timeT and on the momenta. One has to
remark that the dependence of the longitudinal momentum
pD is of a special interest. This dependence is essentiall
correlated with theT dependence. One can see, e.g., from the
four-dimensional case@18,6#, that in the constant field
(T5`) all the characteristics do not depend on the momen
tum pD . This is a source of some kind of divergences if one
is interested in the total characteristics, which require inte
gration overpD . Because of the reasons mentioned above i
is enough to analyze only the quantityNp,r . As to the mo-
mentumpD , one can restrict itself only bypD positive or
pD negative. Note that the momentapD enter in all the for-
mulas via two dimensionless parametersj1 andj2 only,

j15jS 2
T

2D5
1

AeE
S 2eE

T

2
2pDD ,

j25jS 1
T

2D5
1

AeE
S 1eE

T

2
2pDD ,
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which in turn appear in the WPC functions. Thus, in fac
one needs to analyze the dependence of the latter onj. It is
convenient to consider the region2AeET/2<j1,1`,
j2>AeET/2, which corresponds to pD negative,
0<2pD,1`, in particular, there alwaysj2.j1 .

In the regionj1>K, whereK is a given numberK@1
1l ~in terms of the momentum this region corresponds
upDu>eET/21KAeE) one can use the asymptotic expansio
of WPC functions@27#,

Dn~z!5znexp$2z2/4%

3S (
n50

N ~2 1
2 n!n~

1
2 2 1

2 n!n

n! ~2 1
2 z

2!n
1O~ uzu22~N11!!D ,

uargzu, 3
4 p, ~29!

to conclude that at anyT the behavior of the mean number
~18! and ~27! is

Np,r5OS F l

j1
2G3D . ~30!

For smallT, T!1/AeE, andupDu!eET/2, one can get

Np,r5
eET2

4l1eET2
@11O~AeET!#. ~31!

At T!Al/AeE andT!1/AeEl, the form ~31! reduces to
Np,r5eET2/(4l) and coincides with one which can be de
rived in the frame of perturbation theory with respect to th
external field.

The most important region for the time divergences is o
of largeT, namely, let us considerT@1/AeE(11l). In this
casej2 is always large and positivej2@11l, so that the
asymptotic expansion~29! can be used for any given mo
mentum pD . As to the parameterj1 , the whole interval
2AeET/2<j1,1` can be divided in three regions:

~a! 2AeE
T

2
<j1<2K, ~b! 2K,j1,K, ~c! j1>K.

The mean numbersNp,r were estimated in the region~c!
before, see~30!. In the region~a! one can use some relation
between the WPC functions@27#, for example, Dn(z)
5exp$ipn%Dn(2z) 2A2p/G~2n! exp~ipn/2! D2n21~2iz!,
and the asymptotic expansion~29!. Then, one finds

Np,r5e2plF11OS F11l

j1
G3D1OS F11l

j2
G3D G ,

2AeE
T

2
<j1<2K. ~32!

The latter expression allows one to consider the lim
T→` at any givenp. In this limit the mean numbers take a
simple form

Np,r5e2pl. ~33!

Thus, when the electric field is acting for a long enough tim
the mean numbers of particles created in a given quant
t,

to
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state are stabilized and coincide with expressions which we
obtained in the constant electric field in 311 QED@18#. @The
stabilization~32! was first remarked in@28# for particles cre-
ated with zero momenta, using a finite action electric field in
311 QED.# One can also estimate a characteristic time o
such a stabilization. To this end one can see tha
(11l)/AeET is a small parameter in the decomposition
~32! in caseupDu!eET/2. If T@T0 , T0511l/AeE then
the mean numbers are stabilized andT0 is the above-
mentioned characteristic time.

The intermediate region~b! does not allows one to use an
asymptotic expansion of WPC functions to analyze thej1
dependence. However, one can make some conclusio
about its contribution in integrals over the momenta. Fo
example, because of the Fermi statisticsNp,r is always
smaller than unity, that is why the integral over the momen
tum pD in the region~b! is less than 2AeEK and is not
essential in comparison with the same integral in the regio
~a! at T→`.

Using these considerations, one can now estimate the su
over the longitudinal momentumpD of Np,r , which is the
mean number of particles created with all possible momen
pD . To do this we go over to the integral,
(pD
→L/2p*dpD , where L is the length in the direction

xD. As was shown above, atT@1/AeE(11l), Np,r is qua-
siconstant in the area~a!, the asymptotics in the area~c! has
the form ~30!, and the contribution to the integral form the
area~b! is less thenAeEKL/p. Then, one can conclude

Np',r
5

L

2pE2`

1`

Np,rdpD5
AeEL
2p

@AeETe2pl1O~K !#.

