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Quasinormal modes of maximally charged black holes
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A new algorithm for computing the accurate values of quasinormal frequencies of extremal Reissner-
Nordström black holes is presented. The numerically computed values are consistent with the values earlier
obtained by Leaver and those obtained through the WKB method. Our results are more precise than other
results known to date. We also find the curious fact that the resonant frequencies of gravitational waves with
a multipole indexl coincide with those of electromagnetic waves with a multipole indexl21 in the extremal
limit. @S0556-2821~96!00312-8#
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I. INTRODUCTION

The determination of the quasinormal frequencies
black holes has for several years been of interest and is
lated to experiments which aim at detecting gravitation
waves from supernovae or coalescences of binary neut
stars, which are thought to eventually form a black hole.
the late stage of the process of black hole formation, a cert
mode of the gravitational wave dominates the emission. T
is called the quasinormal mode of a black hole.

The equations governing oscillations of black holes a
derived by Regge and Wheeler@1#, and Zerilli @2# for the
nonrotating uncharged case, Zerilli@3# and Moncrief@4# for
the nonrotating charged case, and Teukolsky@5# for the ro-
tating uncharged case. The resonant frequencies of
Schwarzschild black holes were first computed by Cha
drasekhar and Detweiler@6#, who treated it as a boundary
value problem of the second order ordinary differential equ
tion of Regge and Wheeler. Integration of the Regg
Wheeler equation for the quasinormal boundary condition
numerically unstable. To avoid the instability, Leaver@7#
presents the numerically stable continued fraction method
Schwarzschild and Kerr black holes. Here, a quasinorm
mode function corresponds to a minimal solution of the r
currence relations which are satisfied by the coefficients o
series expansion of a wave function. The minimal solution
the three-term recurrence relation is obtained by the cor
sponding continued fraction@8#. The continued fraction
method can give the values of frequencies with high nume
cal precision because it uses no approximation, as is the c
in the semianalytic WKB method developed in other work
@9–12#. Leaver@13# also generalizes the continued fractio
method to calculate accurate values of the quasinormal f
quencies of Reissner-Nordstro¨m black holes, though Kokko-
tas and Schutz@14# raised the question of the applicability o
the continued fraction method to charged black holes.

We are indeed motivated by Leaver’s paper@13#. There is
another interesting question, that is, whether a continu
fraction method can be used for the maximally charged bla
holes not discussed in his paper. In the extremal limit, t
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wave equation has an irregular singular point at the horizo
which makes the series expansion of a solution there invali
and thus a continued fraction method does not seem to wo
In this paper we show that a continued fraction method
applicable even to the extremal black holes if we expand
solution about a suitable ordinary point. In Sec. II, we deriv
an eigenvalue equation with continued fractions after ex
panding a wave function about an ordinary point to dete
mine the quasinormal frequencies of the extremal Reissne
Nordström black hole. In Sec. III, we present the numerica
results and find an interesting coincidence between the res
nant frequencies of gravitational waves with a multipole in
dex l and those of electromagnetic waves with a multipol
index l21 in the limit of maximal charge. Section IV is
devoted to conclusions and discussion.

II. EIGENVALUE EQUATION
FOR QUASINORMAL MODES

Leaver obtained the recurrence relations of Schwarz
child, Kerr @7#, and Reissner-Nordstro¨m black holes@13# by
expanding solutions about the event horizon and then solv
the characteristic equations with a continued fraction to g
these resonant frequencies accurately. However, his meth
is not valid when a black hole is extremal. The wave equa
tion has an irregular singular point at the horizon abou
which the expansion of the solution is not available becaus
a radius of convergence for a series expansion about an
regular singular point generally vanishes. Therefore, we ha
to expand the solution about a suitable ordinary point in th
extremal black holes.

We start from the Zerilli-Moncrief equation for perturba-
tions on Reissner-Nordstro¨m backgrounds of massM and
chargeQ written as

F d2dr
*
2 1v22Vs~r !GZs~r !50, ~1!

where

dr

dr*
5

D

r 2
, ~2!
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Vs5
D

r 5 FAr2qs1
ps
r G , ~3!

D5r 222Mr1Q2, ~4!

q052, ~5!

q153M2A9M214Q2~A22!, ~6!

q253M1A9M214Q2~A22!, ~7!

p052, ~8!

p15p254, ~9!

