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Vacuum instability in external fields
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We study particle creation from the vacuum by external electric fields, in particular, by fields, which are
acting for a finite time, in the frame of QED in arbitrary space-time dimensions. In all the cases special sets of
exact solutions of the Dirac equatidim and out solutionsare constructed. Using them, the characteristics of
the effect are calculated. The time and dimensional analyses of the vacuum instability are presented. It is
shown that the distributions of particles created by quasiconstant electric fields can be written in a form which
has a thermal character and which seems to be universal, i.e., is valid for any theory with quasiconstant
external fields. Its application, for example, to particle creation in an external constant gravitational field
reproduces the Hawking temperature exadi§0556-282(96)03312-7

PACS numbsgs): 11.10.Kk, 04.62+v, 12.20.Ds

[. INTRODUCTION ternal fields was calculated in numerous papers, there are still
some problems which are interesting to study and discuss. In
nal field (vacuum instability in an external fieldranks the present paper we are going o focus our atf[entlon on the
among the most intriguing nonlinear phenomena in quantungme scenario of the process and to con5|der_ it in arbitrary

. A . . . . dimensions of space-time to be able analyze its dependence
theory. Its consideration is theoretically important, since 'ton the dimension. To satisfy the first part of the program we

requires one to go beyond the scope of the perturbationqijer special external fields which act effectively during a
theory, and its experimental observation would verify thefiyite time and then compare results with ones in a constant
validity of the theory in the superstrong field domain. Thefie|q. |n fact, such a consideration plays also the role of a
study of the effect began, in fact, first in yegylarization and helps to solve divergence problems which
(3+1)-dimensional QED in connection with the so-called gppear in constant external fields. The dimensional analysis
Klein [1] paradox, which revealed the possibility of electronmay be interesting in relation with the study of multidimen-
penetration through an arbitrary high barrier formed by arsional versions of field theories and gravity. Lower dimen-
external field. Then in 1951, Schwingg®] found the sions, e.g., 2 1 dimensions can be of a particular interest.
vacuum-to-vacuum transition probability in a constant elecField theoretical models in such dimensiga$] attracted in
tric field. It became clear that the effect can actually be obthe last few years a great attention due to various reasons,
served as soon as the external field strength approaches tbgy., nontrivial topological properties, and especially the pos-
characteristic  value (critical field E.=m?c%/|e|# sibility of the existence of particles with fractional spins and
=1,3x10' V/cm. Although a real possibility of creating exotic statistics(anyons, having probably applications to
such fields under laboratory conditions does not exist as yeftactional Hall effect, highF. superconductivity, and so on
these fields can play a role in astrophysics, where the chafd7].
acteristic values of electromagnetic fields and gravitational For calculations we are using the general approach, which
fields near black holes are enormous. One can also mentiomas elaborated in the framework of the field theory for such
that Coulomb fields of superheavy nuclei can create electrorkind of problems[18—-20,8. According to this formulation
positron pairs. General considerations, concrete calculations]l the information about the processes of particle scattering
and a detailed bibliography regarding the vacuum instabilityand creation by an external fieoh zeroth order with respect
in QED can be found if3—6]. Particle creation by external to the radiative correctionscan be extracted from special
gravitational field§5,7,8 and non-Abelian gauge field®]  complete sets of exact solutions of the relativistic wave equa-
can also be considered in analogy with electrodynamicstions in the external fieldin and out solutions A complete
There are also various problems in modern quantum theorgollection of exact solutions of such equations i B QED
which are closely related to the vacuum instability in ques-ds presented in the bodR1], in particular, in and out solu-
tion, for example, phase transitions in field theories, theions and related bibliography can be found[6]. That is
problem of boundary conditions or topology influence on thewhy in the beginning we analyze and classify exact solutions
vacuum, the problem of consistent vacuum construction irof the Dirac equation in uniform external electric fields in
QCD, string theories, multiple particle creation, and so onarbitrary space-time dimensions. in and out solutions are pre-
[5,7,10-15. sented explicitly fofT constant, adiabatic, and constant elec-
In spite of the fact that the particle creation effect in ex-tric fields. Probabilities of particle scattering, pair creation,
vacuum-to-vacuum probability, and mean numbers of par-
ticles created are calculated in arbitrary dimensions for three
“On leave from Tomsk Pedagogical University, 634041 Tomsk,types of electric fields mentioned above. The full consider-
Russia. Electronic address: gavrilov@snfmad.if.usp.br ation in the case of th& constant field, which is most im-
Electronic address: gitman@snfmadl.if.usp.br portant for the time analysis, has no «{3)-dimensional

The effect of particle creation from vacuum by an exter-
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analogue and is presented explicitly for the first time. In spite e

of some of the formulas in two other cases having |P*—m?— EU’”F,W $(x)=0, F,,=d,A,—dA,,
(3+1)-dimensional analogue, thairdimensional generali-

zation appears to be nontrivial. Moreover, some of these for-

mulas were not presented even in{3)-dimensional case,

for example, the total mean numbers of particles created and o=z y"] 3
vacuum-to-vacuum probability in the adiabatic field.

Using general expressions obtained for electric fields, ] i . i
which act for a finite time, we study the particle creation L€t us consider the fiel& ,, with only one nonzero in-
effect at small and large times. Thus, in particular, we carvariantl = %FWFM”, which supposes to be negatives 0. In
estimate a stabilization time of the process, the time of a paithis case there exists a reference frame where only the com-
formation, and give a quasiclassical interpretation of a paiponentsF; of the field differ from zero. That corresponds to
creation. In addition, this analysis allows one to select and pure electric field, which is a particular case of external
estimate consistently time divergences, which appear in thfields, violating the vacuum stabiliticreating particles Let
constant fields. Comparing results obtained in different timehis electric field be uniform. It can be nonstationary, but
configurations of the electric field, we estimate the role ofwith a constant direction in the space. Then one can always
switching on and off effects in the vacuum instability. direct it along the axis®. Thus,

We analyze how the effect of the vacuum instability de-
pends on the space dimensions, on the possible boundary
conditions, and on a nontrivial topology.

We consider the possibility to add an uniform magnetic
field to the electric one and calculate the effect. It turns ouFor such a field we will use the following potentials:
that one can formulate universal rules to generalize all the\,;=A;=---=Ap_;=0, Ap=Ap(x°). The constant uni-
formulas obtained in the pure electric field to the case wheffiorm electric field is of a special interest, because QED with
the magnetic field is included as well. Its influence on thesuch an external fieltas with any free external fieldan be
vacuum instability is studied. considered as exact QEwithout external fieldswith some

Finally, it is shown, taking into account the vacuum level special initial states of the electromagnetic fi¢’8,24,4,
shift, that the distributions of particles created by the quasiwhich provide the corresponding nonzero mean values of the
constant electric fields can be written in a form, which has alectromagnetic field. Sometimes, an alternating electric field
thermal character and which seems to be universal, i.e., isan also be treated as a slight nonuniform free field, which is
valid for any theory with a quasiconstant external fields. Itsstipulated by some specific external conditions: existence of
application, for example, to the particle creation in externala waveguiddg25], interference of two coherent wavg2g],
constant gravitational field, reproduces the Hawking tem-and so on. However, the study of the constant field shows the
perature exactly. existence of divergences related to the infinite action time of

the field. More correct consideration demands a regulariza-
tion in time. For instance, one can consider a field, which

Il. GENERAL CONSIDERATION IN A UNIFORM acts only a finite timéT, being constant within this interval.
ELECTRIC FIELD Such an approach allows also to avoid problems with the

The d-dimensional Dirac equation in an external electro-deﬁg‘itio” of in and out sta_te.§ in' nonswitching external figlds
magnetic field with potential#,(x) has the form(further ~ atX'— = Another possibility is to consider an alternating
hi=c=1) f|eld,. WhICh. switches on Qnd _off adiabatically >a‘{—>_ioo,

and is quasiconstant at finite times. In the next section we are
going to consider all the above-mentioned possibilities to
(Puy=—m)(x)=0, P,=id,—eA,(x), (1) study the time scenario of the particle creation.

