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Black hole in thermal equilibrium with a spin-2 quantum field
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An approximate form for the vacuum averaged stress-energy tensor of a conformal spin-2 quantum field on
a black hole background is employed as a source term in the semiclassical Einstein equations. Analytic
corrections to the Schwarzschild metric are obtained to first order #iM2, whereM denotes the mass of the
black hole. The approximate tensor possesses the exact trace anomaly and the proper asymptotic behavior at
spatial infinity is conserved with respect to the background metric and is uniquely defined up to a free
parameterc,, which relates to the average quantum fluctuation of the field at the horizon. We are able to
determine and calculate an explicit upper boundghy requiring that the entropy due to the back reaction be
a positive increasing function in. A lower bound for¢, can be established by requiring that the metric
perturbations be uniformly small throughout the regiok &r<r, whererg is the radius of perturbative
validity of the modified metric. Additional insight into the nature of the perturbed spacetime outside the black
hole is provided by studying the effective potential for test particles in the vicinity of the hofiZ05%56-
2821(96)04312-3

PACS numbdss): 04.70.Dy, 04.60-m, 05.70.Ce

[. INTRODUCTION background have been carried out for the conformal scalar
[1], the U1) gauge bosori2], and most recently, for the
The physics of black holes provides a fertile ground innonconformal scalar fielf8]. In each of these cases, excel-
which the confluence of gravitation, quantum mechanics, angent analytic approximations to the exact, numerically calcu-
thermodynamics takes place. Progress in our understandingted tensors have been found, and these have been used, in
of this confluence as well as of the specific thermal and metyrn, via the solutions ofl), to explore the thermodynamical
chanical aspects of black holes requires one to construct anghd mechanical consequences of the back reaction of spin-0
study model theories of semiclassical black holes which cagnd spin-1 quantum fields on a black hpde-9]. The case of
provide insights into the kinds of physical effects that maya massless spin-1/2 fermion has also been investigate] in
be present in a complete and, as of yet, unrealized descrigmsed on an approximate stress-energy tensor. In this way,
tion of quantum gravity. A key to one such model theory iSgne has been able to investigate the effects of quantized mat-
the fact that a black hole can exist {possibly unstable  ter on the geometry of black holes, in a case-by-case fashion,
thermodynamic equilibrium provided it is coupled to thermal and rather novel spin-dependent effects have been uncovered
quantum fields having a suitable distribution of stress energyin the proces$7]. While much has been learned from these
In the semiclassical approach, such fields are characterizegygies, it is also clear that any discussion of back reaction in
by the vacuum average of a stress-energy tensor obtained y,antum field theory in curved spacetime should include the
the renormalization of a quantum field on the classical backeffects of linearized gravitongwhose spirr2), which are
ground geometry of a black hole. Using such a tensor as axpected to contribute to the one-loop effective stress-energy

source in the Einstein equation tensor a term of the same order perhaps higher ordeas
those coming from the lower spin fields. A knowledge of
GLy=8m(T10)ren (1) how gravitons behave near the singularity at the center of a