~34!

Thus, whenT@1/AeEK@1/AeE(11l), we can effectively
replace the integral overpD by eET and write

Np',r
5D longe

2pl, D long5
1

2p
eELT. ~35!

The factorD long can be can interpreted as the total number o
states with the longitudinal momentapD of particles created.

It turns out that the expressions forNp,r andNp',r
at large

T for scalar particles coincide with the ones for spinor par
ticles.

To get the total numberN of particles created one can
sum over the spin projections, using Eq.~22!, and then over
the transversal momenta. The latter sum can be easily tran
formed into an integral,

N5(
p
Np5

V~d21!

~2p!d21E dpNp , ~36!

whereV(d21) is (d21)-dimensional spatial volume. Thus,
on gets

N5J~d!
~11k!/2V~d21!Tm

d

~2p!d21 S EEc
D d/2expH 2p

Ec

E J ,
J~d!52@d/2#21, ~37!
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whereEc5m2/e is the critical field strength. As one can se
the velocity of particle creation is constant at largeT. The
same result was obtained in 311 dimensions in the frame
work of the QED at finite temperature, using the function
Schrödinger picture@29#.

The vacuum-to-vacuum transition probability~21! can be
calculated, using both kinds of regularizations, with resp
to the volume and to the time. Thus, we get t
d-dimensional analogue of the well-known Schwinger fo
mula @2#:

Pv5exp$2mN%, m5 (
n50

`
~21!~12k! n/2

~n11!d/2
expH 2np

Ec

E J .
~38!

Returning to the Schwinger result, one ought to say tha
was, in fact, obtained from the constant field considerat
by means of a regularization. Thus, the space-time volu
VT appeared in his formula. One ought to mention the pa
@15# where the Schwinger result in the constant electric fi
was recovered, using the functional Schro¨dinger equation.

B. Adiabatic field

Let us consider an alternating uniform electric field~4!,
where the functionE(x0) has the form

E~x0!5E cosh22S x0a D . ~39!

Such a field switches on and off adiabatically atx0→6`,
and is quasiconstant at finite times. We will call it adiaba
field. The corresponding nonzero potential is

AD~x0!5aE tanh
x0

a
. ~40!
e

-
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In this case solutions of Eq.~7! can be written in terms of
hypergeometric functionsF(a,b;c;y), @27# for example,

zfp,11~x
0!5zCe

2 iv2x
0
~11e2x

0/a! ia/2 ~v22v1!
zu~x0!,

1u~x0!5F~a,b;c;y!,

2u~x0!5y12cF~a2c11,b2c11;22c;y!, ~41!

a5
ia

2
~2eEa1v12v2!,

b511
ia

2
~22eEa1v12v2!,

c512 iav2 , y5
1

2 S 11tanh
x0

a D ,
v65Am21p'

21~pD7eEa!2,

where zC are some normalization constants. Considering t
asymptotic of the functions~41! at x0→2` @in this case
F(a,b;c;y)51 @27##, one can verify that the relations~8!
hold and zEp5zv2 . Moreover, the solutions atx0→2`
describe free particles. By analogy one can construct so
tions zfp,11(x

0), which describe free particles with energie
zEp5zv1 at x0→1`. Their asymptotic form atx0→1`
is zfp,11(x

0)5zC exp(2izv1x
0). To calculate the coeffi-

cients G(1u2) from ~14! it is enough to know the
corresponding asymptotic1fp,11(x

0) and 2fp,11(x
0),

let say at x0→1`, and normalization constants
2C 5 ~2p!2D/2@2v1~v1 2 pD 1 eEa)#21/2,1C
5~2p!2D/2@2v2~v21pD1eEa)]21/2. Thus, we get the
mean numbers of fermions created:
Np,r5

sinhFpa

2
~2eEa1v22v1!GsinhFpa

2
~2eEa1v12v2!G

sinh~pav1!sinh~pav2!
. ~42!
a

ff

s

In 311 QED the corresponding formula was found first
@30#. For scalar particles it has a different form

Np,r5

cosh2@pA~eEa2!22 1
4 #1sinh2Fpa

2
~v12v2!G

sinh~pav1!sinh~pav2!
.

~43!

Let us consider thea dependence of these expression
For smalla, a!1/eEAm21p2, when the potential change
sharply, we get, for fermions,

Np,r5

~peEa2!2S 12
pD
2

m21p2D
sinh2~paAm21p2!

, ~44!
in

s.
s

and, for bosons,

Np,r5

~peEa2!2F ~eEa2!21
pD
2

m21p2G
sinh2~paAm21p2!

. ~45!

