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We construct a solution to the low-energy string equations of motion in five dimensions that describes a
circular loop of fundamental string exponentially expanding in a background elétfiield. Euclideanizing
this gives an instanton for the creation of a loop of fundamental string in a backgigufreld, and we
calculate the rate of nucleation. Solutions describing magnetically charged stringstaades, where the
gauge field comes from Kaluza-Klein reduction on a circle, are also constructed. It is known that a magnetic
flux tube in four(reduced spacetime dimensions is unstable to the pair creation of Kaluza-Klein monopoles.
We show that in(4+p) dimensions, magneti¢p+1) “flux-branes” are unstable to the nucleation of a
magnetically charged spherigadbrane. In ten dimensions the instanton describes the nucleation of a Ramond-
Ramond magnetically charged six-brane in type A string theory. We also find static solutions describing
spherical chargeg-branes or fundamental strings held in unstable equilibrium in appropriate background
fields. Instabilities of intersecting magnetic flux-branes are also discUs3@8566-282(96)02012-7

PACS numbegs): 04.50+h, 11.10.Kk, 11.25-w

I. INTRODUCTION spherical, magnetically chargep-branes expanding in a
background magnetic field. Again, analytically continuing
Solitons have played an important role in several recenthe expanding solution gives an instanton for the nucleation
developments in string theory. In particular, they appear taf a charged-brane. Along the way we will construct static
be a key to understanding various nonperturbative aspects wérsions of the Lorentzian solutions: a loop of fundamental
the theory[1-4]. Surprising connections have been foundstring or spherical magnetip-brane held in unstable equi-
between string states and black holes and between strindgisrium in a background field. A further generalization re-
and higher-dimensional extended objeqtsbranes. There sults in solutions describing spherical uncharged branes of
are indications that these objects all play a fundamental rolany odd(even dimension either in static unstable equilib-

in the theory. rium or expanding in background magnetic fields in odd
It has been shown that localized solitons such as monoteven spacetime dimensions.
poles can be pair created in a background magnetic [figld The construction of these solutions relies on three obser-

Recently, there has been considerable interest in the analvations. We begin by considering Kaluza-Klein theory with a
gous process involving gravity: the pair creation of chargedJ(1) reduction fromD spacetime dimensions ©—1. The
black holes in background electromagnetic fields and byirst observation is that the spatial part of a basic Kaluza-
breaking cosmic string$—11]. The question naturally arises Klein monopol€]14,15 can be locally constructed by taking
as to whether extended objects suctpasranes and funda- R* and considering the (1) isometry that simultaneously
mental strings can also be produced quantum mechanicaliptates the two orthogonal two-planes by the same angle.
in appropriate background fields. The special case offhis acts freely except for a fixed point at the origin. Divid-
p-branes coupled to a, cosmological-constant-induciipg, ing out by this action gives us a configuration in three spatial
+1)-form potential in(p+2) spacetime dimensions was pre- dimensions that is, locally, the Kaluza-Klein monopole.
viously discussed if12]. The nucleation of vortex loops, Magnetically charged highgr-branes are given by multiply-
local and global, has also been investigated in four dimening this, locally, byp extra trivial directions so that the fixed
sions(see[13] and references thergin point set of the induced rotation iR**P is the brane. p-

We will present a solution to the low-energy string equa-branes that are not magnetically charged are formed locally
tions of motion that describes a finite loop of fundamentalby taking the quotient oR?**P by rotations that simulta-
string in five spacetime dimensions expanding in a backneously rotate irk#2 two-planes. The-brane is the fixed
ground electric-typéH ,,,, field. Analytically continuing this  point set of the rotation. Only iip+4) spacetime dimen-
solution yields an instanton corresponding to the nucleatiosions can thep-brane be charged with respect to the two-
of a single loop of fundamental string. We also find relatedform Maxwell field F arising from a circle reduction. The
solutions in (p+4) spacetime dimensions that describegeneral fixed point set analysis will be described in detail in

Sec. Il.
The second ingredient in our construction is the better
*Electronic address: dowker@theory.caltech.edu understanding of the pair production Bf=5 Kaluza-Klein
Electronic address: jerome@theory.caltech.edu monopoles in magnetic flux tubes that has recently been
*Electronic address: gwgl@anger.amtp.cam.ac.uk gained[9]. Remarkably, this process has been shown to be
SElectronic address: gary@cosmic.physics.ucsb.edu closely related to an instability of Kaluza-Klein magnetic
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7116 DOWKER, GAUNTLETT, GIBBONS, AND HOROWITZ 53
fields analogous to that of the ordinary Kaluza-Klein vacuumin the Appendix we describe in more detail the calculation of
described by Wittefil16]. It has been found that not only the the instanton actions.

topology but also the metric of the instantons involved are Since manifolds of many different dimensions will
the same in both cases. The topologyRéxS3? and the abound, we will adhere to the convention tBatefers to the
metric is that of the five-dimensional rotating black hole dis-dimension of a spacetimé, to the dimension of a Euclidean
covered by Myers and Perji7]. The idea that emerged manifold that is to be considered as a spatial section of
from this work is that the monopoles that are pair produced;pacetime, and that these will always refer to the dimensions
via this instanton arise as the fixed points of th@)Usom-  ©f the unreduced geometry.

etry by which one divides out in performing the Kaluza-

Klein reduction. Thus, to construct the higher-dimensional Il. PROPERTIES OF HIGHER-DIMENSIONAL
generalizations given here, we take higher-dimensional black SYMMETRIES

holes and divide out by an appropriatéllaction such that In this section we will give some general results which
the fixed point sets are the desirpebranes. will be useful later. The theory we start with is vacuum grav-

.Since these are solu_tiqns to the vacuum E.instein equatioriﬁ/ in D dimensions with action, up to boundary terms, given
(with the gauge field arising from Kaluza-Klein reduction on by

an SY), they are also solutions, to leading order dfy, of
low-energy string theories in less than ten dimensions when 1
the compactification includes & factor. In addition, the S= 167G J' d®xv—gpR(gp)- 23
Ramond-RamondRR) gauge field in type-IIA string theory P
in ten dimensions arises from dimensional reduction from 13f a geometryds3 has a Killing vectord/ox® with closed
dimensions. We can thus construct an instanton describingrpits and
the nucleation of a spherical six-brane carrying magnetic RR
charge in this theory in ten dimensions.

The third ingredient in our construction is the observation dSZD=eXp(
that after dimensionally reducing @-dimensional vacuum

4
-— qS) (dxP+2A,,dx#)?

JjD-2

solution via a W1) isometry toD—1 dimensions, one can 4
apply a duality transformation which replaces the Maxwell exp(— ¢) g, dxtdx’, (2.2
two-form with a(D —3)-form field strength. This yields elec- (D-3)yD-2 a

tric analogues of the magnetm:branes. For the cade=6 )
(i.e., five reduced spacetime dimensiprie resulting action then the action can be reexpressed as
is precisely the low-energy string effective action involving

the metric, dilaton, and three-fori. The duals of the mag- _ L f D-1y [ _ 4 2
netic strings(one-branesturn out to be fundamental strings. S 16mGp_4 d°"x =g R(g) D-3 (Vé)

The layout of the paper is as follows. As we mentioned,
Sec. Il contains an analysis of the fixed points sets of general —exp( —4 vD-2 ¢) FZ} 2.3
U(1) isometries in arbitrary dimensions. We also construct D-3 ' '

the closely related generalizations of the Melvin magnetic ) ) )
flux tube solution ofD=5 Kaluza-Klein theory. These are Wheré 27RGp_,=Gp andR is the radius of the compacti-
thickened branes of magnetic flux or “flux-branes,” which fied dimension. TheD —1)-dimensional fields—the dilaton
are the appropriate backgrounds for nucleagigranes. In ¢ gauge potentiah,,, and metricg,,,—can be read off from
Sec. Il we review various properties of the five-dimensional(2-2-