black hole is likely to be crucial to our understanding of
defines the associated semiclassical back-reaction problemuantum gravity. One would also like to obtain a self-
The solution of(1) encodes the change induced by the stresseonsistent picture of the black hole evaporation problem.
energy tensor on the black hole’s spacetime metric. However, at the present time, the calculation of such a tensor
Before a solution can be obtained however, one needs tig confronted by complicated technical difficulties, the solu-
be able to calculate the expectation value of stress-energjon of which shall require a reconciliation between gauge
tensors for quantized fields in a suitable vacuum state. Thigwvariance and renormalizatidi0]. Namely, while a com-
task has proven to be considerably difficult when the backplete set of solutions for the linear graviton field equations
ground spacetime is that of a static black hole. Indeed, texists only in the radiation gauge, explicit renormalization
date, the only exact numerical calculationg®f,)en 0N this  has been implemented only in the deDonder gauge.
Until such time as the technical difficulties associated
with the nonconformal, spin-2 linear graviton can be over-
*Electronic address: hochberg@laeff.esa.es come, it is worthwhile to obtain some idea of the magnitude
"Electronic address: sushkov@kspu.ksu.ras.ru of the back reaction arising from the spin-2 nature of the
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graviton. This, it turns out, can be achieved provided we arérom the condition of the “smallness” of the solutions.
willing to dispense altogether with the inherently nonconfor-Combining the results from perturbative validity plus well-
mal graviton, and consider instead a conformal spin-2 quanbehaved entropy, we obtain the double inequality
tum field. We hasten to point out that we are not suggesting-3080<C,<—1366. We also calculata S for the lower
to model the graviton with a conformal field, rather, we seekspin conformal field¢s=0,1/2,1) and compare these results
a concrete means for assessing the importance of spin-2 [ Previous entropy calculations based on exact stress-energy
the back reaction on a black hole. Nevertheless, it might wel{fensors in order to get some indication for the accuracy of the
turn out that some of the results of this calculation couldFrolov-Zel'nikov approximation. Further insight into the na-
serve as a guide as to what to expect in the technically conjure of the modified spacetime geometry is obtained exam-
plicated graviton case. The back reaction of the conformay'"d the effective potenpal for test partlcle_ orbits n Sec. V
spin-2 field can be calculated employing, for example, theOur results are summarized briefly in the final section. Units
approximate stress-energy tensor ansatz constructed ByE CN0sen such th@=c=kg=1 buth#1.
Frolov and Zel'nikov[11] valid for massless, conformal
fields in any static spacetime. The main idea of their ap- II. APPROXIMATE SPIN-2 STRESS-ENERGY TENSOR
proach is to approximatel ., )ren Dy a tensor expanded in a For the case of a static black hole background with the
basis containing the curvature tensor, the Killing vector, and_ . - _

! . S . etric wW=2M/r)
their covariant derivatives, up to some order. The resulting
tensor is coyariantly conserved with respect to the baCk'dsz=—(l—w)dt2+(1—w)*1dr2+r2(d02+sin20d¢2),
ground metric, possesses the corrdand exact trace 2
anomaly, and obeys certain important scaling relations and

boundary conditions. For a static black hole in a vacuum, anhe tensor ansatz constructed by Frolov and Zelnikby]

unique (up to a parametec,) tensor is singled out which 5y es on a relatively simple structure depending on just three
should provide a reasonable approximatiogTQ,) e, in the spin-dependent constants:

Hartle-Hawking vacuum state.

That thgre can ar_ise impor?ant features depending solely T,,=aT"+br +cor . 3
on the spin of the field coupling to the black hole is sup- " mr i o
ported by results of the back-reaction analyses presented g
[5—7]. These do indeed indicate an important dependence on
the spin of the quantum field. For example, the energy den- M’ =8"—48s” ()
sity of the spin-1 vector boson near the black hole horizon is . w0
roughly 120 times greater in magnitude than that of the con-
formal scalaf5]. A calculation of the radial acceleration of a
massive test particle initially at rest just outside the horizon ) ) ) )
also manifests a curious spin dependence. The accelerationtfi€N the various terms in the expansioniTdf are given by
enhanced for the spin-0 scalar and for the spin-1/2 fermion,
but can be reduced for the spin-1 bo$6i for a sufficiently
large number(or multiplicity) of U(1) fields. Spin depen-
dence also shows up in the effective potential for test par- 7,”= x*[(1+2w+3w?+4w>+5w*+6w>—105w8°)11,
ticles in the vicinity of the black hole leading to either an P
increase or decrease in the black hole’s capture cross section +168nW ], @
[7].

In Sec. Il we discuss the relevant features of the Frolov- 7= k*W°[(4+5w+6w?+ 15w*) [T} — 12(1+w+w?
Zel'nikov approximate stress-energy tensor needed for the +2wd) W, ®)
present calculation and calculate the spin-dependent param- u
eters needed to apply it to the spin-2 field. The metric per- 1. )
turbations resulting from using this tensor as a source in th¥/néré «<=(4M) " is the surface gravity of the black hole.
semiclassical Einstein equation are calculated in Sec. Ill. Thé € constants itt3) are fixed from knowledge of the exact

way in which the black hole mass is renormalized and howrace anomaly and by boundary conditions to be satisfied at

the remaining constant of integration gets fixed by the therthe black hole horizon and at spatial infinity. All three ten-

modynamic boundary conditions is reviewed briefly. BothSOrs are finite at the horizaw=1). The first tensoff ;" is
upper and lower bounds fa, result from requiring that the the only one with nonzero trace:

