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Confinement-deconfinement transition in three-dimensional QED
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We argue that, at finite temperature, parity-invariant electrodynamics with massive electrank din2en-
sions can exist in both confined and deconfined phases and has a confinement-deconfinement phase transition
of Berezinskii-Kosterlitz-Thouless type. We show that an order parameter for the confinement-deconfinement
phase transition is a version of the Polyakov loop operator whose average measures the free energy of an
external charge that is not an integral multiple of the electron charge.

PACS numbgs): 11.10.Kk, 11.10.Wx, 11.15.Ex, 12.20.Ds

The phenomenon of confinement of color charges and they of the Euclidean path integral related to the center of the
possibility of a confinement-deconfinement phase transitiogauge groug3-6]. An order parameter which probes the
in gauge field theories at finite temperature has been extemealization of this symmetry is the Polyakov loop operator
sively investigatedl1,2]. In either pure Yang-Mills theory, or
any other gauge theory where all colored fields transform
under the adjoint representation of the gauge group, the
guestion of whether the theory exists in a confined or decon-
fined phase at a given temperature is known to be intimatelyhose correlators in finite temperature Yang-Mills theory are
related to the realization of a certain effective global symmedefined by the Euclidean path intedral
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with periodic boundary conditionsAM(llT,f)=AM(0,>Z). expectation value of a single IooQP(i)), vanishes and
The gauge field remains periodic under the gauge transfoconsequently the free enerdy(x), of a single quark source
mation is infinite—a signal of confinement. On the other hand, if the
- - - - - R Zy symmetry is spontaneously brokeﬁ(i) is finite and
AL (1) =g~ 7 X)AL(TX)9(7,X) +ig " (7,X)V ,g(7,X) characterizes the deconfined phg3éis statement is strictly

R true only when the theory has a finite ultraviolet cutoff. In
wheng(7,x) is periodic up to an element of the center of thethe limit where the cutoff is removed, the Polyakov loop
group, g(1/T,x) =g(0x)e?™"N, The measure, action, and Operator will generally require a multiplicative renormaliza-
boundary conditions ir2) are invariant under such gauge tion.) _ _ _
transformations. However, the loop operatbris not invari- When dynamical quarks in the fundamental representation
ant, but transforms under the element of the center, which i§f the gt?uge %rouphare present, th? Polyakov Ioophopera_tor

DY — Pl a2min/N - cannot be used to characterize confinement, since the antipe-
Zn for SUN): P'(x)=P(x)e - Therefore, if theZy 5o boundary condition which a quark field would have,
zﬁ(l/‘l’,i) =— ¢(0,>Z), is left unchanged only by strictly peri-
e FOL, o Xm Y1 Qn)/T:<P()Zl). CP(%) odic gauge traqsformatlon§. This is interpreted as fundamen—
tal quarks explicitly breaking th&y symmetry and, physi-
> PT()71)' . PT(Qn)) 3) cally, as the possibility of pair production of fundamental
quarks screening the color of an external source, so that the
free energy of the source is always finite.
In this paper, we shall argue that, on the other hand, the

symmetry is not spontaneously broken, the correlators

vanish unlessn=n modulo N. F(Xy, ....y,) is the free
energy in the presence of an array of classical fundamental
representation quark and antiquark sources at posilf@ns
andy;, respectively. If theZy symmetry is unbroken, the  Wwe use units where Planck’s constant, the speed of light, and
Boltzmann’s constant are one. In the present discussion, we shall
consider gauge group SNj. Generalization to other compact
*Permanent address: Dipartimento di Fisica and Sezione I.N.F.Ngauge groups is straightforward. For a discussion of the path inte-
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Abelian analog of the Polyakov loop operator can be used ttiples of some basic charge. A further technical requirement
study confinement in noncompact quantum electrodynamicis that the matter fields are massive. When there is one spe-
even when dynamical electrons are present. It is only necesies of electron, the free energy of a distribution of external
sary that the charges of all dynamical fields be integer muleharges is given by
1, — )
Fo +d& (y-(V—ieA)+m)y