Kaluza-Klein monopole, monopole-antimonopole pairs, and

pair creation. In Sec. IV we present solutions describing A. Classification of fixed point sets

spherical, magnetically charggebranes expanding in mag- ¢ the jsometry generated by the Killing vector above has

netic flux-branes. The Euclidean sections of these solutiong, q points, theny diverges and the metrig,, will be sin-
1 1224

are the instantons for the nucleation of magnetically chargegy, oy at those points. Let us consider the general classifica-
p-branes in magnetic flux-branes. We also present solutiong,,, of fixed points of a 1) isometry in ad-dimensional

describing static magnetip-branes being held in unstable piemannian manifold. This is a straightforward generali-
equilibrium by the flux-brane. In addition, we discuss related, o1ion of the four-dimensional case, which was analyzed in

;olitons that do not carry magnetic charge. This is extende 8. Let q be the associated Killing field and consider the
in Sec. V to allow more general, and more physical, vaIueqensor

of the magnetic field at infinity and we give the production

rates for nucleating the charged branes. In Sec. VI we show Uap=0a:p (2.9

how dualizing theD =6 magnetic string yields the funda-

mental string in five spacetime dimensions. Thus the duals dit a fixed pointx whereq=0. By virtue of Killing’s equa-

our magnetic string solutions describe a loop of fundamentaion, g, is antisymmetric. Letv denote the kernel o,z
string in static unstable equilibrium in an electric field andand suppose dird=p. Then vectors iV are directions in
also a loop that is expanding in an electric field. The latterthe tangent space at the fixed poinyt, which are invariant
when Euclideanized, is the instanton for the nucleation of ainder the action of the symmetry. Since the exponential map
single loop of fundamental string. We calculate the rate focommutes with the symmetry action, it follows that there is a
this process. Some concluding remarks are given in Sec. VIp-dimensional subspace of fixed points. One can show that



53 NUCLEATION OF p-BRANES AND FUNDAMENTAL STRINGS 7117

this subspace is always totally geodesic. In four dimensiongjuotient metric will have conical singularities. This can be

the only possibilities arg=0 andp=2: The first case is illustrated by the simplest example=2:

called a “nut” and the second a “bolt.” In higher dimen-

sions, there are clearly more possibilities. Notice that since ds’=dpi+pidei+dp3+psdes. (2.10

the rank of a skew matrix must be even, there can be no ) o

isolated fixed points whed is odd. In particular, “there are Consider the Killing vector

no nuts in 11 dimensions{19]. In general, wherd is odd

(even, p is odd(even. q:nliJrnz_'
The two-formg,; determines an element of the Lie alge- ) 20!

bra so@) or, equivalently, a (1) subgroup of SQf) that ) o

winds around a maximal torus. The windings are determine@nd 18t ¢'=¢; and ¢=¢,—(n,/n,) P1 which is constant

by the skew eigenvalues af,; in an orthonormal frame. along the orbits of|. Thenq=ny(d/d¢") gnd when we reduce

There are at mogtl/2] such eigenvalues, where][denotes ~@nd also restrict the metric to théfpfl surface by set-

the integer part of . The eigenvalues must all be rationally ting p1=cosé and p,=sin ¢, we obtain

related and so determine up [/2] integers,n;, some pos- Sir 0 co ¢

sibly zero, with no common factor. These integers can be d2ecd g2+ ——

viewed as the number of2rotations in different orthogonal ! cos 6+ (ni/n3)sir? 6

two-planes inT, induced by one orbit of the isometry. . N
Near a fixed pointM looks locally like R® and we can The range off is O<6</2, and the condition that there be

analyze the character of the different actions by identifying?© conical singularities at=0,7/2 is that ¢ has period

the space and the tangent spage Suppose the number of 2m=2mNy/N,|. Sincen, andn, are coprime, this condition

nonzeron, is k. Then restricting to the R dimensions acted cannot be satisfied unlesg=n3=1. -

fixed point sets is more complicated. The main difficulty is
k that one cannot always bring the generator of rotations to
ds?=>, (dp?+p?de?) (2.5  block diagonal form. Consider €31), for example. Any
=1 nonvanishing skew 83 matrix has a one-dimensional ker-
nel. The kernel may be timelike, spacelike, or null. In the
first two cases, one has a rotation or boost, respectively.
9 These cases admit a block diagonal form with one block the
qu ng—. (2.6 1X1 zero matrix and the complementary block in the or-

i Iei thogonal two-plane a skew<2 matrix. If the kernel is time-
like, one has a conventional axis of rotational symmetry. If
the kernel is spacelike, the fixed point set is locally like the
boost-invariant Boyer axis of a black hole. If the kernel is
null, however, corresponding to a so-called null rotation, this
reduction cannot be done because there is no uniquely de-
fined orthogonal two-plane. However, it remains true that
even for Lorentzian metrics the fixed point sets will be to-
tally geodesic surfaces. Since these fixed points are often
located at the center of a soliton, it follows that the soliton
obeys the equations of motion of a “fundamentad-brane.
This will be true, in particular, for all the-branes discussed

(2.11

de?. (2.12

and

Introducing complex coordinatdZ'=p;e'¢}, we can write
the circle action as the holomorphic action

(Z%,....Z29—(eyzZt, .. eZk), 2.7

wherey, 0<y<2sw, parametrizes the (@) subgroup.

The U1) subgroup acts freely away from the isolated
fixed point atp;=0 Vi. It follows that topologically we have
a principal U1) fibration of the odd-dimensiondRk—1)-
sphere given by

k later.
>, p?=const. (2.9
=1 B. Flux-branes
In the special case that all tp=1, this is the Hopf action, It was shown in[7-9] that a uniform magnetic field in
giving rise to the Hopf fibration four spacetime dimensions, a generalization of the Melvin
solution of Einstein-Maxwell theor}20], can be obtained by
i a dimensional reduction of a five-dimensional geometry
gt — g1 (2.9 which is flat. This five-dimensional spacetime is obtained by
| starting with five-dimensional Minkowski spacetirv® and
cp-1 identifying points under a combined spatial translation and

rotation. When the rotation is zero, one obtains the standard

For the cas&=2, this is the familiar—from magnetic mono- Kaluza-Klein vacuum. When it is nonzero, the field configu-
pole theory—Hopf fibration 08® since CP=S2 The sign of  ration in the reduced spaci& which form it was originally
n; can be changed by changing the sign¢f however, discovered21]) is that of an infinitely long straight magnetic
changing an odd number of signs changes the orientation dfux tube. The generalization to magnetic “flux-branes” in
space and gives the “anti-Hopf” action. higher dimensions is straightforward. Since time plays no

If the n; are not all equal to 1 or-1, thenq still acts  role in the construction, we start withdimensional Euclid-
without fixed points onS?*~1. However, in this case, the ean space. Higher-dimensional generalizations ofchel
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case are obtained by identifying points under an element of U3
the Euclidean group which acts without fixed pointsRh dszD,le
The question is simply to characterize such elements.

—dt2+z (dpi2+pi2d5 ,2)
I

The general element of the Lie algebra of the Euclidean . b 2
groupe(d) is a pair consisting of a translation and a rotation —A 2 Bipjde;| |,
with infinitesimal parameters given hy, and w,gz, respec- .
tively. To obtain a nontrivial gauge field, we neeg;#0, 4 1 (2.19
and to avoid fixed points we require that the equation exp( _ — ¢) —A, A= ox 2.: Bipizd";i _

w-X+v=0 (2.13
) . ) i When only oneB; is nonzero, this is a thickened brane of
have no solution. This is the case if and only if the kernel Ofmagnetic flux, or “flux-brane,” of dimensiotd—3) and was

w is nonzero and Zas a component in the kernel. Under atqnq by Gibbons and Maed&1]. The amount of flux pass-

change of origin irR™ by an amouna,,, » is unchanged, but jng through a one-dimensional loop, is given by integrat-

v changes ta given by ing the one-form potentiah around the loodnote that in
~ (d—1) spatial dimensions a circle surrounds a
v=vte-a (2.14 (d—3)-brand: flux=/, A. Each nonzero parametB adds

another orthogonal flux-brane to the configuration. The

tirely in the kernel ofw. This means that the general Euclid- gauge field strength is maximized at the intersection of the

ean motion consists of a translation combined with a rotatior‘fem'.arS of the flux-branes, which is the fixed point set of the
in an orthogonal hyperplane. rotational part ofg. Whenk of the parameters are nonzero,