metric perturbations due to the back reaction be uniformly

small over the entire range of\@<r<r, wherer is the Th=a TMe=g
radius of perturbative validity of the solutions df). In Sec. moTS S
IV, we compute the entropy S by which the back-reaction

of the spin-2 field augments the Bekenstein-Hawking enOn the other hand, the exact trace anomalies for conformal
tropy. By requiring that the field increases the thermody-quantum fields of arbitrary spin on a curved background
namic entropy of the system, we are able to put an uppehave been calculated previougli2,13. The general result
bound on the constamt, which measures the magnitude of can be expressed in terms of a certain linear combination of
the quantum fluctuations of the field at the horizon. Thiscurvature invariantf14]. For the case of Ricci flaiR,,,=0)
particular bound is much more stringent than that comingbackgrounds, the trace anomaly simplifies to

efining the constant tensors

Y =5.57- 80685, (5)

T(0"=48k*'Wb( 57, + 311~ 6¥) (6)

48M 2)

_6_I' .

(€)
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ag (T;)"" we are interested in approximating, we shall need a
<T,’f>ren=(288—0ﬂz) RupysR%7° different (but physically equivalentriterion for establishing
the value(or bounds$ of c,. Loose bounds or, may be

ag 48M? established by appealing to perturbation theory, as will be

= 288072 ( G ) (100 made explicit in the next section. However, an improved

upper bound results from exploiting the physical properties
where the final equality holds for the black hole backgroundof the thermodynamic entropy. We will indeed return to this
In particular, for spin-23,=212, and matching coefficients important point later on when we come to discuss the
between (9) and (10) vyields the identification amount by which the spin-2 quantum field auguments the
a2=212,(2880n2). The second tenson;l’f, is the only one thermodynamical entropy of the black hole. In the meantime,
contributing at far distances from the singularity~x), and ~ We continue in what follows, keepingp as a free parameter.
takes on the asymptotic form
. METRIC PERTURBATIONS
T, —bsr, =bek? diag —3,1,1,1,. (11 _ N . _
With the explicit components of the approximate spin-2
The coefficienby is determined from the boundary condition stress tensor in hand, we may now proceed to solve the back-
thatall the quantum stress-energy tensors renormalized on r@action equatioiil) to first order ine=#/M?<1. As T,isa
black hole background approach the form of a flat-spacetiméunction only of the radial coordinate, the resulting metric
radiation stress tensor at the uncorrected Hawking tempergerturbations will be static and spherically symmetric. The
ture (Ty=«/27). The radiation stress tensor in flat space ismost general metric satisfying these conditions involves two
simply proportional to a constant tensor, the proportionalityindependent radial functions, and may be writteri6]
factor depending on the number of independent helicity
states of the field in question. For the case of spin-2, the _ ( 2m(f)) D) a2 2m(r))_l )
e ds’=—|1- ——|e?’dt*+ dr
flat-space limit is given by

1—

2

™ ‘. +r2dQ2. (14)
<T;>ren_><%> h(Z)TH dlaq_3,l,1,]);i, (12)

Then, the linear perturbations to the metric result from ex-

whereh(2)=2 is the corresponding number of independentP@nding the two metric functions iaas

helicity stateg(this is also the number of independent com- WO—1 4 ol 15
ponents of the linear graviton in+3l dimensions Matching e =1+ep(r), (15
coefficients of (11) and (12 in this limit yields
b,=4/(28807%). The third and final tensor is finite at the
horizon and vanishes asymptotically at infinity ras’. It is, and the functiong and z are solutions of thdlinearized
therefore, presumably important only for the intermediateEinstein equations

zone near the black hole horizon. Moreover, the coefficient

m(r)=M[1+eu(r)], (16)

cs multiplying it can be fixed unambiguously by requiring dp  167M?
that[11] o= o AW T -T, (17)
TV = TV ren . 13 -
/J,lW 1 < ,u,) |W 1 ( ) d/.L ~ 327TM2 .
The tensor structure of both sides of this equation is identical dar ew? Tt (18)

at the horizon, so only one constant is actually defined. How-

ever, the implementation of this boundary condition requiresThese follow directly from(1) after substituting14) into the
knowledge of théexac) renormalized quantum stress tensor Einstein tensoG,, and expanding both sides ©(e) [the

at the black hole horizon. The exact vaIue(EifL)re” at the  stress tensor is itsel®(%)=0(€)]. The solutions of these
event horizon for the Hartle-Hawking vacuum is known only equations involve simple radial integrations which for the
for the conformal scaldrl], the nonconformal scal@B], and  present case, upon integrating up from the horigbsw),
the electromagnetic fielf2]. As it is the spin-2 version of vyield

