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We construct a solution to the low-energy string equations of motion in five dimensions that describ
circular loop of fundamental string exponentially expanding in a background electricH field. Euclideanizing
this gives an instanton for the creation of a loop of fundamental string in a backgroundH field, and we
calculate the rate of nucleation. Solutions describing magnetically charged strings andp-branes, where the
gauge field comes from Kaluza-Klein reduction on a circle, are also constructed. It is known that a magn
flux tube in four~reduced! spacetime dimensions is unstable to the pair creation of Kaluza-Klein monopol
We show that in~41p! dimensions, magnetic~p11! ‘‘flux-branes’’ are unstable to the nucleation of a
magnetically charged sphericalp-brane. In ten dimensions the instanton describes the nucleation of a Ramo
Ramond magnetically charged six-brane in type IIA string theory. We also find static solutions describ
spherical chargedp-branes or fundamental strings held in unstable equilibrium in appropriate backgrou
fields. Instabilities of intersecting magnetic flux-branes are also discussed.@S0556-2821~96!02012-7#
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I. INTRODUCTION

Solitons have played an important role in several rece
developments in string theory. In particular, they appear
be a key to understanding various nonperturbative aspect
the theory@1–4#. Surprising connections have been foun
between string states and black holes and between str
and higher-dimensional extended objects,p-branes. There
are indications that these objects all play a fundamental r
in the theory.

It has been shown that localized solitons such as mo
poles can be pair created in a background magnetic field@5#.
Recently, there has been considerable interest in the an
gous process involving gravity: the pair creation of charg
black holes in background electromagnetic fields and
breaking cosmic strings@6–11#. The question naturally arises
as to whether extended objects such asp-branes and funda-
mental strings can also be produced quantum mechanic
in appropriate background fields. The special case
p-branes coupled to a, cosmological-constant-inducing,~p
11!-form potential in~p12! spacetime dimensions was pre
viously discussed in@12#. The nucleation of vortex loops,
local and global, has also been investigated in four dime
sions~see@13# and references therein!.

We will present a solution to the low-energy string equ
tions of motion that describes a finite loop of fundamen
string in five spacetime dimensions expanding in a bac
ground electric-typeHmnr field. Analytically continuing this
solution yields an instanton corresponding to the nucleat
of a single loop of fundamental string. We also find relate
solutions in ~p14! spacetime dimensions that describ
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spherical, magnetically chargedp-branes expanding in a
background magnetic field. Again, analytically continuing
the expanding solution gives an instanton for the nucleatio
of a chargedp-brane. Along the way we will construct static
versions of the Lorentzian solutions: a loop of fundament
string or spherical magneticp-brane held in unstable equi-
librium in a background field. A further generalization re
sults in solutions describing spherical uncharged branes
any odd~even! dimension either in static unstable equilib-
rium or expanding in background magnetic fields in od
~even! spacetime dimensions.

The construction of these solutions relies on three obse
vations. We begin by considering Kaluza-Klein theory with
U~1! reduction fromD spacetime dimensions toD21. The
first observation is that the spatial part of a basic Kaluza
Klein monopole@14,15# can be locally constructed by taking
R4 and considering the U~1! isometry that simultaneously
rotates the two orthogonal two-planes by the same ang
This acts freely except for a fixed point at the origin. Divid-
ing out by this action gives us a configuration in three spati
dimensions that is, locally, the Kaluza-Klein monopole
Magnetically charged higherp-branes are given by multiply-
ing this, locally, byp extra trivial directions so that the fixed
point set of the induced rotation inR41p is the brane. p-
branes that are not magnetically charged are formed loca
by taking the quotient ofR2k1p by rotations that simulta-
neously rotate inkÞ2 two-planes. Thep-brane is the fixed
point set of the rotation. Only in~p14! spacetime dimen-
sions can thep-brane be charged with respect to the two
form Maxwell field F arising from a circle reduction. The
general fixed point set analysis will be described in detail i
Sec. II.

The second ingredient in our construction is the bette
understanding of the pair production ofD55 Kaluza-Klein
monopoles in magnetic flux tubes that has recently be
gained@9#. Remarkably, this process has been shown to b
closely related to an instability of Kaluza-Klein magnetic
7115 © 1996 The American Physical Society
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7116 53DOWKER, GAUNTLETT, GIBBONS, AND HOROWITZ
fields analogous to that of the ordinary Kaluza-Klein vacuu
described by Witten@16#. It has been found that not only the
topology but also the metric of the instantons involved a
the same in both cases. The topology isR23S3, and the
metric is that of the five-dimensional rotating black hole di
covered by Myers and Perry@17#. The idea that emerged
from this work is that the monopoles that are pair produc
via this instanton arise as the fixed points of the U~1! isom-
etry by which one divides out in performing the Kaluza
Klein reduction. Thus, to construct the higher-dimension
generalizations given here, we take higher-dimensional bla
holes and divide out by an appropriate U~1! action such that
the fixed point sets are the desiredp-branes.

Since these are solutions to the vacuum Einstein equati
~with the gauge field arising from Kaluza-Klein reduction o
an S1!, they are also solutions, to leading order ina8, of
low-energy string theories in less than ten dimensions wh
the compactification includes anS1 factor. In addition, the
Ramond-Ramond~RR! gauge field in type-IIA string theory
in ten dimensions arises from dimensional reduction from
dimensions. We can thus construct an instanton describ
the nucleation of a spherical six-brane carrying magnetic R
charge in this theory in ten dimensions.

The third ingredient in our construction is the observatio
that after dimensionally reducing aD-dimensional vacuum
solution via a U~1! isometry toD21 dimensions, one can
apply a duality transformation which replaces the Maxwe
two-form with a~D23!-form field strength. This yields elec-
tric analogues of the magneticp-branes. For the caseD56
~i.e., five reduced spacetime dimensions!, the resulting action
is precisely the low-energy string effective action involvin
the metric, dilaton, and three-formH. The duals of the mag-
netic strings~one-branes! turn out to be fundamental strings

The layout of the paper is as follows. As we mentione
Sec. II contains an analysis of the fixed points sets of gene
U~1! isometries in arbitrary dimensions. We also constru
the closely related generalizations of the Melvin magne
flux tube solution ofD55 Kaluza-Klein theory. These are
thickened branes of magnetic flux or ‘‘flux-branes,’’ whic
are the appropriate backgrounds for nucleatingp-branes. In
Sec. III we review various properties of the five-dimension
Kaluza-Klein monopole, monopole-antimonopole pairs, a
pair creation. In Sec. IV we present solutions describi
spherical, magnetically chargedp-branes expanding in mag-
netic flux-branes. The Euclidean sections of these solutio
are the instantons for the nucleation of magnetically charg
p-branes in magnetic flux-branes. We also present soluti
describing static magneticp-branes being held in unstable
equilibrium by the flux-brane. In addition, we discuss relate
solitons that do not carry magnetic charge. This is extend
in Sec. V to allow more general, and more physical, valu
of the magnetic field at infinity and we give the productio
rates for nucleating the charged branes. In Sec. VI we sh
how dualizing theD56 magnetic string yields the funda
mental string in five spacetime dimensions. Thus the duals
our magnetic string solutions describe a loop of fundamen
string in static unstable equilibrium in an electric field an
also a loop that is expanding in an electric field. The latte
when Euclideanized, is the instanton for the nucleation o
single loop of fundamental string. We calculate the rate f
this process. Some concluding remarks are given in Sec. V
m
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In the Appendix we describe in more detail the calculation o
the instanton actions.

Since manifolds of many different dimensions will
abound, we will adhere to the convention thatD refers to the
dimension of a spacetime,d, to the dimension of a Euclidean
manifold that is to be considered as a spatial section
spacetime, and that these will always refer to the dimensio
of the unreduced geometry.

II. PROPERTIES OF HIGHER-DIMENSIONAL
SYMMETRIES

In this section we will give some general results which
will be useful later. The theory we start with is vacuum grav
ity in D dimensions with action, up to boundary terms, give
by

S5
1

16pGD
E dDxA2gDR~gD!. ~2.1!