. . : . this is a @—2k—1)-hyperplane. The generic configuration
Since the translation part of the symmetry just fixes the A . . .
scale of the internal direction, it follows that the classifica-"" the(d —1)-dimensional reduced space is a sefl(df-1)/2]

tion of these magnetic fields reduces to the classification o\?vr;h%%o_nagg _fc)i'];lrlljx'll)irnani/sﬁ 'lli'h_esve r:ntersect In & point
rotations inRY"%. A rotation is given by a two-form with end=odda afine when=even.
[(d—1)/2] skew eigenvalues, and so a magnetic field con-
figuration is specified by(d—1)/2] real numberss; . IIl. FIVE-DIMENSIONAL MONOPOLES
We can ask what these field configurations look like in the | this section we shall review some of the geometrical

reduced spacetime. Consider2m+1 (thed=even case is  5nq topological properties of the basic Kaluza-Klein mono-

One may always choose so that the translation lies en-

similan): pole[14,15, relating them to the fixed point set analysis of
m the previous section. We also present a novel interpretation
f the four-di ional Eucli h hil lution.
dszzzl (dpi2+pi2d<,oi2)+dy2. (2.15 of the four-dimensional Euclidean Schwarzschild solution

. . . . . . . A. Basic monopole
We identify each point with the point obtained by moving a

distance 2R along the integral curves of the Killing field, | "€ Single-monopole solution is a five-dimensional space-

time which is a metric produd® XM of a time factor with
coordinatet and Euclidean Taub-Newman-Unti-Tamburino

J J
q=a—+2 B; Pt (2.1  (NUT) spaceM. M is Ricci flat, self-dual, topologically
yo o @i R* and admits an isometric circle action. The metric is, ex-
Introducing the new coordinateg,; = ¢;—B,y, which are plicitly,
constant along the orbits af, we find thatg=d/dy and the ds?= —dt?+V Y(dy+2A,de)?+V(dr?+r2dQ),
above identification just consists of makiggperiodic with (3.2
period 2R at fixed'p; . The flat metrio(2.15 now takes the
form with
1 24~ ? 2, 24~ 2 4m
ds?=A dy-I—XEi Bip2dg, +2i (dp?+ p2dg ?) A,=2m(1-cosf), V=1+-—. (3.2
_ 5 i~ 2 The period ofy is 27R with R=8m. The Killing vector
—A7Y 2 Bjpidy; | (217 associated with the (1) isometry isq=d/dy. If the circle
. action were free, the topology d¥i would be that of a,
where possibly twisted, circle bundle
st - M
A=1+2 B2 (2.18 | (3.3
1
py

The reduced metric, dilaton, and gauge potential can be read
off from (2.17) (after adding an extra time directibnsing  over some complete nonsingular three-manifdéld One
(2.2) with D=d+1 to give could then think of thés* factor globally as an internal mani-
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fold. Because of the fixed poimt=0 at whichg,, vanishes It has fixed points at the north and south pol¢s0,w of the
and hence the length of the circle fibers goes to zero, thisvo-sphere =2m. It can be shown that at one, the action is
description is only valid away from=0. the Hopf action, and at the other it is the anti-Hopf action. At
At the center of the monopole, the manifold is smooth andeach pole, the two orthogonal planes in which the rotations
locally indistinguishable from the flat metric d®*. As dis-  act are the tangent spaces to the)-section at the horizon
cussed in the previous section, at a fixed point, the circlg"tip of the cigar”) and the(6,¢) horizon two-sphere. Near
action may be thought of as a rotation in two orthogonalinfinity, however,q becomes a linear combination ofrans-
two-planes inR?, characterized by two integers andn,. lation and a rotation. As discussed in Sec. Il B, a magnetic
For a single Kaluza-Klein monopole, we hamg=n,=1, field in Kaluza-Klein theory is obtained by taking the quo-
i.e., the Hopf action on smab>s surrounding the center. tient of flat space with respect to precisely this type of sym-
The reduced four-dimensional spacetime is thus free of sinmetry. If we therefore take the closed orbits gfas our
gularities except at the center of the monopole. internal Kaluza-Klein circles, we can interpr@.4) in four
Antimonopole solutions are given 8.1) with the oppo- dimensions as a static monopole-antimonopole pair held
site sign ofA,. Now the U1) action near the antipole center apart by a background magnetic field wiB=1/R. One
is labeled byn,=—-n,=1: Itis the anti-Hopf action. would expect such a configuration to be unstable, and it is:
The negative mode of the four-dimensional Euclidean
B. Static monopole-antimonopole pairs Schwarzschild_sol_ution gives_ rise to an exponentially grow-
ing mode of this five-dimensional solution.

It is interesting to ask what the topology of a monopole-

antimonopole configuration V_VOUId be. PhySica"Y’ Ong WOUIdC. Dynamical monopole-antimonopole pairs and pair creation
not expect a static asymptotically vacuum solution since the .
pair will attract, and so one must either give up the asymp- A key observation of 9] was that one may relate the

totic vacuum condition or suspend the field equations. Irfive-dimensional Schwarzschild solution to monopole-

both cases the topology should be the same. We will arguntimonopole pair  productioh. Consider the five-
that the topology is in facR2xS2 Let the spatial four- dimensional Euclidean Schwarzschild solution, which we

manifold be M; then, M=AUBUC, where A and B are  Write as
both four-ballsD* corresponding to the monopole and anti-

2 21-1
monopole andC is the nontrivial W1l) bundle over d<2= 1_(r_H> dr2+ 1_(r_H) } dr?
R3D3#D°® (R® with two three-balls removedwhich has r r
zero winding over the sphere at infinity and windingd +r2[da?+cof a(df?+sir? 6 de?)], (3.6

and —1 over the other twoS?> boundaries[22]. Since the

b&mdle is trivial over the sphere at infinity, we can add in anyhere 7 has period R, with R=ry, and —m2<a=<ml2.

S there: MUS'=AUBUC', whereC' is @ U1) bundle  From the purely five-dimensional point of view, this is an

overS’# D*¢ D*=S*X D™, where the one-baD” is just the  instanton that describes the decaylfx St, whereM? is

one—dzlmensmnal interval. The(l) must have unit twist over  foyr-dimensional Minkowski space. It has topoloB§x S?,

oneS” boundary and unit antitwist over the OtI@% bound- and it asymptotically approaches flef xS, It has a zero

ary. So € =S°XD which is C =s%D*D" S0 momentum slicar=0, which has topologiR?x S? and con-

MUS'=S" andM =S'—S'=R*x S _ . tains a minimal two-sphere or “bubble,t=r: Overall,
Thus we see that the monopole-antimonopole manifolghe zero-momentum slice is very similar to the four-

has the same topology as the four-dimensional Euclideagimensional Euclidean Schwarzschild solution. The subse-

Schwarzschild solution: guent Lorentzian post-decay evolution is obtained by setting
om om\ -1 a=it in (3.6) and describes the minimal two-sphere expand-
d52:(1_ —)d72+(1— _) dr? ing. Its area increases like cddh and this solution looks
r r like a dynamical version of the static bubble of the previous
+r2(d6?+sir? 0 de?), (3.4  Subsection.

If one reduces alon@/dr, one may think of this as an

) ) . Iinstanton for the decay of the vacuum in four dimensions
wherer has period ZR, R=4m. Indeed, we will see thatin 1] The fixed point set restricted to the zero-momentum
a certain precise sen$8.4) can be regarded as containing a gjice is the entire minimal two-sphere or bubble which ap-
monopole-antimonopole pair. First, if we add on a trivial hears singular in the reduced spacetime. However, one may
time direction, we can regard3.4) as a static five- alternatively reduce along with R=r, in (3.5). In four
dimensional solution describing a minimal two-sphere ingimensions, in this case, the instanton describes the decay of
space, a “bubble,” poised in unstable equilibrium. If we 4 magnetic field via pair creation of a monopole-
reduce this five-dimensional solution to four dimenSiO”santimonopole pair. We can see this by subjecting the zero-

along the orbits of the Killing vecto#/d7, we find that the  nomentum slice to the fixed point set analysis of the previ-
minimal two-sphere or bolt, being a fixed point set of that

circle action, looks singular in four dimensions.

Consider now the alternative Killing field
To obtain arbitrary values of the magnetic field at infinity, one

should consider the five-dimensional Kerr solution. We will return
3 to this in Sec. V, but for now, we illustrate the construction using
(3.9 . . ;

the simpler Schwarzschild solution.