_ 1 .
pw)=— == {322,(W3—1)+by[ —w 3—3w 2—9w 1+ 12 In(w) + 15w+ 9w?— 49w+ 38]

+C,(3w+3w2+ 7w3—13)} + CoK 71, (19

and

3 3 2 9 -1
W+ = wo+2w— = | |+ koK™ (20)

2 2

1 [~ 1 15 .
pw)=— b, —Ew*2—3w4+6|n(w)+10/v+§w2+7w3—21 —C,
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The existence of the limit ligp_,+(T{—T{)/(1—w) has The parameter, and e must be chosen so that the correc-
been used to render the integration (@f7) trivial. Here, tions to the back reaction remain suitably small. That is, we

K =3840m, ¢,/c,=b,/b,=a,/a,=2880r> and Cy andk,  must ensure that the effect df, is a perturbation of the
are constants of integration. If we spt=u—C,K ™, the  Schwarzschild geometry. This condition will be satisfied

mass function can be rewritten @(e) as provided the propeforthonormal framgperturbations, given
by
m(w) = M{1+ e u(w) + CoK ]}
=M(1+€eCoK H[ 1+ em(w w
(1+€CoK™ N[ 1+ ep(w)] hi—w llL(_v\)l (24

=Med 1+ en(w)], (21
so that the integration consta@t, serves to renormalize the ht= — 2l o(Wa) — o(W) 1= h' 25
(bare black hole mass, and we, henceforth, wiite=M o, t [p(Wo) =p(W)]~hr @9
in what follows, with the tacit understanding that this stands
for the physical black hole mass. The unknown gquantities irwith wo=2M/r, obey
the perturbed metric are reduced to a single integration con-
stant,ky, which can be determined after suitable boundary ol _
conditions are imposed. elhgl=6<1. (26)

The necessity for imposing boundary conditions has been

exhaustively discussed in previous wdwk6,7. We reca-  The cavity radius should be chosen so thar ,q,m, Where

pitulate briefly the main points of that discussion here. In tha'asympis the asymptotic radius which is the maximum radius

first instance, asymptotic flatness does not fix the vallg of ~ for which the metric perturbations remain small. Note that

To appreciate this point, it suffices to note thath{=—h] if r=r,. Hereafter, we will takes=e for illustra-

p(r)~(b/6K)(r/2M)? for r . Related to this limit is the tive purposes. Hencéhd=1. In addition, we shall use

fact that the stress-energy tensors employedlinare as-  ry=r,q.,in the following. Now, to obtain the asymptotic

ymptotically constanfsee(11) and(12)], thus the radiation radiusr ,e,m{=r) we go to the limitr —r with r, tending

in a sufficiently large spatial region surrounding the blackto a very large but finite value. Taking the leading terms in

hole would collapse onto the hole and thereby produce &7|, we can write

larger one. This asymptotic constancy of {inenormalized

stress tensors is, of course, not an artifact of any approxima- )

tion or regularization scheme. It is simply tpéysicalcon- lim Ihf|~ 2 (L) n 1_3 8 (2_M)
- . . . Lo r 2

dition required in order that an observer at spatial infinity frg . g—rlarge value 3K \2M 6K r

measure the correct value of the Hawking temperatofe

the unperturbed black hogleAs the perturbations grogn r) 6

without bound, it is therefore necessary to implant the sys- ( ):1' (27)

tem consisting of black hole plus thermal quantum fields in a

finite cavity with a wall radiug ;>2M. The allowed values ) ) ) ] ] ]

for r, can be determined explicitly by requiring that the met- Solving this equation gives the asymptotic radiysymp

ric perturbations remain uniformly small over a certain radial !N order to establish the bounds foy we must use the

domain. The boundary condition and the region outside th&eduirement of “smaliness” of the perturbatiofisy| in the

cavity wall are really to be thought of as the ambient space€ntire region of, 2M<r=<ry. In particular, let us checl |

time in which the systentblack hole+radiation is embed- ~ at the horizon where=2M (or w=1). To obtain the value

ded. We shall choose microcanonical boundary conditions9f ht let us rewrite expressiofL9) for u(r) as

