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Some remarks on the BRST quantization of massive Abelian two-form gauge fields
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In this paper we quantize massive Abelian two-form gauge fields in six dimensions following the antifield
BRST formalism. The quantization procedure is based on the quantization of a first-class system associated
with the original theory. This first-class system is obtained by converting the original second-class constraints
into some first-class ones in a way to preserve the reducibility of free Abelian three-form gauge fields. The path
integral of the first-class system is identical to the original one in an appropriate gauge-fixing fermion. Finally,
it is shown that this first-class system leads to the one derived by Bizdadea and Sz#ib6-282196)05410-

0]

PACS numbss): 11.10.Ef, 11.15.Tk

I. INTRODUCTION has never been realized a conversion method for the second-
class constraints of the massive Abel@rform gauge fields
The quantization of purely second-class constrained syssuch that their quantization implies the BRST quantization of
tems has attracted much attention lately. The most efficiera reducible theory describing Abelignform gauge fields
tool in achieving the quantization of such theories, as well asnteracting with Abelian p+1)-form gauge fields. This is
of the gauge ones, was proved to be the Becchi-Rouet-Storéhe aim of our paper fop=2. Namely, in this work we
Tyutin (BRST) formalism[1-5]. In order to incorporate the quantize massive Abelian two-form gauge field®imlimen-
purely second-class systems within the BRST formalism, wesions (1) transforming the original system into a first-class
have to turn the original system into a first-class ofiein  one in the original phase space, af®l associating to the
the initial phase spacfs], or (ii) in a larger phase space above system a one-parameter family of first-class systems,
[7,8. Many authors[9—-18 have employed the methods and subsequently applying the BRST formalism to the first-
from [7,8] to solve various models. At the same time, theclass family. As it will be seen, the conversion proced@e
methods based on enlarging the phase space have been @il lead to a system describing Abelian two-form interact-
tended recently to cover the systems preserving the reduing with three-form gauge fields in six dimensions. Related
ibility relic of a first-class theory19,20, as massive Abelian to the BRST quantization, we follow the general lines from
p-form gauge fields. There are many reasons for studying5].
Abelian p-form gauge fields. For example, the significance
of free Abelian MO—form gauge fields consists in their natu- || THE RIGID SYMMETRIES OF EREE ABELIAN
ral appearance in the study of dual resonance models, rela- THREE-FORM GAUGE FIELDS
tivistic strings, black holes, vortices, and extended super-
gravity [21-29. As was shown iff19], the quantization of In this section we investigate some rigid symmetries of
massive Abelian two-form gauge fields in four dimensionsfree Abelian three-form gauge fields ih dimensions. These
implies in fact the BRST quantization of the system symmetries lead to some conserved currents and to some
quantities derived with their help to be further employed in

1 1 the next section in order to accomplish the conversion pro-
- —F,, F*"— Z(MAMV_ Fu)

551, [AB]= f d*x

12" wvp cedure. The starting point of this section is the Lagrangian
action
X(MA#Y=F#Y) ], (1)
L _ D 1 MVPN
SOS[B]_ - d XMFMV;))\F ’ (2)
whereF ,,,=d;,A,, andF,,=d;,B,;. Action (1) comes

from the gauging of the rigid symmetrie$B,=Me, for  with F , =4, ,B,, and theB,,,’s antisymmetric in all
. . : . . M VPN T [uPvp)] pmvp > )

conservation of the currents corresponding to the last sym-

metries, but for action(1), results in the constraint 5B

—d'm=0, with 7, the canonical momenta of th* ’s.

There_ can be_shown also in ge_neral _that the qua_nt|zat|on 0v(/here»sx ...».. denotes the completely antisymmetric symbol

massive Abeliamp-form gauge fields induces the introduc- | MtAD .

tion of Abelian (p—1)-form gauge fields, the interacting N D dimensions, whilee*+"">-3 are constant parameters.

term being of the type current-currefit9,20. However, it The conserved currents corresponding3pare of the form

(_)3(D73)

€ €M Ap-3 3)

/U/p: ,uvp)\l---)xD736 ’

e

. . . . I one = FurabBy, (4)
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Becausg? ; =0, the conservation of the spatial part of U N 2
L b3 s _ . H= dD71X _’7Ti"7TIJ+_Fi'kFIJk+_A VAMV
the last currents readsj iy ,iD_B—O. In terms of the canoni- J 12 Y 4 " #
cal momentdl ,,,, conjugated to the fieldB,,,,, the above
conservation laws read —2A% g ) (13
o1k =0, (5)

For later convenience we denot€(”=24'm; and
Anticipating a bit, we shall impose relation$) as con- C,(l)E —_Mquj- _ .
straints for the extravariables to be introduced in Sec. Ill. Starting with (11)-(13), our conversion method consists
They are analogous to the constraint' =0 implemented in ~ of two steps. First, we construct in the original phase space a
the context of actior(1) for Abelian one-form gauge fields first-class system described by the first-class Hamiltofn
[19].

