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Black hole in thermal equilibrium with a spin-2 quantum field
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An approximate form for the vacuum averaged stress-energy tensor of a conformal spin-2 quantum fie
a black hole background is employed as a source term in the semiclassical Einstein equations. An
corrections to the Schwarzschild metric are obtained to first order ine5\/M2, whereM denotes the mass of the
black hole. The approximate tensor possesses the exact trace anomaly and the proper asymptotic beh
spatial infinity is conserved with respect to the background metric and is uniquely defined up to a
parameterĉ2, which relates to the average quantum fluctuation of the field at the horizon. We are abl
determine and calculate an explicit upper bound onĉ2 by requiring that the entropy due to the back reaction b
a positive increasing function inr . A lower bound forĉ2 can be established by requiring that the metric
perturbations be uniformly small throughout the region 2M<r,r 0 where r 0 is the radius of perturbative
validity of the modified metric. Additional insight into the nature of the perturbed spacetime outside the b
hole is provided by studying the effective potential for test particles in the vicinity of the horizon.@S0556-
2821~96!04312-3#

PACS number~s!: 04.70.Dy, 04.60.2m, 05.70.Ce
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I. INTRODUCTION

The physics of black holes provides a fertile ground
which the confluence of gravitation, quantum mechanics, a
thermodynamics takes place. Progress in our understand
of this confluence as well as of the specific thermal and m
chanical aspects of black holes requires one to construct
study model theories of semiclassical black holes which c
provide insights into the kinds of physical effects that ma
be present in a complete and, as of yet, unrealized desc
tion of quantum gravity. A key to one such model theory
the fact that a black hole can exist in~possibly unstable!
thermodynamic equilibrium provided it is coupled to therm
quantum fields having a suitable distribution of stress ener
In the semiclassical approach, such fields are character
by the vacuum average of a stress-energy tensor obtaine
the renormalization of a quantum field on the classical ba
ground geometry of a black hole. Using such a tensor a
source in the Einstein equation

Gmn58p^Tmn& ren ~1!

defines the associated semiclassical back-reaction prob
The solution of~1! encodes the change induced by the stre
energy tensor on the black hole’s spacetime metric.

Before a solution can be obtained however, one needs
be able to calculate the expectation value of stress-ene
tensors for quantized fields in a suitable vacuum state. T
task has proven to be considerably difficult when the bac
ground spacetime is that of a static black hole. Indeed,
date, the only exact numerical calculations of^Tmn&ren on this
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background have been carried out for the conformal sca
@1#, the U~1! gauge boson@2#, and most recently, for the
nonconformal scalar field@3#. In each of these cases, excel
lent analytic approximations to the exact, numerically calcu
lated tensors have been found, and these have been used
turn, via the solutions of~1!, to explore the thermodynamical
and mechanical consequences of the back reaction of spi
and spin-1 quantum fields on a black hole@4–9#. The case of
a massless spin-1/2 fermion has also been investigated in@6#
based on an approximate stress-energy tensor. In this w
one has been able to investigate the effects of quantized m
ter on the geometry of black holes, in a case-by-case fashio
and rather novel spin-dependent effects have been uncove
in the process@7#. While much has been learned from thes
studies, it is also clear that any discussion of back reaction
quantum field theory in curved spacetime should include th
effects of linearized gravitons~whose spin52!, which are
expected to contribute to the one-loop effective stress-ener
tensor a term of the same order~or perhaps higher order! as
those coming from the lower spin fields. A knowledge o
how gravitons behave near the singularity at the center of
black hole is likely to be crucial to our understanding o
quantum gravity. One would also like to obtain a self
consistent picture of the black hole evaporation problem
However, at the present time, the calculation of such a tens
is confronted by complicated technical difficulties, the solu
tion of which shall require a reconciliation between gaug
invariance and renormalization@10#. Namely, while a com-
plete set of solutions for the linear graviton field equation
exists only in the radiation gauge, explicit renormalizatio
has been implemented only in the deDonder gauge.