Jd 1

L1
q_z?r Radp’
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ous subsection. The pole and antipole are the fixed points of

. . .. _ 2 r.H 2 2 rH 21 2 2
the circle action ofg, and the twisting character af at ds?=—dt*+| 1— rs dre+|1— ra dre+rdQs;.
infinity means the particles are immersed in a magnetic field 4.3
of strength B=1/R. Now, however, in the subsequent
Lorentzian evolution, the particles do not stay in their staticThe metric on the three-spheres can be written
positions, but accelerate apart.

dQz;=de?+sir’ 6 de?+cos 6 dy?, (4.9
IV. HIGHER-DIMENSIONAL GENERALIZATIONS where G=6<7/2, 0<¢, y<27. We now reduce down to five
dimensions using the symmetfy.2). The fixed points of
A. Flat charged p-branes this Killing field are atr =r,, #=0, which is clearly a circle

The simplest generalization of the basic Kaluza-KleinParametrized by. For each value of, the indices of the
monopole is to take the product ¢8.1) with an arbitrary ~Symmetry at the fixed poirfas discussed in Sec) lare the
numberp of flat directions before doing the Kaluza-Klein same as the usual Kaluza-Klein monopole. This shows that
reduction. This gives a magnetically chargedrane in(p  in the reduced spacetime there is a magnetic charge at each
—|—4) Spacetime dimensions, e.g., a magnetica”y ChargeHXEd pOint on the String. The solution thus describes a cir-
string in five dimensions. If the extra dimensions are infinite,cular charged string. Asymptotically, the solution approaches
the p-brane is also infinite(We could, of course, consider the two-dimensional flux-brane. _
the extra dimensions to be a torus, in which case the brane is T0 be explicit, we seip=¢@—(7/ry) in (4.3) [so ¢ is
also a torus, but this would change the topology of the reconstant along the orbits of the symmet®/2)]. We then
duced spacetime. Moreover, if the torus was large, this solu/compare the resulting metric witt2.2), settingD=6 and
tion would approach the infinite-brane, and if it were small, X" =7. The result is
it would reduce, in a Kaluza-Klein sense, to the monopole

2 2 2q;
again) e2¢=1—(r—”) +(L) Si? 6, A=" sirf 0 244,
An obvious instanton describing the production of a pair r A 2ry
of thesep-branes in a magnetic field is obtained by taking (4.5

o '
solution with the extra flat dimensions and reducing via ! r '
(3.5. The asymptotic magnetic field configuration of this

instanton is dp+1)-dimensional flux-brane. However, if the +12(d6?+co 6 dy?)
extra dimensions are infinite, then the action for this instan-

ton is infinite, even relative to the background magnetic field. ,
Nearr=r,, the metric takes the form

B. Spherical chargedp-branes dszwefz‘m[—dt2+d72+rﬁ(d02+cosz 0 dXZ)]
It might appear that thép-+1)-dimensional flux-brane . —~
cannot decay because the instanton that describes pair cre- +et 2 sin? 9 dg?, (4.6
ation of infinite magnetig-branes has infinite action. This
is, in fact, not the case. We will see in this section that it can
decay by the nucleation of a singfebrane with topology r
<P, e 2¢~sir? 0+(r—
We start withp=1 as an example and first describe a H
magnetically charged loop of string in static equilibrium in a The singularityr=0, =0 is a ring representing the loop of
background magnetic field. As discussed in Sec. Il, @ magstring. Notice thatT=0, 0<#<n/2 is a regular two-
netic field can be obtained by taking SiX-dimenSiOﬂaldimensiona] surface spanning the ring Singu|arity_
Minkowski spacetime, We now discuss the nucleation of a closed magnetically
i charged string in our two-dimensional magnetic flux-brane.
ds?=—dt+dr®+dritride® rdxdx, (4D e g(Jalpproprigte instanton is the six—dimegsional Euclidean
Schwarzschild solution

the product of the five-dimensional Euclidean Schwarzschilddsz:ez¢/3( _dt?+

+e**8 sir? g(r2—r2)de?.

heret?=r2—r 2 and

2
(1+sirf6). 4.7

and identifying points by moving a distancerR along the

o L ry) %t
Killing vector d2=1— | |dr2+|1—| 2 dr2
r r
9 1 9 +r3(da®+cog a dQjy), 4.9
q= —+ = —. 4.2)
Jr R where 7 has period #R, with R=2r./3, and

—ml2<a<m/2. By direct analogy with the five-dimensional

The reduced spacetime describes a two-dimensional maépstanton discussed in the previous section on the basic

netic flux-brane witrB=1/R.

To obtain a charged loop of string in this background, we
start with the product of time and the five-dimensional Eu- 2To see this, start with2.5) and (2.8) with k=2. Then set
clidean Schwarzschild solution p1=sin 6, p,=cosé.
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monopole, this instanton has a zero-momentum surdee@®  where 7 is a periodic coordinate with period R and
which contains a minimal three-sphere or “bubble.” The R=2r,/(p+1). The metric on thep+2)-spheres can be
subsequent Lorentzian evolution is obtained by settiggt.  written

The minimal three-sphere expands exponentially Reduc-

ing (4.8 along dlgr, we obtain an instanton describing dQp,,=d6*+sin? 6 dp?+cos’ 6 dQ,,  (4.10
vacuum decay in thi® =6 Kaluza-Klein theory. If we re-
duce(4.8) along the symmetry4.2), we obtain an instanton
which is asymptotically a magnetic flux-brane of strength
B=1/R. Restricted to the surface=0, the reduction is vir-

with 0=<6<a/2. We now reduce along the symmet#.2).
The fixed points again occur atry and §=0 so that on a
static slice the set of fixed points is now a sph8teAt each

tually identical to the one described in the static case abovqf:.)é?]g g?tlr?ct)’g:)hnealb t?) hf;]\/]s%rigfatggi:gz;?j;rmgttg?;o;;ﬁgj?

In particular, one has a charged loop of string. In the SUbsel'<|ein monopole. So we obtain a static charged spherical
guent Lorentzian evolution, the loop expands since it lies Orb-brane

the expanding bubble. _ To nucleate such p-brane, we start with th® = (p+5)
For the Schwarzschild instanton, the single paramBter 4imensional Euclidean Schwarzschild solution

(or ry) governs both the strength of the asymptotic magnetic

field and the charge on the string. We will see in the next ry\P*t? ry\P2

section that this value of the magnetic fieRk= 1/R, is un- ds’= 1—(7) dr?+ 1‘(7) dr?
physically large and we will construct solutions correspond-

ing to the decay of more physical valuesBby considering +r?(da?+cos a dQ,.,), (4.11

instantons based on higher-dimensional rotating black hole

solutions. We will also calculate the rate of nucleation in thewith dQ,., given by (4.10. Reducing this via(4.2), we

semiclassical approximation. obtain an instanton for the nucleation of tpebrane. The
One might wonder why the nucleation of a charged loopSubsequent Lorentzian evolution is described by the analytic

of string does not violate charge conservation. The point i€ontinuation a=it, and in this Lorentzian spacetime the

that in four (reducedl spatial dimensions, the total magnetic fix€d point set of(4.2) is the world volume of a spherical

charge of any localized object must be zero. This is becausgargedp-brane thqt exponentially expands. .
the magnetic charge is obtained by integratig, over a There are many instantons which asymptotically approach

two-sphere. One cannot integreg, over the three-sphere thissainri nzj?r%nit'? fllleIId-SOhr\‘/S (ﬁgn ‘:’]ti%rt W;tr:it?le %dfjrd of a
at infinity. This does not contradict the fact that locally the(p )-dimensional Schwarzsc solution and. 10

. : . : aintain the same asymptotic magnetic field, we always re-
string carries a magnetic charge. The magnitude of the! : . .
chargeq at the fixed points /4, whereR is determined by duce unde(4.2). These instantons describe the nucleation of

_ ; m p—m
the periodicity in the compact direction. However, the Signchargedp branes with topologyR™x S°" ™. However, the

of the charge depends on a choice of orientation. If one@cﬂon for all of these instantons is infinite as a result of the

o m
charge is chosen to b¢q, the opposite one is necessarily infinite volume ofR™,