If a geometrydsD
2 has a Killing vector]/]xD with closed

orbits and

dsD
2 5expS 2

4

AD22
f D ~dxD12Amdx

m!2

1expS 4

~D23!AD22
f D gmndx

mdxn, ~2.2!

then the action can be reexpressed as

S5
1

16pGD21
E dD21xA2gFR~g!2

4

D23
~“f!2

2expS 24
AD22

D23
f DF2G , ~2.3!

where 2pRGD215GD andR is the radius of the compacti-
fied dimension. The~D21!-dimensional fields—the dilaton
f, gauge potentialAm, and metricgmn—can be read off from
~2.2!.

A. Classification of fixed point sets

If the isometry generated by the Killing vector above ha
fixed points, thenf diverges and the metricgmn will be sin-
gular at those points. Let us consider the general classific
tion of fixed points of a U~1! isometry in ad-dimensional
Riemannian manifoldM . This is a straightforward generali-
zation of the four-dimensional case, which was analyzed
@18#. Let q be the associated Killing field and consider the
tensor

qab[qa;b ~2.4!

at a fixed pointx whereq50. By virtue of Killing’s equa-
tion, qab is antisymmetric. LetV denote the kernel ofqab
and suppose dimV5p. Then vectors inV are directions in
the tangent space at the fixed pointTx , which are invariant
under the action of the symmetry. Since the exponential m
commutes with the symmetry action, it follows that there is
p-dimensional subspace of fixed points. One can show th
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53 7117NUCLEATION OF p-BRANES AND FUNDAMENTAL STRINGS
this subspace is always totally geodesic. In four dimensio
the only possibilities arep50 andp52: The first case is
called a ‘‘nut’’ and the second a ‘‘bolt.’’ In higher dimen-
sions, there are clearly more possibilities. Notice that sin
the rank of a skew matrix must be even, there can be
isolated fixed points whend is odd. In particular, ‘‘there are
no nuts in 11 dimensions’’@19#. In general, whend is odd
~even!, p is odd ~even!.

The two-formqab determines an element of the Lie alge
bra so(d) or, equivalently, a U~1! subgroup of SO(d) that
winds around a maximal torus. The windings are determin
by the skew eigenvalues ofqab in an orthonormal frame.
There are at most@d/2# such eigenvalues, where [r ] denotes
the integer part ofr . The eigenvalues must all be rationall
related and so determine up to@d/2# integers,ni , some pos-
sibly zero, with no common factor. These integers can
viewed as the number of 2p rotations in different orthogonal
two-planes inTx induced by one orbit of the isometry.

Near a fixed point,M looks locally likeRd and we can
analyze the character of the different actions by identifyi
the space and the tangent spaceTx . Suppose the number o
nonzeroni is k. Then restricting to the 2k dimensions acted
on by the rotation, we can write the metric as

ds25(
i51

k

~dr i
21r i

2dw i
2! ~2.5!

and

q5(
i
ni

]

]w i
. ~2.6!

Introducing complex coordinates$Zi[r ie
iw i%, we can write

the circle action as the holomorphic action

~Z1,...,Zk!→~ein1yZ1,...,einkyZk!, ~2.7!

wherey, 0<y,2p, parametrizes the U~1! subgroup.
The U~1! subgroup acts freely away from the isolate

fixed point atri50 ;i . It follows that topologically we have
a principal U~1! fibration of the odd-dimensional~2k21!-
sphere given by

(
i51

k

r i
25const. ~2.8!

In the special case that all theni51, this is the Hopf action,
giving rise to the Hopf fibration

S1 →
i

S2k21

↓p
CPk21.

. ~2.9!

For the casek52, this is the familiar—from magnetic mono
pole theory—Hopf fibration ofS3 since CP1>S2. The sign of
ni can be changed by changing the sign ofwi ; however,
changing an odd number of signs changes the orientation
space and gives the ‘‘anti-Hopf’’ action.

If the ni are not all equal to 1 or21, thenq still acts
without fixed points onS2k21. However, in this case, the
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quotient metric will have conical singularities. This can be
illustrated by the simplest examplek52:

ds25dr1
21r1

2dw1
21dr2

21r2
2dw2

2. ~2.10!

Consider the Killing vector

q5n1
]

]w1
1n2

]

]w2
, ~2.11!

and let w85w1 and w5w22(n1/n2)w1, which is constant
along the orbits ofq. Thenq5n1~]/]w8! and when we reduce
and also restrict the metric to ther1

21r2
251 surface by set-

ting r15cosu andr25sinu, we obtain

dsII
2}du21

sin2 u cos2 u

cos2 u1~n1
2/n2

2!sin2 u
dw2. ~2.12!

The range ofu is 0<u<p/2, and the condition that there be
no conical singularities atu50,p/2 is that w has period
2p52pun1/n2u. Sincen1 andn2 are coprime, this condition
cannot be satisfied unlessn 1

25n 2
251.

For a Lorentzian manifold, the general classification o
fixed point sets is more complicated. The main difficulty is
that one cannot always bring the generator of rotations t
block diagonal form. Consider so~2,1!, for example. Any
nonvanishing skew 333 matrix has a one-dimensional ker-
nel. The kernel may be timelike, spacelike, or null. In the
first two cases, one has a rotation or boost, respectivel
These cases admit a block diagonal form with one block th
131 zero matrix and the complementary block in the or-
thogonal two-plane a skew 232 matrix. If the kernel is time-
like, one has a conventional axis of rotational symmetry. I
the kernel is spacelike, the fixed point set is locally like the
boost-invariant Boyer axis of a black hole. If the kernel is
null, however, corresponding to a so-called null rotation, this
reduction cannot be done because there is no uniquely d
fined orthogonal two-plane. However, it remains true tha
even for Lorentzian metrics the fixed point sets will be to-
tally geodesic surfaces. Since these fixed points are ofte
located at the center of a soliton, it follows that the soliton
obeys the equations of motion of a ‘‘fundamental’’p-brane.
This will be true, in particular, for all thep-branes discussed
later.

B. Flux-branes

It was shown in@7–9# that a uniform magnetic field in
four spacetime dimensions, a generalization of the Melvin
solution of Einstein-Maxwell theory@20#, can be obtained by
a dimensional reduction of a five-dimensional geometry
which is flat. This five-dimensional spacetime is obtained by
starting with five-dimensional Minkowski spacetimeM5 and
identifying points under a combined spatial translation an
rotation. When the rotation is zero, one obtains the standa
Kaluza-Klein vacuum. When it is nonzero, the field configu-
ration in the reduced space~in which form it was originally
discovered@21#! is that of an infinitely long straight magnetic
flux tube. The generalization to magnetic ‘‘flux-branes’’ in
higher dimensions is straightforward. Since time plays no
role in the construction, we start withd-dimensional Euclid-
ean space. Higher-dimensional generalizations of thed54
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7118 53DOWKER, GAUNTLETT, GIBBONS, AND HOROWITZ
case are obtained by identifying points under an element
the Euclidean group which acts without fixed points onRd.
The question is simply to characterize such elements.

The general element of the Lie algebra of the Euclide
groupe(d) is a pair consisting of a translation and a rotatio
with infinitesimal parameters given byva andvab , respec-
tively. To obtain a nontrivial gauge field, we needvabÞ0,
and to avoid fixed points we require that the equation

v•x1v50 ~2.13!

have no solution. This is the case if and only if the kernel
v is nonzero andv has a component in the kernel. Under
change of origin inRd by an amountaa , v is unchanged, but
v changes toṽ given by

ṽ5v1v•a. ~2.14!

One may always choosea so that the translationṽ lies en-
tirely in the kernel ofv. This means that the general Euclid
ean motion consists of a translation combined with a rotati
in an orthogonal hyperplane.

Since the translation part of the symmetry just fixes t
scale of the internal direction, it follows that the classific
tion of these magnetic fields reduces to the classification
rotations inRd21. A rotation is given by a two-form with
@~d21!/2# skew eigenvalues, and so a magnetic field co
figuration is specified by@~d21!/2# real numbersBi .

We can ask what these field configurations look like in th
reduced spacetime. Considerd52m11 ~thed5even case is
similar!:

ds25(
i51

m

~dr i
21r i

2dw i
2!1dy2. ~2.15!

We identify each point with the point obtained by moving
distance 2pR along the integral curves of the Killing field,

q5
]

]y
1(

i
Bi

]

]w i
. ~2.16!