A5 l ~ l11!, ~10!

ands50, 1, 2 are for a massless scalar field, an odd pa
electromagnetic perturbation, and an odd parity gravitatio
perturbation, respectively. The new parameterps is intro-
duced here in order to deal with the case of the scalar field
well. Note that the definitions ofq1 and q2 are exchanged
with each other from the book of Chandrasekhar@15#,
though the most of the other notations follow that book. T
scaling oft andr in this paper is such thatc5G5M51. We
also user52 iv as a frequency variable for convenience

Now we follow Leaver’s procedure of getting a recu
rence relation which plays a central role in a continued fra
tion method. The tortoise coordinate in the extremal lim
becomes

r *5r1 ln~r21!22
1

r21
, ~11!

which makes a difference in the basic equations betwe
extremal and nonextremal black holes. The Zerilli-Moncri
equation~1! is therefore rewritten in terms of ther coordi-
nate as

r ~r21!
d2Zs
dr2

12
dZs
dr

2F r2r 5

~r21!3
1

Ar

r21
2

qs
r21

1
ps

r ~r21!GZs50. ~12!

This equation has irregular singular points atr51 and
r5` as we mentioned in the previous section, which mak
the series expansion about the horizon invalid because
hopeless that the series expansion is convergent. Hence,
necessary to improve Leaver’s treatment of obtaining
quasinormal modes of the extremal black holes.

The boundary conditions of a quasinormal wave functi
are given by

Zs;e2rr
* as r *→`, ~13!

Zs;err
* as r *→2`, ~14!

which mean there only exists purely outgoing wave at infi
ity and purely ingoing wave at the black hole horizon. The
are also transformed to
rity
nal
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Zs;r22re2rr as r→`, ~15!

Zs;err~r21!2re2r
1

r21 as r→1, ~16!

which determine a prefactor of a quasinormal wave functio
in the form

Zs5erre2r
1

r21~r21!2rr24re22r~r21! (
n50

`

anu
n, ~17!

whereu is specified by a point where we expand a solution
We use a series expansion about an ordinary point, whi
has a finite radius of convergence at least up to the near
singular point. Thus, we useu5(r22)/r instead of
u5(r21)/r which is used in Ref.@13#. In our choice ofu
the black hole horizon and infinity correspond tou521, 1,
respectively. The distances from the pointu50 to two sin-
gular pointsu521, 1 are equal, which can make it possibl
to examine the boundary conditions at both sides simult
neously. It is clear that the quasinormal mode boundary co
ditions are satisfied if and only ifSanu

n converges at both
boundaries, horizon, and infinity. This is equivalent to th
condition that bothSan andS(2)nan are finite, that is, both
Sa2n andSa2n11 are convergent simultaneously. To exam
ine the convergence of each summation, we first obtain t
recurrence relation of coefficientsan of the expansion~17!,
and then attempt to obtain the recurrence relation only f
bn5a2n11 and that of cn5a2n . The quasinormal mode
boundary conditions are satisfied when the odd and ev
sequences are minimal solutions of the corresponding rec
rence relations, respectively.

After substituting the above series expansion~17! into Eq.
~12! we obtain a five-term recurrence relation:

a1a21g1a050, ~18!

a2a31g2a11d2a050, ~19!

anan111bnan1gnan211dnan221enan2350 ~n>3!,
~20!

where the recurrence coefficients are given by

an5n21n, ~21!

bn50, ~22!

gn524A22n22ps12qs1n~2224r!112r264r2,
~23!

dn52~ps2qs!, ~24!

en5n22ps212r116r21n~2318r!. ~25!

For the scalar field, we can find thatbn5dn50 in the
above relation, which means an odd sequence and even
quence are completely decoupled with each other, beca
the Zerilli-Moncrief equation in terms ofu is symmetric un-
der the transformationu→2u. Therefore, it has only sym-
metric or antisymmetric solutions as quasinormal mode fun
tions. This is the same as the case of a quantum-mechan
system with a reflection symmetry, where a wave function
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energy eigenstate must be either symmetric or antisymm
ric. This makes the calculation of quasinormal frequencies
the scalar field easy. Each sequence is characterized by
three-term recurrence relation~20! starting from the two-
term relation~18! or ~19!. We can obtain two independen
characteristic equations below similar to one for the qua
normal frequencies of Schwarzschild black holes:

a2
a0

52
g1

a1
5

2e2
g22

a2e4
g42

a4e6
g62

•••, ~26!

a3
a1

52
g2

a2
5

2e3
g32

a3e5
g52

a5e7
g72

•••. ~27!