—(g. This follows from the fact that the orientation induced An Interesting application of th'.s construction s to the
ea/pe-llA string. The low-energy action of this theory in ten

on the two-sphere enclosing a point of the string depends o imensions contains a Ramond-Ramond gauge field which
the tangent vector to the string, which points in the opposit . . gauge .
comes from Kaluza-Klein reduction of an 11-dimensional

direction halfway around the loop. If one takes a slice etric. The Kaluza-Klein six-brane we have been consider-
through the Lorentzian solution, it describes opposnel)[ng thus carries RR charg@3). Starting with theD—11

X . . " n
charged monopoles accelerating apart in a magnetic field. : : : .
More generally, anyp-brane,p#0, which locally carries a %'nk.OWSk' space_and ‘?""”9 the qu_ot|ent unddr2), one
obtains a seven-dimensional magnetic flux-brane. This is un-

magnetic charge associated with anform, F,, must have . . .

zero net charge when thebrane is confined to a compact sFabIe to the nucleation .of a.spherlcal, _magnetlcally charged

region. The reason is simply that the sphere at infinity Wi”3|x-brane. The approprlate instanton is simply @e-11

have dimensiong{+r), which is larger than the rank &f, . Schwarzschild solution.
The construction of magnetically charged spherical

p-branes forp>1 is a straightforward extension of these C. Uncharged p-branes

ideas to higher dimensions. Taking the quotient(f-5)- One can also construct stagebranes ind—1 reduced
dimensional Minkowski spacetime by the symmetd/2)  gpatial dimensions whege+4<d. These do not carry mag-
yields a(p+1)-dimensional magnetic flux-brane. This can petic charge, but they can arise when flux-branes intersect.
support a static charged spherigabrane as follows. Con- A5 described in Sec. I, intersecting flux-branes are obtained
sider the Euclidean Schwarzschild solutiordi (p+4) di- by taking the quotient of Minkowski spacetime under a sym-
mensions crossed with a trivial time direction, metry which is a translation plus a rotation, where the rota-
tion is not restricted to lie in a single two-plane. We first
et consider static solitons and then discuss how one can nucle-
(%
r
- ( r_H) p+171—1
p

dr? ate such objects.
dr2+r2dQ,, ,, (4.9

ds’=—dt*+

We begin with the product of time and tidedimensional
Euclidean Schwarzschild metric. To describeorthogonal
flux-branes asymptotically, we write the metric on the

* (d—2)-spheres in terms of, ,¢;, i =1,... Kk, and coordinates
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on a d—2— 2k)-sphere by iterating4.10 k times. We then proximation of a uniform magnetic field, we should only
reduce along the symmetry consider distances from the center of the flux-brarel/B.
This restriction occurs not only in Kaluza-Klein theory, but

J 1 d also when considering pair creation of black holes in mag-
a= (9_T+ R 21 Ers (412 netic fields in Einstein-Maxwell theory in four dimensions.

However, in Kaluza-Klein theory we also have the condition

that only distances large with respect to the radius of com-
pactification should be considered in the reduced spacetime.
Thus p>R, and so we have the conditi®R<1.

The value of the asymptotic magnetic fields we have been
considering so far is well outside this physical range of va-
lidity. We have allowed them up until now for reasons of
a spherical @—2— 2k)-brane which lies in the intersection simpli_city: The construction_of the solutions des_cribing t_he

spherical chargeg-branes using the Schwarzschild metrics

of the fluxbranes. Fok#1, this brane does not carry mag- > S X
netic charge in the reduced spacetime since it does not have simpler, though qualitatively the same as the construction

the right dimension. Nevertheless, it is a static, though une Will now give of solutions describing the same types of
stable. localized excitation of the fields. branes, but with arbitrary values of the background magnetic

The configuration ok intersecting fluxbranes is unstable field_. We wante_d_ to describe the co_nstruction i_n a simpler
to the nucleation of such unchargedH 2 — 2k)-branes. The setting before giving the more complicated solutions that are

instanton is thed +1)-dimensional Euclidean Schwarzschild ©f More physical interest. These are given bifilfeductions

solution and the analytic continuation is identical to that for°f higher-dimension?ﬂotating bllack hoIefsqutions. ,
the case of the charged branes. The only difference is that MYers and Perry found analogues of the Lorentzian Kerr

one now reduces along the more general symm@r2) solution for arbitrary spacetime dimensibi17]. A particu-
If k=1, this instanton construction reduces, of course, td2' ¢ase ilN=8 dimensions has been obtained independently

the one in Sec. IV B. There are two other special valuds of ni):)r?shi(;ar?(?tretgzsgl Llﬁ;r;?stgi j%eecri?; F;rcr)gtzrttiir(\ag Sg;&emolcm'
of particular interest. Ifd is even andk=(d—2)/2 (the o . S
maximal number then the fixed point set consists of two Sﬁéﬁlmd;r;%r:[[?\r(];gﬁsofags "’(}ff\;’lg'?;?d- E_‘Phguuslatrher?grgreentum
points. On a small sphere surrounding each point, the synf "™ . ~1ora. :
metry acts ke the Hopi bratiof2 9, o &° L by S Bals 1 0 racteine the solions. 1l i parameteran.
taining a single object of this type. It can be viewed as 4sh, then one obtains the usual higher-dimensional Schwarzs-
generalization of the Taub-NUT solution to high@ven C.h"d sqlution. One expects that,_ just as in four spacetime
dimensions. Topologically, the manifold is simpRf. The dimensions, the solutions are unique, but to our knowledge
metrics admit a circle action, with a single fixed point. Al- t€re is no proof. Tﬂﬁ,gl?,g]eral solution has continuous isom-
though the length of the circle orbits tends to a constant neagggognr]?pzésﬁ](? Sometr butrgs m.(;reegl;]:;]ecggraggigeﬁn
infinity, the Bais-Batenberg solutions fdr>4 cannot be re- RXSO(Nfl) in th In r tytig lép hlw r7schild Ii'mit Th ng
garded ashcircle blundles 0\;3‘;‘1 a;ympéotically. gj:i(sﬁis case obtained by gha?(ra?a;rti ?m&c a Elascand is an. ex )
ecause the angular part of the reduced space St ; 2793 o
but CF9~2)2 Thus one could argue that these objects cannofTPle of slightly enhanced symmet(there are extra dis-

exist in isolation. However, we have seen that they can exisf€!® Symmetries In the general case one therefore has
in pairs and can, in fact, be pair created. (N—1)/2] ignorable azimuthal coordinates parametrizing

The second special case occurs whiis odd andk is the maximal torus of S —1) and which may be thought of

again maximal,k=(d—1)/2. In this case, the symmetry _nearNipIinity as rotations ifi(N—1)/2] orthogonal two-planes

(4.12 hasnofixed points. It corresponds to a combination of n
dldr and a Hopf rotation of théd—2)-sphere. The reduction
then leads to a nonsingular solution of the Einstein-Maxwel
dilaton equations arising from the acti¢2.3).

k

where 7 has period ZrR. Asymptotically, the solution re-
sembleq2.19 with k nonzeroB;’s and describek orthogo-
nal flux-branes. Recall that id—1 reduced spatial dimen-
sions each flux-brane has dimensi@h-3) and k of them
will intersect in a surface of dimensiord{1—2k). The
vectorq has fixed points at=r and 6,=0 for all i. This is

The Euclidean solutions, for which =ia«; with ¢; real,
|.are complete and nonsingular provided that a suitable peri-
odic identification is made. If we denote the Euclidean time
by r=it, then one identifies points by moving a distance

2R along the integral curves of the Killing field
V. DIFFERENT ASYMPTOTIC MAGNETIC FIELD

VALUES
J

The solutions we have constructed from the Schwarzs- q= &—TJFEi Q; e (5.1
child metric have values of the magnetic fields at infinity '
which are fixed completely by the radius of the compactified
dimensionB=1/R. We should point out that this value Bf = where R=1/k and « and iQ); are the surface gravity and
is actually unphysically large in the following sense. Con-angular velocities, respectively. General expressions for
sider the single-flux-brane solution with parameBerThe them may be found ifi17].
radius of the compactified direction is not constant, but To construct solutions describing spherical charged
grows fromR to infinity as the distance from the center p-branes, it suffices to consider the metrics with only one
increases. In order for the Kaluza-Klein reduction to makeangular momentum parameter nonzero. Thelimensional
sense and also for the configuration to be a reasonable apuclidean metric then takes the form
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2ua Siré 0

sy drde

o
dgz(l—w>d7'2—
WderrE de?
+sin2 6
2
+r? cos 6 dQy_y,

[(r?=a?)X—ur® Na? sir? 6]de?