Introducing the new coordinatesw̃ i5w i2Biy, which are
constant along the orbits ofq, we find thatq5]/]y and the
above identification just consists of makingy periodic with
period 2pR at fixedw̃ i . The flat metric~2.15! now takes the
form

ds25LFdy1
1

L (
i
Bir i

2dw̃ i G21(
i

~dr i
21r i

2dw̃ i
2!

2L21S (
j
Bjr j

2dw̃ j D 2, ~2.17!

where

L511(
i
Bi
2r i

2. ~2.18!

The reduced metric, dilaton, and gauge potential can be r
off from ~2.17! ~after adding an extra time direction! using
~2.2! with D5d11 to give
of
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dsD21
2 5L1/~D23!F2dt21(

i
~dr i

21r i
2dw̃ i

2!

2L21S (
j
Bjr j

2dw̃ j D 2G ,
~2.19!

expS 2
4

AD22
f D 5L, A5

1

2L (
i
Bir i

2dw̃ i .

When only oneBi is nonzero, this is a thickened brane o
magnetic flux, or ‘‘flux-brane,’’ of dimension~d23! and was
found by Gibbons and Maeda@21#. The amount of flux pass-
ing through a one-dimensional loop,g, is given by integrat-
ing the one-form potentialA around the loop@note that in
~d21! spatial dimensions a circle surrounds a
~d23!-brane#: flux5*g A. Each nonzero parameterBi adds
another orthogonal flux-brane to the configuration. Th
gauge field strength is maximized at the intersection of th
centers of the flux-branes, which is the fixed point set of th
rotational part ofq. Whenk of the parameters are nonzero
this is a (d22k21)-hyperplane. The generic configuration
in the~d21!-dimensional reduced space is a set of@~d21!/2#
orthogonal ~d23!-flux-branes. These intersect in a poin
whend5odd and in a line whend5even.

III. FIVE-DIMENSIONAL MONOPOLES

In this section we shall review some of the geometrica
and topological properties of the basic Kaluza-Klein mono
pole @14,15#, relating them to the fixed point set analysis o
the previous section. We also present a novel interpretati
of the four-dimensional Euclidean Schwarzschild solution.

A. Basic monopole

The single-monopole solution is a five-dimensional spac
time which is a metric productR3M of a time factor with
coordinatet and Euclidean Taub-Newman-Unti-Tamburino
~NUT! spaceM . M is Ricci flat, self-dual, topologically
R4, and admits an isometric circle action. The metric is, ex
plicitly,

ds252dt21V21~dy12Awdw!21V~dr21r 2dV!,
~3.1!

with

Aw52m~12cosu!, V511
4m

r
. ~3.2!

The period ofy is 2pR with R58m. The Killing vector
associated with the U~1! isometry isq5]/]y. If the circle
action were free, the topology ofM would be that of a,
possibly twisted, circle bundle

S1 → M

↓
S

~3.3!

over some complete nonsingular three-manifoldS. One
could then think of theS1 factor globally as an internal mani-
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fold. Because of the fixed pointr50 at whichgyy vanishes
and hence the length of the circle fibers goes to zero,
description is only valid away fromr50.

At the center of the monopole, the manifold is smooth a
locally indistinguishable from the flat metric onR4. As dis-
cussed in the previous section, at a fixed point, the cir
action may be thought of as a rotation in two orthogon
two-planes inR4, characterized by two integersn1 andn2.
For a single Kaluza-Klein monopole, we haven15n251,
i.e., the Hopf action on smallS3’s surrounding the center
The reduced four-dimensional spacetime is thus free of
gularities except at the center of the monopole.

Antimonopole solutions are given by~3.1! with the oppo-
site sign ofAw . Now the U~1! action near the antipole cente
is labeled byn152n251: It is the anti-Hopf action.

B. Static monopole-antimonopole pairs

It is interesting to ask what the topology of a monopo
antimonopole configuration would be. Physically, one wou
not expect a static asymptotically vacuum solution since
pair will attract, and so one must either give up the asym
totic vacuum condition or suspend the field equations.
both cases the topology should be the same. We will ar
that the topology is in factR23S2. Let the spatial four-
manifold beM ; then,M5AøBøC, whereA and B are
both four-ballsD4 corresponding to the monopole and an
monopole andC is the nontrivial U~1! bundle over
R3]D3]D3 ~R3 with two three-balls removed! which has
zero winding over the sphere at infinity and windings11
and 21 over the other twoS2 boundaries@22#. Since the
bundle is trivial over the sphere at infinity, we can add in
S1 there: MøS15AøBøC8, whereC8 is a U~1! bundle
overS3]D3]D35S23D1, where the one-ballD1 is just the
one-dimensional interval. The U~1! must have unit twist over
oneS2 boundary and unit antitwist over the otherS2 bound-
ary. So C85S33D1 which is C85S4]D4]D4. So
MøS15S4 andM5S42S15R23S2.

Thus we see that the monopole-antimonopole manif
has the same topology as the four-dimensional Euclid
Schwarzschild solution:

ds25S 12
2m

r Ddt 21S 12
2m

r D 21

dr2

1r 2~du21sin2 u dw2!, ~3.4!

wheret has period 2pR, R54m. Indeed, we will see that in
a certain precise sense~3.4! can be regarded as containing
monopole-antimonopole pair. First, if we add on a trivi
time direction, we can regard~3.4! as a static five-
dimensional solution describing a minimal two-sphere
space, a ‘‘bubble,’’ poised in unstable equilibrium. If w
reduce this five-dimensional solution to four dimensio
along the orbits of the Killing vector]/]t, we find that the
minimal two-sphere or bolt, being a fixed point set of th
circle action, looks singular in four dimensions.

Consider now the alternative Killing field

q5
]

]t
1
1

R

]

]w
. ~3.5!
this
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It has fixed points at the north and south poles,u50,p of the
two-spherer52m. It can be shown that at one, the action is
the Hopf action, and at the other it is the anti-Hopf action. A
each pole, the two orthogonal planes in which the rotation
act are the tangent spaces to the~r ,t!-section at the horizon
~‘‘tip of the cigar’’ ! and the~u,w! horizon two-sphere. Near
infinity, however,q becomes a linear combination of atrans-
lation and a rotation. As discussed in Sec. II B, a magnet
field in Kaluza-Klein theory is obtained by taking the quo
tient of flat space with respect to precisely this type of sym
metry. If we therefore take the closed orbits ofq as our
internal Kaluza-Klein circles, we can interpret~3.4! in four
dimensions as a static monopole-antimonopole pair he
apart by a background magnetic field withB51/R. One
would expect such a configuration to be unstable, and it i
The negative mode of the four-dimensional Euclidea
Schwarzschild solution gives rise to an exponentially grow
ing mode of this five-dimensional solution.

C. Dynamical monopole-antimonopole pairs and pair creation

A key observation of@9# was that one may relate the
five-dimensional Schwarzschild solution to monopole
antimonopole pair production.1 Consider the five-
dimensional Euclidean Schwarzschild solution, which w
write as

ds25F12S r Hr D 2Gdt21F12S r Hr D 2G21

dr2

1r 2@da21cos2 a~du21sin2 u dw2!#, ~3.6!

wheret has period 2pR, with R5r H , and2p/2<a<p/2.
From the purely five-dimensional point of view, this is an
instanton that describes the decay ofM43S1, whereM4 is
four-dimensional Minkowski space. It has topologyR23S3,
and it asymptotically approaches flatR43S1. It has a zero
momentum slicea50, which has topologyR23S2 and con-
tains a minimal two-sphere or ‘‘bubble,’’r5r H : Overall,
the zero-momentum slice is very similar to the four
dimensional Euclidean Schwarzschild solution. The subs
quent Lorentzian post-decay evolution is obtained by settin
a5i t in ~3.6! and describes the minimal two-sphere expand
ing. Its area increases like cosh2 t, and this solution looks
like a dynamical version of the static bubble of the previou
subsection.

If one reduces along]/]t, one may think of this as an
instanton for the decay of the vacuum in four dimension
@16#. The fixed point set restricted to the zero-momentum
slice is the entire minimal two-sphere or bubble which ap
pears singular in the reduced spacetime. However, one m
alternatively reduce alongq with R5r H in ~3.5!. In four
dimensions, in this case, the instanton describes the decay
a magnetic field via pair creation of a monopole
antimonopole pair. We can see this by subjecting the zer
momentum slice to the fixed point set analysis of the prev

1To obtain arbitrary values of the magnetic field at infinity, one
should consider the five-dimensional Kerr solution. We will return
to this in Sec. V, but for now, we illustrate the construction usin
the simpler Schwarzschild solution.
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ous subsection. The pole and antipole are the fixed point
the circle action ofq, and the twisting character ofq at
infinity means the particles are immersed in a magnetic fi
of strength B51/R. Now, however, in the subsequen
Lorentzian evolution, the particles do not stay in their sta
positions, but accelerate apart.