Until such time as the technical difficulties associate
with the nonconformal, spin-2 linear graviton can be ove
come, it is worthwhile to obtain some idea of the magnitud
of the back reaction arising from the spin-2 nature of th
7094 © 1996 The American Physical Society
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53 7095BLACK HOLE IN THERMAL EQUILIBRIUM WITH A SPIN- 2 . . .
graviton. This, it turns out, can be achieved provided we a
willing to dispense altogether with the inherently nonconfo
mal graviton, and consider instead a conformal spin-2 qu
tum field. We hasten to point out that we are not suggest
to model the graviton with a conformal field, rather, we se
a concrete means for assessing the importance of spin-
the back reaction on a black hole. Nevertheless, it might w
turn out that some of the results of this calculation cou
serve as a guide as to what to expect in the technically co
plicated graviton case. The back reaction of the conform
spin-2 field can be calculated employing, for example, t
approximate stress-energy tensor ansatz constructed
Frolov and Zel’nikov @11# valid for massless, conforma
fields in any static spacetime. The main idea of their a
proach is to approximatêTmn&ren by a tensor expanded in a
basis containing the curvature tensor, the Killing vector, a
their covariant derivatives, up to some order. The resulti
tensor is covariantly conserved with respect to the bac
ground metric, possesses the correct~and exact! trace
anomaly, and obeys certain important scaling relations a
boundary conditions. For a static black hole in a vacuum
unique ~up to a parameterĉ2! tensor is singled out which
should provide a reasonable approximation to^Tmn& ren in the
Hartle-Hawking vacuum state.

That there can arise important features depending so
on the spin of the field coupling to the black hole is su
ported by results of the back-reaction analyses presente
@5–7#. These do indeed indicate an important dependence
the spin of the quantum field. For example, the energy de
sity of the spin-1 vector boson near the black hole horizon
roughly 120 times greater in magnitude than that of the co
formal scalar@5#. A calculation of the radial acceleration of a
massive test particle initially at rest just outside the horiz
also manifests a curious spin dependence. The acceleratio
enhanced for the spin-0 scalar and for the spin-1/2 fermi
but can be reduced for the spin-1 boson@6#, for a sufficiently
large number~or multiplicity! of U~1! fields. Spin depen-
dence also shows up in the effective potential for test p
ticles in the vicinity of the black hole leading to either a
increase or decrease in the black hole’s capture cross sec
@7#.

In Sec. II we discuss the relevant features of the Frolo
Zel’nikov approximate stress-energy tensor needed for
present calculation and calculate the spin-dependent par
eters needed to apply it to the spin-2 field. The metric p
turbations resulting from using this tensor as a source in
semiclassical Einstein equation are calculated in Sec. III. T
way in which the black hole mass is renormalized and ho
the remaining constant of integration gets fixed by the th
modynamic boundary conditions is reviewed briefly. Bo
upper and lower bounds forĉ2 result from requiring that the
metric perturbations due to the back reaction be uniform
small over the entire range of 2M<r,r 0 , wherer 0 is the
radius of perturbative validity of the solutions of~1!. In Sec.
IV, we compute the entropyDS by which the back-reaction
of the spin-2 field augments the Bekenstein-Hawking e
tropy. By requiring that the field increases the thermod
namic entropy of the system, we are able to put an up
bound on the constantĉ2, which measures the magnitude o
the quantum fluctuations of the field at the horizon. Th
particular bound is much more stringent than that comi
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from the condition of the ‘‘smallness’’ of the solutions
Combining the results from perturbative validity plus well
behaved entropy, we obtain the double inequali
23080,ĉ2,21366. We also calculateDS for the lower
spin conformal fields~s50,1/2,1! and compare these results
to previous entropy calculations based on exact stress-ene
tensors in order to get some indication for the accuracy of t
Frolov-Zel’nikov approximation. Further insight into the na
ture of the modified spacetime geometry is obtained exa
ining the effective potential for test particle orbits in Sec. V
Our results are summarized briefly in the final section. Un
are chosen such thatG5c5kB51 but\Þ1.

II. APPROXIMATE SPIN-2 STRESS-ENERGY TENSOR

For the case of a static black hole background with th
metric (w52M /r )

ds252~12w!dt21~12w!21dr21r 2~du21sin2udf2!,
~2!

the tensor ansatz constructed by Frolov and Zel’nikov@11#
takes on a relatively simple structure depending on just thr
spin-dependent constants:

Tmn5asTmn
~ tr!1bstmn8 1cstmn9 . ~3!

Defining the constant tensors

Pm
n 5dm

n 24dm
0d0

n , ~4!