Small a in the case under consideration corresponds in
sense to smallT of the T constant field. Thus, we have to
compare the expressions~31! and~44!. One can see that they
are quite different, so that the effects of switching on and o
are essential at small times.

Further, let us consider large a only,
a@1/AeE(11Al). Then, the mean numbers for fermion
and bosons have the same form:
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Np,r5exp$2pa~v11v222eEa!%. ~46!

Let us take small longitudinal momentaupDu!eEa, then

Np,r5expH 2plF11S pD
eEa D 2G J . ~47!

Considering the limita→`, one gets the formula~33!. That
means that the effects of switching on and off are not esse
tial at large times and small longitudinal momenta. For larg
longitudinal momentaupDu@eEa, the mean numbers of par-
ticles created are exponentially small:

Np,r5exp$22pa~ upDu2eEa!%. ~48!

Let us find the total numbers of particles created with all th
longitudinal momenta at any fixedp' ,r . Passing from the
summation overpD to the corresponding integration, we ge

Np' ,r5
LeEa

2pAl
e2pl. ~49!

Comparison with the formula~35! shows that the adiabatic
field at large times@large a,a@1/AeE(11Al)] and fixed
p' ,r is equivalent to the T-constant field at T
@1/AeE(11l) with the identificationa5AlT. To do
summation over all transversal momenta, it is convenient
use the representation

1

Al
52E

0

`

exp~2pls2!ds.

Then the total numberN of the particles created reads

N5J~d!
~11k!/2V~d21!admd

~2p!d21 S EEc
D d/2expH 2p

Ec

E J , ~50!

where

d5E
0

`

dtt2 1/2~ t11!2 ~d22!/2expS 2tp
Ec

E D
5ApCS 12 ,2 d22

2
;p

Ec

E D
is expressed via the confluent hypergeometric function@27#.
The vacuum-to-vacuum transition probabilityPv has the
form

Pv5exp$2mN%,

m5 (
n50

`
~21!~12k! n/2en11

~n11!d/2
expH 2np

Ec

E J , ~51!

en5d21ApCS 12 ,2 d22

2
;np

Ec

E D .
If E/Ec!1, one can use an asymptotic ofC function @27#,
C(1/2,2(d22)/2;npEc /E)51/ApnAE/Ec1O(@E/Ec#

23/2).
Then, d5AE/Ec, en5n21/2, and m51. In this case the
adiabatic field is equivalent toT constant field with the iden-
n-
e

e

t

to

tification a5TAEc /E. At strong fieldsE;Ec all the terms
with different en contribute to the sum in~51! and the ex-
pression forPv differs essentially from the one for theT
constant field.

One can also remark that the case of a periodic alternat
electric field in 311 dimensions was also considered in th
literature, for example, quasiclassically@31#, and exactly
@32#.

C. Constant field

Here, we consider the case of a constant uniform elect
field ~4!. ThenE(x0)5E and potentialAD5Ex0. Solutions
of the Eq.~7! in such a field can be found in the form

1
2fp,s~x

0!5CDn2~11s!/2@6~12 i !j#,

2
1fp,s~x

0!5CD2n2 ~12s!/2@6~11 i !j#. ~52!

Using an asymptotic expansion of WPC functions~29!, one
can get the asymptotics of the quasienergies:

zEp5zueEx02pDu, zEp5z~eEx02pD!,

so that in and out solutions can be constructed from~52! by
means of Eq.~11!. The same asymptotic expansion~29! al-
lows one to calculate the normalization constant
C5(2p)2D/2(2eE)21/2exp$2pl/8% for spinor case and
C5(2p)2D/2(2eE)21/4exp$2pl/8% for scalar one. Straight-
forward calculations, similar to ones made in the two prev
ous cases, lead to the expression~33! for the mean numbers
of particles created. It does not depend on the dimensiona
of the space and coincides with the result which was deriv
in @18# for 311 QED. In that paper the author used quas
classical considerations to advocate the classification of
solutions~52!. The constant character of the field does n
allow one to treat consistently time divergences, so that
got over them ‘‘by hand,’’ using also quasiclassical consid
erations. Now, one can see that the consideration of theT
constant field gives a possibility both to ground all the resu
obtained from the constant field solutions, solving consi
tently the problem of the time divergences, and to go beyo
the scope of the constant field to analyze the time scenario
the process.