Solutions of the Eq(3) in the field (4) can be written in

the form

Fa=(0,... 0E(X%), Fy=0. (@

wherey(x) is a 2%?-component columny* are y matrices
in d dimensiong 22],

bp.sr(X)=dp XO)explip-Xvs i, r=(ry, ... f{a2-1),
[y 9" ].=27%", p*'=diag(1,~1,~1,...), d=D+1, e >t L
Nt~

d s=*1, rj==1, (5
andx=(x*) = (x°x) X:(Xi) ©=0,1 Di=1 D where vs;; are some constant orthonormal spinors,
L 1 1 1 PR | !. L | . T - . .
As usual, it is convenient to preseintx) in the form Vs Vs fr'y= 0r,- Equation(3) allows one to subject these

spinors to some supplementary conditions:

Pp(X)= (P, y*+m) (). 2 1
Sivily{r}zo, Sizz(lt "yo"yD), rank Si:‘](d)

Then the functionsp have to obey the squared Dirac equa-
tion in d dimensions: =2ld/21-1, (6)
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i'J"Fh)

ii+S[ —eAo(x0)] | by s(x°)
p.] " SIPe o

1
Rivsy{:l'ri}zo, R+:§<1i

1 =.,a (X9, i@, =m?+
rank Ri:E‘J(d) if d>3, @BpsiPp,-s(X),  (Ap_178p +1= p?.
Similar relation holds fOY{lﬂp’S‘r(X). The Eq.(10) means, in
fact, that the spin projections of a partidle ) and an anti-
particle (—) can take on onlyl.q values. Taking that into
account, one can only use the independent solutions

T=(ry, .. frar2-1),

p?=p?a=1,...D—-1, p°=

If d<3 the quantum numbers do not appear and for = Pp ()= (y- PHm) by 21,(%),
d=2 the perpendicular components of the momenta are ab- . .
sent. “Ypr(X)=(y-P+m)~ p 51,(X). 11

Taking into account the conditior(§), one can write an

equation for the functiong, ¢(x°): Further, we are going to calculate different matrix ele-

ments between the solutiori$1l) by means of the conven-

2 g 2 . 0 o tional time-independent Dirac scalar product
d_)((2)+[pD_eAD(X )7+ pLAmMTHiseEXY) | ps(X)=0. (4, 4")=[4(x) ¥y’ (x)dx. In the case under consideration,

7) due to the above-mentioned properti@ and (7) of the
spinors ;¢ s (X) and §¢p,5,,(x), the scalar product can be

A formal transition to the spinless case, which correspondseduced to a form which is convenient for calculation and, in
to the use of the Klein-Gordon equation instead of the Diragarticular, does not contaip matrice at all:
one, can be done by puttirgg=0 in (7) andvg ;=1 in (5). - - -

The Eq.(7) has two independent solutions at fixgdand (o o3y o) =1(2m)P 8, 11 8(p—p') 5 B 1 1(X°)
s. Thus, an additional quantum numbérappears = *.

Combining the two independent solutions, which correspond X %(i do+Pp— eAD(xo));qbp,H(xo),
to different, one can construct two complete sets of solu-
tions ¢, <(x%) and ‘¢, {(x%), obeying the conditions o ) =1 (208, 1 8(p—p') T % 1(x°)
. d gy 0y + 0
|W§¢M(x°) = Epebps(X°),  san&,=¢, X°——oo, X do(1dg—Pp+eAp(X")) ~p —1(X),

(pr,r -ir'/fp’,r'):i(zw)Dgr,r"s(p_p,)

d
i o(X0) = £E, 58 (X0, -
dx? 7P P X (M—iby,) % 1) de” dp, 1),

sgrt&,=¢, X0+ (8) (12
They provide in turn the behavior where %=%—¢%. [The right side of(12) reproduces the
B _ corresponding Klein-Gordon scalar product if one puts for-
Ho.p.(xo)g‘/’p,s,r(x)_ggpgwp,s,r(x)y Sgrlgp—gyxo_’_m’ mally g{iaoi[pD_EAD(XO)]}zm—ibzl_]
One can see frontB) and(12) that the solutiong11) can
0\¢ _ic¢ — 7 x0_, . . :
Hop (X2 4p,6,0(X) = p (%), SE={.X +°°’(9) be normalized to obey the orthonormality relations
of the corresponding Dirac equation solutions, (Vo tbpr )= 0,00 0r,008(P=P'),
g'ppsr(x) (v P+m)§¢psr(x) and éV‘;bpsr(x) (y-P ¢ ¢ ,
+m)<¢,s,(x). In the Eq.(9) H, p =7°(m+y-P) is one- (P, Ypr 1) =070 1 6(P—P'). (13

particle Dirac Hamiltonian, ané are quasienergies. The so- )
lutions . ¢, s (X) describe particlé+) and antiparticlg—) ~ Moreover, each set of solutiong; ,(x) and p(x) forms
in the initial time instant whereas ¢, ; (x) describe par- @ complete system, thus, we are dealing with the so-called in
ticle (+) and antiparticlg—) in the final time instanf19,6. ~ and out sets of solutions correspondinf®,20,§.

One can see that the solutions with differenand fixed Using (12), one can find decomposition coefficients
Z,p,r are dependent. For example, G(§|g ) of the out solutions in the in solutions:

Sh(x)= ()G (4|9 + _g(x)G(_[9). (14)

glr/fpsr(x) g(/fp —sr(x) (10)

Ap —
> The matricesG(§|§') obey the relations

where b, ,=rq|p,| if d>3, by, =p; if d=3, b, =0 if

d=2, and ;a, s are some coefficients. To see h¢®0) ap- GG M) THKG(| )G )T=(g) 272,
pears one can ugé)—(8) and the following consequence of

the latter two: G| NG| NT+kG(.|)G(_|)T=0, (15
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where | is the unit matrix and«=*1 for fermions and matrices can depend anvia a phase only. That is why all
bosons, respectively. Relatiofit5) can be derived from the the probabilities and the mean numbers do not depend on
conditions(13). Because of Eq(12) we can easily see that r, so that in the fermionic case the tof@ummed over all

the matrice£(§|§') are diagonal: r) probabilities and the mean numbers dgg times greater
than the corresponding differential quantities. For example,
G| Y prprrr =8 8(p—PG(L). (16)  the total number of particles created with a given momentum
pis

