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Some remarks on the BRST quantization of massive Abelian two-form gauge fields
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In this paper we quantize massive Abelian two-form gauge fields in six dimensions following the antifield
BRST formalism. The quantization procedure is based on the quantization of a first-class system associa
with the original theory. This first-class system is obtained by converting the original second-class constrain
into some first-class ones in a way to preserve the reducibility of free Abelian three-form gauge fields. The pa
integral of the first-class system is identical to the original one in an appropriate gauge-fixing fermion. Finally
it is shown that this first-class system leads to the one derived by Bizdadea and Saliu.@S0556-2821~96!05410-
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I. INTRODUCTION

The quantization of purely second-class constrained s
tems has attracted much attention lately. The most effici
tool in achieving the quantization of such theories, as well
of the gauge ones, was proved to be the Becchi-Rouet-St
Tyutin ~BRST! formalism @1–5#. In order to incorporate the
purely second-class systems within the BRST formalism,
have to turn the original system into a first-class one:~i! in
the initial phase space@6#, or ~ii ! in a larger phase space
@7,8#. Many authors@9–18# have employed the method
from @7,8# to solve various models. At the same time, th
methods based on enlarging the phase space have bee
tended recently to cover the systems preserving the red
ibility relic of a first-class theory@19,20#, as massive Abelian
p-form gauge fields. There are many reasons for study
Abelian p-form gauge fields. For example, the significan
of free Abelian two-form gauge fields consists in their nat
ral appearance in the study of dual resonance models, r
tivistic strings, black holes, vortices, and extended sup
gravity @21–29#. As was shown in@19#, the quantization of
massive Abelian two-form gauge fields in four dimensio
implies in fact the BRST quantization of the system

S01,0
L @A,B#5E d4xS 2

1

12
FmnrF

mnr2
1

4
~MAmn2Fmn!

3~MAmn2Fmn! D , ~1!

whereFmnr5]@mAnr] and Fmn5]@mBn] . Action ~1! comes
from the gauging of the rigid symmetriesdeBm5Mem for
the Abelian gauge field action. At the Hamiltonian level, th
conservation of the currents corresponding to the last sy
metries, but for action ~1!, results in the constraint
2] ip i50, with pm the canonical momenta of theBm ’s.
There can be shown also in general that the quantization
massive Abelianp-form gauge fields induces the introduc
tion of Abelian (p21)-form gauge fields, the interacting
term being of the type current-current@19,20#. However, it
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has never been realized a conversion method for the seco
class constraints of the massive Abelianp -form gauge fields
such that their quantization implies the BRST quantization o
a reducible theory describing Abelianp-form gauge fields
interacting with Abelian (p11)-form gauge fields. This is
the aim of our paper forp52. Namely, in this work we
quantize massive Abelian two-form gauge fields inD dimen-
sions ~1! transforming the original system into a first-class
one in the original phase space, and~2! associating to the
above system a one-parameter family of first-class system
and subsequently applying the BRST formalism to the firs
class family. As it will be seen, the conversion procedure~2!
will lead to a system describing Abelian two-form interact-
ing with three-form gauge fields in six dimensions. Relate
to the BRST quantization, we follow the general lines from
@5#.

II. THE RIGID SYMMETRIES OF FREE ABELIAN
THREE-FORM GAUGE FIELDS

In this section we investigate some rigid symmetries o
free Abelian three-form gauge fields inD dimensions. These
symmetries lead to some conserved currents and to so
quantities derived with their help to be further employed in
the next section in order to accomplish the conversion pro
cedure. The starting point of this section is the Lagrangia
action

S03
L @B#52E dDx

1

234!
FmnrlF

mnrl, ~2!

with Fmnrl5]@mBnrl] and theBmnr’s antisymmetric in all
indices. Action~2! possesses the rigid~Noether! symmetries

d ēBmnr5emnrl1•••lD23
ēl1•••lD23, ~3!

whereel1•••lD
denotes the completely antisymmetric symbo

in D dimensions, whileēl1•••lD23 are constant parameters.
The conserved currents corresponding to~3! are of the form

j l1•••lD23

m 5
~2 !3~D23!

3!
el1•••lD23abgF

mabg. ~4!
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Becausej i1••• i D23

0 50, the conservation of the spatial part o

the last currents reads] i j i1••• i D23

i 50. In terms of the canoni-

cal momentaPmnr conjugated to the fieldsBmnr , the above
conservation laws read

] iP
i jk50. ~5!

Anticipating a bit, we shall impose relations~5! as con-
straints for the extravariables to be introduced in Sec.
They are analogous to the constraint] ip

i50 implemented in
the context of action~1! for Abelian one-form gauge fields
@19#.