D. Inclusion of a magnetic field

In the same manner as before one can consider a m
general case when a constant uniform magnetic field is
cluded, provided the invariant I is negative. In fact, i
d.3 there are@d/2#21 independent invariant parameter
Hj , j51,2, . . . ,H @d/2#21 of the magnetic field, that corre-
spond to the possibility to construct@d/2# invariants of the
electromagnetic field. In a convenient reference frame, t
magnetic part of the field tensorFmn is presented by the
componentsFmn

' 5( j51
@d/2#-1Hj (dm

j11dn
j 2dn

j11dm
j ). One can al-

ways select solutions of the squared Dirac equation~3! as
eigenfunctions for all independent nonzero terms, which d
scribe the interaction of intrinsic magnetic moment of a pa
ticle with the external magnetic field. In this case the matr
cesG(zuz8) are diagonal and one can construct them usi
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7170 53S. P. GAVRILOV AND D. M. GITMAN
the corresponding expressions in the pure electric fie
Namely, ford.3 one has to make there a replacement

up'u2→ (
j51

@d/2#21

v j1v0 , v05H 0, d is even,

pd22
2 , d is odd,

~53!

v j5H ueHj u~2nj112r j !, nj50,1, . . . , HjÞ0,

pj
21pj11

2 , Hj50.

In the presence of the magnetic field some momentapj have
to be replaced by the discrete quantum numbersnj . The
number of these momentapj corresponds to the number o
nonzero parametersHj . The magnetic field lifts the degen
eracy in spin projections in all the characteristics of the pa
ticle creation effect.

We present here explicit formulas in presence of the ma
netic field for the total characteristicsN andPv in case of the
T constant field at largeT,

N5J~d!
~11k!/2V~d21!Tm

2b~1!

2~d21!pd/2

E

Ec
expH 2p

Ec

E J ,
Pv5exp$2mN%,

m5 (
n50

`
~21!~12k! n/2b~n11!

~n11!b~1!
expH 2np

Ec

E J , ~54!

where

b~n!5 )
j51

~d22!/2 H eHj

sinh~npHj /E!
@cosh~npHj /E!#~11k!/2J ,

d is even,

b~n!5S m2E

npEc
D 1/2 )

j51

~d23!/2

3H eHj

sinh~npHj /E!
@cosh~npHj /E!#~11k!/2J ,

d is odd.

The corresponding formulas for (311)-dimensional case
were first written in@18,3#, and, in fact, can be derived easil
from the calculations of Schwinger@2#. They follow from
~54! at d54.

There exists a possibility to get also exact results for t
particle creation in case when a plane wave is added to
combination of electric and magnetic fields. The correspon
ing calculations for~311!-dimensional case were made i
@33# for the electric field plus a plane wave field, and in@34#
for a general combination of electric, magnetic, and pla
wave fields. They can be generalized to any dimension, co
bining the approaches of@34# and of the present paper.
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IV. DISCUSSION

A. Time and space-dimensional analysis

The calculation and analysis presented in Sec. III fo
fields, which are effectively acting for a finite time, allows
one to study both pair formation in time and the role of
switching on and off effects. In addition, because of the fac
that these calculations are made in arbitrary dimensions
the Minkowski space-time, one gets a possibility to analyz
the influence of the dimensionality on the vacuum instability

Studying theT constant field, one can see that the stabi
lization of the mean numbers of particles created with give
p,r in the form ~33! for the longitudinal momenta
upDu!eET/2 comes atT@T0, where T051/AeE(11l).
The characteristic timeT0 can be called stabilization time. At
the same time,Np,r for the large longitudinal momenta
upDu@eET/2 decrease according to the power low~30!.

The stabilization of the mean numbers with givenp,r
in the adiabatic field in the same form~33! comes for
the longitudinal momenta upDu!eEa at a@a0 ,
a051/AeE(11Al). For largeupDu@eEa the mean num-
bers are exponentially small~48!. For largea the adiabatic
field varies slowly and coincides nearly with the constant on
in the time intervalux0u<a. Then,a0 is a characteristic time
of the stabilization in this field. Thus, the stabilization time
a0 in the adiabatic field differs from the corresponding time
T0 in the T constant field. Thus, one can believe that the
stabilization process depends on the switching on and o
effects. In the caseE/Ec,1, which corresponds tol.1, one
can see that the stabilization comes quicker for adiabat
field than for theT constant one (a0,T0), i.e., the adiabatic
form of switching on and off affects less the quantum system
than the instantaneous one in theT constant field. If
E/Ec>1 , there exists a domain of the transversal moment
p' wherel<1. In this case the stabilization times in both
cases are the same,a0;T0;1/AeE, so that for anyE the
relationa0<T0 holds.