Cm
n 5dm

1d1
n2dm

0d0
n , ~5!

then the various terms in the expansion ofTm
n are given by

Tm
~ tr!n548k4w6~dm

n 13Pm
n 26Cm

n ! ~6!

tm8
n5k4@~112w13w214w315w416w52105w6!Pm

n

1168w6Cm
n #, ~7!

tm9
n5k4w3@~415w16w2115w3!Pm

n 212~11w1w2

12w3!Cm
n #, ~8!

wherek5(4M )21 is the surface gravity of the black hole
The constants in~3! are fixed from knowledge of the exact
trace anomaly and by boundary conditions to be satisfied
the black hole horizon and at spatial infinity. All three ten
sors are finite at the horizon~w51!. The first tensorTm

~tr!n is
the only one with nonzero trace:

Tm
m5asTm

~ tr!m5asS 48M2

r 6 D . ~9!

On the other hand, the exact trace anomalies for conform
quantum fields of arbitrary spin on a curved backgroun
have been calculated previously@12,13#. The general result
can be expressed in terms of a certain linear combination
curvature invariants@14#. For the case of Ricci flat~Rmn50!
backgrounds, the trace anomaly simplifies to
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^Tm
m& ren5

âs
~2880p2!

RabgdR
abgd

5
âs

~2880p2! S 48M2

r 6 D , ~10!

where the final equality holds for the black hole backgroun
In particular, for spin-2,â25212, and matching coefficients
between ~9! and ~10! yields the identification
a25212/~2880p2!. The second tensor,tm8

n , is the only one
contributing at far distances from the singularity~r→`!, and
takes on the asymptotic form

Tm
n→bstm8

n5bsk
4 diag~23,1,1,1!m

n . ~11!

The coefficientbs is determined from the boundary conditio
thatall the quantum stress-energy tensors renormalized o
black hole background approach the form of a flat-spaceti
radiation stress tensor at the uncorrected Hawking tempe
ture ~TH5k/2p!. The radiation stress tensor in flat space
simply proportional to a constant tensor, the proportional
factor depending on the number of independent helic
states of the field in question. For the case of spin-2, t
flat-space limit is given by

^Tm
n & ren→S p2

90Dh~2!TH
4 diag~23,1,1,1!m

n , ~12!

whereh~2!52 is the corresponding number of independe
helicity states~this is also the number of independent com
ponents of the linear graviton in 311 dimensions!. Matching
coefficients of ~11! and ~12! in this limit yields
b254/~2880p2!. The third and final tensor is finite at the
horizon and vanishes asymptotically at infinity asr23. It is,
therefore, presumably important only for the intermedia
zone near the black hole horizon. Moreover, the coefficie
cs multiplying it can be fixed unambiguously by requiring
that @11#

Tm
n uw515^Tm

n & renuw51 . ~13!

The tensor structure of both sides of this equation is identi
at the horizon, so only one constant is actually defined. Ho
ever, the implementation of this boundary condition requir
knowledge of the~exact! renormalized quantum stress tenso
at the black hole horizon. The exact value of^Tm

n &ren at the
event horizon for the Hartle-Hawking vacuum is known on
for the conformal scalar@1#, the nonconformal scalar@3#, and
the electromagnetic field@2#. As it is the spin-2 version of
d.
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^Tm
n &ren we are interested in approximating, we shall need

different~but physically equivalent! criterion for establishing
the value~or bounds! of c2. Loose bounds onc2 may be
established by appealing to perturbation theory, as will b
made explicit in the next section. However, an improved
upper bound results from exploiting the physical propertie
of the thermodynamic entropy. We will indeed return to this
important point later on when we come to discuss the
amount by which the spin-2 quantum field auguments th
thermodynamical entropy of the black hole. In the meantime
we continue in what follows, keepingc2 as a free parameter.

III. METRIC PERTURBATIONS

With the explicit components of the approximate spin-2
stress tensor in hand, we may now proceed to solve the bac
reaction equation~1! to first order ine5\/M2,1. AsTm

n is a
function only of the radial coordinate, the resulting metric
perturbations will be static and spherically symmetric. The
most general metric satisfying these conditions involves tw
independent radial functions, and may be written as@4,6#

ds252S 12
2m~r !

r De2c~r !dt21S 12
2m~r !

r D 21

dr2

1r 2dV2. ~14!

