
1

ransition
ement
y of an

PHYSICAL REVIEW D 15 JUNE 1996VOLUME 53, NUMBER 12

0556-28
Confinement-deconfinement transition in three-dimensional QED

G. Grignani,* G. Semenoff, and P. Sodano*
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z

~Received 24 April 1995!

We argue that, at finite temperature, parity-invariant electrodynamics with massive electrons in 211 dimen-
sions can exist in both confined and deconfined phases and has a confinement-deconfinement phase t
of Berezinskii-Kosterlitz-Thouless type. We show that an order parameter for the confinement-deconfin
phase transition is a version of the Polyakov loop operator whose average measures the free energ
external charge that is not an integral multiple of the electron charge.

PACS number~s!: 11.10.Kk, 11.10.Wx, 11.15.Ex, 12.20.Ds
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The phenomenon of confinement of color charges and
possibility of a confinement-deconfinement phase transit
in gauge field theories at finite temperature has been ext
sively investigated@1,2#. In either pure Yang-Mills theory, or
any other gauge theory where all colored fields transfo
under the adjoint representation of the gauge group,
question of whether the theory exists in a confined or deco
fined phase at a given temperature is known to be intimat
related to the realization of a certain effective global symm
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try of the Euclidean path integral related to the center of
gauge group@3–6#. An order parameter which probes th
realization of this symmetry is the Polyakov loop operato

P~xW ![trFPexpS i E
0

1/T

dtA0~t,xW ! D G , ~1!

whose correlators in finite temperature Yang-Mills theory a
defined by the Euclidean path integral1
^P~xW1!•••P~xWm!P†~yW 1!•••P
†~yW n!&5

*dAmexp~2*0
1/TtrF2/4!P~xW1!•••P~xWm!P†~yW 1!•••P

†~yW n!

*dAmexp~2*0
1/TtrF2/4!
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with periodic boundary conditions,Am(1/T,xW )5Am(0,xW ).
The gauge field remains periodic under the gauge trans
mation

Am8 ~t,xW !5g21~t,xW !Am~t,xW !g~t,xW !1 ig21~t,xW !¹mg~t,xW !

wheng(t,xW ) is periodic up to an element of the center of th
group, g(1/T,xW )5g(0,xW )e2p in/N. The measure, action, and
boundary conditions in~2! are invariant under such gaug
transformations. However, the loop operator~1! is not invari-
ant, but transforms under the element of the center, which
ZN for SU(N): P8(xW )5P(xW )e2p in/N. Therefore, if theZN
symmetry is not spontaneously broken, the correlators

e2F~xW1 , . . . ,x
W
m ,yW1 , . . . ,y

W
n!/T5^P~xW1!•••P~xWm!

3P†~yW 1!•••P
†~yW n!& ~3!

vanish unlessm5n modulo N. F(xW1 , . . . ,yW n) is the free
energy in the presence of an array of classical fundamen
representation quark and antiquark sources at positionsxW i
and yW i , respectively. If theZN symmetry is unbroken, the
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expectation value of a single loop,^P(xW )&, vanishes and
consequently the free energy,F(xW ), of a single quark source
is infinite—a signal of confinement. On the other hand, if t
ZN symmetry is spontaneously broken,F(xW ) is finite and
characterizes the deconfined phase.~This statement is strictly
true only when the theory has a finite ultraviolet cutoff.
the limit where the cutoff is removed, the Polyakov loo
operator will generally require a multiplicative renormaliz
tion.!

When dynamical quarks in the fundamental representa
of the gauge group are present, the Polyakov loop oper
cannot be used to characterize confinement, since the an
riodic boundary condition which a quark field would hav
c(1/T,xW )52c(0,xW ), is left unchanged only by strictly peri-
odic gauge transformations. This is interpreted as fundam
tal quarks explicitly breaking theZN symmetry and, physi-
cally, as the possibility of pair production of fundament
quarks screening the color of an external source, so that
free energy of the source is always finite.