Thus, one can conclude, that in some casesT constant and
adiabatic electric fields act on the vacuum in a similar way
However, the momentum dependence of the mean numbe
Np,r differs essentially at large momenta for both fields. Tha
is related to the switching on and off effects. To estimate th
role of the effects of switching on and off on the whole it is
convenient to compare total characteristics. First, let us com
pare the total mean numbers with all the longitudinal mo
menta, namely, compare the formulas~35! and ~49!. In this
case the effective action of both kinds of fields is the same
to identify a with AlT. In spite of this identification ofa
andT is different for differentl ~for differentp'), and one
can use it in a domainp' of the transversal momentum,
uDp'u!Am21p'

2 . As to the total numbers~37! and ~50!,
they coincide if one accepts the identificationa5Td21.
However, this identification provides only the coincidence o
Pv for both cases ~38! and ~51! if E/Ec!1 ~then
d5AE/Ec). In this case the coefficientsm in ~38! and ~51!
are the same. One can conclude that the effects of switchin
on and off are not essential forE/Ec!1 and for largeT
@(1/m)(Ec /E)

3/2, or for largea, respectively. In case of
strong fields,E/Ec>1, these effects appear to be essentia
and one has to take into account the back reaction of pa
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53 7171VACUUM INSTABILITY IN EXTERNAL FIELDS
ticles created for more realistic external field definition~e.g.,
see@5,7,14#!.

The stabilization of the mean numbers of particles crea
with given p,r at T@T0 can be interpreted in the following
way: In theT constant electric field at the finite time instan
T/2 the pairs are created with quantum numbe
upDu,eET/2 ~equal for particles and antiparticles!. This
corresponds to the region 0,pD(T/2),eET of the ob-
served kinetic momenta,pD(T/2)52@pD2eAD(T/2)#
52pD1eET/2 of a particle in each pair~direction of anti-
particle kinetic momenta is opposite!. At T@T0 , the effects
of switching on and off are already not essential. That is w
the probabilities of pair creation do not depend on the tim
instantst, 2T/2,t,T/2. One can think that at this time
instant the particles in the pairs are materialized with almo
zero longitudinal kinetic momenta at any givenp' , i.e., with
the energiesAm21p'

2 . Then, the electric field accelerate
them until the end of its action. Let us suppose that a parti
was created at a time instantt. An expression for the kinetic
momentum of such a particle at the final time instant~which
is equal to its expression in the time instant when the fie
switches off! can be found solving the classical equation
motiondpD/dx05eE, so thatpD(T/2)5eE(T/22t). Thus,
a particle, which was discovered with the quantum numb
pD at the final time instant, was created at the time-insta
t5pD /eE. Then the integration over the longitudinal mo
menta pD is equivalent to one over the timet,
*dpD5eET. This conclusion coincides with one derived i
course of the strict quantum analysis presented in Sec. III
According to the same interpretation, for particles with rel
tively nonzero mean numbers, the maximum value of t
kinetic momentumpD(T/2) is eET that corresponds to the
particles, which were created at the initial timet52T/2,
whereas its minimal value is 0 and corresponds to the p
ticles, which were created at the final time-instantt5T/2.
This conclusion coincides also with one derived from qua
tum consideration in Sec. III A.

In the conclusion of the time analysis, one can remark th
the timeT0 , which was introduced by us as the stabilizatio
time, was interpreted in some papers as the time of a p
creation@18,28#. However, we have seen that in the adiaba
field the stabilization timea0 is different, thusT0 is not a
universal characteristic and depends on the field form. In t
connection one can propose another characteristic tim
which a pair formation in a quasiconstant electric field. I
deed, as we have mentioned above, all the results in thT
constant and adiabatic fields are comparable ifE/Ec!1. In
this case the adiabatic form of the field is disturbing th
quantum system less than theT constant field. Here,a0

!T0 anda0'T0
f 5Al/AeE. Since the adiabatic field is qua

siconstant for the time intervalT0
f and it is large enough for

the stabilization, one can interpretT0
f as the time of a pair

formation. One can extrapolate this interpretation ofT0
f for

any field strengthE. A quasiclassical consideration confirm
this interpretation. Thus, a virtual particle with initial zer
energy gets from the electric field for the timeT0

f the energy
Am21p'

2 necessary for the materialization. It is easy to s
that the timeT0

f is always either less than the stabilizatio
timesT0 ,a0 or equal to them. Some other consideration r
lated to the timeT0

f one can see in the next subsection.
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Turning to the dimensional analysis, one can see that
increase of degrees of freedom, because of the increase
the dimensionality of the space-time itself and because of
related increase of the spinning space dimensionJ(d) , affects
essentially the total numbers of particles created in the u
of the volume and the probability for vacuum to remain
vacuum. Thus, the increase of spinning degrees of freed
leads to an increase ofN and Pv at any ratioE/Ec . In
particular, in d.3, the numbers of fermions created i
greater than the one of bosons. An increase of spatial dim
sions leads to a decrease of the total numbers of partic
created in the unit of the volume and the probability for
vacuum to remain a vacuum atE/Ec,1 and their increase at
E/Ec.1.