— ur
o fdAﬂdwdz//ex%—fo 2Fi
X))/ T —
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— uT
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)exp(iz eifmderu,ii))
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with  (anthperiodic boundary conditions AM(llT,i) Wit_h temperature-depe_ndent exponent, reminiscent _of the
=AM(0,>Z), WUT.X) = — p(0X), (LT, X)=—¢(0x). The Z?rwé\rl]v;\éﬁs[c%rrelators in Gaussian spin wave theory in two
gauge  transformation ﬁ/;(T;X) :_AM(Z"XZ_JFV#?((T’X)' It is interesting to ask how this result would be changed
o' (%) =€ X(my( 7.X) ¢ (r.x)=¢(1.x)e ex(m) s a by radiative corrections and by thermal fluctuations. This can
symmetry of the action, measure and boundary conditionge answered in the context of quantum electrodynamics by
when V x(1/T,x)=V,x(0x) and x(1/T,x)=x(0x) computing the effective action for the Polyakov loop opera-
+2mn/e. The cosets of the group of all time-dependenttor. This is done by first fixing a gauge whekg is indepen-
gauge transformations modulo those which are periodic forntlent of the Euclidean time. Then, the other degrees of free-
the additive group of the integerg, which is the analog dom, A,y, are integrated from the path integral. What

of the Zy symmetry of Yang-Mills theories. Under romains is an effective action for a static fiedg(x) which
the action of an element of a coset, thlfr Abelian Polyagan be used to evaluate correlators of Polyakov loops,
kov loop operator transforms as ¢igfo d7Aq(7.X))]  gleA™/T The 7 symmetry is a periodicity of the effective

=exmejfc1)rrdTAoST'Xj)]eEZW'nej ’9.If Z is not spontane- action underAy(X)—Ao(X)+27T/e and the central ques-
ously brokenF(xy, ... X,) defined by(4) is infinite when  tion is whether or not this symmetry is spontaneously bro-
the total charge of the external distribution is not an integraken, and if both phases exist, what is the nature of the phase
multiple of the electron charg&;;e; # integetx e. When the  transition between them.

symmetry is brokenF(il, . ,)Zn) can be finite. The pres- The effective action is nonlocal and nonpolynomial in
ence or absence of symmetry breaking can be related to clusro(i). When the matter fields have a mass, it has a local
ter decomposition of neutral correlators. Thus, the nature ofxpansion in powers of derivatives @,(x) divided by

the realization ofZ tests the ability of the electrodynamic masses. This expansion is accurate when the momentum
system to screen charges which are not integral multiples afcales of interest are much smaller than the masses and the

the electron charge. effective field theory foer(i) can be approximated by a

Al .TZO’ and for the physmal yalue of the electromagngtlclocal field theory where the ultraviolet cutoff is taken to be
coupling constant(3+1)-dimensional electrodynamics is in the masses of the charged matter fields

the deconfined Coulomb phase at zero temperature and is In 2+1 dimensions, the fermion mass operator con-

t_Pr? ught to for{n a ?ﬁbyi pIaS||”na at all f|r;|te temfe[)atukresstructed from the minimal two-component Dirac fermions is
€ £ symmelry 1S therefore always spontaneously broken,, pseudoscalar and therefore violates pdari,11]. If in-

On_the_ other_h_and, in41 dmensmns,_the Coulomb inter- cluded in the action, they can generate a parity violating
action is confining at the tree level and it is known that, Whentopological mass for the photon by radiative correctii®]

the ele_ctron has mass, it rem_ains confining after quanturi),’ g paper, we wish to study the case where the electron
corrections and th& symmetry is unbroken at any tempera- as mass but the photon is massless. For this purpose, we

tgre [8]-d9”e mlghtl e>|<pect (tjhat, n th% |nrt1ermeg|at§ ca(sjedo hall use parity-invariant four-component fermions. Consider
(2+1)-dimensional electrodynamics both confined an the Euclidean action

confined phases are possible. In that case, even at the classi-
cal level, the Coulomb potential is a marginally confining
logarithm. Its entire spectrum is bound states, but the bound SZJ' d3x
states can have arbitrarily large size. The free energy
of a gas of classical charged particles i§ . . _
=—§Zi,jeiej(1/27r)ln|§i—>zj| and the partition function has If m=Q in (’6) there is a “chiral” symmetry under the trans-
the scaling form formation ¢’ (X) = ys¢(X). T.he latter symmetry can be bro-
ken at T=0 [13] by a chiral transition which generates
parity-invariant fermion masses. However, the mass genera-
e—Fd/TzconSv(H |)gi_)2j|eiej/2ﬂ (5) tion also breaks_ a continuous chiral symmetry which, by the
i<] Coleman-Mermin-Wagner theorem, must be unbroken at any