IV. HIGHER-DIMENSIONAL GENERALIZATIONS

A. Flat charged p-branes

The simplest generalization of the basic Kaluza-Kle
monopole is to take the product of~3.1! with an arbitrary
numberp of flat directions before doing the Kaluza-Klei
reduction. This gives a magnetically chargedp-brane in~p
14! spacetime dimensions, e.g., a magnetically char
string in five dimensions. If the extra dimensions are infini
the p-brane is also infinite.~We could, of course, conside
the extra dimensions to be a torus, in which case the bran
also a torus, but this would change the topology of the
duced spacetime. Moreover, if the torus was large, this s
tion would approach the infinite-brane, and if it were sma
it would reduce, in a Kaluza-Klein sense, to the monop
again.!

An obvious instanton describing the production of a p
of thesep-branes in a magnetic field is obtained by takin
the product of the five-dimensional Euclidean Schwarzsch
solution with the extra flat dimensions and reducing v
~3.5!. The asymptotic magnetic field configuration of th
instanton is a~p11!-dimensional flux-brane. However, if th
extra dimensions are infinite, then the action for this inst
ton is infinite, even relative to the background magnetic fie

B. Spherical chargedp-branes

It might appear that the~p11!-dimensional flux-brane
cannot decay because the instanton that describes pair
ation of infinite magneticp-branes has infinite action. Thi
is, in fact, not the case. We will see in this section that it c
decay by the nucleation of a singlep-brane with topology
Sp.

We start withp51 as an example and first describe
magnetically charged loop of string in static equilibrium in
background magnetic field. As discussed in Sec. II, a m
netic field can be obtained by taking six-dimension
Minkowski spacetime,

ds252dt21dt 21dr21r 2dw21dxidx
i , ~4.1!

and identifying points by moving a distance 2pR along the
Killing vector

q5
]

]t
1
1

R

]

]w
. ~4.2!

The reduced spacetime describes a two-dimensional m
netic flux-brane withB51/R.

To obtain a charged loop of string in this background,
start with the product of time and the five-dimensional E
clidean Schwarzschild solution
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ds252dt21F12S r Hr D 2Gdt 21F12S r Hr D 2G21

dr21r 2dV3 .

~4.3!

The metric on the three-spheres can be written2

dV35du21sin2 u dw21cos2 u dx2, ~4.4!

where 0<u<p/2, 0<w, x<2p. We now reduce down to five
dimensions using the symmetry~4.2!. The fixed points of
this Killing field are atr5r H , u50, which is clearly a circle
parametrized byx. For each value ofx, the indices of the
symmetry at the fixed point~as discussed in Sec. II! are the
same as the usual Kaluza-Klein monopole. This shows th
in the reduced spacetime there is a magnetic charge at e
fixed point on the string. The solution thus describes a c
cular charged string. Asymptotically, the solution approach
the two-dimensional flux-brane.

To be explicit, we setw̃5w2(t/r H) in ~4.3! @so w̃ is
constant along the orbits of the symmetry~4.2!#. We then
compare the resulting metric with~2.2!, settingD56 and
xD5t. The result is

e22f512S r Hr D 21S rr HD 2 sin2 u, A5
r 2sin2 u

2r H
e2fdw̃,

~4.5!

ds25e22f/3S 2dt21F12S r Hr D 2G21

dr2

1r 2~du21cos2 u dx2! D1e4f/3 sin2 u~r 22r H
2 !dw̃ 2.

Near r5r H , the metric takes the form

ds2'e22f/3@2dt21dr̃ 21r H
2 ~du21cos2 u dx2!#

1e4f/3r̃ 2 sin2 u dw̃ 2, ~4.6!

where r̃ 25r 22r H
2 and

e22f'sin2 u1S r̃r HD 2~11sin2u!. ~4.7!

The singularityr̃50, u50 is a ring representing the loop of
string. Notice that r̃50, 0,u<p/2 is a regular two-
dimensional surface spanning the ring singularity.

We now discuss the nucleation of a closed magnetica
charged string in our two-dimensional magnetic flux-bran
The appropriate instanton is the six-dimensional Euclide
Schwarzschild solution

ds25F12S r Hr D 3Gdt 21F12S r Hr D 3G21

dr2

1r 2~da21cos2 a dV3!, ~4.8!

where t has period 2pR, with R52r H/3, and
2p/2<a<p/2. By direct analogy with the five-dimensiona
instanton discussed in the previous section on the ba

2To see this, start with~2.5! and ~2.8! with k52. Then set
r15sinu, r25cosu.
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monopole, this instanton has a zero-momentum surfacea50
which contains a minimal three-sphere or ‘‘bubble.’’ Th
subsequent Lorentzian evolution is obtained by settinga5i t .
The minimal three-sphere expands exponentially int. Reduc-
ing ~4.8! along ]/]t, we obtain an instanton describing
vacuum decay in thisD56 Kaluza-Klein theory. If we re-
duce~4.8! along the symmetry~4.2!, we obtain an instanton
which is asymptotically a magnetic flux-brane of streng
B51/R. Restricted to the surfacea50, the reduction is vir-
tually identical to the one described in the static case abo
In particular, one has a charged loop of string. In the sub
quent Lorentzian evolution, the loop expands since it lies
the expanding bubble.

For the Schwarzschild instanton, the single parameterR
~or r H! governs both the strength of the asymptotic magne
field and the charge on the string. We will see in the ne
section that this value of the magnetic field,B51/R, is un-
physically large and we will construct solutions correspon
ing to the decay of more physical values ofB by considering
instantons based on higher-dimensional rotating black h
solutions. We will also calculate the rate of nucleation in th
semiclassical approximation.

One might wonder why the nucleation of a charged loo
of string does not violate charge conservation. The point
that in four ~reduced! spatial dimensions, the total magneti
charge of any localized object must be zero. This is beca
the magnetic charge is obtained by integratingFmn over a
two-sphere. One cannot integrateFmn over the three-sphere
at infinity. This does not contradict the fact that locally th
string carries a magnetic charge. The magnitude of
chargeq at the fixed points isR/4, whereR is determined by
the periodicity in the compact direction. However, the sig
of the charge depends on a choice of orientation. If o
charge is chosen to be1q, the opposite one is necessaril
2q. This follows from the fact that the orientation induce
on the two-sphere enclosing a point of the string depends
the tangent vector to the string, which points in the oppos
direction halfway around the loop. If one takes a slic
through the Lorentzian solution, it describes opposite
charged monopoles accelerating apart in a magnetic fie
More generally, anyp-brane,pÞ0, which locally carries a
magnetic charge associated with anyr -form, Fr , must have
zero net charge when thep-brane is confined to a compac
region. The reason is simply that the sphere at infinity w
have dimension (p1r ), which is larger than the rank ofFr .

The construction of magnetically charged spheric
p-branes forp.1 is a straightforward extension of thes
ideas to higher dimensions. Taking the quotient of~p15!-
dimensional Minkowski spacetime by the symmetry~4.2!
yields a ~p11!-dimensional magnetic flux-brane. This ca
support a static charged sphericalp-brane as follows. Con-
sider the Euclidean Schwarzschild solution ind5(p14) di-
mensions crossed with a trivial time direction,

ds252dt21F12S r Hr D p11Gdt 2

1F12S r Hr D p11G21

dr21r 2dVp12 , ~4.9!
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where t is a periodic coordinate with period 2pR and
R52r H/(p11). The metric on the~p12!-spheres can be
written

dVp125du21sin2 u dw21cos2 u dVp , ~4.10!

with 0<u<p/2. We now reduce along the symmetry~4.2!.
The fixed points again occur atr5r H andu50 so that on a
static slice the set of fixed points is now a sphereSp. At each
fixed point, the behavior of the symmetry in the four direc-
tions orthogonal to theSp is again exactly that of a Kaluza-
Klein monopole. So we obtain a static charged spherical
p-brane.