specifying thus the total enerdy(r,) at the cavity wall, and

match on an exterior metric of Schwarzschild form with an

i 1-w A
effective massM* =m(r). Defining p by p=p+koK™ %,  pu(w)=— BK [323,(—W2—w—1)+b,(49W?+ 40w+ 25
the continuity of the metric across the wall yields the relation
ko=—Kp(ro). The spacetime geometry, including the back — 13w = 4w 2= w3) + &,(— 7wi— 10w —13)]
reaction, is thus now completely specified feer, by
1 A
ds2=—(1—T“){Hze[p(r)—p(ro)]}dtz oK
2m(r)\ ! Now using Eq.(24) we find that the value dffi] at the hori-
+|1-— — dr2+r2dQ?, (220 zon(w=1)is
and forr =g by 20 016+ 3062
htlw-1=—"52a5 (29
2m(r 2m(rg)| 7t 72382
ds’=— ( 1- #)dtzﬁL ( 1- #) dr2+r2dQ?2.

(23 Here, we have used the results that
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(W) A R A 12b, is the quasilocal energhl5], with g"" determined by(22).
lim ——=—-— (—96a,+96b,—30C,) + ——. ChoosingM andr as independent variables and fixingwe
1-w 6K 6K ; _
w—1 can integrate(35) to obtain the total system entropy as a
(B0 distribution forr<rg:
The In-term gives a positive contribution. The requirement 47rM?2
that gh[|=5<1 (or |h!|=1) yields the double inequality S=——TAS (38)
—3080<C,=<1746. (3)  where
Now we may substitute the val@g=—3080 into Eq(27). It AS=8 f‘”[~ 1 p— )+ 3_'“_n K1 1| dw
is easy to see that the second term in EY), which con- g 1 W= p) g e W W,
tainsc,, is much less than the first one. So we may neglect (39
the second term, and then the equation takes the form q
an
2 r 2_ oK -
3K lam) ~L (32 n2=(W) — —163,+14D,~5¢,.  (40)
w=1

We have from(32) the following value of the asymptotic The quantityAS is therefore the amount by which the quan-
radius:ry=260M. tum field changes the Bekenstein-Hawking entropy,
Now let us consider the value bf at the horizow=1). 5. .=47M?¥#, through its back reactiors is a function ofr
We will take C,=—3080 andr,=260M. Leaving only the  gng is the total system entrogiplack hole plus radiation
main terms in the expressid@5) for h; and using20) and  contained within the region of radius Working out the
(29 we obtain integral with the explicit forms fop and u calculated above,
we find that
h“W:l: —2p(wo) —hilw=1

3%, 2 2\ [by\[4 |
~—2p(wg)+1 AS/87= K —§W +2In(w)+§ + 6K §W
1 . 9c _ _
~—  Bowo24 2 +4w 2+ 12w 116 In(w) — 20w — 12w?
3K bowg “+ 3K +1
40, (& .
~—1.64. (33 + 28w -3 + 5K [Aw—4w’+8In(w)]. (41
Hence, in order that the quantig/hi| be small at the hori-  As a general consequence (59), the horizon is a local
zon, it is necessary that<0.6. extremum with respect to since
IV. THERMODYNAMICAL ENTROPY (MS) P o oir_ Wkl =0
MW g w=1 w we

The thermodynamical entroy of the black hole in ther- 1(42)

mal equilibrium with the conformal spin-2 quantum field can

be computed following the method presented @ From  as follows from the fact thap(1)=u(1)=0, and the defini-

the first law of thermodynamics applied to slightly differing tion of n,. On physical grounds, we demand that the horizon

equilibrium systems be a local minimum to prevent the existence of a spherical
shell of negative entropy near=2M. The same physical

dE=dQ (dr=0r=<ry) (39 criterion was employed recently to establish limits in the

range of the nonminimal coupling constant between the sca-

and so lar field and the scalar curvatuf8]. Computing the second
derivative ofAS at the horizon yields

112. 16

__322124'?[)2—?62. (43)

dS= —=—=4dE, (35) K (&ZAS
w=1

g | ow?