(5.2

where 3 =r’—a? cog 0 and G<é<m/2. The horizon is lo-
cated atr =r,, where

I'aza’z'i‘ NL—S (5.3
My
The radius of the circle at infinity is
1 2urd N
R‘E‘(N—3)rﬁ—(N—5)a2’ 64
while the Euclidean angular velocity is
ar”_5
Q= (5.5
72
Their product is thus
ZarH
OR (5.9

~(N=3)rZ—(N=5)a”

This clearly vanishes wher=0. Now consider the limit
a—, Considering(5.3) and (5.4), we find that to keefR

fixed we needry,—a and u—RaN"*. Then (5.6) implies

that QR approaches 1. Similarly, the limigk— — sends
QOR——1. Thus()R takes values between 1 andL.

To obtain the unstable, static magnetically charged

p-branes, one starts with the product of time #&&®) with®
N=p+4. If one reduces along

d J

g=—+10

ar %' (5.7

7123

limiting solution with B=0 is just the noncompagi-brane
obtained by taking the product of the standard Kaluza-Klein
monopole andRP.

We can clearly turn on additional flux-branes at infinity
by starting with the black hole with several rotation param-
eters nonzero. If we reduce usitig1), the fixed point set is
the horizon itself and we will obtain an unstable bubble liv-
ing at the intersection of several flux-branes with=Q; . If
we reduce using)’'=q—(o;/R)d/de; [with q as in(5.1),
o;=Q,/|Q;|, and no sum on], for any choice ofy;, then
we obtain a magnetically charged spherigabrane in a
background of intersecting flux-branes wiBy=Q;, i#]j,
and B;=Q;—(0}/R). Adding additional rotations tq" re-
duces the dimension of the fixed point set, which becomes an
uncharged brane.

An instanton describing the nucleation of a charged
p-brane can be obtained fro(.2) with N=p+5 by reduc-
ing along q’' in (5.8. This instanton corresponds to the
nucleation of a spherical charggdbrane in a background
(p+21)-flux-brane of strengttB=()—o/R. The Lorentzian
solution, representing the post-tunneling evolution, is ob-
tained by analytically continuing in one of the ignorable
angles indQ,_,. This appears to give a static solution rather
than the expanding solution we obtained earlier from the
Schwarzschild metric. However, the resulting timelike Kill-
ing field is really a boost, and the spacetime one obtains from
the Kerr solution is qualitatively similar to the one obtained
from the Schwarzschild solution and describes the spherical
p-brane expandingFor a detailed discussion of this in the
case of five dimensions, s¢@].)

In the semiclassical approximation, the rate of nucleation
is given bye™!, wherel is the Euclidean action of the in-
stanton. The action for the instanton with one angular mo-
mentum parameter nonzero is computed in the Appendix and
is

Vpis
|l=—P*° , 5.9
8(p+ 2G4 59

whereV,_, is the volume of a unifp+1)-sphere. One can
rewrite this in terms of the magnetic field at infinity and the
compactification radius, but the expression is complicated
and not very illuminatingsee the Appendjx However, in

the limit where the asymptotic magnetic figlB| is small,

the fixed point set will be the entire horizon and we will one finds
obtain an unstable bubble immersed in a magnetic flux-brane

of strengthB=(). If, instead, we reduce along

q=0-5 = (5.8

whereo=/|()|, we obtain the chargeptbrane. The asymp-

totic value of the magnetic field 8B=Q —(o/R). |B| can
be made as small as we like by tunifig Note that a8—0,

p+1 R
|B|p+l'

+1
u=(p (5.10

2

The compactification radiuR is related to the charge on the
p-brane by the usual expression for Kaluza-Klein mono-
poles,q=R/4, and this charge is in turn proportional to the
mass per unip-volume or tension of th@-brane. Thus the
nucleation ratee™' is increased by either increasing| or

ry—, and the “size” of thep-brane becomes larger. The gecreasing the tension, as expected. Ber0, (5.9 and

3The case of thdN=4 Euclidean Kerr solution with a flat time

(5.10 reduce to the Schwinger result for pair-creating mono-
poles in a weak magnetic fie(d].
We close this section by noting that instantons describing

direction added was considered fih5]. There, the solution was the nucleation of a spherical chargpébrane in intersecting
interpreted as a dipole, but the presence of the background magnefieix-brane backgrounds can also be obtained. One considers

field was unnoticed.

the Kerr solution with several nonzero rotation parameters
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and reduces along'=q—(o;/R)d/d¢; [with q as in(5.1) B. Spacetime solutions
and no sum on]. The spherical charggatbrane appears and Starting with a solutiond, &,F) to the equations of mo-

subsequently expands within thin flux-brane. To nucleate o ghtained from(2.3) and performing the duality transfor-
an uncharged brane at the intersection of the flux-branes, ongion

simply adds extra rotations @ as discussed in the previous
section. - JD=2
d=—¢, FD_3=exp<—4 D_3 ¢)*F, 6.7

VI. NUCLEATING LOOPS OF FUNDAMENTAL STRING

whereF_5 is a(D —3)-form field strength and the metrg

is left unchanged, we obtain a “dual solutiong(¢,Fp_3)
We begin our discussion of fundamental strings by de+o the equations of motion coming from the action

scribing the behavior of a circular test string in flat spacetime

coupled to a constant backgroukdfield. Since we are go- B 1 b1 4 ~

ing to consider only classical solutions, the spacetime can S= 16wGp_; f d°~*xy—g| R(g)~ D-3 (Vo)

have any dimension larger than 2. We assume that the only

A. Test string approximation

nonzero component dfl is Hy;o=h, whereh is a constant. 2 VD=2~ ,
The string action is RCE ex _4—D—3 ¢ |F5_3|. (6.9
1 . . L .
S=-——— f g2 aby XHa,X Th|s transformatlon e_xchanges magneFtlmeIds_wnh elec- _
dra o(yy A7 tric Fp_5 fields and vice versa. In the dual variables there is

no longer a connection with Kaluza-Klein theory i di-
mensions and we just have a solutionDr-1 dimensions.
Since the metric is invariant under the duality transforma-
tion, all of our previous solutions can be reinterpreted as the
corresponding electric objects. This is particularly interesting

+B,,, 0, X X" eB), (6.1)

with e”=—1 and G<o=<m. Choosing the conformal gauge
y=n Yyields the equation of motion,

azxﬂ_ %H#VpaaXVﬁﬁxpEaﬁ:O, (6.2) for D—1=5 since, as we shall shovy, the solution'des_cribing
the nucleation of a magnetic string in the last section is trans-
and the Virasoro constraints formed into a solution describing the nucleation of a five-
dimensional fundamental string.
X”X;ﬁ X'#X! =0, X#XLZO_ (6.3 In the caseD —1=5, the action(6.8) is precisely part of

the low-energy effective action of string theory in five di-
We want to consider solutions describing circular loops, andnensions, written in terms of the Einstein metric. If we res-
so we set cale to the string metrig=e*#3g, this action takes the more

familiar form

X0=f(t), X'=g(t)sin2o, X?>=g(t)cos2r, (6.4)
1 ~ ~
with the remainingX' held constant. S=16.G f d°\/=Ge 2’[R(Q) + 4(V ¢)*— 5H?],
One solution tq6.2) and(6.3) is simply f=2t/h, g=1/h. ° 6.9

This is a static loop of string with a radius inversely propor- '
tional to the strength of the backgroukldfield. It is easy to  where we have used the notatibh= 2F ;. Thus, for every
see that this solution is unstable: A slightly smaller loopfive-dimensional magnetic solution, there is a dual electric
collapses inward, while a slightly larger loop expands out-selution which extremizes the standard actiér9). We now

ward. A second solution is discuss some of these solutions. We will mostly work with
. the fields appearing i¥6.9) and drop the tildes og and ¢
_ 2sin2 _ 2 6.5 for the remainder of this section.
hcosz’ 9 hcosz '