In this paper, we shall argue that, on the other hand,

.N.,

1We use units where Planck’s constant, the speed of light,
Boltzmann’s constant are one. In the present discussion, we s
consider gauge group SU(N). Generalization to other compac
gauge groups is straightforward. For a discussion of the path i
gral formulation of finite-temperature gauge theory, see@7#.
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Abelian analog of the Polyakov loop operator can be used
study confinement in noncompact quantum electrodynam
even when dynamical electrons are present. It is only ne
sary that the charges of all dynamical fields be integer m
to
ics
ces-
ul-

tiples of some basic charge. A further technical requireme
is that the matter fields are massive. When there is one s
cies of electron, the free energy of a distribution of extern
charges is given by
e2F~xW1 , . . . ,x
W
n!/T5

E dAmdcdc̄ expS 2E
0

1/TF14Fmn
2 1c̄ „g•~¹2 ieA!1m…cG D expS i( eiE

0

1/T

dtA0~t,xW i ! D
E dAmdcdc̄ expS 2E

0

1/TF14Fmn
2 1c̄ „g•~¹2 ieA!1m…cG D ~4!
-

e

e

e

-

with ~anti!periodic boundary conditions Am(1/T,xW )
5Am(0,xW ), c(1/T,xW )52c(0,xW ), c̄(1/T,xW )52c̄(0,xW ). The
gauge transformation Am8 (t,xW )5Am(t,xW )1¹mx(t,xW ),

c8(t,xW )5eiex(t,xW )c(t,xW ) c̄8(t,xW )5c̄(t,xW )e2 iex(t,xW ) is a
symmetry of the action, measure and boundary conditio
when ¹W mx(1/T,xW )5¹mx(0,xW ) and x(1/T,xW )5x(0,xW )
12pn/e. The cosets of the group of all time-depende
gauge transformations modulo those which are periodic fo
the additive group of the integers,Z, which is the analog
of the ZN symmetry of Yang-Mills theories. Under
the action of an element of a coset, the Abelian Poly
kov loop operator transforms as exp@iej*0

1/TdtA08(t,xW j )#

5exp@iej*0
1/TdtA0(t,xW j )#e

(2p inej /e). If Z is not spontane-

ously broken,F(xW1 , . . . ,xWn) defined by~4! is infinite when
the total charge of the external distribution is not an integ
multiple of the electron charge,( ieiÞ integer3e. When the
symmetry is broken,F(xW1 , . . . ,xWn) can be finite. The pres-
ence or absence of symmetry breaking can be related to c
ter decomposition of neutral correlators. Thus, the nature
the realization ofZ tests the ability of the electrodynamic
system to screen charges which are not integral multiples
the electron charge.

At T50, and for the physical value of the electromagne
coupling constant,~311!-dimensional electrodynamics is in
the deconfined Coulomb phase at zero temperature an
thought to form a Debye plasma at all finite temperature
The Z symmetry is therefore always spontaneously broke
On the other hand, in 111 dimensions, the Coulomb inter
action is confining at the tree level and it is known that, wh
the electron has mass, it remains confining after quant
corrections and theZ symmetry is unbroken at any tempera
ture @8#. One might expect that, in the intermediate case
(211)-dimensional electrodynamics both confined and d
confined phases are possible. In that case, even at the cl
cal level, the Coulomb potential is a marginally confinin
logarithm. Its entire spectrum is bound states, but the bou
states can have arbitrarily large size. The free ene
of a gas of classical charged particles isFcl

521
2( i , jeiej (1/2p)lnuxWi2xW ju and the partition function has

the scaling form

e2Fcl /T5const3)
i, j

uxW i2xW j ueiej /2pT ~5!
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with temperature-dependent exponent, reminiscent of the
spin-wave correlators in Gaussian spin wave theory in two
dimensions@9#.

It is interesting to ask how this result would be changed
by radiative corrections and by thermal fluctuations. This can
be answered in the context of quantum electrodynamics by
computing the effective action for the Polyakov loop opera-
tor. This is done by first fixing a gauge whereA0 is indepen-
dent of the Euclidean time. Then, the other degrees of free
dom, AW ,c, are integrated from the path integral. What
remains is an effective action for a static fieldA0(xW ) which
can be used to evaluate correlators of Polyakov loops,
eieA0(x

W )/T. The Z symmetry is a periodicity of the effective
action underA0(xW )→A0(xW )12pT/e and the central ques-
tion is whether or not this symmetry is spontaneously bro-
ken, and if both phases exist, what is the nature of the phas
transition between them.

The effective action is nonlocal and nonpolynomial in
A0(xW ). When the matter fields have a mass, it has a local
expansion in powers of derivatives ofA0(xW ) divided by
masses. This expansion is accurate when the momentum
scales of interest are much smaller than the masses and th
effective field theory forA0(xW ) can be approximated by a
local field theory where the ultraviolet cutoff is taken to be
the masses of the charged matter fields.