whereg is the inverse local temperatufé], Substituting in the values &,=212 andb,=4, we find that

the horizon will be a local minimum of the entropy if and
only if c,<—1241.5. Values ot, satisfying this inequality
will only guarantee thaA S=0 and increasing at the horizon.
(36)  In fact, Eq.(41), because it contains a term &g, cannot be
non-negative and monotone increasiag a function of for
and fixed M) for all values ofc,. In order thatAS be a positive
and increasing function everywhefstrictly speaking, for
E(r)=r—r[g"(r)]*? (387  2M<=r<r,), we cannot allow §AS/dr), =0 for any value

87M . 2m(w) | Y2
Bw)=—— {1+ elp(w) —nK""]}| 1 ) ,
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FRACTIONAL ENTROPY CORRECTIONS TABLE I. Spin-dependent constants appearing in &)

conformal spin—2 back-reaction

900.0 Spin=s 3 bs Cs
800.0 @ (1) c2 = 1336 0 1 2 0
700.0 | (2) c2 = 1366 % 421 % 5
600.0 - (3) c2=—1390 1 —-13 4 -8
£ a0 (#) 62 = 1500 2 212 4 —3080<¢,<—1366
cg) 400.0 -
g 300.0 5
= T
2000 |- s (THien 1 =0.05 (46)
100.0 |
00 for the spin-0 case. The average quantum fluctuations for the

~1009 ” o o5 ’ spin-2 field at the horizon are at least 100 times larger than
| ' w=2Mir for the scalar field case, and at least 10 times greater than for
the spin-1 case.

Though in the present work we are primarily interested in
the physical properties of the spin-2 back reaction, it is of
interest to apply the Killing approximatio(8) in order to
evaluateAS arising from the back reaction of some lower
spin conformal fields. Indeed, as the entropy corrections
have been calculated independently for the cases spin
s=0,1/2,1[6], we have a means of checking the accuracy of
this approximation explicitly for the conformal scalar and for
the U(1) gauge boson, two cases where exact renormalized
tress-energy tensors are known. Stress tensors renormalized
n a Schwarzschild background have been obtained in exact
form by Howard[1] for the conformal scalar and by Jensen
. : and Ottewill (JO) [2] for the Abelian vector boson. In both
the cases displayed, but th?t there (ﬁand. dg arise local ._cases, there also exist excellent analytic approximations for
extrema away from the horlz_on. depen'dmg on the PreCISGe full numeric calculations. The analytic form for the con-
value ofC,. For example, as |_nd|cated in Fig. 1, the _Valueformal scalar was first given by Pag@) [16]. We use these
C,=—1336 yields aAS which increases from the horizon, analytic results to calculate, by means of the horizon

only to vanish again at~7.3V, after .Wh'Ch It increases oundary condition, Eq(13). For the massless spin-1/2
once more. The entropy due to the _spln—2 back reaction \.N'I ermion, we have used the tensor of Brown, Ottewill, and
Page(BOP) [17], but the accuracy of their approximation
has not, to our knowledge, been checked against an exact
numerical calculation. We collect the various spin-dependent
coefficients needed to evaluateS based on the Frolov-
Zel'nikov (FZ) approximate tensor, in Table I.

€ The comparison of théspin-dependeitentropies calcu-
lated from the various stress-energy tensors may be summa-
ized compactly in the following manner:

FIG. 1. Entropy correction (B/47)AS(w) due to the spin-2
back reaction, for various values G§.

of r>2M. That is, we do not allow for a spherical layer of
negative entropy at any value ofbeyond the horizon. Ex-
plicit calculation of AS indicates that the smallest valdie
absolute magnitude of ¢, satisfying this condition is
¢,=—1366, which occurs at~5.7M see, e.g., Fig. 1. We
plot the quantity (¥X/47)AS versusw=2M/r in Fig. 1 for
the values ofc, indicated there. Note that large s 2M)
values of the radial coordinate correspond to small values o
w(0<w=1). One sees in particular thatS is positive and
increasing at the black hole horizon sirie<—1241.5 in alll

of r, within the present approximation, provided that
C,<—1366. Putting this result together with the perturbative
bounds obtained earlier, we conclude that
—3080<C,<—1366, simultaneosly guaranteeing well-
behaved entropy as well as the perturbative validity of th
solution. Returning to the boundary condition(itB), we see
thatc, gives a measure of the average quantum fluctuation
the spin-2 field at the black hole horizon. We may thus em-
ploy the criterion of physically well-behaved entropy and
perturbative validity to establish bounds in the range of
spin-2 field fluctuations at the horizon. Working das) for )
u=v=0 (the other components give no new informajion ASgz=ASgop (spin=1/2), (48)
we obtain the following bounds for the energy density at the
horizon: ASe;—AS;o=32Aw3—w—2In(w)] (spin=1). (49
2
T tyren The explicit expressions for the corrections calculated from
25.1> P (Tow=1>7.3. (44 other stress-energy tensors are presented in Table II; the re-
sults are taken from6].