Then, the linear perturbations to the metric result from ex
panding the two metric functions ine as

ec~r !511er̄~r !, ~15!

m~r !5M @11em̄~r !#, ~16!

and the functionsr̄ and m̄ are solutions of the~linearized!
Einstein equations

dr̄

dr
52

16pM2

ew3 ~12w!21@Tr
r2Tt

t#, ~17!

dm̄

dr
5
32pM2

ew4 Tt
t . ~18!

These follow directly from~1! after substituting~14! into the
Einstein tensorGmn and expanding both sides toO~e! @the
stress tensor is itselfO(\)5O(e)#. The solutions of these
equations involve simple radial integrations which for the
present case, upon integrating up from the horizon~1<w!,
yield
m̄~w!52
1

6K
$32â2~w

321!1b̂2@2w2323w2229w21112 ln~w!115w19w2249w3138#

1 ĉ2~3w13w217w3213!%1C0K
21, ~19!

and

r̄ ~w!52
1

3K F b̂2S 2
1

2
w2223w2116 ln~w!110w1

15

2
w217w3221D2 ĉ2Sw31

3

2
w212w2

9

2D G1k0K
21. ~20!
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The existence of the limit limw→11(T r
r2T t

t)/(12w) has
been used to render the integration of~17! trivial. Here,
K53840p, ĉ2/c25b̂2/b25â2/a252880p2 and C0 and k0
are constants of integration. If we setm5m̄2C0K

21, the
mass function can be rewritten toO~e! as

m~w!5M $11e@m~w!1C0K
21#%

5M ~11eC0K
21!@11em~w!#

5M ren@11em~w!#, ~21!

so that the integration constantC0 serves to renormalize the
~bare! black hole mass, and we, henceforth, writeM[M ren
in what follows, with the tacit understanding that this stan
for the physical black hole mass. The unknown quantities
the perturbed metric are reduced to a single integration c
stant,k0, which can be determined after suitable bounda
conditions are imposed.

The necessity for imposing boundary conditions has be
exhaustively discussed in previous work@4,6,7#. We reca-
pitulate briefly the main points of that discussion here. In t
first instance, asymptotic flatness does not fix the value ofk0.
To appreciate this point, it suffices to note tha
r̄ (r );(b̂2/6K)(r /2M )2 for r→`. Related to this limit is the
fact that the stress-energy tensors employed in~1! are as-
ymptotically constant@see~11! and ~12!#, thus the radiation
in a sufficiently large spatial region surrounding the blac
hole would collapse onto the hole and thereby produce
larger one. This asymptotic constancy of the~renormalized!
stress tensors is, of course, not an artifact of any approxim
tion or regularization scheme. It is simply thephysicalcon-
dition required in order that an observer at spatial infini
measure the correct value of the Hawking temperature~of
the unperturbed black hole!. As the perturbations grow~in r !
without bound, it is therefore necessary to implant the sy
tem consisting of black hole plus thermal quantum fields in
finite cavity with a wall radiusr 0.2M . The allowed values
for r 0 can be determined explicitly by requiring that the me
ric perturbations remain uniformly small over a certain radi
domain. The boundary condition and the region outside
cavity wall are really to be thought of as the ambient spac
time in which the system~black hole1radiation! is embed-
ded. We shall choose microcanonical boundary conditio
specifying thus the total energyE(r 0) at the cavity wall, and
match on an exterior metric of Schwarzschild form with a
effective massM*5m(r 0). Defining r by r̄5r1k0K

21,
the continuity of the metric across the wall yields the relatio
k052Kr(r 0). The spacetime geometry, including the bac
reaction, is thus now completely specified forr<r 0 by

ds252S 12
2m~r !

r D $112e@r~r !2r~r 0!#%dt
2

1S 12
2m~r !

r D 21

dr21r 2dV2, ~22!

and for r>r 0 by

ds252S 12
2m~r 0!

r Ddt21S 12
2m~r 0!

r D 21

dr21r 2dV2.

~23!
ds
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The parameterr 0 and e must be chosen so that the correc
tions to the back reaction remain suitably small. That is, w
must ensure that the effect ofTm

n is a perturbation of the
Schwarzschild geometry. This condition will be satisfied
provided the proper~orthonormal frame! perturbations, given
by

hr
r5w

m~w!

12w
, ~24!

ht
t522@r~w0!2r~w!#2hr

r ~25!

with w052M /r 0 , obey

euhb
au[d,1. ~26!