These two equations are for the modes of even-numbe
and those of odd-numbered overtones, respectively.

For gravitational or electromagnetic quasinormal mod
we have to develop a little more complicated way becau
the presence of thedn term makes odd and even sequenc
dependent on each other, though it seems that they are
much correlated for largen because of the fact that the co
efficient dn becomes relatively small asn increases com-
pared with other terms. We first need to eliminate the odd
even sequence to examine the convergence of the summa
of each sequence. This procedure is presented in Appe
A. For bn a five-term recurrence relation is obtained,

â1b21b̂1b11ĝ1b050, ~28!

â2b31b̂2b21ĝ2b11 d̂2b050, ~29!

ânbn111b̂nbn1ĝnbn211 d̂nbn221 ênbn2350~n>3!,
~30!

and forcn we get the relation

ā2c31b̄2c21ḡ2c11 d̄2c050, ~31!

āncn111b̄ncn1ḡncn211 d̄ncn221 ēncn2350 ~n>3!,
~32!

where each recurrence coefficient is also given in Appen
A.

As mentioned previously, the quasinormal mode boun
ary conditions are satisfied if and only if both sequences
minimal solutions of recurrence relations simultaneously.
order to use a continued fraction method, both five-term
currence relations are transformed to three-term recurre
relations by successive Gaussian elimination steps which
exhibited in Appendix B. Then, the ratios of the first tw
terms of both sequences for minimal solutions are det
mined by the corresponding continued fractions in

a4
a2

5
c2
c1

5
2ḡ29

b̄292

ā29ḡ39

b̄392

ā39ḡ49

b̄492
•••, ~33!

a3
a1

5
b1
b0

5
2ĝ19

b̂192

â19ĝ29

b̂292

â29ĝ39

b̂392
•••, ~34!
et-
of
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where the quantities with double prime are recurrence co
ficients of transformed three-term recurrence relations in A
pendix B.

In contrast to the scalar field case, the even and odd
quences are coupled to each other through the nonvanish
dn terms. By dividing Eq.~20! for n53 by Eq. ~20! for
n55, we get the relation between the ratio of the first tw
terms of odd sequence and that of even sequence as

a3
a1

5

a5

a6
a4

1g51e5
a2
a4

a2

a4
a2

1g31e3
a0
a2

a4
a2

5

2
a5

ā29
S b̄291

a2
a4

ḡ29D1g51e5
a2
a4

a3

a4
a2

1g32e3
a1

g1

a4
a2
, ~35!

where the second equality comes from Eq.~18! and the
transformed three-term relation~B30! for n52. The quasi-
normal mode boundary conditions are satisfied when t
continued fractions~33! and~34! satisfy Eq.~35!. This is the
characteristic equation for the quasinormal frequencies of t
extremal Reissner-Nordstro¨m black hole.

Equation~35! can be shifted an arbitrary number of time
n to yield an equation for the ratio of successive terms
highern:

an13

an11
5

an15

an16

an14
1gn151en15

an12

an14

an12

an14

an12
1gn131en13

an
an12

an14

an12
. ~36!

Equation~35! and~36! are completely equivalent since every
solution to~35! is also a solution to~36! when we substitute
a continued fraction into each ratio ofai /ai22 , and vice
versa. Equation~36! can be used as a check of results ob
tained from Eq.~35!.

III. NUMERICAL RESULTS

The eigenvalue equations~26!, ~27!, and ~35! derived in
the previous section are solved using theHYBRD subroutine
distributed in MINPACK libraries. The three least-damped
modes of (s,l )5(2,2), (2,3), (2,4), (1,1), (1,2), (1,3),
(0,0), (0,1), (0,2) for the extremal Reissner-Nordstro¨m
black hole are listed in Table I. We compare our results wi
Leaver’s results@13# of nearly maximally charged case
~99.99% charged!, which should be divided by two because
of the difference of our scaling from his. These modes a
pear as complex conjugate pairs inr because the eigenvalue
equations are characterized by only real coefficients. We a
compare them with the third order WKB quasinormal fre
quencies of the extremal Reissner-Nordstro¨m black hole.
The WKB quasinormal frequencies are obtained using t
same formula of Kokkotas and Schutz@14#, who calculated
the frequencies of charged black holes but did not sho
those of maximally charged black holes.