This should be contrasted to the exact result As discussed ifj6], the correctionsA Sp=0, A Sgop=0,
and AS;;=0 and are monotonically increasing for all
r=2M. Since the differencéAS,—AS;o) vanishes at the
horizon and grows as 64 In( for largerr, ASg; is also a
positive and increasing function offor spin 1. The condi-
for the spin-1 case and to the corresponding exact result tion that the horizon be a local minimum of the entropy,

AS[:ZEASP (Spin= 0), (47)

77_2
= (THien  =0.63, (45)
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TABLE Il. Spin-dependent entropy correctionsS based on in the vicinity of the horizon. To this end, we compute the

other stress-energy tensors. effective potential of the perturbed black hole, as this com-
pletely characterizes the motion of both massless and mas-
_ Stress sive test particles.
Spin=s  tensor AS(w) We present a derivation for the effective potential for
point particles moving in a general static and spherically
0 P 87 (52 20 16 . . _
— = wi—aw?— = w+ = In(w) symmetric background based on a Hamilton-Jacobi ap-
roach. The line element and metric of such backgroun
K19 3 3 proach. The line element and metric of such background
4 4 8 ' i
+4W_1+§W_2+§W_3_§ spacetimes can always be cast in the form
— 2 2 2 2 H 2
1 BOP T8n488 |, 200 128 ds?=gy(r)dt?+ g, (r)dr2+r?(d6>+sirfod ¢?). 50
2 8K |3 W AW Wy InW
1 , 8 . 16 The trajectory of a point particle of mags moving in this
H8W W T W o background can be obtained from the Hamilton-Jacobi equa-
1 Jo B (344 s or 20 o6 tion
— | W 8w+ - w— w
“ e > my i as+ 2=0 (51
—_— m — s
+8W1+§W2+gw3—%6} 9 xF ax”

where S denotes the actiorinot to be confused with the

. . LA A entropy of the particle. As in every spherically symmetric
ASe; Eq. (41), yields the inequalitie<,<8, Cy/;<14 and field of force, the motion occurs in a fixed plane passing

€,<106, respectively, which are automatically satisfied by,

2
+m2=0. (52)

the values displayed in Table I, derived from the exact stresg].rough _the orngin, we .take this plane comudent with the
tensors fois=0,1 and by the value derived from the approxi- /ic€ defined byg=/2 without any loss of generality. Then,
mate BOP tensor for the spinor case. In Fig. 2 we plot thé*Panding out51) gives the differential equation fcs,
various spin-dependent entropy correction& (8m) A S(w) JS| 2 JS\2 1 /45
whose functional forms are listed in Table Il. We should gn(_ +grr<_) +5 (_
point out that in the case of the electromagnetic field, an at oar re\de
exact value okT )., at the black hole horizon was calcu- ) ) )
lated some time ago if18,19. Those results lead, however, By the general procedure for solving the Hamilton-Jacobi
to a value forc,=92h(2)=184, which clearly violates the €quation, we look for ai$ of the form[20]
entropy positivity bound cited above. The reason for the
large discrepancy between the two valuepf—8 versus S(t,r,¢)=—Et+Lo+S(r), (53
184) is due to an important linearly divergent Christensen . :
subtraction term which had been overlooked in the earlie}’\”th constant efﬁerg‘f an_d angular mo_mentunn. S.UbSt'tUt'
calculationg2]. ing _thls ansatz |ntc652_) gives an equation foB, which may

be integrated immediately to yield

V. EFFECTIVE POTENTIAL

r L2\ ]2
— 1/2| =2 2
Further insight into the nature of the modified black hole Sr(r)_f (=9"gr) " E* gy m*+ FZ” dr+o,
metric may be gained by studying the motion of test particles (54)

where g, is an arbitrary additive phase constant. The depen-

Conformal field back-reaction . ; . .
dencer=r(t) for the radial coordinate of the particle is