The cavity radius should be chosen so thatr 0<r asymp, where
r asympis the asymptotic radius which is the maximum radiu
for which the metric perturbations remain small. Note tha
h t
t52h r

r if r5r 0. Hereafter, we will taked5e for illustra-
tive purposes. Henceuhb

au51. In addition, we shall use
r 05r asymp in the following. Now, to obtain the asymptotic
radiusr asymp~5r 0! we go to the limitr→r 0 with r 0 tending
to a very large but finite value. Taking the leading terms i
uh r

r u, we can write

lim
r→r0 ,r0→ large value

uhr
r u;

2

3K S r

2M D 21 13

6K
ĉ2S 2Mr D

5S d

e D51. ~27!

Solving this equation gives the asymptotic radiusr asymp.
In order to establish the bounds forĉ2 we must use the

requirement of ‘‘smallness’’ of the perturbationsuhb
au in the

entire region ofr , 2M<r<r 0 . In particular, let us checkuhb
au

at the horizon wherer52M ~or w51!. To obtain the value
of h r

r let us rewrite expression~19! for m(r ) as

m~w!52
12w

6K
@32â2~2w22w21!1b̂2~49w

2140w125

213w2124w222w23!1 ĉ2~27w2210w213!#

2
1

6K
12b̂2 ln~w!. ~28!

Now using Eq.~24! we find that the value ofh r
r at the hori-

zon ~w51! is

hr
r uw515

20 016130ĉ2
72 382

. ~29!

Here, we have used the results that
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lim
w→1

m~w!

12w
52

1

6K
~296â2196b̂2230ĉ2!1

12b̂2
6K

.

~30!

The ln-term gives a positive contribution. The requireme
that euh r

r u5d,1 ~or uh r
r u51! yields the double inequality

23080< ĉ2<1746. ~31!

Now we may substitute the valueĉ2523080 into Eq.~27!. It
is easy to see that the second term in Eq.~27!, which con-
tains ĉ2, is much less than the first one. So we may negl
the second term, and then the equation takes the form

2

3K S r

2M D 251. ~32!

We have from~32! the following value of the asymptotic
radius:r 05260M .

Now let us consider the value ofh t
t at the horizon~w51!.

We will take ĉ2523080 andr 05260M . Leaving only the
main terms in the expression~25! for h t

t and using~20! and
~29! we obtain

ht
tuw51522r~w0!2hr

r uw51

'22r~w0!11

'2
1

3K
b̂2w0

221
9ĉ2
3K

11

'21.64. ~33!

Hence, in order that the quantityeuh t
tu be small at the hori-

zon, it is necessary thate<0.6.

IV. THERMODYNAMICAL ENTROPY

The thermodynamical entropyS of the black hole in ther-
mal equilibrium with the conformal spin-2 quantum field ca
be computed following the method presented in@6#. From
the first law of thermodynamics applied to slightly differin
equilibrium systems

dE5dQ ~dr50,r<r 0! ~34!

and so

dS5
dQ

T
5
dE

T
5bdE, ~35!

whereb is the inverse local temperature@4#,

b~w!5
8pM

\
$11e@r~w!2n2K

21#%S 12
2m~w!

r D 1/2,
~36!

and

E~r !5r2r @grr ~r !#1/2 ~37!
nt

ect

n

g

is the quasilocal energy@15#, with grr determined by~22!.
ChoosingM andr as independent variables and fixingr , we
can integrate~35! to obtain the total system entropy as a
distribution for r,r 0:

S5
4pM2

\
1DS, ~38!

where

DS58pE
1

wF w̃21~r2m!1
]m

]w̃
2n2K

21w̃21Gdw̃,
~39!

and

n25S ]Km

]w D
w51

5216â2114b̂225ĉ2 . ~40!

The quantityDS is therefore the amount by which the quan-
tum field changes the Bekenstein-Hawking entropy
SBH[4pM2/\, through its back reaction.S is a function ofr
and is the total system entropy~black hole plus radiation!
contained within the region of radiusr . Working out the
integral with the explicit forms forr andm calculated above,
we find that

DS/8p5S 32â26K D S 2
2

3
w312 ln~w!1

2

3D 1S b̂26K D S 43 w23

14w22112w21216 ln~w!220w212w2

128w32
40

3 D 1S ĉ26K D @4w24w318 ln~w!#. ~41!

As a general consequence of~39!, the horizon is a local
extremum with respect tor since

S ]DS

]w D
M ,w51

58pFw21~r2m!1
]m

]w
2n2w

21K21G
w51

50,

~42!

as follows from the fact thatr~1!5m~1!50, and the defini-
tion of n2. On physical grounds, we demand that the horizon
be a local minimum to prevent the existence of a spherica
shell of negative entropy nearr52M . The same physical
criterion was employed recently to establish limits in the
range of the nonminimal coupling constant between the sca
lar field and the scalar curvature@8#. Computing the second
derivative ofDS at the horizon yields

K

8p S ]2DS

]w2 D
w51

5232â21
112

3
b̂22

16

3
ĉ2 . ~43!