Our results are in agreement with other results obtain
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TABLE I. The computed quasinormal frequencies are listed. Our results are very consistent with
values of WKB quasinormal frequencies. The relative errors of WKB complex and real gravitational qua
normal frequencies forl52 from our results are~0.04%, 0.03%!, ~0.07%, 0.1%!, and ~0.1%, 0.5%! for
n50, 1, 2, respectively. Leaver’s value has rather large discrepancy of 3% for the real frequency ofn51
gravitational wave.

s52, l52 s52, l53 s52,0 l54

n50 ~-0.083460, 0.43134! ~-0.085973, 0.70430! ~-0.087001, 0.96576!
Leaver ~-0.083645, 0.43098!
WKB ~-0.08349, 0.43013! ~-0.08596, 0.70398! ~-0.08700, 0.96563!
n51 ~-0.25498, 0.40452! ~-0.25992, 0.68804! ~-0.26212, 0.95381!
Leaver ~-0.257055, 0.39309!
WKB ~-0.25675, 0.40076! ~-0.26014, 0.68701! ~-0.26218, 0.95339!
n52 ~-0.44137, 0.35340! ~-0.44007, 0.65624! ~-0.44064, 0.93020!
Leaver ~-0.442035, 0.353515!
WKB ~-0.44210, 0.35136! ~-0.43986, 0.65575! ~-0.44056, 0.93004!

s51, l51 s51, l52 s51, l53
n50 ~-0.083460, 0.43134! ~-0.085973, 0.70430! ~-0.087001, 0.96576!
Leaver ~-0.08343, 0.431415! ~-0.086205, 0.704075!
WKB ~-0.08349, 0.43013! ~-0.08596, 0.70398! ~-0.08700, 0.96563!
n51 ~-0.25498, 0.40452! ~-0.25992, 0.68804! ~-0.26212, 0.95381!
Leaver ~-0.259705, 0.40602! ~-0.26256, 0.68315!
WKB ~-0.25675, 0.40076! ~-0.26014, 0.68701! ~-0.26218, 0.95339!
n52 ~-0.44137, 0.35340! ~-0.44007, 0.65624! ~-0.44064, 0.93020!
Leaver ~-0.44260, 0.35347! ~-0.4408, 0.655675!
WKB ~-0.44210, 0.35136! ~-0.43986, 0.65575! ~-0.44056, 0.93004!

s50, l50 s50, l51 s50, l52
n50 ~-0.095844, 0.13346! ~-0.089384, 0.37764! ~-0.088748, 0.62657!
WKB ~-0.10371, 0.12109! ~-0.08936, 0.37570! ~-0.08873, 0.62609!
n51 ~-0.33065, 0.092965! ~-0.27614, 0.34818! ~-0.26909, 0.60817!
WKB ~-0.33742, 0.09157! ~-0.27828, 0.34392! ~-0.26944, 0.60677!
n52 ~-0.58833, 0.075081! ~-0.48643, 0.29846! ~-0.45820, 0.57287!
WKB ~-0.57164, 0.05056! ~-0.48145, 0.29661! ~-0.45750, 0.57254!
al
ne
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al
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by Leaver and those obtained through the WKB meth
within the accuracy of a few percent. The difference betwe
WKB frequencies and ours is ascribed to the fact that t
WKB method gives only the approximate values. Indeed, t
tendency that the discrepancy grows with the mode num
suggests the breakdown of the WKB approximation f
highern. The difference between Leaver’s results and ours
from the numerical error caused by the breakdown of h
series expansion at the limit of maximal charge. Thus, we a
sure that our quasinormal frequencies of the extrem
Reissner-Nordstro¨m black hole are the most accurate. Ou
results and his are plotted in Fig. 1.