With the aid of the currents~4! we build the ‘‘currents’’

j l1•••lD24
5 j l1•••lD24m

m . ~6!

The above ‘‘currents’’ satisfy the relations

]l1 j l1•••lD24
50, ~7!

]l2]l1 j l1•••lD24
50, ~8!

A

]lD24
•••]l2]l1 j l1•••lD24

50. ~9!

We remark that actually, relations~7! are not conservation
laws, but merely identities. Indeed, they hold independen
of the equations of motion (]mF

mnrl50), and, moreover,
there are no rigid symmetries of action~2! revealing such
conservations. This is the reason of putting the word ‘‘cu
rent’’ between inverted commas. Relations~8! and ~9! also
represent some identities. They are clearly reducibility re
tions associated to~7!. For this reason it is natural to choos
all these relations to contribute to the reducibility relations
a certain first-class system to be constructed in the next s
tion starting with massive Abelian two-form gauge fields.

III. THE FIRST-CLASS FAMILY ASSOCIATED WITH
MASSIVE ABELIAN TWO-FORM GAUGE FIELDS

Here, we convert the second-class constraints of mas
Abelian two-form gauge fields into some first-class co
straints by extending the original phase space. We notice
the conversion will be achieved following the general lin
exposed in@30#, which will be extended now to reducible
theories in a way different from the one presented there.
begin with, we take the action

S02
L @A#5E dDxS 2

1

12
FmnrF

mnr2
M2

4
AmnA

mnD , ~10!

whereFmnr5]@mAnr] . The canonical analysis of action~10!
furnishes the second-class constraints

Gj[p0 j50, primary, ~11!

Cj[2] ip i j2M2A0 j50, secondary, ~12!

together with the canonical Hamiltonian
f
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H5E dD21xS 2p i jp
i j1

1

12
Fi jkF

i jk1
M2

4
AmnA

mn

22A0 j] ip i j D . ~13!

For later convenience we denoteCj
(0)[2] ip i j and

Cj
(1)[2M2A0 j .
Starting with ~11!–~13!, our conversion method consists

of two steps. First, we construct in the original phase space
first-class system described by the first-class Hamiltonian@6#

H̄5H2
1

M2E dD21xSCj
~0!C~1! j1

1

2
Cj

~1!C~1! j D , ~14!

as well as the first-class constraints~11!. It is simple to see
that @H̄,Gj #50 strongly, where the symbol@ ,# denotes the
Poisson bracket. Second, we associate to the prior system
one-parameter family of first-class systems in a larger pha
space built as follows.

~i! For every pair (Gj ,Cj
(0)) we introduce the canonical

bosonic pairs (Bi jk ,P i jk) antisymmetric in their indices such
that the new secondary constraints become

g j[lKj~B,P!2Cj
~0! , ~15!

with Kj (B,P) some functions to be further identified, and
l the nonvanishing parameter of the first-class family. As th
functionsCj

(0) are first-order reducible

] jCj
~0!50, ~16!

and we wish to obtain a reducible first-class family, it ap
pears natural that the functionsKj (B,P) be taken also first-
order reducible, with the same reducibility functions as i
~16!. In order to find some reducible functionsKj (B,P) we
make use of relations~7!–~9!. TakingD56, we observe that
the ‘‘currents’’ j l10 derived from ~6! satisfy precisely the
identities

]kj k050, ~17!

the identities~8! and ~9! being trivial in this case. Thus we
choose

Kj~B,P![2
1

4
j j0 , ~18!

such that the functionsg j become first-order reducible,
namely

] jg j50. ~19!

~ii ! For every relation~5! we introduce a new bosonic
canonical pair (B0i j ,P0i j ) together with the supplementary
constraints

Ḡi j[P0i j50, ~20!

such that their consistencies imply, as new secondary co
straints, the relations~5! ~up to a factor!

ḡ i j[23]kPki j50. ~21!
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In this way, we managed to associate with the original s
tem a one-parameter family of first-class systems, with
first-class constraints~11!, ~15!, ~20!, and ~21!, with
Kj (B,P) from ~15! given by~18!. The above constraints ar
second-order reducible. Indeed, apart from~19! there still
exist the reducibility relations

] i ḡ i j50, ]j]iḡij50. ~22!

At this point we build the first-class Hamiltonian of th
first-class family in a way to obtain~15! and~21! as second-
ary constraints. Then, the first-class Hamiltonian is expres
by

H*5H̄1E d5x~A0 jg j1B0i j ḡ i j !1g[E d5xh* , ~23!

with g a function verifying the equations

@Gj ,g#50, @Ḡij ,g#50, ~24!

@g j ,H* #50, ~25!