To nucleate such ap-brane, we start with theD5(p15)
dimensional Euclidean Schwarzschild solution

ds25F12S r Hr D p12Gdt 21F12S r Hr D p12G21

dr2

1r 2~da21cos2 a dVp12!, ~4.11!

with dVp12 given by ~4.10!. Reducing this via~4.2!, we
obtain an instanton for the nucleation of thep-brane. The
subsequent Lorentzian evolution is described by the analytic
continuationa5i t , and in this Lorentzian spacetime the
fixed point set of~4.2! is the world volume of a spherical
chargedp-brane that exponentially expands.

There are many instantons which asymptotically approach
the same magnetic field. One can start with the product of a
(p152m)-dimensional Schwarzschild solution andRm. To
maintain the same asymptotic magnetic field, we always re-
duce under~4.2!. These instantons describe the nucleation of
chargedp-branes with topologyRm3Sp2m. However, the
action for all of these instantons is infinite as a result of the
infinite volume ofRm.

An interesting application of this construction is to the
type-IIA string. The low-energy action of this theory in ten
dimensions contains a Ramond-Ramond gauge field which
comes from Kaluza-Klein reduction of an 11-dimensional
metric. The Kaluza-Klein six-brane we have been consider-
ing thus carries RR charge@23#. Starting with theD511
Minkowski space and taking the quotient under~4.2!, one
obtains a seven-dimensional magnetic flux-brane. This is un
stable to the nucleation of a spherical, magnetically charged
six-brane. The appropriate instanton is simply theD511
Schwarzschild solution.

C. Unchargedp-branes

One can also construct staticp-branes ind21 reduced
spatial dimensions wherep14,d. These do not carry mag-
netic charge, but they can arise when flux-branes intersect
As described in Sec. II, intersecting flux-branes are obtained
by taking the quotient of Minkowski spacetime under a sym-
metry which is a translation plus a rotation, where the rota-
tion is not restricted to lie in a single two-plane. We first
consider static solitons and then discuss how one can nucle
ate such objects.

We begin with the product of time and thed-dimensional
Euclidean Schwarzschild metric. To describek orthogonal
flux-branes asymptotically, we write the metric on the
~d22!-spheres in terms ofu i ,w i , i51,...,k, and coordinates
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on a (d2222k)-sphere by iterating~4.10! k times. We then
reduce along the symmetry

q5
]

]t
1
1

R (
i51

k
]

]w i
, ~4.12!

where t has period 2pR. Asymptotically, the solution re-
sembles~2.19! with k nonzeroBi ’s and describesk orthogo-
nal flux-branes. Recall that ind21 reduced spatial dimen-
sions each flux-brane has dimension~d23! and k of them
will intersect in a surface of dimension (d2122k). The
vectorq has fixed points atr5r H andui50 for all i . This is
a spherical (d2222k)-brane which lies in the intersection
of the fluxbranes. ForkÞ1, this brane does not carry mag
netic charge in the reduced spacetime since it does not h
the right dimension. Nevertheless, it is a static, though u
stable, localized excitation of the fields.

The configuration ofk intersecting fluxbranes is unstabl
to the nucleation of such uncharged (d2222k)-branes. The
instanton is the~d11!-dimensional Euclidean Schwarzschil
solution and the analytic continuation is identical to that f
the case of the charged branes. The only difference is t
one now reduces along the more general symmetry~4.12!.

If k51, this instanton construction reduces, of course,
the one in Sec. IV B. There are two other special values ok
of particular interest. Ifd is even andk5(d22)/2 ~the
maximal number! then the fixed point set consists of two
points. On a small sphere surrounding each point, the sy
metry acts like the Hopf fibration~2.9!, of Sd21 by S1. Bais
and Batenberg@24# have constructed a Ricci-flat space con
taining a single object of this type. It can be viewed as
generalization of the Taub-NUT solution to higher~even!
dimensions. Topologically, the manifold is simplyRd. The
metrics admit a circle action, with a single fixed point. A
though the length of the circle orbits tends to a constant n
infinity, the Bais-Batenberg solutions ford.4 cannot be re-
garded as circle bundles overRd21 asymptotically. This is
because the angular part of the reduced space is notSd22,
but CP(d22)/2. Thus one could argue that these objects can
exist in isolation. However, we have seen that they can ex
in pairs and can, in fact, be pair created.

The second special case occurs whend is odd andk is
again maximal,k5(d21)/2. In this case, the symmetry
~4.12! hasno fixed points. It corresponds to a combination o
]/]t and a Hopf rotation of the~d22!-sphere. The reduction
then leads to a nonsingular solution of the Einstein-Maxwe
dilaton equations arising from the action~2.3!.

V. DIFFERENT ASYMPTOTIC MAGNETIC FIELD
VALUES

The solutions we have constructed from the Schwar
child metric have values of the magnetic fields at infini
which are fixed completely by the radius of the compactifie
dimension,B51/R. We should point out that this value ofB
is actually unphysically large in the following sense. Co
sider the single-flux-brane solution with parameterB. The
radius of the compactified direction is not constant, b
grows fromR to infinity as the distance from the cente
increases. In order for the Kaluza-Klein reduction to ma
sense and also for the configuration to be a reasonable
-
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proximation of a uniform magnetic field, we should only
consider distances from the center of the flux-brane,r,1/B.
This restriction occurs not only in Kaluza-Klein theory, bu
also when considering pair creation of black holes in mag
netic fields in Einstein-Maxwell theory in four dimensions
However, in Kaluza-Klein theory we also have the conditio
that only distances large with respect to the radius of com
pactification should be considered in the reduced spacetim
Thusr@R, and so we have the conditionBR!1.

The value of the asymptotic magnetic fields we have bee
considering so far is well outside this physical range of va
lidity. We have allowed them up until now for reasons o
simplicity: The construction of the solutions describing th
spherical chargedp-branes using the Schwarzschild metric
is simpler, though qualitatively the same as the constructio
we will now give of solutions describing the same types o
branes, but with arbitrary values of the background magne
field. We wanted to describe the construction in a simple
setting before giving the more complicated solutions that a
of more physical interest. These are given by U~1! reductions
of higher-dimensionalrotating black hole solutions.

Myers and Perry found analogues of the Lorentzian Ke
solution for arbitrary spacetime dimensionN @17#. A particu-
lar case inN58 dimensions has been obtained independent
by Chakrabarti@25# using the special properties of the octo
nions. As noted by Myers and Perry, a rotating body inN21
spatial dimensions has an associated angular moment
which may be thought of as a two-formv. Thus there are
@~N21!/2# rotation parametersai . These, together with the
mass, characterize the solutions. If all the parametersai van-
ish, then one obtains the usual higher-dimensional Schwar
child solution. One expects that, just as in four spacetim
dimensions, the solutions are unique, but to our knowledg
there is no proof. The general solution has continuous isom
etry groupR3SO~2![(N21)/2], but as more of the parameters
become zero, the isometry group is enhanced, becomi
R3SO~N21! in the nonrotating Schwarzschild limit. The
case obtained by Chakrabarti hasa15a25a3 and is an ex-
ample of slightly enhanced symmetry~there are extra dis-
crete symmetries!. In the general case one therefore ha
@~N21!/2# ignorable azimuthal coordinateswi parametrizing
the maximal torus of SO~N21! and which may be thought of
near infinity as rotations in@~N21!/2# orthogonal two-planes
in RN21.

The Euclidean solutions, for whichai5 ia i with ai real,
are complete and nonsingular provided that a suitable pe
odic identification is made. If we denote the Euclidean tim
by t5i t , then one identifies points by moving a distanc
2pR along the integral curves of the Killing field

q5
]

]t
1(

i
V i

]

]w i
, ~5.1!

whereR51/k and k and iV i are the surface gravity and
angular velocities, respectively. General expressions f
them may be found in@17#.

To construct solutions describing spherical charge
p-branes, it suffices to consider the metrics with only on
angular momentum parameter nonzero. TheN-dimensional
Euclidean metric then takes the form
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ds25S 12
m

r N25S Ddt 22
2ma sin2 u

r N25S
dt dw

1
S

r 22a22mr 52N dr21S du2

1
sin2 u

S
@~r 22a2!S2mr 52Na2 sin2 u#dw2

1r 2 cos2 u dVN24 , ~5.2!

whereS5r 22a2 cos2 u and 0<u<p/2. The horizon is lo-
cated atr5r H , where

r H
2 5a21

m

r H
N25 . ~5.3!