All the information about the processes of particle creation,
annihilation, and scattering in an external figldithout ra-
diative corrections one can extract from the matrices Np=2> Np,=J(g)Np, - (22

G( g|5') because they define a canonical transformation be-
tween in and out creation and annihilation operators in th

generalized Furry representatifit9,20.6, Ef:mally, it is clear that because of the structure of the &j.

and the scalar produ¢t2), the dimensionalitgl enters in the

a'(outy=af(in)G(,|*)+b(in)G(_|*), differezntial probabilities and mean values via the combina-
tion p{ only.
b(out=a'(in)G(,| ™) +b(in)G(_|"). (17)
Here,aﬁ(in), bﬁ(in), a(in), b,(in) are creation and annihi-
lation operators of in particles and antiparticles, respectively |, 1. cONSTANT ADIABATIC. AND CONSTANT
and a/(out) b/ (out), a,(out),b,(out) are ones of out par- ELECTRIC FIELDS
ticles and antiparticlesn presents momenturp and spin
projectionsr. For example, the mean numbers of particles A. T-constant field

createdwhich are also equal to the numbers of pairs créated T analyze the time dependence of the particle creation
by the external field from the in vacuu,in) with a given  effects let us consider the fieldt) with E(x°) having the

momentump and spin projections is form
Npr=(0.ina} (outa,  (out|0,iny=|g(_|")[>. (18) 0, x%l,
0
Here, the standard volume regularization was used, so that Ex%)=y E xell, (23
d(p—p’')— 6, - The probabilities of a particle scattering 0, x%I,
and of a pair creation have the following forms, respectively:
+ N where the time intervals are=I(—o,t;), lI=[ty,t,], Il
P(+|+)prprrr=(0,0utay (ouda, ., (in)|0,in)| =(tp,+®), t,—t;=T, t,=—t;, and eE>0 is chosen.
Thus, in fact, we consider a constant electric fiEldwhich
=811 8pp Py, (19 is acting a finite timeT. Further, we will call itT constant
TP 1= kNp field. The corresponding potentifl,(x°) can be chosen in
12 the form
P(=+[0)prpr.rr=1(0,0utby, (out)ay , (out)|0,in)|
Nop.r Et;, x%el,
:5r’r,5p'p’TprrPU’ (20) AD(XO): EXO, XOEH, (24)
0
where|0,0u is the out vacuum and Bz, x7elil.
o In each interval I, Il, lll the Eq.(7) has two independent
P,=(0,0ut0,in)|*= ex K; IN(1-«Np) (., (21 solutions, which are correspondingly in I: exgipo(ty)x°}
’ and exg+ipt)x, in 1: D,_11gp(1-i)€] and
is the probability for a vacuum to remain a vacuum. TheD-,-@-9[(1+1)€], and in llI: exq—ipo(t)x’t and

probabilities for an antiparticle scattering and a pair annihi-€XP[+iPo(tz)x’}, whereD,(z) are Weber parabolic cylinder
lation are described by the same expressiBfs|+) and (WPQO functions[27], and
P(—+]0), respectively.

Thus, to be able to calculate the quantiti@8)—(21), in i m?+p? o eEX—pp
the case under consideration, one has to find solutions of the v=o, A= & )= W,
ordinary differential equation(7), which is in fact Schre
dinger equation for a linear oscillator with time-dependent
frequency. However, one can make some general conclu- po(x%) = Jym2+ pf+[pD—eAD(x°)]2.
sions, which do not depend on the concrete time dependence
of the electric field in EC|(7) First of all, the matrices Using them and Conditior@)’ one can construct in and out
G({|§’) are diagonal in all the quantum numbers introducedsolutions _ ¢, ((x) and +zpp,r(x) (see Sec. Il The corre-
Second, the quantum numberslo not enter in the Eq.7)  sponding expressions for ¢p,,1(x°) and +<;Sp,,l(x°) are
and, because of the structure of the scalar prodl@t the  of the form
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exp{+ipo(t)(x°—t)}, l,
7¢p,71(X0)=C1 a;D,[(1-i)é]+aD_, [ (1+i)&], I, (25)
g(|o)exp{—ipo(t2) (X°—t2)}+g( | )exp{+ipo(t) (X°—tx)}, I

(eI H)exp{—ipo(t) (X°—t)}+g(_| exp{+ipo(t) (xX°—t)}, |,
Jr(yzsp,fl(XO)ZCZ al V[ _I)§]+aZD7V7l[(1+I)§]1 ”1 (26)
exp{ —ipo(t2) (X°—t)}, I,

where the normalization constants are po(tl)quo(tz))m

g(*|-)=exp (v +1)—]( 8eEq,

Ci=(2m) P2(2py(t)qi) ~ 2,
X[FS () 17 (1) — 17 () 157 (1) 1. (27)

di=pPo(t)—(—1)[pp—eAp(t)], i=1.2.

One can see that the coefficieligy) obey the properties

To provide the continuity of the solutions in the time-instants

.
t, andt, one has to impose the conditions 9C [ pp——pp=—9C1) gCT[)=0(-[)*. 08

+ _+ L
~#p-1(tit 0)=_¢p —1(ti=0), The first one can be verified directly, whereas the second one

is easy to derive comparing representations of the scalar

product(12) in the time-instantd,; andt,. Thus, one can

30 Pp-1(tit0)= o5" bp a(ti=0), conclude thatg(_|™)| is an even function of the momentum
Po -
wh|ch allow one to define step by step all the coefﬁuentscoL?n;a:g“:ﬁ;efg;?nSlg’ ;f;)"“?zeg 3vned r:ggdnlzzrl}ynyomlfr?(;\?v ac-
,a; , and _). The first
3./, andg(=|"), g(7|.). The first ones are only the coefficientgy(_| ™). Comparing(14) and (25) and
) 5 (26), we conclude that the relatior{46) hold and we have
a— gy Pt (1) Po(ta)fi (1) al=(—1) Polt2)fi (1) the expression for the mean numbers of pairs created in the
—(= My2eE =  M2eE ' form (18), in which g(_|™) is defined by(27). In fact, the
mean numbersl, , define all the probabilities via the formu-
where las (19—(21). As |t was shown above, this function is even

in all the momenta, including pp and does not depend on
the spin quantum number. Using the recipe presented in
d D_, ,(iz)-D_,_ 1(|z) d D (2) Sec. II, it is easy to get an explicit foriN, for the the

M=D
2 )d bosonic case from the fermionic on€s8) and (27).