@ ḡ i j ,g#50. ~26!

For solving the last system, we representg as a series of
powers inP i jk ’s with coefficients functions ofAi j ’s only
plus a function depending strictly onBi jk ’s

g5E d5xS g~1! i jk

P i jk1 gi1 j 1k1

~2! i jk

P i jkP
i1 j 1k11•••1 f ~Bi jk ! D .

~27!

It is clear from~27! that ~24! are automatically fulfilled. In-
troducing~27! in ~25!, we get

g5E d5xS 2
3M2

l2 P i jkP
i jk1

M2

2l
e0i jklmAlmP i jk

1 f ~Bi jk ! D . ~28!

Requiring now for~28! to check~26!, we derivef (Bi jk) of
the form

f ~Bi jk !5
l2

234!M2Fi jkl F
i jkl , ~29!

whereFi jkl5]@ iBjkl ] . In principle, in~29! there can appear a
polynomial inFi jkl F

i jkl . We took into consideration only the
first term due to the first term in~ 28!, which signalizes that
only ~29! is in accordance with this term. This determine
completely the functiong, and thusH* .

The extended action@5# of the second-order reducible
first-class family associated to massive Abelian two-for
gauge fields reads

S0
E@A,B,p,P,u,v#5E d6x~Ȧ0ip0i1Ȧi jp i j1Ḃ0i jP0i j

1Ḃi jkP i jk2h*2ujG
j2ui j Ḡ

i j2v jg j

2v i j ḡ i j !. ~30!
ys-
the
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Passing to the total action@5# corresponding to~30! ~taking
v j5v i j50) and eliminating the momenta and the remainin
multipliers on their equations of motion@31#, we infer the
Lagrangian action of the first-class family as

S02,3
L @A,B#5E d6xS 2

1

12
FmnrF

mnr

2
l2

2•4!M2FmnrlF
mnrl

1
l

234!
emnrlabA

abFmnrlD . ~31!

Action ~31! describes a gauge theory of Abelian two and
three-form gauge fields with topological coupling in six di-
mensions. We notice that if we setl5M and subsequently
take the limitM→0, we decouple the above theories. It is
precisely the fact thatMÞ0 which allowed us to couple the
two systems mentioned before through our procedure. W
fixed in this way the correct value of the parameter.

IV. THE BRST QUANTIZATION
OF THE FIRST-CLASS FAMILY

Within this section we quantize the system described b
action ~31! in the light of the antifield BRST formalism@5#.
This action is invariant under the gauge transformations

deAmn5]@men] , deBmnr5]@menr] , ~32!

where en’s and enr’s are arbitrary functions, the last ones
being antisymmetric. The gauge transformations~32! are
second-order reducible, the gauge generators and first a
second-order reducibility matrices taking the form

Za1

a05S Zmn
abg 0

0 Zl
mnD , Za2

a15S Zl
mn 0

0 ZlD , Za3

a25S Zl

0 D .
~33!

In the De Witt condensed notations, the functionsZmn
abg ,

Zl
mn , Zl read

Zmn
abg5

1

2
@~dm

bdn
g2dn

bdm
g !]a1~dm

g dn
a2dn

gdm
a !]b

1~dm
adn

b2dn
adm

b !]g#, ~34!

Zl
mn5dl

n]m2dl
m]n, Zl5]l. ~35!

Corresponding to the matrices~33!, the minimal ghost
and antifield spectra are given by

ghost hmn C l hl C h

gh 1 1 2 2 3

e 1 1 0 0 1,

~36!

antifield Babg* Amn* hmn* C l* hl* C * h*

gh 21 21 22 22 23 23 24

e 1 1 0 0 1 1 0,

~37!

with the notations gh ande denoting the ghost number and
the Grassmann parity. The nonminimal solution of the ma
ter equation@5# takes the form
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Smin5S02,3
L 1E d6x~Babg* ]@ahbg]1Amn* ]@mC n]

1hmn* ]@mhn]1C l* ]lC1hl* ]lh. ~38!

At this stage we show that using a peculiar gauge-fixi
fermion the path integral correspondent to action~38! leads
to the path integral for massive Abelian two-form gaug
fields. In this respect, we introduce a nonminimal sec
slightly different from the general prescription in@5# such
that the nonminimal solution of the master equation be e
pressed as

Snon min5Smin1E d6x~ h̄abg* babg1h̄ab* bab1h̄a* b
a1h̄* b

1h̄8* b81h̄9* b9!. ~39!

The appropriate gauge-fixing fermion is given by

C5E d6x~ h̄ab~bab2MAab!1h̄abgBabg1hmn]mh̄n

1h̄n]nh̄91C n]nh̄81hn]nh̄ !. ~40!