The radius of the circle at infinity is

R5
1

k
5

2mr H
62N

~N23!r H
2 2~N25!a2 , ~5.4!

while the Euclidean angular velocity is

V5
ar H

N25

m
. ~5.5!

Their product is thus

VR5
2ar H

~N23!r H
2 2~N25!a2 . ~5.6!

This clearly vanishes whena50. Now consider the limit
a→`. Considering~5.3! and ~5.4!, we find that to keepR
fixed we needr H→a and m→RaN24. Then ~5.6! implies
that VR approaches 1. Similarly, the limita→2` sends
VR→21. ThusVR takes values between 1 and21.

To obtain the unstable, static magnetically charg
p-branes, one starts with the product of time and~5.2! with3

N5p14. If one reduces along

q5
]

]t
1V

]

]w
, ~5.7!

the fixed point set will be the entire horizon and we wi
obtain an unstable bubble immersed in a magnetic flux-bra
of strengthB5V. If, instead, we reduce along

q85q2
s

R

]

]w
, ~5.8!

wheres5V/uVu, we obtain the chargedp-brane. The asymp-
totic value of the magnetic field isB5V2(s/R). uBu can
be made as small as we like by tuningV. Note that asB→0,
r H→`, and the ‘‘size’’ of thep-brane becomes larger. The

3The case of theN54 Euclidean Kerr solution with a flat time
direction added was considered in@15#. There, the solution was
interpreted as a dipole, but the presence of the background magn
field was unnoticed.
ed

ll
ne

limiting solution with B50 is just the noncompactp-brane
obtained by taking the product of the standard Kaluza-Klein
monopole andRp.

We can clearly turn on additional flux-branes at infinity
by starting with the black hole with several rotation param
eters nonzero. If we reduce using~5.1!, the fixed point set is
the horizon itself and we will obtain an unstable bubble liv-
ing at the intersection of several flux-branes withBi5V i . If
we reduce usingq85q2(s j /R)]/]w j @with q as in ~5.1!,
s j5V j /uV j u, and no sum onj #, for any choice ofwj , then
we obtain a magnetically charged sphericalp-brane in a
background of intersecting flux-branes withBi5V i , iÞ j ,
andBj5V j2(s j /R). Adding additional rotations toq8 re-
duces the dimension of the fixed point set, which becomes a
uncharged brane.

An instanton describing the nucleation of a charged
p-brane can be obtained from~5.2! with N5p15 by reduc-
ing along q8 in ~5.8!. This instanton corresponds to the
nucleation of a spherical chargedp-brane in a background
~p11!-flux-brane of strengthB5V2s/R. The Lorentzian
solution, representing the post-tunneling evolution, is ob
tained by analytically continuing in one of the ignorable
angles indVN24. This appears to give a static solution rather
than the expanding solution we obtained earlier from th
Schwarzschild metric. However, the resulting timelike Kill-
ing field is really a boost, and the spacetime one obtains from
the Kerr solution is qualitatively similar to the one obtained
from the Schwarzschild solution and describes the spheric
p-brane expanding.~For a detailed discussion of this in the
case of five dimensions, see@9#.!

In the semiclassical approximation, the rate of nucleatio
is given bye2I , whereI is the Euclidean action of the in-
stanton. The action for the instanton with one angular mo
mentum parameter nonzero is computed in the Appendix an
is

I5
Vp11

8~p12!Gp14
m, ~5.9!

whereVp11 is the volume of a unit~p11!-sphere. One can
rewrite this in terms of the magnetic field at infinity and the
compactification radius, but the expression is complicate
and not very illuminating~see the Appendix!. However, in
the limit where the asymptotic magnetic fielduBu is small,
one finds

m5S p11

2 D p11 R

uBup11 . ~5.10!

The compactification radiusR is related to the charge on the
p-brane by the usual expression for Kaluza-Klein mono
poles,q5R/4, and this charge is in turn proportional to the
mass per unitp-volume or tension of thep-brane. Thus the
nucleation ratee2I is increased by either increasinguBu or
decreasing the tension, as expected. Forp50, ~5.9! and
~5.10! reduce to the Schwinger result for pair-creating mono
poles in a weak magnetic field@8#.

We close this section by noting that instantons describin
the nucleation of a spherical chargedp-brane in intersecting
flux-brane backgrounds can also be obtained. One conside
the Kerr solution with several nonzero rotation parameter

etic
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and reduces alongq85q2(s j /R)]/]w j @with q as in ~5.1!
and no sum onj #. The spherical chargedp-brane appears and
subsequently expands within thej th flux-brane. To nucleate
an uncharged brane at the intersection of the flux-branes,
simply adds extra rotations toq8 as discussed in the previou
section.

VI. NUCLEATING LOOPS OF FUNDAMENTAL STRING

A. Test string approximation

We begin our discussion of fundamental strings by d
scribing the behavior of a circular test string in flat spacetim
coupled to a constant backgroundH field. Since we are go-
ing to consider only classical solutions, the spacetime c
have any dimension larger than 2. We assume that the o
nonzero component ofH is H0125h, whereh is a constant.
The string action is

S52
1

4pa8
E d2s~Aggab]aX

m]bXm

1Bmn]aX
m]bX

neab!, ~6.1!

with e01521 and 0<s<p. Choosing the conformal gauge
g5h yields the equation of motion,

]2Xm2 1
2Hmnr]aX

n]bX
reab50, ~6.2!

and the Virasoro constraints

ẊmẊm1X8mXm8 50, ẊmXm8 50. ~6.3!

We want to consider solutions describing circular loops, a
so we set

X05 f ~ t !, X15g~ t !sin2s, X25g~ t !cos2s, ~6.4!

with the remainingXi held constant.
One solution to~6.2! and~6.3! is simply f52t/h, g51/h.

This is a static loop of string with a radius inversely propo
tional to the strength of the backgroundH field. It is easy to
see that this solution is unstable: A slightly smaller loo
collapses inward, while a slightly larger loop expands ou
ward. A second solution is

f5
2sin2t

hcos2t
, g5

2

hcos2t
. ~6.5!

This describes a loop which initially is twice as large as th
static one and expands outward. Sinceg22 f 2 is constant, the
world sheet is a hyperbola, describing constant accelerat
If we analytically continue inX0 and t, we obtain an instan-
ton describing the nucleation of a loop of string. The Eucli
ean action for this instanton is straightforward to calcula
with the result

I5
8

3a8h2
~6.6!

for all spacetime dimensions. We now construct analogues
these solutions that include the back reaction of the string
the spacetime fields in five dimensions.
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B. Spacetime solutions

Starting with a solution (g,f,F) to the equations of mo-
tion obtained from~2.3! and performing the duality transfor-
mation

f̃52f, FD235expS 24
AD22

D23
f D *F, ~6.7!

whereFD23 is a ~D23!-form field strength and the metricg
is left unchanged, we obtain a ‘‘dual solution’’ (g,f̃,FD23)
to the equations of motion coming from the action

S5
1

16pGD21
E dD21xA2gFR~g!2

4

D23
~¹f̃!2

2
2

~D23!!
expS 24

AD22

D23
f̃ DFD23

2 G . ~6.8!

This transformation exchanges magneticF fields with elec-
tric FD23 fields and vice versa. In the dual variables there is
no longer a connection with Kaluza-Klein theory inD di-
mensions and we just have a solution inD21 dimensions.
Since the metric is invariant under the duality transforma-
tion, all of our previous solutions can be reinterpreted as th
corresponding electric objects. This is particularly interesting
for D2155 since, as we shall show, the solution describing
the nucleation of a magnetic string in the last section is trans
formed into a solution describing the nucleation of a five-
dimensional fundamental string.

In the caseD2155, the action~6.8! is precisely part of
the low-energy effective action of string theory in five di-
mensions, written in terms of the Einstein metric. If we res-

cale to the string metricg̃5e4f̃/3g, this action takes the more
familiar form

S5
1

16pG5
E d5xA2g̃e22f̃@R~ g̃!14~¹f̃!22 1

12H
2#,

~6.9!

where we have used the notationH[2F3 . Thus, for every
five-dimensional magnetic solution, there is a dual electric
solution which extremizes the standard action~6.9!. We now
discuss some of these solutions. We will mostly work with
the fields appearing in~6.9! and drop the tildes ong andf
for the remainder of this section.