900.0 given by
800.0 - JS
ool SE-YT const, (55
2
% 600.0 or
% 500.0 r (_gttg )1/2E
S ool t=—y+ f al . 56
E 400.0 etz Y [E2+gtt(m2+ L2/r2)]1’2 (56)
E 3000 . . . : ;
& oo This can be cast in terms of a differential equationrfas
100.0
(_dt ):(_gttgrr)llzg E*+ 0y m2+r_2 , (37)
0.0

0.2 014 016 0.8 1.0
o which governs the radii of allowed orbits of particles moving
FIG. 2. Entropy corrections (@/4m)AS(w) arising from  in the gravitational field represented (82). Hence the func-

spin-0, 1/2, 1 back reactions. tion
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20% decrease in the effective potential. A decreased poten-
tial, in turn, implies an increase in the black hole capture
cross section, as discussed #.

Black Hole Effective Potential

VI. DISCUSSION

The solution of the lowest-order back reaction of a con-
formal spin-2 field on a Schwarzschild black hole has been
19 calculated based on the approximate stress energy tensor of
Frolov and Zel'nikov. The new equilibrium metric has been
found to orderO(%). By calculating the thermodynamical
entropy by which the spin-2 field modifies the Bekenstein-
Hawking entropy, we have been able to put an upper limit on
one of the constanté,) which parametrizes this approxi-

. _ , mate stress-energy tensor. This is done by demanding that
0.2 04 w=°26w ) 08 1.0 the fractional correction to the entropy be a positive and
monotone increasing function of over the entire domain of

FIG. 3. Relative correctioV;(w) to the black hole effective ~Perturbative validity of the solution. This has led to an upper
potential. bound forc,. (Conditions that general thermal stress-energy

tensors must satisfy in order thAtS=0 have been estab-
lished recently by Zaslavskii21].) This bound translates
, (58)  physically into alower limit for the magnitude of the quan-
tum fluctuations of the spin-2 field at the black hole horizon.
plays the role of the effective potential energy in the sens®Y demanding that the metric perturbations be small over the
that the conditiorEZ>V/(r) determines the admissable range@nge in which the perturbative solution is valid, we have
of the particle’s motion. Identifying,, from the solution also estimated a lower bound fog, though this particular

Relative Correction : V1

2

) L
V(r)=—gy|l m +r_2

(22) yields V(r) for the semiclassical black hole: bound depzends on the cavity radiysand on the mass ratio
e=(Mp/M)“<1. Nevertheless, these limits translate, via the
V(w)=(1-w){1+ e[ 2p(w) —wW(1—w) Tu(w)]} boundary condition(13), into corresponding bounds on the
) magnitude of the spin-2 field fluctuations at the black hole
| m2+ '—_ Wz) horizon. In the context of the spin hierarchy of conformal
4M? field back reaction, the spin-2 case is clearly the most impor-

_ tant, giving by far, the largest correction. This is manifested
=Vo(W)[1+eVy(w)], (59 in the sequence of spin-dependent horizon-energy densities

and reduces, as it must, to the classical Schwarzschild pote nd is exposed in a ;triking way n t_he relative correction to
tial ase—0. The relative correctiok'; depends on the cavity the b_Iack hole effect|_ve potential. It is hoped that these cal-
radiusr, and onr <r,. For purposes of illustration, we con- CUIat'.OnS may ShEd. light on some.of the gross features char-
sider the asymptotic radius,=260M, which is the maxi- acterizing the graviton back reaction. Certainly, the marked
mum radius for which the metric perturbatiofezll them 6) Increase n the_mag_nltude of the fluctuations in going from
remain uniformly small: that isg<<1 for 2M <r <r, as dis- low Spins to Spir-2 is a feature we expect to persist in the
cussed at length if7]. (The perturbatively valid domains for graviton case, as well as the relative increase in the entropy
the spin-1 and spin-2 back reactions are identical, by virtu&orrection.
of the fact thatb,=b,). A graphical analysis o¥; shows

that the relative correction is large and negative for all

r=2M and is insensitive to the particular valuemfused to One of us(D.H.) thanks Juan Rez-Mercader, Alvaro
calculate it. In Fig. 3 we display,(w) takingc,=—1400. A  Dominguez, and Thomas Buchert for useful comments. The
glance at this figure shows that,~—1.8, so that a small work of S.S.V. was supported in part by the Russian Foun-
amount of back reaction, say0.1, would lead to roughly a dation of Fundamental Research Grant No. 96-02-17066a.
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