In 211 dimensions, the fermion mass operator con-
structed from the minimal two-component Dirac fermions is
a pseudoscalar and therefore violates parity@10,11#. If in-
cluded in the action, they can generate a parity violating
topological mass for the photon by radiative corrections@12#.
In this paper, we wish to study the case where the electron
has mass but the photon is massless. For this purpose, w
shall use parity-invariant four-component fermions. Consider
the Euclidean action

S5E d3xF14Fmn
2 1c̄ „g•~¹2 ieA!1m…c G . ~6!

If m50 in ~6! there is a ‘‘chiral’’ symmetry under the trans-
formationc8(x)5g5c(x). The latter symmetry can be bro-
ken at T50 @13# by a chiral transition which generates
parity-invariant fermion masses. However, the mass genera
tion also breaks a continuous chiral symmetry which, by the
Coleman-Mermin-Wagner theorem, must be unbroken at any
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finite temperature in 211 dimensions. It has been argue
that, at finite temperature, even though the condensate v
ishes,^c̄c&50, the chiral transition can be replaced by
Berezinskii-Kosterlitz-Thouless~BKT! transition @14#. We
shall consider the opposite limit of large parity-invarian
mass,m..e2, where there is no chiral symmetry, and sho
that there is a BKT transition corresponding to
confinement-deconfinement transition at some value of te
peratureT. Form..T,e2 we shall see that the critical line
has the equationT crit5e2/8p(11e2/12pm1•••). When
T,Tcrit the theory is confining, whereas whenT.Tcrit it is
in a deconfined phase. It is interesting to speculate that
transition is in some way related to the chiral transition, pa
ticularly that it is in fact on the same critical line of BKT
transitions as@14# which would be encountered if one lower
the massm to zero.

At finite temperature,~211!-dimensional QED contains
three parameters with the dimension of mass, the elect
massm, the gauge couplinge2, and temperatureT. The loop
expansion is super-renormalizable@10# and is an expansion
in the smaller of the dimensionless ratiose2/m ande2/T. We
d
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can compute the effective action forA0(xW )[a(xW )AT in a
double expansion in the number of loops and in powers
derivatives ofa(xW ). To order one-loop and up to quadratic
order in derivatives the effective action is

Seff@A0#5E dxW S Z~m,ea/AT!
1

2
¹W a•¹W a2V~m,ea/AT! D .

~7!

Here V is the effective potential forA0 arising from the
fermion determinant andZ is obtained from expansion of the
temporal components of the vacuum polarization function
linear order in2¹W 2.

V~m,eA0 /T!5
1

~Vol!
lndet@~2 i ]02eA0!

22¹21m2#,

~8!

where the fermions have antiperiodic boundary conditions
the 0 direction. The determinant can be computed by cons
ering the ratio@15#
a-
r

tion:

it
study of
D~m,eA0 /T!5det@~2 i ]02eA0!
22¹21m2#/det~2]0

22¹21m2!5)
kW

F12
sin2~eA0/2T!

cosh2~lk/2T!G[)
kW

DkW~m,eA0 /T!, ~9!

wherelk
25kW21m2 are the eigenvalues of2¹21m2. Equation~9! holds in any dimensions. In 211 dimensions one can

perform the integral onkW arising in lnD(m,eA0 /T), after taking the infinite volume limit:

V~m,eA0 /T!5E
2`

1` d2kW

~2p!2
lnDkW~m,eA0 /T!52

T2

p FmTLi2~e2m/T,eA0 /T1p!1Li3~e
2m/T,eA0 /T1p!G , ~10!

where Li2(r ,u)52*0
r dxln(122xcosu1x2)/2x and Li3(r ,u)5*0

r dxLi2(x,u)/x are the real parts of the dilogarithm and trilog
rithm according to the convention of Ref.@16#. As expected, Eq.~10! shows the periodicity of the effective potential fo
eA0 /T→eA0 /T12p. ~In 1 and 3 spatial dimensions the integral inkW can only be performed analytically form50 in which
case it gives simple polynomial expressions. In the limitm50, the effective potential forA0 has been discussed in@17#.!

It is also straightforward to compute the term which contributes the leading order in derivatives to the effective ac

Z~m,ea/AT!511
e2

12pm S 12m
]

]mD sinhm/T

coshm/T1cosea/AT
. ~11!