To begin, recall that the simplest magnetically charged
string in five dimensions was obtained as the product of a
Kaluza-Klein monopole~3.1! with a line. Transforming to
the dual variables, the solution can be reexpressed in th
string frame as

ds25e2f~2dt21dy2!1dx2,
~6.10!

e22f511
4m

r
, Bty5e2f,

wherey is the coordinate along the line. This is the solution
corresponding to the fields about a macroscopic fundament
string in five dimensions@26#.

The appropriate background to describe the nucleation o
fundamental strings is given by a uniform electric flux-brane



-

ly
s
p-
th

u-
.
g
d
a-

a
.
s
n

e
e-
e.

In
a

k
-
.
es
ial

o

s,

ller

e

-

e

53 7125NUCLEATION OF p-BRANES AND FUNDAMENTAL STRINGS
of dimension 2. This can be constructed from theD2155,
two-dimensional magnetic flux-brane discussed in Sec. II
writing it in dual variables and rescaling to the string metri
The result is

ds25e2f~2dt21dxi
21dr2!1r2dw2,

~6.11!
e2f511B2r2, Ht1252B,

where (t,xi), i51,2, are coordinates along the flux-bran
Note that the components of theH field are simply constant
and that the induced metric at the center of the flux-bra
r50, is flat. Since the metric and dilaton both depend onB2

while H depends linearly onB, whenuBu is small this solu-
tion reduces to the configuration we started with in the te
string discussion above.

The solution describing the unstable static loop of ma
netic string~4.5! can similarly be dualized. The result is
static loop of fundamental string in the backgroundH field
~6.11!. Since the Einstein metric is unchanged under duali
the metric ~4.5! also describes a finite fundamental strin
loop. This is the exact analogue of the circular test string
rest.

Since theH field has a nonzero time component, the in
stanton describing the nucleation of a loop of fundamen
string will have imaginaryH as expected for an electric-type
field. It is constructed by starting with the Lorentzian Myer
Perry-Kerr solution inD56:

ds25S 12
m

rS Ddt 22
2ma sin2 u

rS
dt dw

1
S

r 22a22mr21 dr
21S du2

1
sin2 u

S
@~r 22a2!S2mr21a2 sin2 u#dw2

1r 2 cos2 u~dx21cos2 x dc2!. ~6.12!

We then reduce to five dimensions using the symmetryq8 of
~5.7! and~5.8!. Explicitly, we setw5w̃1[V2(s/R)] t and
then read off the five-dimensional metric, dilaton, and gau
field by putting the metric in the form~2.2! with D56 and
xD5t. Next, we analytically continuec52i t . The resulting
metric describes an expanding loop of magnetically charg
string. ~The Killing vector]/]t is a boost.! We now apply
the duality transformation~6.7! to obtain an expanding loop
of fundamental string. Finally, we analytically continue bac
t5 ic to obtain the desired instanton.

The Euclidean action is not invariant under the duali
transformation~6.7!. However, for four-dimensional black
holes, it has recently been shown that the rate of pa
creating electrically charged black holes is identical to t
rate for creating magnetically charged ones@11,10#. This is
because one must include a projection onto states of defi
electric charge@27# in calculating the rate which exactly
compensates for the difference in the action. We expect t
a similar result will hold in the present case as well. The ra
will then be given bye2I , where I is given by ~5.9! with
p51. In the limit of smalluBu, we can use~5.10! to express
this as
by
c.

e.
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I5
pR

6G5B
2 . ~6.13!

It was shown in@26# that for a single macroscopic fundamen
tal string in five dimensions, the dilaton charge in~6.10!
should be given by 4m52G5/pa8. This can be related toR
by recalling that for the Kaluza-Klein monopoleR58m. Us-
ing this and settingh52B, we recover exactly the action
found from the test string instanton~6.6!.

VII. DISCUSSION

We have constructed solutions describing magnetical
chargedp-branes and loops of fundamental string, as well a
instantons describing the nucleation of these objects in a
propriate background fields. The basic idea was to start wi
a vacuum solution with a U~1! isometry. The fixed points of
the isometry describe ap-brane in the reduced spacetime
which can carry magnetic charge. One can then apply a d
ality transformation to obtain electrically charged solutions
If the reduced spacetime is five dimensional, the resultin
theory is precisely part of the low-energy string action an
the magnetically charged strings are transformed into fund
mental strings.

To construct our solutions we have always started with
Euclidean black hole or Euclidean black hole cross time
However, it is clear that there are many other possibilitie
which can yield interesting solutions. For example, one ca
start with a Lorentzian black hole cross a circle.4 If one con-
siders the symmetry consisting of translation around th
circle plus rotation of the black hole, the reduced space d
scribes a black hole in a background magnetic flux-bran
This is the likely end point of ap-brane which is smaller
than the static radius and collapses to form a black hole.
five dimensions, we can dualize to obtain a black hole in
backgroundH field.

It was shown in@9# that in the standard five-dimensional
Kaluza-Klein theory the dominant decay mode for the wea
magnetic fields of physical relevance was via ‘‘bubble nucle
ation’’ analogous to the decay of the Kaluza-Klein vacuum
The same is true for the decay of the magnetic flux-bran
described here. Indeed, the earlier analysis is just the spec
case p50. For every p, the reduction of the~p15!-
dimensional Myers-Perry-Kerr instanton, with one nonzer
rotation parameter, viaq, Eq. ~5.7!, describes decay of a
~p11!-flux-brane via ‘‘bubble nucleation,’’ while the shifted
reduction viaq8, Eq. ~5.8!, describes nucleation of a charged
p-brane. If we take two instantons, with different parameter
one reduced alongq and the other alongq8, so that the
asymptotic value of the magnetic fieldB is the same in both
cases, then we find that the bubble nucleation has sma
action for smalluBu.

Having said this, it was also pointed out in@9# that a spin
structure argument analogous to that which would stabiliz
the D55 Kaluza-Klein vacuum@16# would also rule out
bubble nucleation, but allow the pair production of mono
poles. Roughly, the argument is that theD55 Kaluza-Klein

4If the radius of the circle is small compared with the mass of th
black hole, then this solution is likely to be stable@28#.
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Melvin solution admits two spin structures which may b
distinguished by asking what phase spinors pick up un
parallel transport around the internal circle. There are t
instantons for the decay of the same four-dimensional fl
tube, one corresponding to bubble nucleation and the othe
pair production. Each instanton admits only a single s
structure since it is simply connected, but that spin struct
tends at infinity to a different one of the two possibilities. S
depending on which spin structure is chosen for the ba
ground Melvin spacetime, one or other of the decay chann
is ruled out. If uBu is small, then there is a natural choic
which is in some sense continuous with the choice that ru
out the vacuum decay. This allows pair production, b
eliminates the bubble nucleation. In particular, this is wh
we expect inS1 compactifications that preserve supersymm
try.

A similar argument can be used to show that there
again a natural choice of spin structure for a single ba
ground~p11!-flux-brane which would rule out the decay vi
bubble nucleation, but allow the decay via production o
spherical chargedp-brane. These are the only two possib
decay routes. When the background is a configuration
intersecting flux-branes, there are more possibilities for
decay. Suppose we havek intersecting flux-branes inp14
spacetime dimensions. One decay channel that always e
is the bubble nucleation. Then there arek channels which are
the nucleation and subsequent expansion of a char
p-brane within each individual flux-brane, and (2

k) channels
which correspond to an uncharged~p22!-brane produced
and expanding in the intersection of each pair of flux-bran
and so on: (l

k) possible~p22l12!-branes produced in the
intersection of each subset ofl flux-branes. The generaliza
tion of the spin structure argument seems to result in
bubble nucleation being ruled out, the~p24n!-brane produc-
tion being allowed, wheren is an integer, and the@p22~2n
11!#-brane production being ruled out. So, for examp
Bais-Batenberg ‘‘monopole’’ pair production would be a
lowed only if the reduced spacetime dimension were a m
tiple of 4.