1 J—
ZFmtd (- (V=ieA+my|.  (©)
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finite temperature in 21 dimensions. It has been argued can compute the effective action fé(x)=a(x)yT in a
that, at finite temperature, even though the condensate vagouble expansion in the number of loops and in powers of
ishes, (/) =0, the chiral transition can be replaced by agerivatives ofa(x). To order one-loop and up to quadratic
Berezinskii-Kosterlitz-Thoules$BKT) transition [14]. We 5 4er in derivatives the effective action is
shall consider the opposite limit of large parity-invariant
massm>>e?, where there is no chiral symmetry, and show - 1. .
that there is a BKT transition corresponding to a Seff[Ao:l:f dx(Z(m,ea/ﬁ) >va-Va—-Vv(med VT .
confinement-deconfinement transition at some value of tem- )
peratureT. Form>>T,e? we shall see that the critical line
has the equatiorT .=e?/8m(1+e*/12mm+---). When HereV is the effective potential fol, arising from the
T<Tq the theory is confining, whereas whé&m>T. itis  fermion determinant and is obtained from expansion of the
in a deconfined phase. It is interesting to speculate that thiemporal components of the vacuum polarization function to
transition is in some way related to the chiral transition, pariinear order in— V2.
ticularly that it is in fact on the same critical line of BKT
transitions a$14] which would be encountered if one lowers 1 ) 2 <2, 2
the massan to zero. V(m,eAy/T)= Wlnde[(—mo—er) —Ve+m?],

At finite temperature(2+1)-dimensional QED contains (8)
three parameters with the dimension of mass, the electron
massm, the gauge coupling?, and temperatur®. The loop  where the fermions have antiperiodic boundary conditions in
expansion is super-renormalizaljl0] and is an expansion the O direction. The determinant can be computed by consid-
in the smaller of the dimensionless ratefém ande?/T. We  ering the ratig 15]

A(m,eAyIT)=def (—idp—eAy)2— V2+m?]/de(— 33— V2+m?) =]
k

=11 Am,eA/T), (9)

k

sirf(eAy/2T)
1= cost(\,/2T)

where 2=k?+m? are the eigenvalues of V2+m?. Equation(9) holds in any dimensions. In-21 dimensions one can
perform the integral otk arising in IMA\(m,eA/T), after taking the infinite volume limit:

+ o dziz T2

V(m,erlT)=f_w(zT)zlnAg(m,er/T)z—? ?Liz(e’m”,e/-\O/TwL m)+Liz(e T eAy/ T+ )|, (10)

where Li(r, 6) = — f5dxIn(1—2xcosh+x?)/2x and Lig(r, 8) = [{dxLi,(x, 6)/x are the real parts of the dilogarithm and triloga-
rithm according to the convention of Rdfl6]. As expected, Eq(10) shows the periodicity of the effective potential for
eAy/T—eAy/T+27. (In 1 and 3 spatial dimensions the integraIZirman only be performed analytically fon=0 in which
case it gives simple polynomial expressions. In the limit 0, the effective potential foA, has been discussed [ifh7].)

It is also straightforward to compute the term which contributes the leading order in derivatives to the effective action:

Z(meal\T)=1+

e? ( d ) sinhm/T
(11

1-m— .
127m am/ coshm/ T+ coeal/\T

The critical behavior of the two-dimensional model defined by Egs.(10), and(11) can be understood by comparing it
with the sine-Gordon model in two dimensions. That this comparison can be reliably performed can be seen by the study of
the harmonic content dfL0):

efnm/T

cogn(ea/ T+ m)]. (12)