Substituting in the values ofâ25212 andb̂254, we find that
the horizon will be a local minimum of the entropy if and
only if ĉ2,21241.5. Values ofĉ2 satisfying this inequality
will only guarantee thatDS>0 and increasing at the horizon.
In fact, Eq.~41!, because it contains a term inĉ2, cannot be
non-negative and monotone increasing~as a function ofr for
fixedM ! for all values ofĉ2. In order thatDS be a positive
and increasing function everywhere~strictly speaking, for
2M<r,r 0!, we cannot allow (]DS/]r )M50 for any value
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of r.2M . That is, we do not allow for a spherical layer o
negative entropy at any value ofr beyond the horizon. Ex-
plicit calculation ofDS indicates that the smallest value~in
absolute magnitude! of ĉ2 satisfying this condition is
ĉ2521366, which occurs atr;5.7M see, e.g., Fig. 1. We
plot the quantity (3K/4p)DS versusw52M /r in Fig. 1 for
the values ofĉ2 indicated there. Note that large (r@2M )
values of the radial coordinate correspond to small values
w(0,w<1). One sees in particular thatDS is positive and
increasing at the black hole horizon sinceĉ2,21241.5 in all
the cases displayed, but that there can~and do! arise local
extrema away from the horizon depending on the prec
value of ĉ2. For example, as indicated in Fig. 1, the valu
ĉ2521336 yields aDS which increases from the horizon
only to vanish again atr;7.3M , after which it increases
once more. The entropy due to the spin-2 back reaction w
therefore be a positive and monotonically increasing funct
of r , within the present approximation, provided th
ĉ2,21366. Putting this result together with the perturbati
bounds obtained earlier, we conclude th
23080,ĉ2,21366, simultaneosly guaranteeing wel
behaved entropy as well as the perturbative validity of t
solution. Returning to the boundary condition in~13!, we see
that ĉ2 gives a measure of the average quantum fluctuation
the spin-2 field at the black hole horizon. We may thus e
ploy the criterion of physically well-behaved entropy an
perturbative validity to establish bounds in the range
spin-2 field fluctuations at the horizon. Working out~13! for
m5n50 ~the other components give no new information!,
we obtain the following bounds for the energy density at t
horizon:

25.1.
p2

k4 ^Tt
t&w51
ren .7.3. ~44!

This should be contrasted to the exact result

p2

k4 ^Tt
t&w51
ren 50.63, ~45!

for the spin-1 case and to the corresponding exact result

FIG. 1. Entropy correction (3K/4p)DS(w) due to the spin-2
back reaction, for various values ofĉ2.
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p2

k4 ^Tt
t&w51
ren 50.05 ~46!

for the spin-0 case. The average quantum fluctuations for th
spin-2 field at the horizon are at least 100 times larger tha
for the scalar field case, and at least 10 times greater than f
the spin-1 case.

Though in the present work we are primarily interested in
the physical properties of the spin-2 back reaction, it is o
interest to apply the Killing approximation~3! in order to
evaluateDS arising from the back reaction of some lower
spin conformal fields. Indeed, as the entropy correction
have been calculated independently for the cases sp
s50,1/2,1@6#, we have a means of checking the accuracy o
this approximation explicitly for the conformal scalar and for
the U~1! gauge boson, two cases where exact renormalize
stress-energy tensors are known. Stress tensors renormaliz
on a Schwarzschild background have been obtained in exa
form by Howard@1# for the conformal scalar and by Jensen
and Ottewill ~JO! @2# for the Abelian vector boson. In both
cases, there also exist excellent analytic approximations fo
the full numeric calculations. The analytic form for the con-
formal scalar was first given by Page~P! @16#. We use these
analytic results to calculateĉs by means of the horizon
boundary condition, Eq.~13!. For the massless spin-1/2
fermion, we have used the tensor of Brown, Ottewill, and
Page~BOP! @17#, but the accuracy of their approximation
has not, to our knowledge, been checked against an exa
numerical calculation. We collect the various spin-dependen
coefficients needed to evaluateDS based on the Frolov-
Zel’nikov ~FZ! approximate tensor, in Table I.