The situation with the fundamental string is slightly di
ferent. After we dualize in five dimensions, the connecti
with six dimensions is lost and in particular we no long
have a spin structure argument. It seems that there shoul
an argument to eliminate the dual of the bubble nucleat
process while keeping the string production process, and
following is a promising possibility. While the instanton de
scribing bubble nucleation is nonsingular in six dimensio
it is singular in five dimensions, as is its dual. It is not cle
whether this singular dual instanton corresponds to a ph
cal decay channel of theH field, but we expect not since, i
it is allowed, it suggests that the vacuum itself would al
decay via dual-bubble nucleation. Of course, the instan
describing the nucleation of a fundamental string is also s
gular, but here the singularity is readily interpreted in ter
of the string source and almost certainly should be allow

The extended objects that we have considered are all
tremal, in the sense that their mass per unitp-volume was
essentially equal to their charge. It would be interesting
know whether one could nucleate nonextremal extended
jects. For black holes in four dimensions, it was found th
nonextreme black holes were created in thermal equilibri
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with their Hawking temperature equal to the acceleratio
temperature. It thus seems that a necessary condition
nucleate a nonextremalp-brane is that the Hawking tempera-
ture must go to zero in the extremal limit, so that it can equ
the acceleration temperature for small acceleration.

Our construction has only yielded fundamental strings i
five dimensions. However, from the test string calculation
is clear that there should exist analogous solutions in a
dimensions larger than 2. In particular, a four-dimension
solution describing a loop of fundamental string should exis
It would be interesting to find it.

In addition to the fundamental strings, we have mentione
that our solutions have two other string theory interpreta
tions. First, the Kaluza-Klein reduction ofD511 leads to
six-brane solutions carrying Ramond-Ramond charge of t
D510 type-IIA theory. On the other hand, forD<10, the
Kaluza-Klein solutions provide solutions to string theory
compactifications which include anS1 factor. Since these are
charged with respect to the U~1! gauge field coming from the
metric, they carry Neveu-Schwarz–Neveu-Schwarz~NS-NS!
charge in the type-II theory. Let us briefly mention som
ways in which we can generalize our solutions. For conve
nience, we discuss these transformations in terms of the si
plest flat chargedp-branes. By wrapping the type-IIA six-
brane solution around ann-torus, we can obtain~62n!-brane
solutions of type-II theory in 102n dimensions that carry RR
charge. These will be related to the NS-NS~62n!-branes
obtained by Kaluza-Klein reduction by some field redefini
tions ~part of the continuous group ofU-duality transforma-
tions @1#!. Another way to obtain new solutions is to use the
fact that the Kaluza-Klein solutions have a U~1! isometry. In
particular, there is theT-duality symmetry which includes
interchanging the two U~1!’s coming from the dimensional
reduction of the metric and antisymmetric tensor. This tran
formation takes the ‘‘metric’’ p-brane in p14 reduced
spacetime dimensions to an ‘‘antisymmetric tensor
p-brane. These latter objects can be considered to
H-monopoles in four dimensions@29,30# with p flat dimen-
sions added. Equivalently, thep55 solution in nine dimen-
sions can be constructed by taking a periodic array of fiv
branes in ten dimensions to get a five-brane in nin
dimensions. By wrapping these solutions around anS1, we
can then obtain a four-brane in eight dimensions, etc. F
nally, new solutions can also be obtained by employing var
ous string-string dualities, which amounts to writing the so
lutions in suitable dual variables@1,2#. It is natural to expect
that all of the above transformations acting on our instanto
will produce instantons describing the nucleation of the co
responding objects.

In recent work Polchinski has shown thatD-branes, sur-
faces where first-quantized strings have Dirichlet bounda
conditions, are carriers of Ramond-Ramond charges@4#. In
particular, the six-brane of the type-IIA theory has aD-brane
description. This identification has, as yet, only be made
the static, supersymmetric case. Although our instantons a
neither static nor supersymmetric, we still might expect
relatedD-brane construction. Having such a constructio
might enable one to go beyond the semiclassical approxim
tion in a controlled manner.
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APPENDIX

We here calculate the action of the Euclidean rotati
black hole with one nonzero rotation parameter in arbitra
dimension. The metric is@17#

ds25S 12
m

r D25S Ddt 22
2masin2u

r D25S
dt dw

1
S

r 22a22mr 52D dr21S du2

1
sin2u

S
@~r 22a2!S2mr 52Da2sin2u#dw2

1r 2cos2u dVD24 , ~A1!

where S5r 22a2cos2u. The horizon is located atr5r H ,
where

r H
2 5a21

m

r H
D25 . ~A2!

The radius of the circle at infinity is

R5
1

k
5

2mr H
62D

~D23!r H
2 2~D25!a2 , ~A3!

while the Euclidean angular velocity is

V5
ar H

D25

m
. ~A4!

The Euclidean action is defined with respect to a bac
ground geometry:

I52
1

16pGD
E dDxA2gDR~gD!

2
1

8pGD
E dD21xAh~K2K0!, ~A5!

whereK is the trace of the extrinsic curvature of the boun
ary andK0 is the trace of the extrinsic curvature of th
boundary embedded in the background geometry. Here
appropriate background is just flatRD.

The instanton is Ricci flat, and so the boundary term is t
only contribution. Let the boundary be given byr5const.
The induced metric is
-
ng
p-
o.
by

ng
ry

k-

d-
e
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he

dsD21
2 5S 12

m

r D25S Ddt 22
2masin2u

r D25S
dt dw1S du2

1
sin2u

S
@~r 22a2!S2mr 52Da2sin2u#dw2

1r 2cos2u dVD24 . ~A6!

The determinant is

Ah5S 12
a2

r 2
2

m

r D23D 1/2S 12
a2

r 2
cos2u D 1/2

3r D22sinucosD24uAVD24. ~A7!

The unit normal is

n5S r 22a22mr 52D

r 22a2cos2u D 1/2 ]

]r
. ~A8!

K is calculated viaKAh5nAh, so that

K5
nAh
Ah

. ~A9!

The background valueK0 is easily computed from this by
settingm50 since~A1! with m zero is flat for all values ofa.
Thus we have

~K2K0!Ah5nAh2nAhum50

Ah
Ahum50

. ~A10!

We want to take the limitr→`. In this limit,

lim
r→`

S Ah
Ahum50

D 512
m

2r D23 ~A11!

and, hence,

lim
r→`

@~K2K0!Ah#5 lim
r→`

F ~nAh2nAhum50!

1nAhUm50

m

2r D23G
5 lim

r→`
F]nAh

]m
Um501

1

2r D23nAhUm50Gm
52 1

2msinucosD24uAVD24. ~A12!

Then,

I5
pRVD24

4~D23!GD
m5

VD24

8~D23!GD21
m, ~A13!

whereVD24 is the volume of the unit~D24!-sphere.
We can check that this agrees with the thermodynam

and Smarr formulas given in@17#. The massM and angular
momentumJ are given by
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M5
~D22!VD22

16pGD
m, J5

2

D22
Ma, ~A14!

wherea5 ia is the Lorentzian rotation parameter. The Sma
relation is

vJ1TS5
D23

D22
M , ~A15!

whereS is the entropy,T5k/2p the temperature, andv is
the Lorentzian angular velocity. The thermodynamic pote
tial W is

W5M2TS2vJ5
1

D22
M , ~A16!

and thus the Euclidean action is

I5
W

T
5

2pR

D22
M , ~A17!

which agrees with~A13! sinceVD2252pVD24/(D23).
It is more interesting to express~A13! in terms of the

value of the asymptotic magnetic field strengthB5V2(s/
R) ~s5V/uVu! and radius of compactificationR. From ~A2!
rr

n-

and~A4!, we can eliminatem and then solve fora, with the
result

a5
211A114r H

2V2

2V
. ~A18!

Using this and~A4! in ~A3!, we obtain an expression forR in
terms ofr H andV. This can be inverted to yield

r H
R

5
D241@~D24!22~12R2V2!~D23!~D25!#1/2

2~12R2V2!
.

~A19!

One can thus obtain an expression form5ar H
D25/V in terms

of R andV, which unfortunately is extremely complicated.
However, it simplifies in two limits. Whena50, the instan-
ton is just the Euclidean Schwarzschild solution and one h

m5F ~D23!R

2 GD23

. ~A20!

When uVRu'1 ~so uBu is small!, one finds

m5SD24

2 D D24 R

uBuD24 . ~A21!
,
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