T2 nm
V(m,ea/\/f):—?ngl el ERE

Consider then the large limit, T/m and e?/m small with  that in the sine-Gordon model any perturbations of the type
finite @2/T. In this limit, the higher harmonics are small per- cos3¢) to a sine-Gordon potentiatcos(@¢)/3? are irrel-
turbations to the potential evant for the critical behavior of the model. By analogy with
the spin wave plus Coulomb gas model, it was also proven in
Refs.[18] that a critical line for a BKT19] phase transition

in the sine-Gordon model with a logarithmic potential starts
at the point @, 8%) =(0,8). We can then conclude that also
which is the sine-Gordon potential. Anet al. [18]. showed in 2+1 QED at finite temperature there is a BKT phase tran-

V(m,ea/\/?)zT?me*m’Tcos{ea/ﬁ), (13)
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sition, with a critical line in the i/ T,e2/T) plane starting at experiment of introducing an incommensurate charge and
(m/T,e?/T)=(=,87). The critical temperature for this tran- measuring the required energy, the phase transition should be
sition (up to one-loop ord¢rcan be computed from Eq&ll)  observable by other means. For example, the voltag

and (13) as T =e?/8m(1+€e%127m+---). This is the the deconfined phase fluctuates near some minimum of the
critical value of the coupling constant originally found by potential and the electric screening is characterized by a De-
Coleman in his discussion of bosonization of the massivgyye mass which can be obtained by expanding the effective
Thirring model[20]. It is interesting that the phase transition potential. The BKT transition has a universal jufi8] in

is accessible to perturbative analysiBo our knowledge itis  the parameters which characterize the Debye screening in the
the only confinement-deconfinemt transition which is so aCyeconfined phase. This jump is a definite prediction of our
cessible. This is a consequence of the fact that the Coeff"analysis. In the confined phase, is a random field which

cient of the cosing term .in' the effective action' ?n the Iargesuppresses screening of the long-ranged Coulomb interac-
ngss’o\;vtehaeksﬁgg_p(gg? dl(')r:':r:zo':]ythe range of critical Param-tions. Our' resu[ts should be of interest, and are in principle
The vacuum expectation val.ue &f, in the deconfined tgstablg In spin systems commonl_y studied in lower-
. 0 ._dimensional condensed matter physics wher@)gauge
phase, where th& symmetry is spontaneously broken, is symmetries arise natural[22].

<A0)=27-rn'l_'/e. Ina se.m|cla'133|cal analy3|s, this expectation = 5 experimentally testable consequence of the spontane-
value contributes an imaginary chemical potential for the

electron. However, this chemical potential can be absorbe%JS breaking ofZ symmetry in the deconfined phase of

. +1)- and (3+1)-dimensional QED is the existence of
by shifting the Matsubara frequency of the electron by.domain walls. An important and outstanding problem, which

27nT. Thus, in the case of electrodynamics, the semiclassi; .

’ : ; ’ has already been addressed for B)(gluodynamics[23
cal thermo_d_ynar_nlcs of the _deconflned pha_se dc.’ not SUffeénd masslgss QE[L7], is the undersDtJa(?\dingyof their[phglsi—
from the difficulties of negative entropy and imaginary ther- cal properties in the present case of QED with massive mat-
modynamic potential that plague the metastah)ghases of ter
QCV[\;e[%vli]éh to point out the distinction between our present, It is interesting to ask what happens when the three-
results and the well-known fact that, in the absence of dy imensional electrodynamics has a small topological mass

. . . . which cuts of the long-ranged fluctuations of the gauge
r)a.m|cal matter fields, compact.t_hree-dlmensmnal QED has flelds. It has been suggested that there is a phase transition at
finite temperature phase transition petween a confining angero temperature as the topological mass is vaf@dl.
deconfined phasis, 1]. Th"?‘t Fransmon]s also known to be of Whether such a phase transition could be observed at finite
BKT type. In our case, it is essential that thé1)J gauge emperature is a subject of ongoing investigation
symmetry be noncompact so that the order parameter With '
incommensurate charges is gauge invariant. It is also essen- The authors acknowledge a NATO Scientific Exchange
tial that the charges of dynamical matter field are all quanGrant, the Istituto Nazionale di Fisica Nucleare, and the
tized in integer multiples of some basic unit. Although this Natural Sciences and Engineering Research Council of

means that in a realistic system, one could not actually do th€anada for financial support.
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