With the aid of the current&4) we build the “currents” H=H- 1

1 )
D-1 (0)~(1 T~
sz d X( Cj cWi4+ 2(:]_ ci , (19

i =M

SESRCIT R SRR © as well as the first-class constrairtfsl). It is simple to see

that[H,G!]=0 strongly, where the symb¢l] denotes the

Poisson bracket. Second, we associate to the prior system a

Mj, . =0, 7) one-parameter family of first-class systems in a larger phase-
1 7b-4 space built as follows.

(i) For every pair G/,C{%)) we introduce the canonical

The above “currents” satisfy the relations

WEISH = 4
P2y np =0 ® bosonic pairs B'¥,I1;;) antisymmetric in their indices such
that the new secondary constraints become
¥=\K;(B,II)-C{?, (15)
go-a- gy, o =0, (9)

with K;(B,IT) some functions to be further identified, and
We remark that actually, relatiot#) are not conservation \ the nonvanishing parameter of the first-class family. As the

laws, but merely identities. Indeed, they hold independentl)funCt'O”SCJ( ) are first-order reducible
of the equation; of motion;&(LF“”P)‘zp), and, moreover, sico—g (16
there are no rigid symmetries of actid@) revealing such ) ’

conservations. This is the reason of putting the word “cur-

fent™ between myertepi_ commas. Relatiof8 and(g) .a_lso pears natural that the functiok§(B,II) be taken also first-
represent some identities. They are clearly reducibility rela'order reducible, with the same reducibility functions as in

tions associated t(v¥). For this reason it is natural to choose (16). In order to find some reducible functiok§(B,IT) we
all these relations to contribute to the reducibility relations Ofmake use of relation&)—(9). TakingD =6, we obs,erve that

a certain first-class system to be constructed in the next Sefhe “currents” i\.o derived from (6) satisfy precisely the
tion starting with massive Abelian two-form gauge fields. dentities 20

and we wish to obtain a reducible first-class family, it ap-

lll. THE FIRST-CLASS FAMILY ASSOCIATED WITH akj w="0, (17)
MASSIVE ABELIAN TWO-FORM GAUGE FIELDS

) _the identities(8) and (9) being trivial in this case. Thus we
Here, we convert the second-class constraints of massivg,qose

Abelian two-form gauge fields into some first-class con-

straints by extending the original phase space. We notice that _

the conversion will be achieved following the general lines Ki(B,II)=~— zlio (18
exposed in[30], which will be extended now to reducible

theories in a way different from the one presented there. T@uch that the functionsy; become first-order reducible,
begin with, we take the action namely

1 M2 #y;=0. (19)
S| dDX( ~ PP g AWAY | (10 ‘
(i) For every relation(5) we introduce a new bosonic
canonical pair BO",HOH) together with the supplementary

whereF ,,,=d;,A,, . The canonical analysis of acti¢h0) :
. . constraints
furnishes the second-class constraints
Gi=#%=0, primary, (11) Gij=Hoij =0, (20
, ) such that their consistencies imply, as new secondary con-
C;j=2d'm;—M<A;=0, secondary, (12)  straints, the relationés) (up to a factor

together with the canonical Hamiltonian ij=—3d1;;=0. (22)
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In this way, we managed to associate with the original sysPassing to the total actidib] corresponding t¢30) (taking
tem a one-parameter family of first-class systems, with the'=v'=0) and eliminating the momenta and the remaining
first-class constraints(11), (15), (20), and (21), with multipliers on their equations of motiof81], we infer the
K;(B,II) from (15) given by(18). The above constraints are Lagrangian action of the first-class family as

second-order reducible. Indeed, apart fréb®) there still

. - . 1
exist the reducibility relations L = by | — — v
y 802,3[A'B] f d x( 12FWP|:M P
(9")/”:0, (9]3’)/”:0 (22) )\2
- F EHvPN
At this point we build the first-class Hamiltonian of the 2.41M? " #rok
first-class family in a way to obtaifil5) and(21) as second- N
ary constraints. Then, the first-class Hamiltonian is expressed aBpE pvph
byy P + oscal CunonapATFIN L (3D)