Notice that the quasinormal frequencies of (s,l )5(2,2)
and those of (1,1) approach each other with increasingQ
and coincide in the extremal limit. We show this curiou
coincidence in the limit of maximal charge explicitly in Fig
2. The trajectories of the first four lowest modes of the thi
order WKB gravitational quasinormal frequencies o
l52,3,4,5 are plotted. These quasinormal frequencies co
cide with the frequencies of electromagnetic wave
l51,2,3,4 in the limit of maximal charge, respectively. Th
first order WKB quasinormal frequencies are given b
vn
25Vpeak2 i (n11/2)A22Vpeak9 using the Zerilli-Moncrief

PotentialV, where a subscriptn is a mode number. The
od
en
he
he
ber
or
is
is
re
al
r

s
.
rd
f
in-
of
e
y

differences ofVpeak andVpeak9 betweenV1 for l51 andV2

for l52 are calculated toDVpeak/Vpeak.2.79565310216

and DVpeak9 /Vpeak9 .5.46819310215, respectively. This ex-
plains the coincidence of a few least-damped quasinorm
frequencies of these two modes. Even for higher overto
modesn;30, however, we numerically find a remarkable
coincidence in the quasinormal frequencies of gravitation
waves ofl and those of electromagnetic waves ofl21 for a
wide range of multipole indices, 2< l<10, through our
method.

These two potentials,V1 with a multipole indexl and
V2 with a multipole indexl11, indeed give the same trans-
mission and reflection amplitude for eachs, whose evidence
is presented in Appendix C. It implies that the quasinorm
frequencies for both potentials are identical.

IV. CONCLUSIONS AND DISCUSSION

We improve the continued fraction method of computin
quasinormal frequencies of charged black holes in order
determine the quasinormal frequencies in the extremal lim
and solve our formulas of eigenvalue equations by using
root search program. Our results of quasinormal frequenc
for the maximally charged black holes are consistent wi
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FIG. 1. Quasinormal frequen-
cies for l52 gravitational wave
and l51, 2 electromagnetic wave
are plotted in thev plane with the
results of Leaver@13#. Each solid
line is a trajectory of the first three
lowest l52 gravitational mode,
parametrized by the chargeQ. It
has a tendency to coincide at the
right end with l51 electromag-
netic mode which is shown as a
small dashed line. Marks from left
to right correspond toQ50,0.4,
0.8, 0.9999 quasinormal frequen-
cies of Leaver. The frequencies of
extremal black holes we computed
are plotted as diamonds. Dashed
lines are l52 electromagnetic
modes.
-
n
f
al

l

every previous result@13,14# and are the most accurate of al
Our procedure is summarized as follows. We expand

solution about the ordinary point and get the recurrence
lation of the expansion coefficients. In our method we ha
to examine the boundary conditions at both boundari
Then, we need to divide the sequence into an odd seque
and an even sequence to examine convergence of both se
The convergence of the series at both sides occurs if
only if each sequence is minimal. The ratio of success
terms of each sequence is given by a continued fracti
Consequently, the eigenvalue equation is constructed by s
l.
the
re-
ve
es.
nce
ries.
and
ive
on.
ub-

stituting the continued fraction into the ratio of successive
recurrence relations.

The applicability of our method is free from types of sin-
gularities of the equation, in contrast with Leaver’s method
which is not useful when the equation has two irregular sin
gular points at each of the two boundaries. Though we ca
use our method to determine quasinormal frequencies o
other black holes such as the Schwarzschild, nonextrem
Reissner-Nordstro¨m, and Kerr black holes, we actually did
not follow this procedure in these black holes. For these
black holes, his method is easier to obtain the quasinorma
FIG. 2. Solid lines and dashed
lines are trajectories of the third
order WKB quasinormal frequen-
cies of the gravitational and elec-
tromagnetic waves, respectively.
Each left end point of lines corre-
sponds to the quasinormal fre-
quency of a charged black hole of
Q50.8, and each right end point
corresponds to the frequency in
the limit of maximal charge. A tra-
jectory of the gravitational quasi-
normal frequencies depicted in a
solid line meets at the right end
with a corresponding dashed line,
which is a trajectory of the electro-
magnetic quasinormal frequencies
belonging to lower a multipole in-
dex by one.
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frequencies because the recurrence relation and the ei
value equation are simpler than ours. In our method, it
generally difficult to give the explicit forms of the recurrenc
relations of both even and odd sequences. In that case
will have to eliminate the even or odd sequence by numeri
elimination steps. For the extremal Reissner-Nordstr¨m
black hole, the recurrence relation, Eq.~20!, is not so com-
plicated in that it has nobn term and furthermore, thedn
term has no dependence onn, which makes our procedure
rather easy to accomplish.