Eliminating in the standard way the antifields from~39! with
the help of~40! and integrating in the path integral assoc
ated to the gauge-fixed action,ZC , over all the fields except
theAab’s, we get

ZC5E DAabdet~M !exp~ iS02
L @Aab#!. ~41!

Formula ~41! represents the path integral of the first-cla
family and it coincides with that for massive Abelian two
form gauge fields. This result is identical with the one d
rived in @19#. There, the conversion mechanism is resulti
in a first-class system described by action~1!.

At this point we can clarify the meaning of the origina
system bearing the reducibility trace of a certain reducib
first-class theory. From~41! it follows that the path integral
of the original system comes from the BRST quantization
the first-class system~31! ~with l5M ). We conclude then
that the original system is obtained at the path integral le
from the first-class one.

V. THE CLASSICAL ANALYSIS
OF THE FIRST-CLASS SYSTEM

Here we point out some interesting aspects linked to
first-class system. Its action is invariant under the rigid tra
formations ~3! in six dimensions. The corresponding con
served currents have the form

j̄ abg
m 52

1

3!
eabgnrlF

mnrl2Md@a
m Abg] . ~42!

Using ~42!, action~31! may be written under the form

S02,3
L @A,B#5S02

L @A#1E d6x
1

234!
j̄ abg
m j̄ m

abg . ~43!
ng
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We observe that at the classical level we reobtain from t
first-class system the original one ifj̄ abg

m 50. Redefining
j̄ abg
m as new fields we can emphasize the Wess-Zumino a

tion associated with the original system under the form

S0
WZ@A,B#5E d6x

1

234!
j̄ abg
m j̄ m

abg . ~44!

In the sequel we make the connection between the fir
class system~43! and the first-class system~1!. With the aid
of ~32! we obtain

deS 1

234!
j̄ abg
m j̄ m

abgD5
M2

2
Aab]@aeb] . ~45!

Because in~43! the dependence ofj̄ abg
m ’s is contained only

in the term@1/(234!)# j̄ abg
m j̄ m

abg , we can replace the fields
j̄ abg
m with some other fields,Vm , introduced implicitly

through the relation

1

234!
j̄ abg
m j̄ m

abg52
1

4
FmnF

mn1
M

2
FmnA

mn, ~46!

with Fmn5]@mVn] anddeVn5]ne1Men . The legitimacy of
the transformation~46! results from the equality between the
gauge variations of both its sides

deS 2
1

4
FmnF

mn1
M

2
FmnA

mnD5deS 1

234!
j̄ abg
m j̄ m

abgD .
~47!

Introducing ~46! in ~43!, we recover action~1! modulo the
identificationsBm[Vm , but in six dimensions. The Wess-
Zumino action in the last case is

S̄0
WZ@A,V#52

1

4E d6x~ j̃ n
m j̃ m

n 2M2AmnA
mn!, ~48!

where j̃ n
m5Fn

m2MAn
m is the gauge-invariant current corre-

sponding to the rigid symmetriesdeVn5Men of action ~1!.
From ~47! and~ 48! we can conclude that we may regain th
first-class system associated with massive Abelian two-for
gauge fields obtained in@19# by making a field transforma-
tion such that the gauge variations of the Wess-Zumino a
tions obtained through the two above indicated conversi
procedures are identical.

VI. CONCLUSION

Using the antifield BRST formalism, we proved that con
verting the second-class constraints of massive Abelian tw
form gauge fields into some first-class ones we can quant
consistently our model in a way which preserves the redu
ibility relic of free Abelian three-form gauge fields. The con
version method exposed in Sec. III is directly connected wi
the manifest covariance of the action of the first-class sy
tem. The covariance is realized through the presence
Cj
(0) within the new secondary constraints~15!. If one does

not introduceCj
(0) in ~15!, then the functiong is vanishing,

and thus is further leading to a noncovariant action for th
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first-class system. Another feature specific to our convers
method is revealed by implementing in the theory the redu
ibility relations of free Abelian three-form gauge fields with
the aid of the ‘‘currents’’~6!. It is precisely the setting~18!
which couples consistently Abelian two and three-for
gauge fields through~23!. The equivalence between the
quantization procedure exposed in this paper with the o
from @19# is accomplished by formula~41!. At the same
ion
c-

m

ne

time, the equivalence at the classical level between the tw
first-class systems is achieved via the equality between t
gauge variations of the corresponding Wess-Zumino action
The procedure described in this work can also be applie
starting with massive Abelian vector fields and establishin
the equivalence with our mechanism for an irreducibl
second-class system@32#. More on Abelianp-form gauge
fields can be found in@33#.
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