_ Action (31) describes a gauge theory of Abelian two and
H* =H+f dSx(AY y]-+B°”7ij)+gEf d°xh*, (23)  three-form gauge fields with topological coupling in six di-
mensions. We notice that if we skt=M and subsequently
take the limitM — 0, we decouple the above theories. It is
precisely the fact thatl #0 which allowed us to couple the
[G),g]=0, [@,g]:o, (24) two systems mentioned before through our procedure. We
fixed in this way the correct value of the parameter.

with g a function verifying the equations

. * =
[¥j,H*1=0, (25 IV. THE BRST QUANTIZATION
— OF THE FIRST-CLASS FAMILY
[7ij,9]=0. (26)
. ) Within this section we quantize the system described by
For solving the last system, we represgnes a series of  5¢ion (31) in the light of the antifield BRST formalisifs].

powers inllj;’s with coefficients fu_nkctions oA'’'s only  This action is invariant under the gauge transformations
plus a function depending strictly dd''*’s
(32

OA = 01u€s) s OB uypy=0[u€0p,

wheree,’s and €,,'s are arbitrary functions, the last ones
being antisymmetric. The gauge transformatiq8g) are

(27) second-order reducible, the gauge generators and first and
second-order reducibility matrices taking the form

(l)ijk (z)ijk )

g= d5X g Hijk+ giljlkll_[ijkl_[iljlkl—k--~+f(B”k)

It is clear from(27) that (24) are automatically fulfilled. In-

troducing(27) in (25), we get ZZ’” 0 Zer 0 7
ap_ v ay_ ay_
5[ _3M? ik M i al ( 0 Zf\“}), 2 ( 0 Zk>’ “3 ( 0)
QZJ d X(__)\Tnijknu toN € PEMA WL (33
In the De Witt condensed notations, the functiolﬁ’jy,
+f(B”k)). (280 Z{, Z* read
N 1
Requiring now for(28) to check(26), we derivef(B'¥) of ZZfYZE[(5ﬁ53— 8057) 9%+ (8,855~ 8750) 9P
the form
a oB_ sa off
) +(6,6,—8,8,)9"], (39
ijky— . rijkl
FBY) = oxammz ik (29 ZEr= gt — kv, ZM=d. (35)

whereF ;= d;Bji; . In principle, in(29) there can appear a Corresponding to the matrice83), the minimal ghost
polynomial inF;, F'*!. We took into consideration only the and antifield spectra are given by

first term due to the first term i(28), which signalizes that ghost %" #* »* © g
only (29) is in accordance with this term. This determines
completely the functiory, and thusH*. gh 1 1 2 23 (36)
The extended actiof5] of the second-order reducible € 1 1 0 0 1,
first-class family associated to massive Abelian two-form )
gauge fields reads antifield Bz, AL, 7., Zx wm 7F 7
. . _ gh -1 -1 -2 -2 -3 -3 -4 (37
SE[AaB-WaH-U-U]:f dGX(AOIWOi+A”7Tij+BOIIHOij € 1 1 0 0 1 1 0,

+ BT —h* —u Gl —u; Gl — vy, with the notations gh and denoting the ghost number and
o N ) N ’ the Grassmann parity. The nonminimal solution of the mas-
—v'y). (30) ter equatior{5] takes the form
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L 6o nx A Bl e ak Apos] We observe that at the c_Ia_ssicaI Iev_il we reobtain _frgm the
Smin_502‘3+f d°x(BGg,d “n" "+ AL, 0T first-class system the original one jf:,,=0. Redefining
% Aliov] e ok Ao kA jgﬁy as new field; we can e_mphasize the Wess-Zumino ac-
R MR AN 2/ N (38 tion associated with the original system under the form