We believe our method can be also used for the extrem
Kerr black hole which has an irregular singular point at t
horizon in the equation for the radial part. Some autho
@16–18# have obtained the series of infinite numbers of qu
sinormal frequencies of the extremal Kerr black hole, whi
accumulate onto the critical frequency. Leaver also finds
tendency of an accumulation of quasinormal frequenc
when the Kerr parameter approaches the maximum value
is interesting to investigate what will happen to the distrib
tion of quasinormal frequencies in the limit of maximal ro
tation, where Leaver’s method is not valid. We are in prep
ration for this problem through our method of computin
quasinormal frequencies.

We accidentally find a curious coincidence in the qua
normal frequencies of gravitational perturbations with a m
tipole index l and those of electromagnetic perturbatio
with l21. These two modes are completely decoupled
they have the same amplitudes of transmission and refl
tion. In that case the only difference is a phase shift of tra
mitted or reflected wave that means the quasinormal frequ
cies for both modes are identical. The situation is ve
similar to the coincidence of the transmission and reflect
amplitudes of odd-parity perturbations with those of eve
parity perturbations@15#. At present there is no easy way t
understand the hitherto unobserved coincidence but it is
teresting that it occurs only in the extremal limit, where th
black hole may have an unknown symmetry.

Note added in proof. After we completed the work, we
were informed that Andersson had calculated@19# the quasi-
normal frequencies of nonextremal charged black hol
which are also consistent with our results. His method see
to fail in the extremal limit as does Leaver’s method.
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APPENDIX A

Here, we summarize a procedure to obtain a recurre
relation for the odd sequence and that for the even seque
gen-
is
e
we
cal
o

al
he
rs
a-
ch
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ies
. It
u-
-
a-
g

si-
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but
ec-
ns-
en-
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n-
o
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e
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ms

n-
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a-
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nce

of an . First, we write down the recurrence relation, Eqs
~18!–~20!, in the matrix expression and separate the odd s
quence from the even sequence as follows:

S g1 a1

e3 g3 a3

e5 g5 a5

� � �

D S a0a2a4
A
D 52S 0 d

d

�

D
3S 0

a1

a3

A
D , ~A1!

S g2 a2

e4 g4 a4

e6 g6 a6

� � �

D S a1a3a5
A
D 52S d

d

d

�

D
3S a0a2a4

A
D , ~A2!

where the termdn is a constant and therefore we write it a
d here, which makes us able to accomplish the below
mentioned procedure explicitly. If we substitute the right
hand side of Eq.~A2! into the left-hand side of Eq.~A1! like
this,

S g1 a1

e3 g3 a3

e5 g5 a5

� � �

D S g2 a2

e4 g4 a4

e6 g6 a6

� � �

D S a1a3a5
A
D

5S 0

d2 0

d2 0

� �

D S a1a3a5
A
D , ~A3!

the even sequence is eliminated and then we can obtai
recurrence relation including onlybn which was presented in
Eq. ~30! and the recurrence coefficients are explicitly give
by
ân523n1n218n314n4, ~A4!

b̂n54n~2n22An24n31nqs19r224n2r232nr2!, ~A5!
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ĝn58112A14l 2~ l11!2124n426qs24Aqs1qs
2270r248Ar124qsr1308r21128Ar2264qsr

22768r311024r4

1n3~2481224r!1n2~46116A28qs2336r1864r2!

12n~21128A14qs1126r148Ar224qsr2432r21768r3!, ~A6!

d̂n5814A216n42~42qs!
222qs132n3~225r!168r132Ar216qsr2440r2232Ar2116qsr

21896r32512r4

14n2~22122A1qs1120r2144r2!14n~1014A22qs297r28Ar14qsr1288r22224r3!, ~A7!

ên5215n141n2224n314n4230r1164nr2144n2r132n3r1164r22288nr2196n2r22192r31128nr3164r4.
~A8!

Similarly, we get a recurrence relation forcn and the recurrence coefficients are given by

ān5125n214n4, ~A9!

b̄n5~2112n!~212A28n24An112n228n32qs12nqs16r148nr248n2r132r2264nr2!, ~A10!

ḡ 2541124A14A2212qs24Aqs1qs
21306r196Ar248qsr1948r21128Ar2264qsr

211536r311024r4, ~A11!

ḡ n538124A14A2124n4212qs24Aqs1qs
22308r296Ar148qsr1956r21128Ar2264qsr

221536r311024r4

132n3~2317r!12n2~7718A24qs2336r1432r2!