The comparison of the~spin-dependent! entropies calcu-
lated from the various stress-energy tensors may be summ
rized compactly in the following manner:

DSFZ[DSP ~spin50!, ~47!

DSFZ[DSBOP ~spin51/2!, ~48!

DSFZ2DSJO532@w32w22 ln~w!# ~spin51!. ~49!

The explicit expressions for the corrections calculated from
other stress-energy tensors are presented in Table II; the r
sults are taken from@6#.

As discussed in@6#, the correctionsDSP>0, DSBOP>0,
and DSJO>0 and are monotonically increasing for all
r>2M . Since the difference~DSFZ2DSJO! vanishes at the
horizon and grows as 64 ln(r ) for larger r , DSFZ is also a
positive and increasing function ofr for spin 1. The condi-
tion that the horizon be a local minimum of the entropy,

TABLE I. Spin-dependent constants appearing in Eq.~3!.

Spin5s âs b̂s ĉs

0 1 2 0
1
2

7
4

7
2 5

1 213 4 28
2 212 4 23080,ĉ2,21366
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DSFZ Eq. ~41!, yields the inequalitiesĉ0,8, ĉ1/2,14 and
ĉ1,106, respectively, which are automatically satisfied b
the values displayed in Table I, derived from the exact stre
tensors fors50,1 and by the value derived from the approx
mate BOP tensor for the spinor case. In Fig. 2 we plot t
various spin-dependent entropy corrections (3K/4p)DS(w)
whose functional forms are listed in Table II. We shoul
point out that in the case of the electromagnetic field,
exact value of̂ Tm

n &ren at the black hole horizon was calcu
lated some time ago in@18,19#. Those results lead, however
to a value forĉ1592h(2)5184, which clearly violates the
entropy positivity bound cited above. The reason for th
large discrepancy between the two values ofĉ1 ~28 versus
184! is due to an important linearly divergent Christense
subtraction term which had been overlooked in the earl
calculations@2#.

V. EFFECTIVE POTENTIAL

Further insight into the nature of the modified black ho
metric may be gained by studying the motion of test particl

TABLE II. Spin-dependent entropy correctionsDS based on
other stress-energy tensors.

Spin5s
Stress
tensor DS(w)

0 P 8p

K F529 w324w22
20

3
w1

16

3
ln~w!

14w211
4

3
w221

4

9
w232

8

9G
1
2

BOP 7

8

8p

K F48863 w328w22
200

21
w1

128

7
ln~w!

18w211
8

3
w221

8

9
w232

16

9 G
1 JO 8p

K F3449 w328w21
40

3
w296 ln~w!

18w211
8

3
w221

8

9
w232

496

9 G

FIG. 2. Entropy corrections (3K/4p)DS(w) arising from
spin-0, 1/2, 1 back reactions.
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in the vicinity of the horizon. To this end, we compute the
effective potential of the perturbed black hole, as this com
pletely characterizes the motion of both massless and ma
sive test particles.

We present a derivation for the effective potential fo
point particles moving in a general static and sphericall
symmetric background based on a Hamilton-Jacobi a
proach. The line element and metric of such backgroun
spacetimes can always be cast in the form

ds25gtt~r !dt21grr ~r !dr21r 2~du21sin2udf2!.
~50!

The trajectory of a point particle of massm moving in this
background can be obtained from the Hamilton-Jacobi equ
tion

gmn
]S

]xm

]S

]xn 1m250, ~51!

where S denotes the action~not to be confused with the
entropy! of the particle. As in every spherically symmetric
field of force, the motion occurs in a fixed plane passin
through the origin; we take this plane coincident with the
slice defined byu5p/2 without any loss of generality. Then,
expanding out~51! gives the differential equation forS,

gttS ]S

]t D
2

1grr S ]S

]r D
2

1
1

r 2 S ]S

]f D 21m250. ~52!