The presence of walls or of a nontrivial topology affect
the spectrum of particles created. If the lengthLi of the space
in the direction of an axisxi is restricted by the walls the
corresponding momentumupi u52pn/Li , n51,2, . . . is
quantized. AtLi;1/m the dependence of the mean numbe
on the boundary conditions is essential. AtLi!1/AeE the
mean numbersNp,r in the quasistationary fields are very
small for any strengthE. In this connection one can trea
L051/m@11(Ec /E)

1/2# as a characteristic dimension of the
system, for which the boundary conditions are essential.
E/Ec>1 it is the Compton wavelength. It is interesting to
remark that the stabilization timesT0 ,a0 coincide withL0 at
E/Ec51.

Imposing periodic conditions in the direction of an axi
xi ~that corresponds, in particular, to the torus topology!, one
gets for the momentumupi u52pn/Li , n50,1,2, . . . . Then,
atLi!1/AeE only particles withpi50 can be created. If the
electric field has the same direction, then the total numb
N and the probabilityPv do not depend on timeT, since this
dependence arises in course of a summation over the lon
tudinal momenta. It is interesting that the presence of t
magnetic field acts as a dimensional reduction. Indeed, in
strong magnetic field with someHj@E, the lowest energy
level of a boson cannot be less thanueHj u, whereas for a
fermion it can. That means that the strong magnetic field a
on bosons as some walls and on fermions as the presenc
the torus topology. Thus, one can see that if some of t
magnetic fields are strong enough, then the correspond
spin projection becomes frozen and total characteristics, l
total mean numbers, decrease. These dimensional effe
may be relevant to the matter creation at early Universe.

B. Relation between the vacuum instability
in external electromagnetic and gravitational fields

It is interesting to compare particle creation in extern
electromagnetic fields and in external fields of different n
ture, for example, in external gravitational fields. To this en
one can use results obtained in the quasiconstant elec
fields and in the static gravitational fields. The latter proble
was considered first by Hawking@8# who, in particular, cal-
culated the mean numbers of particles created by static gra
tational field of a black hole with massM in a specific ther-
mal environment,

Nn5FexpH 2p
v

g~H !
J 1kG21

, ~55!
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wherev is the energy of a particle created, which suppos
to be dependent on a complete set of quantum numbersn,
g(H)5GM/r g

2 , wherer g is the gravitational radius, so tha
g(H) is free-falling acceleration at this radius. This spectru
was interpreted as a Planck distribution with the temperat
u (H)5g(H)/(2pkB) (kB is the Boltzmann constant!. As be-
fore, k511 for fermions andk521 for bosons. It is also
known @35# that an observer, which is moving with a con
stant accelerationg(R) ~with respect to its proper time!, will
register in the Minkowski vacuum some particles~Rindler
particles!. The mean numbers of Rindler bosons have t
same Planck form~55! ~with k521), where one has to
replaceg(H) by g(R) , so that the corresponding temperatu
is u (R)5g(R)/(2pkB) . One can find many other example
when the particle creation in external gravitation fields~and
because of a nontrivial topology! can be described by mean
of an effective temperature@5,7# ~see also references in the
recent publications@36#!. On the other hand, the distribution
obtained in external electromagnetic fields have not the th
mal form at a first glance. Nevertheless, there were attem
to find close relations between the distributions in both cas
moreover, to derive Hawking distribution from the one i
external electromagnetic field.

In @37#, the distribution~33! at p'50 was interpreted as
the Boltzmann one for particles in the ground state with t
energym and the effective temperatureu (E)52eE/(pm).
The same temperature follows from some other consid
ation @38# for the same restricted case. Unfortunately, su
an interpretation does not allow one to include other sta
with nonzero momenta in the consideration.

In @39#, the authors did not introduce an effective tem
perature directly in the electrodynamical case but tried
find a relation between both distributions, in particular,
extract the Hawking temperature from the electrodynamic
formulas. We are going to repeat briefly here this consid
ation, using some new details, which came from the resu
of the present paper. As was established, a particle w
given momenta is created in a time instant with ener
v5Am21p'