14n~22928A14qs1189r124Ar212qsr2432r21384r3!, ~A12!

d̄ 252814A16qs2qs
2112r212Ar16qsr276r2216Ar218qsr

22336r32256r4, ~A13!

d̄ n524226A216n42~42qs!
213qs132n3~325r!1402r148Ar224qsr21160r2232Ar2116qsr

211344r32512r4

14n2~25122A1qs1180r2144r2!14n~4516A23qs2247r28Ar14qsr1432r22224r3!, ~A14!

ē n521276n183n2232n314n42152r1332nr2192n2r132n3r1332r22384nr2196n2r22256r31128nr3164r4.
~A15!
APPENDIX B

We give the Gaussian elimination steps to transform
five-term recurrence relations into three-term recurrence
lations. Forbn the step defined by

ân85ân , ~B1!

b̂n85b̂n , ~B2!

ĝn85ĝn , ~B3!

d̂n85 d̂n , for n51,2, ~B4!

ân85ân , ~B5!

b̂n85b̂n2ân218 ên / d̂n218 , ~B6!

ĝn85ĝn2b̂n218 ên / d̂n218 , ~B7!

d̂n85 d̂n2ĝn218 ên / d̂n218 for n>3, ~B8!

transforms the five-term recurrence relation into a four-te
recurrence relation and the second elimination step below
the
re-

rm
,

â195â18 , ~B9!

b̂195b̂18 , ~B10!

ĝ195ĝ18 , ~B11!

ân95ân8, ~B12!

b̂n95b̂n82ân219 d̂n8/ĝn219 , ~B13!

ĝn95ĝn82b̂n219 d̂n8/ĝn219 for n>2, ~B14!

brings us to a final three-term recurrence relation:

ân9bn111b̂n9bn1ĝn9bn2150 for n>1. ~B15!

For cn the successive elimination steps in

ā285ā2 , ~B16!

b̄285b̄2 , ~B17!

ḡ 285ḡ2 , ~B18!

d̄ 285 d̄2 , ~B19!
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ān85ān , ~B20!

b̄n85b̄n2ān218 ēn / d̄n218 , ~B21!

ḡ n85ḡn2b̄n218 ēn / d̄n218 , ~B22!

d̄ n85 d̄n2ḡn218 ēn / d̄n218 for n>3, ~B23!

and

ā295ā28 , ~B24!

b̄295b̄28 , ~B25!

ḡ 295ḡ282a1d̄28/g1 , ~B26!

ān95ān8, ~B27!

b̄n95b̄n82ān219 d̄n8/ḡn219 , ~B28!

ḡ n95ḡn82b̄n219 d̄n8/ḡn219 for n>2, ~B29!

give us a three-term recurrence relation:

ān9cn111b̄n9cn1ḡn9cn2150 for n>2. ~B30!

APPENDIX C

Now, we summarize here the relation betweenV1 for a
multipole indexl andV2 for a multipole indexl11. If we
introduce a new functionf ,

f5
r21

r 2
, ~C1!

which vanishes at both boundaries,r→1 and r→`, then
two potentials are given by

V151~ l11!
d f

dr*
24 f 31~ l11!2f 2, ~C2!

V252~ l11!
d f

dr*
24 f 31~ l11!2f 2. ~C3!
If these two different potentials yield the same amplitudes
transmission and reflection, the following integrals for th
two potentials should be the same:

I 15E Vdr* , ~C4!

I 25E V2dr* , ~C5!

I 35E ~2V31V82!dr* , ~C6!

I 45E ~5V4110VV821V92!dr* , ~C7!

I 55E ~14V5170V2V82114VV921V-2!dr* , ~C8!

I 65•••.

Because of the simple forms, Eqs.~C2! and~C3!, we can see
the coincidence of these integrals,I 1;I 10, for the two po-
tentials. The explicit forms of the above integrals,I 1;I 5 ,
are given by

I 15~116l13l 2!/3, ~C9!

I 25~4118l193l 2184l 3121l 4!/630, ~C10!

I 35~231120l1476l 211560l 311820l 41858l 5

1143l 6!/45045, ~C11!

I 45~164818736l132716l 21105868l 31252567l 4

1316540l 51203490l 6164600l 718075l 8!/19399380,

~C12!

I 55~251601125820l1437634l 211336860l 313430245l 4

16563970l 518099427l 616085800l 712687895l 8

1642390l 9164239l 10!/1003917915. ~C13!
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