At this stage we show that using a peculiar gauge-fixing 1
fermion the path integral correspondent to act{8g) leads S\SVZ[A,B]ZJ d6X2X4, il (44)
to the path integral for massive Abelian two-form gauge '
fields. In this respect, we introduce a nonminimal sector |, the sequel we make the connection between the first-

slightly different from the general prescription 5] such class systeni43) and the first-class systeft). With the aid
that the nonminimal solution of the master equation be exy¢ (32) we obtain

pressed as
- M2
_ Sl =——j* '“BV):—A“B& w€gl - (45)
Shon min= SminT f dex(%ﬁybaﬂydl_ﬁﬁbaﬂ_l_%ba'l' 7*b 2x4! Vaprlu 2 LAl
+ 77 5b + 77 b"). (390  Because in43) the dependence iﬁy’s is contained only
in the term[1/(2X4!)]j44,] Z'By, we can replace the fields
The appropriate gauge-fixing fermion is given by jts, With some other fieldsV,, introduced implicitly

through the relation

__M ‘1’:37__E|: FMV+MF AV (46)
axat ey =T g 2w

V= J dGX(Fﬁ(baﬂ_ MAa,B)—F?ByBaB'y—F 7]/}.1/(9#7
+9779,0"+ 279, + n"d,7). (40
o . _ with F,,=d;,V,; andé.V,=d,e+Me,. The legitimacy of
Eliminating in the standard way the antifields frd89) with he transformatiorf46) results from the equality between the
the help of(40) and integrating in the path integral associ- gauge variations of both its sides
ated to the gauge-fixed actiany, , over all the fields except
the A,z's, we get 1 . M . 1 — 8,
€ _ZF#VF +?F,uvA M]aﬁyj# .
Zy= J TR 5de(M)expliS5 [A,). (41) (47)

Introducing (46) in (43), we recover actior{l) modulo the

Formula (41) represents the path integral of the first-classidentificationsB,=V,, but in six dimensions. The Wess-
family and it coincides with that for massive Abelian two- Zumino action in the last case is
form gauge fields. This result is identical with the one de-
rived in [19]. There, the conversion mechanism is resulting —W 10 o ~m~, )
in a first-class system described by actidn So TAV]=— ZJ d°x(j5i,—M7ALAY), (48

At this point we can clarify the meaning of the original
system bearing the reducibility trace of a certain reducibquhere“j‘u:FM_MAu is the gauge-invariant current corre-
first-class theory. Fron1) it follows that the path integral pondian to Vthe rigin symmetries,V,=Me, of action (1).

of the original system comes from the BRST quantization o From (47) and( 48) we can conclude that we may regain the

the first-clgs.s syster(Bl)_(with ).‘: M). We conc!ude then irst-class system associated with massive Abelian two-form
that the original system is obtained at the path integral leve

. auge fields obtained ifL9] by making a field transforma-
from the first-class one. tion such that the gauge variations of the Wess-Zumino ac-
tions obtained through the two above indicated conversion
V. THE CLASSICAL ANALYSIS procedures are identical.

OF THE FIRST-CLASS SYSTEM

P =5,

Here we point out some interesting aspects linked to the VI. CONCLUSION
first-class system. Its action is invariant under the rigid trans-
formations (3) in six dimensions. The corresponding con-
served currents have the form

Using the antifield BRST formalism, we proved that con-
verting the second-class constraints of massive Abelian two-
form gauge fields into some first-class ones we can quantize
consistently our model in a way which preserves the reduc-
j_“ __ ie FAVPN M S Ay . (42) ibility relic of free Abelian three-form gauge fields. The con-
by 31 @Brven La"287] version method exposed in Sec. Il is directly connected with
the manifest covariance of the action of the first-class sys-
Using (42), action(31) may be written under the form tem. The covariance is realized through the presence of
C{% within the(n)ew secondary constrainks). If one does
L ol 6 - = not introduceC{®) in (15), then the functiorg is vanishing,
Soz,iA’B]_Soz[A]Jrf d X2><4! gy #3«/_ (43 and thus is furjther leading to a noncovariant action for the
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first-class system. Another feature specific to our conversiotime, the equivalence at the classical level between the two
method is revealed by implementing in the theory the reducfirst-class systems is achieved via the equality between the
ibility relations of free Abelian three-form gauge fields with gauge variations of the corresponding Wess-Zumino actions.
the aid of the “currents”(6). It is precisely the settingl8)  The procedure described in this work can also be applied
which couples consistently Abelian two and three-formstarting with massive Abelian vector fields and establishing

gauge fields through23). The equivalence between the the equivalence with our mechanism for an irreducible

guantization procedure exposed in this paper with the onsecond-class systefi32]. More on Abelianp-form gauge

from [19] is accomplished by formul#41). At the same

fields can be found ih33].
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