Now, we are going to analyze the dependence of all the

= exp[ —(v+1) %w characteristics on the timieand on the momenta. One has to

remark that the dependence of the longitudinal momentum
pp is of a special interest. This dependence is essentially
is the Wronskian determinah27], and correlated with th& dependence. One can see, e.g., from the

four-dimensional cas€18,6], that in the constant field

i (x0)= ( 1x D_,-1[(1+i)&], tum pp . This is a source of some kind of divergences if one

10o
po(XO)

(T=00) all the characteristics do not depend on the momen-

is interested in the total characteristics, which require inte-

gration overpp . Because of the reasons mentioned above it

1o ) [(1—i)¢] is enough to analyze only the quantiy, .. As to the mo-
po(x°) ' mentumpp, one can restrict itself only bpp positive or
pp hegative. Note that the momenpg enter in all the for-
They can be used to define the latter coefficients. From thos@ulas via two dimensionless parametégsand &, only,
we need to know explicitly onlg(_|") andg(*|_), which
are

f5(x0)= ( 1+

glzf(—£)=%E(—eE;‘pD)’

9(-|")= exp[(u+1 }(M)m

8eEp T)_ 1

§2=§(+§ = JeE

XLES () (1) — 17 () 157 )(t)],
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which in turn appear in the WPC functions. Thus, in fact,state are stabilized and coincide with expressions which were
one needs to analyze the dependence of the lattér ¢éinis  obtained in the constant electric field irr2 QED[18]. [The
convenient to consider the regior VeET/2<¢, <+, stabilization(32) was first remarked if28] for particles cre-
&=.\eET2, which corresponds topp negative, ated with zero momenta, using a finite action electric field in
0<-—pp<+, in particular, there alway§,>¢;. 3+1 QEDJ] One can also estimate a characteristic time of
In the region&;=K, whereK is a given numbek>1 such a stabilization. To this end one can see that
+\ (in terms of the momentum this region corresponds to{1+\)/JeET is a small parameter in the decomposition
|po|=eET2+K JeE) one can use the asymptotic expansion(32) in case|pp|<eET2. If T>T,, To=1+\/\eE then

of WPC functiong 27], the mean numbers are stabilized aiig is the above-
mentioned characteristic time.
D,(2)=z"exp{ — z%/4} The intermediate regiotb) does not allows one to use an
N N . asymptotic expansion of WPC functions to analyze e
% (=2 V(3 — zv)n+0(|z|*2(N+1)) dependence. However, one can make some conclusions
i ni(—1iz?)n ' about its contribution in integrals over the momenta. For

example, because of the Fermi statistidg, is always
largz] <2 r, (29)  smaller than unity, that is why the integral over the momen-
tum pp in the region(b) is less than 2eEK and is not
to conclude that at any the behavior of the mean numbers essential in comparison with the same integral in the region

(18) and(27) is (a) at T—oo.
3 Using these considerations, one can now estimate the sum
N. =0 L (30) over the longitudinal momenturmpy of N, ., which is the
p.r grf ' mean number of particles created with all possible momenta
pp. To do this we go over to the integral,
For smallT, T<1/JeE, and|pp|<eET2, one can get Sp,—L/2mfdpy, whereL is the length in the direction
CET xP. As was shown above, > 1/JeE(1+\), N,, is qua-
Np’,:m[lJrO(\/JET)], (31)  siconstant in the are@), the asymptotics in the arée) has

the form (30), and the contribution to the integral form the

At T< M/ eE and T<1/\eEx, the form(31) reduces to area(b) is less thenyeEKL/7r. Then, one can conclude

Np,rzeET2/(4)\) and coincides with one which can be de- L fie JeEL

rived in the frame of perturbation theory with respect to the _ _ Ry

external field. P Y P No =3 ffoo Np.rdpo=—57 [VeETe ™+O(K)].
The most important region for the time divergences is one (34

of largeT, namely, let us considéfs>1/\eE(1+\). In this

caseé, is always large and positivé,>1+\, so that the Thus, wheriT>1/JeEK>1/\/eE(1+\), we can effectively

asymptotic expansiofi29) can be used for any given mo- replace the integral oveyp, by eET and write

mentumpp . As to the parameteé;, the whole interval

— JeET2<¢,<+ can be divided in three regions:

N

p,.r

1
=A™, Aiong=5—€ELT.  (35)

-
- <¢&<-— —K<g< =K. _
@ \/% a=—K, (b —K<g<K, (0 &=K The factorA 5,4 can be can interpreted as the total number of

] . . states with the longitudinal momenpg of particles created.
The mean numbersi, , were estimated in the regioft) It turns out that the expressions fi§f, , andN,, , at large
before, se€30). In the region(a) one can use some relations T for scalar particles coincide with thé ones fgr spinor par-
between the WPC function§27], for example, D (2) ticles P P P
=explimw}D (~2) —y2a/l(—v) explim/2) D_, 4(-iz), To get the total numbeN of particles created one can

and the asymptotic expansi¢@s). Then, one finds sum over the spin projections, using E82), and then over

3 the transversal momenta. The latter sum can be easily trans-

o 1+A13 1+\ _ _
No =e ™ 1+0 +0 , formed into an integral,
’ & &
T _S N V-1
—JeEy=f=-K. (32) N= 2 Np_—d_(z,n_) —1 | dpNp, (36)

The latter expression allows one to consider the limitwhereV4_;, is (d—1)-dimensional spatial volume. Thus,
T—oo at any giverp. In this limit the mean numbers take a on gets

simple form
Vig_Tmd [ E\92 E
_ -7 _ 1(1+k)/2 V(d=1) _ c
Np=e ™. (33 N=Jg 2m)F T (_Ec) exp{ TE ’,

Thus, when the electric field is acting for a long enough time,
the mean numbers of particles created in a given quantum Jigy=2L2"1, (37
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whereE.=m?/e is the critical field strength. As one can see In this case solutions of Eq7) can be written in terms of
the velocity of particle creation is constant at larffeThe  hypergeometric functiong(a,b;c;y), [27] for example,
same result was obtained in+3 dimensions in the frame- s o

work of the QED at finite temperature, using the functional (Pp +1(x0) =, Ceo-X (142 Ta)ial2(0-=01) y(x0),
Schralinger picture29].

The vacuum-to-vacuum transition probabili{®1) can be ~u(x®=F(a,b;c;y),
calculated, using both kinds of regularizations, with respect
to the volume and to the time. Thus, we get the _u(x9 =y *F(a—c+1lb—c+1;2—cjy), (41
d-dimensional analogue of the well-known Schwinger for-
mula[2]:

ia
a=—(2eEatw,—w_),
e (_1 (1-k)n/2 Ec 2
Pv=exp{—,u,N}, Mzzowz—exp[—nﬂf]. i
(39) b=1+ > (~2eEatw,~w.),

Returning to the Schwinger result, one ought to say that it

was, in fact, obtained from the constant field consideration 1 — 214t h)f
by means of a regularization. Thus, the space-time volume c=l-law—, y= 2 an al’
VT appeared in his formula. One ought to mention the paper

[15] where the Schwinger result in the constant electric field w+=\m?+p? +(ppFeEa)?,

was recovered, using the functional Sairmer equation.
where ,C are some normalization constants. Considering the

B. Adiabatic field asymptotic of the function$41) at x°— —c [in this case
Let us consider an alternating uniform electric figty,  F(&b;c;y)=1 [27]], one can verify that the relgtlortﬁ)
where the functiorE(x%) has the form hold and ;£,={w_. Moreover, the solutions at”— —o

describe free particles. By analogy one can construct solu-

tions gc/§p,+1(x(3), which describe free particles with energies
(39 t,={w, atx®— -+ Their asymptotic form ak®— +

is f¢pp +1(x°0)=4C exp(=ilw,x°). To calculate the coeffi-
Such a field switches on and off adiabaticallyxdt- =+ o, cients G(,|7) from (14) it is enough to know the
and is quasiconstant at finite times. We will call it adiabaticcorresponding asymptotic, ¢p,+1(x°) and ‘¢p'+1(x°),