To begin, recall that the simplest magnetically charged
string in five dimensions was obtained as the product of a
This describes a loop which initially is twice as large as theKaluza-Klein monopolg3.1) with a line. Transforming to
static one and expands outward. Sigée-  is constant, the the dual variables, the solution can be reexpressed in the
world sheet is a hyperbola, describing constant acceleratiostring frame as
If we analytically continue irX® andt, we obtain an instan-
ton describing the nucleation of a loop of string. The Euclid- ds?=e2?(—dt?+dy?)+dx?,
ean action for this instanton is straightforward to calculate, (6.10
with the result _2p_, . Am _ 2

e =1+ T, Bty_ e,
8

I:3a'h2

6.6 wherey is the coordinate along the line. This is the solution

corresponding to the fields about a macroscopic fundamental
for all spacetime dimensions. We now construct analogues dftring in five dimension§26).
these solutions that include the back reaction of the string on The appropriate background to describe the nucleation of
the spacetime fields in five dimensions. fundamental strings is given by a uniform electric flux-brane
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of dimension 2. This can be constructed from fhe 1=5, 7R

two-dimensional magnetic flux-brane discussed in Sec. Il by I= 6G.B2" (6.13
writing it in dual variables and rescaling to the string metric. 5

The result is It was shown ir{ 26] that for a single macroscopic fundamen-

tal string in five dimensions, the dilaton charge (.10

should be given by l=2Gg/ma’. This can be related tR

(6.1) by recalling that for the Kaluza-Klein monopdRe=8m. Us-

e?$=1+B%? Hy,=2B ing thi inch= i
' 112 ' ing this and settinch=2B, we recover exactly the action

. . found from the test string instantdb.6).
where ¢,x;), i=1,2, are coordinates along the flux-brane. 9 6.6

Note that the components of the field are simply constant
and that the induced metric at the center of the flux-brane,
p=0, is flat. Since the metric and dilaton both depend3n e have constructed solutions describing magnetically
while H depends linearly o8, when|B| is small this solu-  chargedp-branes and loops of fundamental string, as well as
tIOI’l red.uces tO the Conﬁguration we Started Wlth in the tesrnstantons describing the nuc'eation of these objects in ap_
string discussion above. propriate background fields. The basic idea was to start with
The solution describing the unstable static loop of magy vacuum solution with a (1) isometry. The fixed points of
netic string(4.5 can similarly be dualized. The result is a the isometry describe p-brane in the reduced spacetime
static |00p of fundamental String in the baCkgI’OL}I‘Id'ield Wh|Ch can Carry magnetic Charge_ One can then apply a du_
(6.11). Since the Einstein metric is unchanged under dualitygjity transformation to obtain electrically charged solutions.
the metric (4.5 also describes a finite fundamental string |f the reduced spacetime is five dimensional, the resulting
loop. This is the exact analogue of the circular test string atheory is precisely part of the low-energy string action and
rest. the magnetically charged strings are transformed into funda-
Since theH field has a nonzero time component, the in- mental strings.
stanton describing the nucleation of a loop of fundamental Tg construct our solutions we have always started with a
string will have imaginarH as expected for an electric-type gyclidean black hole or Euclidean black hole cross time.
field. Itis constructed by starting with the Lorentzian Myers- However, it is clear that there are many other possibilities

dg?=e??(—dt?+dx?+dp?) + p2d¢?,

VIl. DISCUSSION

Perry-Kerr solution irD =6: which can yield interesting solutions. For example, one can
, start with a Lorentzian black hole cross a cirtlé.one con-
dsz:(l_ﬁ)de_ 2pa sinf 0 dr do siders the symmetry consisting of translation around the
rs rs circle plus rotation of the black hole, the reduced space de-
scribes a black hole in a background magnetic flux-brane.
+ — 22 - dr2+3 de? This is the Ii.kely gnd point of g-brane which is smaller
r-—a®—ur than the static radius and collapses to form a black hole. In
Sir? 0 five dimension;, we can dualize to obtain a black hole in a
+ [(r2—a?)S —ur1a? sir? 6]de? backgroundH field.
> It was shown in[9] that in the standard five-dimensional

6.12 Kaluza-Klein theory the dominant decay mode for the weak

' magnetic fields of physical relevance was via “bubble nucle-
We then reduce to five dimensions using the symmetrgf ation” analpgous to the decay of the Kaluza-KI.ein vacuum.
(5.7) and (5.8). Explicitly, we seto=¢+[Q— (o/R)] 7 and The same is true for the decay_of the magnetic flux-brane_s
then read off the five-dimensional metric, dilaton, and gaugéiescrlbed here. Indeed, the earlier an_aly5|s is just the special
field by putting the metric in the forn2.2) with D=6 and  casé p=0. For everyp, the reduction of the(p+5)-
xP=r. Next, we analytically continug=—it. The resulting dlme_nsmnal Myers—Pgrry—Kerr mstanton,.wnh one nonzero
metric describes an expanding loop of magnetically chargefPtation parameter, via, Eq. (5.7), d,esc,f'be? decay of a
string. (The Killing vector d/at is a boos). We now apply (p+1)-flux-brane via “bubble nucleation,” while the shifted

the duality transformatior.7) to obtain an expanding loop réduction viaq’, Eq.(5.8), describes nucleation of a charged
of fundamental string. Finally, we analytically continue back P-Prane. If we take two instantons, with different parameters,
t=iy to obtain the desired instanton. one reduced along and the other along)’, so that the

The Euclidean action is not invariant under the duality2Symptotic value of the magnetic fieilis the same in both
transformation(6.7). However, for four-dimensional black CaS€S; then we find that the bubble nucleation has smaller

holes, it has recently been shown that the rate of pair@ction for smallB|. _ _
creating electrically charged black holes is identical to the Having said this, it was also pointed out[®] that a spin
rate for creating magnetically charged ofiég,10. This is structure argument qnalogous to that which would stabilize
because one must include a projection onto states of definiff® D=5 Kaluza-Klein vacuum(16] would also rule out
electric charge[27] in calculating the rate which exactly Pubble nucleation, but allow the pair production of mono-
compensates for the difference in the action. We expect th&°!€s- Roughly, the argument is that e=5 Kaluza-Klein

a similar result will hold in the present case as well. The rate

will then be given bye™', wherel is given by (5.9 with

p=1. In the limit of small|B|, we can usé5.10 to express  “f the radius of the circle is small compared with the mass of the
this as black hole, then this solution is likely to be statpR8].

+r2 cog O(dy?+cos y dy?).
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Melvin solution admits two spin structures which may bewith their Hawking temperature equal to the acceleration
distinguished by asking what phase spinors pick up undetemperature. It thus seems that a necessary condition to
parallel transport around the internal circle. There are twaucleate a nonextremplbrane is that the Hawking tempera-
instantons for the decay of the same four-dimensional flusture must go to zero in the extremal limit, so that it can equal
tube, one corresponding to bubble nucleation and the other tihe acceleration temperature for small acceleration.
pair production. Each instanton admits only a single spin Our construction has only yielded fundamental strings in
structure since it is simply connected, but that spin structurdive dimensions. However, from the test string calculation it
tends at infinity to a different one of the two possibilities. Sois clear that there should exist analogous solutions in all
depending on which spin structure is chosen for the backdimensions larger than 2. In particular, a four-dimensional
ground Melvin spacetime, one or other of the decay channelsolution describing a loop of fundamental string should exist.
is ruled out. If|B| is small, then there is a natural choice It would be interesting to find it.
which is in some sense continuous with the choice that rules In addition to the fundamental strings, we have mentioned
out the vacuum decay. This allows pair production, butthat our solutions have two other string theory interpreta-
eliminates the bubble nucleation. In particular, this is whatijons. First, the Kaluza-Klein reduction @=11 leads to
we expect irS' compactifications that preserve supersymmesix-brane solutions carrying Ramond-Ramond charge of the
try. D =10 type-IIA theory. On the other hand, f@¥<10, the