The critical behavior of the two-dimensional model defined by Eqs.~7!, ~10!, and~11! can be understood by comparing
with the sine-Gordon model in two dimensions. That this comparison can be reliably performed can be seen by the
the harmonic content of~10!:

V~m,ea/AT!52
T2

p (
n51

`
e2nm/T

n3 S 11
nm

T D cos@n~ea/AT1p!#. ~12!
pe

th
in

rts
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Consider then the largem limit, T/m ande2/m small with
finite e2/T. In this limit, the higher harmonics are small pe
turbations to the potential

V~m,ea/AT!5
Tm

p
e2m/Tcos~ea/AT!, ~13!

which is the sine-Gordon potential. Amitet al. @18#. showed
r-
that in the sine-Gordon model any perturbations of the ty
cos(nbf) to a sine-Gordon potentialacos(bf)/b2 are irrel-
evant for the critical behavior of the model. By analogy wi
the spin wave plus Coulomb gas model, it was also proven
Refs.@18# that a critical line for a BKT@19# phase transition
in the sine-Gordon model with a logarithmic potential sta
at the point (a,b2)5(0,8p). We can then conclude that als
in 211 QED at finite temperature there is a BKT phase tra
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sition, with a critical line in the (m/T,e2/T) plane starting at
(m/T,e2/T)5(`,8p). The critical temperature for this tran
sition ~up to one-loop order! can be computed from Eqs.~11!
and ~13! as T crit5e2/8p(11e2/12pm1•••). This is the
critical value of the coupling constant originally found b
Coleman in his discussion of bosonization of the mass
Thirring model@20#. It is interesting that the phase transitio
is accessible to perturbative analysis.~To our knowledge it is
the only confinement-deconfinemt transition which is so a
cessible.! This is a consequence of the fact that the coef
cient of the cosine term in the effective action in the larg
mass, weak coupling limit is in the range of critical param
eters of the sine-Gordon theory.

The vacuum expectation value ofA0 in the deconfined
phase, where theZ symmetry is spontaneously broken, i
^A0&52pnT/e. In a semiclassical analysis, this expectatio
value contributes an imaginary chemical potential for th
electron. However, this chemical potential can be absorb
by shifting the Matsubara frequency of the electron b
2pnT. Thus, in the case of electrodynamics, the semiclas
cal thermodynamics of the deconfined phase do not su
from the difficulties of negative entropy and imaginary the
modynamic potential that plague the metastableZN phases of
QCD @21#.

We wish to point out the distinction between our prese
results and the well-known fact that, in the absence of d
namical matter fields, compact three-dimensional QED ha
finite temperature phase transition between a confining a
deconfined phase@5,1#. That transition is also known to be o
BKT type. In our case, it is essential that the U~1! gauge
symmetry be noncompact so that the order parameter w
incommensurate charges is gauge invariant. It is also ess
tial that the charges of dynamical matter field are all qua
tized in integer multiples of some basic unit. Although th
means that in a realistic system, one could not actually do
-
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experiment of introducing an incommensurate charge a
measuring the required energy, the phase transition should
observable by other means. For example, the voltageA0 in
the deconfined phase fluctuates near some minimum of t
potential and the electric screening is characterized by a D
bye mass which can be obtained by expanding the effecti
potential. The BKT transition has a universal jump@18# in
the parameters which characterize the Debye screening in
deconfined phase. This jump is a definite prediction of ou
analysis. In the confined phase,A0 is a random field which
suppresses screening of the long-ranged Coulomb inter
tions. Our results should be of interest, and are in princip
testable in spin systems commonly studied in lowe
dimensional condensed matter physics where U~1! gauge
symmetries arise naturally@22#.

An experimentally testable consequence of the spontan
ous breaking ofZ symmetry in the deconfined phase o
(211)- and (311)-dimensional QED is the existence of
domain walls. An important and outstanding problem, whic
has already been addressed for SU(N) gluodynamics@23#
and massless QED@17#, is the understanding of their physi-
cal properties in the present case of QED with massive ma
ter.

It is interesting to ask what happens when the thre
dimensional electrodynamics has a small topological ma
which cuts of the long-ranged fluctuations of the gaug
fields. It has been suggested that there is a phase transitio
zero temperature as the topological mass is varied@24#.
Whether such a phase transition could be observed at fin
temperature is a subject of ongoing investigation.
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