0
X
E(x%=E cosh‘z(z .

field. The corresponding nonzero potential is let say at x°—+o, and normalization constants
0 C =D/2(27T)_D/2[2(1)+((1)+ - 1[/)2,3 + eEax)]Y¥2.C
X _ _ _
Ap(x%) = aE tanh—. (40) 2m) [2w_(w_+pD_+eEa)] 3 Thus, we get the
a mean numbers of fermions created:

. ma . e
SIHV{T(ZeEa+w_—w+) Sln?‘{7(2€Ea+w+—w_)

Np,r= sin(raw ., )sinh(Taw_) . “

In 3+1 QED the corresponding formula was found first in and, for bosons,
[30]. For scalar particles it has a different form

02
cosP[ 7\ (eEa?)2— 1]+ sinl? %(m—w,) (meEa®)? (eEa®)*+ mzfpz
_ N, = : . 45
No.r sin(7raw, )sinh(Taw_) a sinf(ra\m?+ p?) 49

(43

Let us consider ther dependence of these expressions.sma” a in the case under consideration corresponds in a

For smalla, a<1/eE\m?+ pZ, when the potential changes S€"S€ to small' of the T constant field. Thus, we have to
sharply We’ get, for fermions’ compare the expressiof3l) and(44). One can see that they

are quite different, so that the effects of switching on and off
are essential at small times.
(weEaz)z( 1-— Further, let us consider large a  only,
= (44) a>1/\JeE(1+\\). Then, the mean numbers for fermions
P sintP(am?+ p?) ’ and bosons have the same form:
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Npr=exp{— ra(w, +o_—2eEa)}. (46) tification a=T+E./E. At strong fieldsE~E_ all the terms
o with different €, contribute to the sum if51) and the ex-
Let us take small longitudinal momenfpp|<eEa, then pression forP, differs essentially from the one for the
constant field.
Np r=exp{ a1+ Po ) ] (47) On_e can a_Iso rema_rk tha_t the case of a perio_dic alte_rnating
' eEa electric field in 3+1 dimensions was also considered in the

literature, for example, quasiclassicallgl], and exactl
Considering the limitv—, one gets the formuléd3). That [32]. e, q I1] 4

means that the effects of switching on and off are not essen-
tial at large times and small longitudinal momenta. For large

longitudinal moment#pp|>eEa, the mean numbers of par- C. Constant field

ticles created are exponentially small: Here, we consider the case of a constant uniform electric
field (4). ThenE(x®)=E and potentialAp=Ex°. Solutions
Np,r =exp{ —27a(|pp| —eEa)}. (48 of the Eq.(7) in such a field can be found in the form
Let us find the total numbers of particles created with all the LX) =CD,_ 14 eyal +(1-1)£],
longitudinal momenta at any fixepl, ,r. Passing from the P
summation ovepp, to the corresponding integration, we get :
Po poneing inted g “ps(X)=CD_,_ gl £(1+)E]. (52
LeEa . . . .
b= e ™, (49 Using an asymptotic expansion of WPC functid28), one
277\/— can get the asymptotics of the quasienergies:
Comparison with the formul&35) shows that the adiabatic
P @9 Eo=LeEX—po|, €, (eEX—pp)

field at large timeglarge @, o> 1/\JeE(1+\)] and fixed
p,,r is equivalent to the T-constant field at T
>1/\eE(1+\) with the identification «=\AT. To do
summation over all transversal momenta, it is convenient t

so that in and out solutions can be constructed f(6&) by
means of Eq(11). The same asymptotic expansi(#D) al-
fows one to calculate the normalization constants,

use the representation C=(27) P%(2eE) Y%exp(—m\/8} for spinor case and
1 B C=(2m) P’2(2eE) Y4exp{—m\/8} for scalar one. Straight-
— =2 exp(—m\s?)ds. forward calculations, similar to ones made in the two previ-
\/K 0 ous cases, lead to the express{88) for the mean numbers
of particles created. It does not depend on the dimensionality
Then the total numbeN of the particles created reads of the space and coincides with the result which was derived

in [18] for 3+1 QED. In that paper the author used quasi-
Vg_padmd | E |42 E : : : oot
N= J(L+w/2 (d-1) b (_) expl — 57— (50) classical considerations to advocate the classification of the
@ 2m9 T \E, E]’ solutions(52). The constant character of the field does not
allow one to treat consistently time divergences, so that he
where got over them “by hand,” using also quasiclassical consid-
. E erations. Now, one can see that the consideration ofTthe
= f dtt™ Y2(t+1)" (d—2>/2exp( _tq.,_c) constant field gives a possibility both to ground all the results
0 E obtained from the constant field solutions, solving consis-
tently the problem of the time divergences, and to go beyond
the scope of the constant field to analyze the time scenario of
the process.

1
=\m¥ 217

d-2 Ec)
2 '"E

is expressed via the confluent hypergeometric fundtif.
The vacuum-to-vacuum transition probabilif§, has the
form In the same manner as before one can consider a more
general case when a constant uniform magnetic field is in-
P,=exp{— uN}, cluded, provided the invariant | is negative. In fact, in
(1= /2 d>3. there arg d/2]—1 independent irjvariant parameters
-y 1) Lo — oS 51) H;, j=1,2,... Hgp-1 of the magnetic field, that corre-
=0 (n+1)%2 E |’ spond to the possibility to construpt/2] invariants of the
electromagnetic field. In a convenient reference frame, the
., d—2 E. magnetic part of the field tensd¥,, is presented by the
=9 \/;‘I’<§,— T?”WE)- components, = =144H; (8,18, — 8" 15,). One can al-
ways select solutlons of the squared Dirac equat®)nas
If E/E;,<1, one can use an asymptotic ®f function[27],  eigenfunctions for all independent nonzero terms, which de-
W (1/2,—(d—2)/2;n7E./E)= 1/\/_\/ﬁ+ O([E/E.]%?). scribe the interaction of intrinsic magnetic moment of a par-
Then, §=VE/E;, e,=n "2 and u=1. In this case the ticle with the external magnetic field. In this case the matri-
adiabatic field is equivalent {6 constant field with the iden- cesG(§|g ) are diagonal and one can construct them using

D. Inclusion of a magnetic field

©
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the corresponding expressions in the pure electric field.

Namely, ford>3 one has to make there a replacement

, [dg‘l 0, d is even,
+wg, - ]
|pJ_| - =1 w] (2] wq pgiz, d is Odd,
(53
o |eHj|(2nj+1_rj), nj=0,1,..., quéo,
o pf et H;j=0.