A similar argument can be used to show that there ixajuza-Klein solutions provide solutions to string theory
again a natural choice of spin structure for a single backyompactifications which include @ factor. Since these are
ground(p+1)-flux-brane which would rule out the decay via charged with respect to the(l) gauge field coming from the

bubble nucleation, but allow the decay via production pf 8metric, they carry Neveu-Schwarz—Neveu-Schwats-NS
spherical chargegi-brane. These are th_e only two pos.s'ble?harge in the type-ll theory. Let us briefly mention some
_decay routes. When the background is a cqn_ﬂ_g_uratlon Oways in which we can generalize our solutions. For conve-
intersecting flux-branes, there are more possibilities for th('fflience we discuss these transformations in terms of the sim-
decay. Suppose we hakeintersecting flux-branes ip+4 ¢ ﬂ' t ch b B ing the t IA si
spacetime dimensions. One decay channel that always exi%&es a c_argecp— ranes. by wrapping the type-ia six-
rane solution around amtorus, we can obtaif6—n)-brane

is the bubble nucleation. Then there &rehannels which are - ) . s
the nucleation and subsequent expansion of a charge??lunons of type-Il theory in 16n dimensions that carry RR

p-brane within each individual flux-brane, an§)(channels ~ charge. These will be related to the NS-N&-n)-branes
which correspond to an unchargéd—2)-brane produced obtained by Kaluza-Klein reduction by some field redefini-
and expanding in the intersection of each pair of flux-braned§ons (part of the continuous group &f-duality transforma-
and so on: b possible(p—2l +2)-branes produced in the tions[1]). Another way to obtain new solutions is to use the
intersection of each subset bflux-branes. The generaliza- fact that the Kaluza-Klein solutions have @lyisometry. In
tion of the spin structure argument seems to result in th@articular, there is th&-duality symmetry which includes
bubble nucleation being ruled out, the—4n)-brane produc- interchanging the two (1)'s coming from the dimensional
tion being allowed, where is an integer, and thep—2(2n  reduction of the metric and antisymmetric tensor. This trans-
+1)]-brane production being ruled out. So, for example,formation takes the “metric” p-brane in p+4 reduced
Bais-Batenberg “monopole” pair production would be al- spacetime dimensions to an “antisymmetric tensor”
lowed only if the reduced spacetime dimension were a mulp-pbrane. These latter objects can be considered to be
tiple of 4. H-monopoles in four dimensiorf29,30 with p flat dimen-
The situation with the fundamental string is slightly dif- sions added. Equivalently, the=5 solution in nine dimen-
ferent. After we dualize in five dimensions, the connectionsions can be constructed by taking a periodic array of five-
with six d_|men3|ons is lost and in particular we no longerpranes in ten dimensions to get a five-brane in nine
have a spin structure argument. It seems that there should ensions. By wrapping these solutions aroundSanwe

an argument to eliminate the dual of the bubble nucleation., then obtain a four-brane in eight dimensions, etc. Fi-

process while keeping the string production process, and t - ; - .
following is a promising possibility. While the instanton de_hﬁally, new solutions can also be obtained by employing vari

o S . Lo .~ _ous string-string dualities, which amounts to writing the so-
scribing bubble nucleation is nonsingular in six d'menS'onslutions in suitable dual variabldd,2]. It is natural to expect
it is singular in five dimensions, as is its dual. It is not clear . P

whether this singular dual instanton corresponds to a physf—hat all of the above transformations acting on our instantons
cal decay channel of the field, but we expect not since, if will produce instantons describing the nucleation of the cor-

it is allowed, it suggests that the vacuum itself would also'€SPonding objects.
decay via dual-bubble nucleation. Of course, the instanton [N recent work Polchinski has shown thatbranes, sur-
describing the nucleation of a fundamental string is also sinfaces where first-quantized strings have Dirichlet boundary
gular, but here the singularity is readily interpreted in termsconditions, are carriers of Ramond-Ramond chaidgsin
of the string source and almost certainly should be allowedparticular, the six-brane of the type-IIA theory hab érane

The extended objects that we have considered are all edescription. This identification has, as yet, only be made in
tremal, in the sense that their mass per ymitolume was the static, supersymmetric case. Although our instantons are
essentially equal to their charge. It would be interesting taneither static nor supersymmetric, we still might expect a
know whether one could nucleate nonextremal extended obrelated D-brane construction. Having such a construction
jects. For black holes in four dimensions, it was found thatmight enable one to go beyond the semiclassical approxima-
nonextreme black holes were created in thermal equilibriuntion in a controlled manner.
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APPENDIX
a,2 i 1/2 a,2 1/2
We here calculate the action of the Euclidean rotating Vvh= l—r—z— rD_g) (1—r—2 cos?&)
black hole with one nonzero rotation parameter in arbitrary
dimension. The metric i17] X P~ 2singco® 49\ Qp_ 4. (A7)
2uasinfd The unit normal is
dg?= ( 1- %) dr2— 2 dr de
rb—-3 r°—°3% (rz_az_ﬂr50>1/2 P ”8)
N=\—72—">2—o, -—.
o ——o A2 s de? r’—a’cos 6 ar
. K is calculated vieK \h=n+/h, so that
SII’\20 2 2 5-D 24 2
+ —[(r?=a?)3 — ur® Pa?sirfg]de
p nvh
K= —. (A9)
+r2c0£6 dQp_,, (A1) NG

The background valu&, is easily computed from this by

where S=r?—a’cos6. The horizon is located at=r, : , ( _
settingu=0 since(Al) with w zero is flat for all values of.

where
Thus we have
2_ 2, M h
et s . (K=Kg)vh=n h—n%lﬂo(L. (A10)
h|,u=0
The radius of the circle at infinity is We want to take the limit —oo. In this limit,
1 2ury® Vh ©
R=—= , A3 Iim|—=——|=1-=p=3 All
k (D—-3)ri—(D-5)a? (A3) i\ V] 2o 2rP—3 (ALD
while the Euclidean angular velocity is and, hence,
D-5 . .
L ag)  ImLK=Kg)vh]=lim| (nvh=nyhl,-0)
M : r—oo r—o
The Euclidean action is defined with respect to a back- +nvh =0 %
ground geometry:
. ﬁn\/ﬁ 1
1 = lim =0t 3o=3nVh| o[ u
= deXV—goR(gD) rowl 0K 2r
16’7TGD
= —Zusingco® *6Op_,. (A12)
- D-1 -
87Gp J d®Hxyh(K=Ko), (A5) Then,
whereK is the trace of the extrinsic curvature of the bound- | = mRVb 4 = Vo4 (A13)
ary andK, is the trace of the extrinsic curvature of the 4(D-3)Gp ® 8(D—-3)Gp_1 K
0
boundary embedded in the background geometry. Here the
appropriate background is just flRP. whereVp_, is the volume of the uni(D —4)-sphere.

The instanton is Ricci flat, and so the boundary term is the We can check that this agrees with the thermodynamic
only contribution. Let the boundary be given by=const. and Smarr formulas given ifl7]. The masdM and angular
The induced metric is momentumJ are given by
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(D-2)Vp_, 2

“p2 M

wherea=i « is the Lorentzian rotation parameter. The Smarr

relation is

wJ+TS= —— M,

5= (A15)

whereS is the entropy,T=«/27 the temperature, and is

the Lorentzian angular velocity. The thermodynamic poten- R

tial W is

1
W=M-TS—wl==——-M,

5> (A16)

and thus the Euclidean action is
= W— 2R M Al7
T o2 ™ (AL7)

which agrees witHA13) sinceVp_,=27Vp_4/(D—3).

It is more interesting to expres@13) in terms of the
value of the asymptotic magnetic field stren@thk Q) — (o/
R) (e=Q/|Q)|) and radius of compactificatioR. From (A2)
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and(A4), we can eliminatex and then solve for, with the
result

—1+1+4rj02

50 (A18)

a=

Using this andA4) in (A3), we obtain an expression f&in

terms ofry and(}. This can be inverted to yield

ry D—4+[(D-4)*>-(1-R*Q%(D-3)(D-5)]"
R 2(1-R%Q?) '

(A19)

One can thus obtain an expression forar B ~°/€) in terms

of R and (), which unfortunately is extremely complicated.
However, it simplifies in two limits. Whem=0, the instan-

ton is just the Euclidean Schwarzschild solution and one has

(D-3)R]P3
I A (A20)
2
When|QR|~1 (so|B| is smal), one finds
L R A21
M= 2 |B|D—4- ( )
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