2 , which corresponds to zero longitudinal ki
netic momentum at this time instant. Thus, namely, this e
pression plays the role of the total energy of the particle
the time moment of creation. Then, we can compare eq
tions of motion for a classical particle in a constant electr
field dp/dx05eE with ones in the static gravitational field
dp/dx05vg. In the latter,v is the total energy of the test
particle andg is the three-dimensional gravitational field
strength vector. Although these equations are formally sim
lar, there is a fundamental difference between them: the e
tromagnetic coupling constante of a charged particle is not
affected by its motion, while the coupling to the gravitation
field is proportional to the total energy of the test particl
The latter property is a direct consequence of the equivale
principle. Let us formally replace the electric field streng
E by a quantity that characterizes the gravitational fie
strength g and exploit the equivalence principle by consid
ing that the coupling of the particle to the field is propo
tional to the energy of the former, which also allows us
replacee by v. The expression that arises from~33! as a
result of these replacements can be interpreted as the m
numbers of particles created by the corresponding grav
tional field and have the form of the Boltzmann distributio
es
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with characteristic temperatureu85g/(pkB) . If g is the
gravitational field strength at the horizon of the black hol
g(H) , then u8 is only two times greater than the Hawking
temperatureu (H) . In spite of the fact that an explicit progress
was achieved in the way of comparing both distributions
some questions remain. For example, why does the tempe
ture derived by means of the equivalence principle from th
electrodynamical distribution differ by the factor two from
the Hawking one? Is there a thermal interpretation of th
electrodynamical distribution~33! or some universal form of
particle creation spectrum which is valid in both cases? B
low we propose some interpretation of the electrodynamic
formulas which pretend to answer these questions. We
beyond the classical consideration, taking into account pro
erties of the physical vacuum in the time-dependent extern
field.

First, one can remark that because of the time dependen
of the potentialAD(x

0), which defines the quasiconstant
electric field, the level of the vacuum energy changes wit
time. Thus, one has to calculate carefully the difference b
tween the energies of the system in the initial~vacuum! and
in the final ~with particles! states. Let us do the calculations
in the case of fermions and in zero order with respect
radiative corrections in theT constant electric field. In this
case the corresponding Hamiltonian has the form

H~x0!5E C̄~x!Ho.p.C~x!dx, ~56!

whereHo.p. was defined in~9!, andC̄(x),C(x) are electron-
positron field operators in the generalized Furry pictur
@19,20,6#. Being written in terms of in and out operators of
creation and annihilation atx0→7`, respectively, the
HamiltonianH(x0) has the diagonal forms

H~x0!5(
p,r

p0~ t1!@ap,r
† ~ in!ap,r~ in!1bp,r

† ~ in!bp,r~ in!21#,

x0→2`,

H~x0!5(
p,r

p0~ t2!@ap,r
† ~out!ap,r~out!

1bp,r
† ~out!bp,r~out!21#, x0→1`, ~57!

where, as before, t252t15T/2, and p0(t i)
5Am21p'

21(pD(t i))
2 is the energy of a particle in the ini-

tial and final time-instantst i @the longitudinal momenta
pD(t i)5pD2eAD(t i) in the T constant field have the form
pD(6T/2)5pD7eET/2]. Let usconsider the variation of
the total energy of the system, which goes over from th
initial vacuum stateu0,in& to the final stateuN,out& with pairs
created in all the possible levels for theT constant field,

uN,out&5 )
p' ,r ,upDu,eET/2

ap,r
† ~out!bp,r

† ~out!u0,out&.

Then, one can formally write the energy of the initial state a

E152(
p,r

p0~ t1!,
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and of the final state as

E25 (
p' ,r

F (
upDu,eET/2

2p0~ t2!2(
pD

p0~ t2!G .
Thus,

DE5E22E15 (
p' ,r

S (
upDu,eET/2

@p0~ t2!1p0~ t1!#1DEvacD ,
~58!

where

DEvac5 (
upDu.eET/2

@p0~ t1!2p0~ t2!# ~59!

is the shift of the vacuum energy related to the levels w
givenp' ,r , in which no pair appears. We are going to an
lyze this shift only. That is why we do not discuss he
regularization problems of the total sum~58! ~that can be
done, using, for example, the methods described in@11#!.
One can see that

(
upDu,eET/2

@p0~ t1!2p0~ t2!#50,

sincep0(t1)2p0(t2) is an odd function ofpD . That allows
one to extend the summation in~59! over all the longitudinal
momenta. The vacuum before the time-instantt1 was free
and therefore symmetric with respect to the longitudinal k
netic momentumpD(t1)5pD5pD1eET/2. Replacing the
summation overpD by one overpD , one can therefore trea
the corresponding improper integral in sense of its princip
value. Thus

DEvac5
L

2p
lim
M→`

E
2M

M

~Am21p'
21pD

2

2Am21p'
21~pD2eET!2!dpD

52
L

2p
~eET!252

L

2p
@pD~ t2!2pD~ t1!#

2.

~60!

Since the number of states with givenpD , in which particles
can be created, is equal to 1/(2p)eELT, see~35!, then the
shift ~60! can be rewritten in the form

DEvac5 (
upDu,eET/2

Devac,

Devac52eET52upD~ t2!2pD~ t1!u. ~61!