In the presence of the magnetic field some momentaave
to be replaced by the discrete quantum numbgrs The
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IV. DISCUSSION
A. Time and space-dimensional analysis

The calculation and analysis presented in Sec. Il for
fields, which are effectively acting for a finite time, allows
one to study both pair formation in time and the role of
switching on and off effects. In addition, because of the fact
that these calculations are made in arbitrary dimensions of
the Minkowski space-time, one gets a possibility to analyze
the influence of the dimensionality on the vacuum instability.

Studying theT constant field, one can see that the stabi-
lization of the mean numbers of particles created with given
p,r in the form (33) for the longitudinal momenta

number of these momentg corresponds to the number of |py|<eET/2 comes atT>T,, where To=1/\JeE(1+\).
nonzero parametetd; . The magnetic field lifts the degen- The characteristic tim&, can be called stabilization time. At
eracy in spin projections in all the characteristics of the parthe same timeN,, for the large longitudinal momenta

ticle creation effect.

|pp|>eET/2 decrease according to the power 1(30).

We present here explicit formulas in presence of the mag- The stabilization of the mean numbers with givprr

netic field for the total characteristidéandP,, in case of the
T constant field at larg@,

—exp —m7m—

V-1 Tm?B(1) E p[ EC]
2(d—1),n_d/2 EC E |’

_ 1+wx)2

P,=exp{—uN},
% (_1)(17;() n/ZB(n+ 1) Ec

P S TS VTN X"{_””E]' (59

where
(d-=2)/2 eHj

= R R . (1+k)/2

B(n) 11:[1 {sinf{anj/E)[Cos“nWHJ/E)] ]
d is even,

m2E ) 1/2(d=3)/2

pn)= ( nwE.

j=1
eH;
I B _ (1+x)/2
x[ sinr(anj/E)[COSHnWHJ/E)] ,

d is odd.

in the adiabatic field in the same forif83) comes for
the longitudinal momenta |pp|<eEa at a>ay,
ap=1/\J/eE(1+ J\). For large|pp|>eEa the mean num-
bers are exponentially smal8). For largea the adiabatic
field varies slowly and coincides nearly with the constant one
in the time interva|x°| < a. Then,ay is a characteristic time

of the stabilization in this field. Thus, the stabilization time
ay in the adiabatic field differs from the corresponding time
Ty in the T constant field. Thus, one can believe that the
stabilization process depends on the switching on and off
effects. In the case/E <1, which corresponds to>1, one

can see that the stabilization comes quicker for adiabatic
field than for theT constant oned,<T,), i.e., the adiabatic
form of switching on and off affects less the quantum system
than the instantaneous one in tle constant field. If
E/E.=1 , there exists a domain of the transversal momenta
p, whereA=<1. In this case the stabilization times in both
cases are the samey~T,~1/\/eE, so that for anyE the
relation ay<T, holds.

Thus, one can conclude, that in some cadsesnstant and
adiabatic electric fields act on the vacuum in a similar way.
However, the momentum dependence of the mean numbers
N, differs essentially at large momenta for both fields. That
is related to the switching on and off effects. To estimate the
role of the effects of switching on and off on the whole it is
convenient to compare total characteristics. First, let us com-
pare the total mean numbers with all the longitudinal mo-
menta, namely, compare the formul@5) and (49). In this
case the effective action of both kinds of fields is the same if
to identify & with AT. In spite of this identification of

The corresponding formulas for ¢31)-dimensional case andT is d_iffgrent for differenv\ (for differentp, ), and one
were first written in 18,3, and, in fact, can be derived easily €@n use it in a domaimp, of the transversal momentum,

from the calculations of Schwingé@]. They follow from
(54) atd=4.

|Ap, |<\m?+ pf. As to the total number$37) and (50),
they coincide if one accepts the identificatian=T & 2.

There exists a possibility to get also exact results for thélowever, this identification provides only the coincidence of
particle creation in case when a plane wave is added to thB, for both cases(38) and (51) if E/E.<1 (then
combination of electric and magnetic fields. The correspondé= VE/E.). In this case the coefficienis in (38) and(51)
ing calculations for(3+1)-dimensional case were made in are the same. One can conclude that the effects of switching

[33] for the electric field plus a plane wave field, and 4]

on and off are not essential f&/E.<1 and for largeT

for a general combination of electric, magnetic, and plain>(1/m)(E./E)%? or for large a, respectively. In case of
wave fields. They can be generalized to any dimension, constrong fields,E/E.=1, these effects appear to be essential

bining the approaches ¢84] and of the present paper.

and one has to take into account the back reaction of par-
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ticles created for more realistic external field definitieng., Turning to the dimensional analysis, one can see that the
see[5,7,14). increase of degrees of freedom, because of the increase of

The stabilization of the mean numbers of particles createthe dimensionality of the space-time itself and because of the
with givenp,r at T>T, can be interpreted in the following related increase of the spinning space dimengjgn affects
way: In theT constant electric field at the finite time instant essentially the total numbers of particles created in the unit
T/2 the pairs are created with quantum numbersof the volume and the probability for vacuum to remain a
|pp|<eET/2 (equal for particles and antiparticlesThis ~ vacuum. Thus, the increase of spinning degrees of freedom
corresponds to the region<OrP(T/2)<eET of the ob- leads to an increase dff and P, at any ratioE/E.. In
served kinetic momenta,7°(T/2)=—[pp—eAp(T/2)] particular, in d>3, the numbers of fermions created is
=—ppt+eET?2 of a particle in each paifdirection of anti- greater than the one of bosons. An increase of spatial dimen-
particle kinetic momenta is oppositéAt T>T,, the effects sions leads to a decrease of the total numbers of particles
of switching on and off are already not essential. That is whycreated in the unit of the volume and the probability for a
the probabilities of pair creation do not depend on the timevacuum to remain a vacuum BtE. <1 and their increase at
instantst, —T/2<t<T/2. One can think that at this time E/E.>1.
instant the particles in the pairs are materialized with almost The presence of walls or of a nontrivial topology affects
zero longitudinal kinetic momenta at any given, i.e., with  the spectrum of particles created. If the lengttof the space
the energies/m2+ plz_ Then, the electric field accelerates in the direction of an axix' is restricted by the walls the
them until the end of its action. Let us suppose that a particlgorresponding momentunip;|=2#n/L;, n=1,2,... is
was created at a time instantAn expression for the kinetic quantized. AtL;~1/m the dependence of the mean numbers
momentum of such a particle at the final time instamhich ~ on the boundary conditions is essential. At 1/\/eE the
is equal to its expression in the time instant when the fieldnean numbers\,, in the quasistationary fields are very
switches off can be found solving the classical equation ofsmall for any strengthE. In this connection one can treat
motiondwP/dx°=eE, so thatm®(T/2)=eE(T/2—t). Thus, Lo=1/m[1+ (E./E)¥?] as a characteristic dimension of the
a particle, which was discovered with the quantum numbesystem, for which the boundary conditions are essential. At
pp at the final time instant, was created at the time-instanE/E.=1 it is the Compton wavelength. It is interesting to
t=pp/eE. Then the integration over the longitudinal mo- remark that the stabilization tim&g), «y coincide withL, at
menta pp is equivalent to one over the timd, E/E.=1.
Sdpp=eET. This conclusion coincides with one derived in  Imposing periodic conditions in the direction of an axis
course of the strict quantum analysis presented in Sec. Il AX' (that corresponds, in particular, to the torus topojogye
According to the same interpretation, for particles with rela-gets for the momentunp;|=2zn/L;, n=0,1,2, ... . Then,
tively nonzero mean numbers, the maximum value of theatL;<1/\/eE only particles withp;=0 can be created. If the
kinetic momentumr®(T/2) is eET that corresponds to the electric field has the same direction, then the total number
particles, which were created at the initial tinhe —T/2, N and the probability?, do not depend on tim&, since this
whereas its minimal value is O and corresponds to the pamdependence arises in course of a summation over the longi-
ticles, which were created at the final time-instastT/2.  tudinal momenta. It is interesting that the presence of the
This conclusion coincides also with one derived from quan-magnetic field acts as a dimensional reduction. Indeed, in the
tum consideration in Sec. Il A. strong magnetic field with somi;>E, the lowest energy