By the general procedure for solving the Hamilton-Jacob
equation, we look for anS of the form @20#

S~ t,r ,f!52Et1Lf1Sr~r !, ~53!

with constant energyE and angular momentumL. Substitut-
ing this ansatz into~52! gives an equation forSr which may
be integrated immediately to yield

Sr~r !5E r

~2gttgrr !
1/2FE21gttSm21

L2

r 2 D G
1/2

dr1d r ,

~54!

wheredr is an arbitrary additive phase constant. The depe
dence r5r (t) for the radial coordinate of the particle is
given by

]S

]E
5g5const, ~55!

or

t52g1E r ~2gttgrr !
1/2E

@E21gtt~m
21L2/r 2!#1/2

. ~56!

This can be cast in terms of a differential equation forr as

S dr~ t !dt D5~2gttg
rr !1/2

1

E FE21gttSm21
L2

r 2 D G
1/2

, ~57!

which governs the radii of allowed orbits of particles moving
in the gravitational field represented by~22!. Hence the func-
tion
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V~r ![2gttSm21
L2

r 2 D , ~58!

plays the role of the effective potential energy in the sen
that the conditionE2.V(r ) determines the admissable rang
of the particle’s motion. Identifyinggtt from the solution
~22! yieldsV(r ) for the semiclassical black hole:

V~w!5~12w!$11e@2r̄~w!2w~12w!21m~w!#%

3Sm21
L2

4M2 w
2D

5V0~w!@11eV1~w!#, ~59!

and reduces, as it must, to the classical Schwarzschild po
tial ase→0. The relative correctionV1 depends on the cavity
radiusr 0 and onr,r 0. For purposes of illustration, we con-
sider the asymptotic radiusr 05260M , which is the maxi-
mum radius for which the metric perturbations~call themd!
remain uniformly small: that is,d,1 for 2M<r,r 0, as dis-
cussed at length in@7#. ~The perturbatively valid domains for
the spin-1 and spin-2 back reactions are identical, by virt
of the fact thatb̂15b̂2!. A graphical analysis ofV1 shows
that the relative correction is large and negative for a
r>2M and is insensitive to the particular value ofĉ2 used to
calculate it. In Fig. 3 we displayV1(w) taking ĉ2521400. A
glance at this figure shows thatV1;21.8, so that a small
amount of back reaction, saye50.1, would lead to roughly a

FIG. 3. Relative correctionV1(w) to the black hole effective
potential.
se
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20% decrease in the effective potential. A decreased pote
tial, in turn, implies an increase in the black hole captur
cross section, as discussed in@7#.

VI. DISCUSSION

The solution of the lowest-order back reaction of a con
formal spin-2 field on a Schwarzschild black hole has bee
calculated based on the approximate stress energy tenso
Frolov and Zel’nikov. The new equilibrium metric has bee
found to orderO~\!. By calculating the thermodynamical
entropy by which the spin-2 field modifies the Bekenstein
Hawking entropy, we have been able to put an upper limit o
one of the constants~ĉ2! which parametrizes this approxi-
mate stress-energy tensor. This is done by demanding t
the fractional correction to the entropy be a positive an
monotone increasing function ofr , over the entire domain of
perturbative validity of the solution. This has led to an uppe
bound forĉ2. ~Conditions that general thermal stress-energ
tensors must satisfy in order thatDS>0 have been estab-
lished recently by Zaslavskii@21#.! This bound translates
physically into alower limit for the magnitude of the quan-
tum fluctuations of the spin-2 field at the black hole horizon
By demanding that the metric perturbations be small over t
range in which the perturbative solution is valid, we hav
also estimated a lower bound forĉ2, though this particular
bound depends on the cavity radiusr 0 and on the mass ratio
e5~MPl/M !2,1. Nevertheless, these limits translate, via th
boundary condition~13!, into corresponding bounds on the
magnitude of the spin-2 field fluctuations at the black ho
horizon. In the context of the spin hierarchy of conforma
field back reaction, the spin-2 case is clearly the most impo
tant, giving by far, the largest correction. This is manifeste
in the sequence of spin-dependent horizon-energy densi
and is exposed in a striking way in the relative correction
the black hole effective potential. It is hoped that these ca
culations may shed light on some of the gross features ch
acterizing the graviton back reaction. Certainly, the marke
increase in the magnitude of the fluctuations in going fro
low spins to spin52 is a feature we expect to persist in the
graviton case, as well as the relative increase in the entro
correction.
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