Thus,

DE5 (
p' ,r

(
upDu,eET/2

De, De5p0~ t2!1p0~ t1!1Devac,

~62!

whereDe can be interpreted as a work which the extern
field accomplishes for the creation of a pair in a given sta
It contains a contributionDevac which takes into account a
ith
a-
re

i-

t
al

al
te.

shift of the vacuum energy in those states which rema
vacuum ones. The corresponding work with respect to a p
ticle will be denoted byv, so that

v5
1

2
De

5
1

2
@Am21p'

21@pD~ t2!#
21Am21p'

21@pD~ t1!#
2

2upD~ t2!2pD~ t1!u#. ~63!

Now, we remark that because of the conditions of the sta
lizationT@T0 , upDu,eET/2, under which all the results for
theT constant field were obtained, we can write

v5
1

4
leES 1

upD~ t2!u
1

1

upD~ t1!u
D5

l

T
5

leE

2p0~ t2!
,

l5
m21p'

2

eE
. ~64!

Then the spectrum~33! can be rewritten in the form1

Np,r5expH 22p
v

\

c
g J , ~65!

where the quantityg can be written in several equivalen
forms

g5
ceE

2 S 1

upD~ t2!u
1

1

upD~ t1!u
D5

2c

T
5

ceE

p0~ t2!
. ~66!

The last expression in~66! allows one to treatg as the clas-
sical acceleration of a particle in the electric field in the fin
time-instantt25T/2, for the case when the action time of th
field is big enough, so that the corresponding velocities a
nearc. Formally, this is valid under the quantum condition
of stabilization. The distribution~65! is, in fact, the Boltz-
mann one with the temperatureu5\g/(2pckB) having lit-
erally the Hawking form. Thus, if one identifies the work
v, we have introduced, with the energy of a particle in th
formula ~55!, then the distributions in electrodynamical an
gravitational cases have the same thermal structure. Let
discuss now the possible origin of the differences in the ele
trodynamical and gravitational formulas. First of all, the for
mula ~55! is derived in the formalism of the stationary scat
tering theory, where it is not necessary to take separately i
account a shift of the vacuum level. In this case the energy
a particle created may coincide with the corresponding wo
of the field. Second, the different form of the thermal distr
butions~Boltzmann, Planck! can be stipulated by essentially
different situations in both cases. In the electrodynamic
case we deal in fact with pure states, whereas in the grav
tional problems a density matrix arises because of the ho
zon of event formation. Atv/g!1 the Planck spectrum co-
incides with the Boltzmann one. In this case one can belie

1We have restored\ andc here for convenience of the reader.
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the form~65! for the spectrum of particles created is unive
sal and applicable to any theory with quasiconstant exter
fields.

The form~65! can be useful to describe situations in con
stant fields, where it is convenient to avoid the considerat
of the time evolution, as we have seen comparing it with t
gravitational cases. Another form of the distribution~65!
with 2v5De from ~63! @or ~62!# and with the acceleration
g from ~66!, can be useful in problems with explicit time
dependence.

The universality of the formula~65! can be examined also
in the case of the adiabatic electric field,a@a0 , considered
in Sec. III B. To apply it to the latter case one needs to p
t2,1→6`, then pD(t2)5pD2eEa, pD(t1)5pD1eEa,
and p0(t2)5v1 , p0(t1)5v2 . In this case according to
~61!, Devac522eEa and the distribution~46! follows.

One can remark in this connection that in caseE/Ec!1
(a0!T0) the formulas~64! @and, therefore,~63!# in the adia-
batic field are valid at the conditiont252t15T/2
@a0;T0

f , which is weaker than that in the case of theT
constant field. That allows one to interpret the timeT0

f ,
which already had appeared before in Sec. IV A as a p
formation time, from another point of view. Considering th
formula ~63!, one can see that atT@T0

f , theDe is less than
2Am21p2, because of the essential contribution of th
r-
nal

-
ion
he

ut

air
e

e

vacuum shiftDevac. That means the work of the external
field to produce a pair is less than the corresponding work
which could be expected from the perturbation theory, wher
no vacuum change is taken into account.

The consideration presented was made only for fermion
However, if one believes that the quantityDevac can be taken
in the form~61! for bosons as well, then the distribution~65!
holds also in the scalar case. A consistent analysis fo
charged boson is more complicated and needs to take in
account possible condensate formation and its evolution
an external field~see, for example,@5,40#!.

Finally, we believe that the formulas derived and the
time-dimensional analysis presented can be also useful
describe some collective effects in the framework of quan
tum field theory, for instance, to describe multiple particle
creation by means of the external field approach@13,14# or in
string models with external field@11,12,41#.
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