In the conclusion of the time analysis, one can remark thakevel of a boson cannot be less thpgH;|, whereas for a
the timeT,, which was introduced by us as the stabilizationfermion it can. That means that the strong magnetic field acts
time, was interpreted in some papers as the time of a pawn bosons as some walls and on fermions as the presence of
creation[18,28. However, we have seen that in the adiabaticthe torus topology. Thus, one can see that if some of the
field the stabilization timex is different, thusT, is not a magnetic fields are strong enough, then the corresponding
universal characteristic and depends on the field form. In thispin projection becomes frozen and total characteristics, like
connection one can propose another characteristic timeégtal mean numbers, decrease. These dimensional effects
which a pair formation in a quasiconstant electric field. In-may be relevant to the matter creation at early Universe.
deed, as we have mentioned above, all the results ifTthe
constant and adiabatic fields are comparable/E.<1. In B. Relation between the vacuum instability
this case the adiabatic form of the field is disturbing the in external electromagnetic and gravitational fields

ntum m | han tfie constant field. Her L . . L
quantum system less than tfie constant field. Hereaq It is interesting to compare particle creation in external

<To andag=~To= |\ JeE Since the adiabatic field is qua- oo magnetic fields and in external fields of different na-
SICOHSta!’l.t for the time |ntelrvéﬂo and it is Iarge enough fqr ture, for example, in external gravitational fields. To this end
the stabilization, one can interpr&} as the time of a pair one’can use results obtained in the quasiconstant electric
formation. One can extrapolate this interpretatioriTgffor  fields and in the static gravitational fields. The latter problem
any field strengtte. A quasiclassical consideration confirms was considered first by Hawkir[@] who, in particular, cal-

this interpretation. Thus, a virtual particle with initial zero culated the mean numbers of particles created by static gravi-
energy gets from the electric field for the tirfig the energy tational field of a black hole with masd in a specific ther-
Jm?+ pf necessary for the materialization. It is easy to seanal environment,
that the timeT}, is always either less than the stabilization

timesTq,ag or equal to them. Some other consideration re- N.= exp‘ZWL
lated to the timeT}) one can see in the next subsection. " 9

-1

: (59

+ K
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wherew is the energy of a particle created, which supposesvith characteristic temperatur@’ =g/(7kg). If g is the

to be dependent on a complete set of quantum numiers gravitational field strength at the horizon of the black hole
g(H)zGM/ré, wherer  is the gravitational radius, so that gy, then 6" is only two times greater than the Hawking
g(n) Is free-falling acceleration at this radius. This spectrumtemperature, . In spite of the fact that an explicit progress
was interpreted as a Planck distribution with the temperaturwas achieved in the way of comparing both distributions,
()= 9m)/(27kg) (Kg is the Boltzmann constantAs be- ~ some guestions remain. For example, why does the tempera-
fore, k= +1 for fermions and«= —1 for bosons. It is also ture derived by means of the equivalence principle from the
known [35] that an observer, which is moving with a con- electrodynamical distribution differ by the factor two from
stant acceleratiog g, (with respect to its proper timewill the Hawking one? Is.the_re a thermal interpretation of the
register in the Minkowski vacuum some particléRindler  electrodynamical distributio83) or some universal form of
particle3. The mean numbers of Rindler bosons have theoarticle creation spectrum which is valid in both cases? Be-
same Planck form(55) (with k=—1), where one has to low we propose some interpretation of the electrodynamical
replaceg(yy by g(ry, SO that the corresponding temperatureformulas which pretend te answer these _questions. We go
is 6(r)=0(r)/(2mkg) . One can find many other examples beyond the cIasspaI conS|deret|on, tekmg into account prop-
when the particle creation in external gravitation fiefdad  €rties of the physical vacuum in the time-dependent external
because of a nontrivial topologgan be described by means field.

of an effective temperaturks,7] (see also references in the  First, one can remark that because of the time dependence
recent publicationg36]). On the other hand, the distributions of the potentialAp(x%), which defines the quasiconstant
obtained in external electromagnetic fields have not the thelectric field, the level of the vacuum energy changes with
mal form at a first glance. Nevertheless, there were attemptéme. Thus, one has to calculate carefully the difference be-
to find close relations between the distributions in both casegween the energies of the system in the iniizacuum and

moreover, to derive Hawking distribution from the one in in the final(with particleg states. Let us do the calculations
external electromagnetic field. in the case of fermions and in zero order with respect to

In [37], the distribution(33) atp, =0 was interpreted as radiative corrections in th& constant electric field. In this
the Boltzmann one for particles in the ground state with thecase the corresponding Hamiltonian has the form
energym and the effective temperatutgg)=2eE/(7m).

The same temperature foIIo_ws from some other consider- H(x°)=f \IT(X)HO.D.‘I’(X)dX, (56)
ation [38] for the same restricted case. Unfortunately, such

an interpretation does not allow one to include other states ) . —
with nonzero momenta in the consideration. whereH, , was defined in9), and¥(x), ¥(x) are electron-

In [39], the authors did not introduce an effective tem-POSitron field operators in the generalized Furry picture
perature directly in the electrodynamical case but tried td19,20.8. Being written in termos of in and out operators of
find a relation between both distributions, in particular, toCréation _and agmlhllatmn aK’— ¥ o, respectively, the
extract the Hawking temperature from the electrodynamicaHamiltonianH(x") has the diagonal forms
formulas. We are going to repeat briefly here this consider-
ation, using some new details, which came from the resu_ltsH(XO)ZE pO(tl)[ag,r(in)ap,r(in)+bg,r(in)bp,r(in)_1]a
of the present paper. As was established, a particle with p.r
given momenta is created in a time instant with energy o
w=\m’+ pf, which corresponds to zero longitudinal ki- XT—= =,
netic momentum at this time instant. Thus, namely, this ex-
pression plays the role of the total energy of the particle at, 0\ _ t
the time moment of creation. Then, we can compare equaH(X ) ; Po(ta)l @, (OUh @, (ouD
tions of motion for a classical particle in a constant electric + 0
field d7/dx°=eE with ones in the static gravitational field +Dbp (0uhby, (ouh —1],  X"— +oo, (57)
dm/dx°= wg. In the latter,w is the total energy of the test
particle andg is the three-dimensional gravitational field Wherez, Zas befoge_, t=—4,=T/2, aed ) pO(ti)_ )
strength vector. Although these equations are formally simi== VM>+Pf + (7p(t)? is the energy of a particle in the ini-
lar, there is a fundamental difference between them: the eledial and final time-instants; [the longitudinal momenta
tromagnetic coupling constaetof a charged particle is not 7o(ti)=pPp—eAp(t;) in the T constant field have the form
affected by its motion, while the coupling to the gravitational 7o(*T/2)=pp+eET/2]. Let usconsider the variation of
field is proportional to the total energy of the test particle.the total energy of the system, which goes over from the
The latter property is a direct consequence of the equivalendgitial vacuum statg0,in) to the final stat¢N, out) with pairs
principle. Let us formally replace the electric field strengthcreated in all the possible levels for tfieconstant field,

E by a quantity that characterizes the gravitational field

etrength g and exploit the equiva!ence principle b_y consider- IN, outy = u al (out)bT (out)|0,0upb.

ing that the coupling of the particle to the field is propor- b, rlppl<eET2 P P

tional to the energy of the former, which also allows us to

replacee by w. The expression that arises frof83) as a  Then, one can formally write the energy of the initial state as
result of these replacements can be interpreted as the mean

numbers of particles created by the corresponding gravita- 512_2 Po(ty),

tional field and have the form of the Boltzmann distribution pr
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and of the final state as

&= 2

Zpo(tz)_; po(tz)}-
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shift of the vacuum energy in those states which remain
vacuum ones. The corresponding work with respect to a par-
ticle will be denoted byw, so that

p,.r | |pp|<eET2 1

ThUS, w= EAﬁ
AE=&=&=2 | 2 [Po(to)+Po(ty) ]+ A, T P () Pt TR P A [ (T2
p, .\ |pp|<eET2 2 L D\t2 il p\t1
(58)
—|7p(ty) — mp(ty)]]. (63
where
Now, we remark that because of the conditions of the stabi-
_ _ lization T>T,, |pp|<eET/2, under which all the results for

Abuac |pD\§;ET/2 [Po(t) = Po(t2)] 59 he T constant field were obtained, we can write

is the shift of the vacuum energy related to the levels with 1 1 1 N NeE

givenp, ,r, in which no pair appears. We are going to ana-
lyze this shift only. That is why we do not discuss here
regularization problems of the total su(d8) (that can be

done, using, for example, the methods describedl1i).
One can see that

[Po(ty) —Po(t2)]=0,
|pp|<eET2

sincepy(t1) — po(ty) is an odd function opp. That allows

one to extend the summation (B9) over all the longitudinal

momenta. The vacuum before the time-instgnwvas free

= \eH + =—= ,
T AN A\ Tmp)]  Tmot]] T 2po(ty)

m?+p?
=" oE (64)
Then the spectrurtB3) can be rewritten in the form
w
Np =exp —27rﬁ— , (65
gg

and therefore symmetric with respect to the longitudinal ki-where the quantityg can be written in several equivalent

netic momentummrp(t,) = 7p=pp+e€ET2. Replacing the
summation ovepp by one overry, one can therefore treat
the corresponding improper integral in sense of its principal

value. Thus

A&,

M
lim f (Vm?+p® + 75

ac—
2 M—owd —M

—Jm?+p? + (mp—eET)?)dmp

L 5 L 2
=~ 5 (EN =~ —[mp(ty) —mp(ty) ]
(60)

Since the number of states with givpp, in which particles
can be created, is equal to 1{PELT, see(35), then the
shift (60) can be rewritten in the form

A&yac= 2 A€y,
|ppl<eET2

Aeya=—€ET=—|mp(ty) — mp(ty)]. (61)

Thus,

AE=D

Py " |ppl<eET2

Ae, Ae=py(ty)+polty)+Aeyse,

(62

forms

_ceE 1 N 1 _20_ ceE
2 \|mp(ty)]  |mp(ty)] T po(ty)

The last expression if66) allows one to treag as the clas-
sical acceleration of a particle in the electric field in the final
time-instant,=T/2, for the case when the action time of the
field is big enough, so that the corresponding velocities are
nearc. Formally, this is valid under the quantum condition
of stabilization. The distributiort65) is, in fact, the Boltz-
mann one with the temperatute=7.g/(27ckg) having lit-
erally the Hawking form. Thus, if one identifies the work
o, we have introduced, with the energy of a particle in the
formula (55), then the distributions in electrodynamical and
gravitational cases have the same thermal structure. Let us
discuss now the possible origin of the differences in the elec-
trodynamical and gravitational formulas. First of all, the for-
mula (55) is derived in the formalism of the stationary scat-
tering theory, where it is not necessary to take separately into
account a shift of the vacuum level. In this case the energy of
a particle created may coincide with the corresponding work
of the field. Second, the different form of the thermal distri-
butions(Boltzmann, Planckcan be stipulated by essentially
different situations in both cases. In the electrodynamical
case we deal in fact with pure states, whereas in the gravita-
tional problems a density matrix arises because of the hori-
zon of event formation. Atv/g<<1 the Planck spectrum co-
incides with the Boltzmann one. In this case one can believe

(66)

whereAe can be interpreted as a work which the external
field accomplishes for the creation of a pair in a given state.—

It contains a contributior\ €, Which takes into account a

IWe have restored andc here for convenience of the reader.
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the form(65) for the spectrum of particles created is univer-vacuum shiftA €,,.. That means the work of the external
sal and applicable to any theory with quasiconstant externdleld to produce a pair is less than the corresponding work,

fields.

which could be expected from the perturbation theory, where

The form(65) can be useful to describe situations in con-no vacuum change is taken into account.
stant fields, where it is convenient to avoid the consideration The consideration presented was made only for fermions.
of the time evolution, as we have seen comparing it with theHowever, if one believes that the quantity, .. can be taken

gravitational cases. Another form of the distributi¢sb)

with 2w=Ae€ from (63) [or (62)] and with the acceleration
g from (66), can be useful in problems with explicit time

dependence.

The universality of the formul&5) can be examined also

in the case of the adiabatic electric field> «, considered

in the form(61) for bosons as well, then the distributi¢sb)
holds also in the scalar case. A consistent analysis for
charged boson is more complicated and needs to take into
account possible condensate formation and its evolution in
an external fieldsee, for exampld,5,40]).

Finally, we believe that the formulas derived and the

in Sec. Il B. To apply it to the latter case one needs to putime-dimensional analysis presented can be also useful to

t211—>ioc, then WD(tz):pD_eEa, WD(tl):pD+eEa,
and po(t2) =w., po(t))=w-_.
(61), Ae,o= —2eEa and the distributior(46) follows.

One can remark in this connection that in c&& <1
(ap<Ty) the formulag64) [and, therefore(63)] in the adia-
batic field are valid at the conditiont,=—t,=T/2
> ay~T!, which is weaker than that in the case of the

constant field. That allows one to interpret the tiﬂié,

describe some collective effects in the framework of quan-

In this case according to tum field theory, for instance, to describe multiple particle

creation by means of the external field approgi$,14] or in
string models with external fieldl1,12,41.
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