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Quasinormal modes of maximally charged black holes
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A new algorithm for computing the accurate values of quasinormal frequencies of extremal Reissner-
Nordstran black holes is presented. The numerically computed values are consistent with the values earlier
obtained by Leaver and those obtained through the WKB method. Our results are more precise than other
results known to date. We also find the curious fact that the resonant frequencies of gravitational waves with
a multipole indeX coincide with those of electromagnetic waves with a multipole indeg in the extremal
limit. [S0556-282(096)00312-9

PACS numbds): 04.70.Bw, 04.25.Nx, 04.30.Nk

I. INTRODUCTION wave equation has an irregular singular point at the horizon,
which makes the series expansion of a solution there invalid,
The determination of the quasinormal frequencies ofand thus a continued fraction method does not seem to work.
black holes has for several years been of interest and is rén this paper we show that a continued fraction method is
lated to experiments which aim at detecting gravitational@pplicable even to the extremal black holes if we expand a
waves from supernovae or coalescences of binary neutragplution about a suitable ordinary point. In Sec. I, we derive
stars, which are thought to eventually form a black hole. Inan €igenvalue equation with continued fractions after ex-
the late stage of the process of black hole formation, a certaifanding a wave function about an ordinary point to deter-
mode of the gravitational wave dominates the emission. Thignine the quasinormal frequencies of the extremal Reissner-
is called the quasinormal mode of a black hole. Nordstran black hole. In Sec. Ill, we present the numerical
The equations governing oscillations of black holes argesults and find an interesting coincidence between the reso-
derived by Regge and Wheelgt], and Zerilli [2] for the ~ hant frequencies of gravitational waves with a multipole in-
nonrotating uncharged case, Zerjli] and Moncrief[4] for dex| and those of electromagnetic waves with a multipole
the nonrotating charged case, and Teukolgyfor the ro-  index | —1 in the limit of maximal charge. Section IV is
tating uncharged case. The resonant frequencies of th@evoted to conclusions and discussion.
Schwarzschild black holes were first computed by Chan-
drasekhar and Detweild6], who treatgd it as a bogndary Il. EIGENVALUE EQUATION
value problem of the second order ordinary differential equa- FOR QUASINORMAL MODES
tion of Regge and Wheeler. Integration of the Regge-
Wheeler equation for the quasinormal boundary condition is Leaver obtained the recurrence relations of Schwarzs-
numerically unstable. To avoid the instability, Leaj@]  child, Kerr[7], and Reissner-Nordstmo black holeq 13] by
presents the numerically stable continued fraction method fogxpanding solutions about the event horizon and then solved
Schwarzschild and Kerr black holes. Here, a quasinormalhe characteristic equations with a continued fraction to get
mode function corresponds to a minimal solution of the rethese resonant frequencies accurately. However, his method
currence relations which are satisfied by the coefficients of & not valid when a black hole is extremal. The wave equa-
series expansion of a wave function. The minimal solution ofion has an irregular singular point at the horizon about
the three-term recurrence relation is obtained by the correwhich the expansion of the solution is not available because
sponding continued fraction8]. The continued fraction a radius of convergence for a series expansion about an ir-
method can give the values of frequencies with high numeriregular singular point generally vanishes. Therefore, we have
cal precision because it uses no approximation, as is the cat@ expand the solution about a suitable ordinary point in the
in the semianalytic WKB method developed in other worksextremal black holes.
[9-12]. Leaver[13] also generalizes the continued fraction ~ We start from the Zerilli-Moncrief equation for perturba-
method to calculate accurate values of the quasinormal fréions on Reissner-Nordsim backgrounds of maskl and
guencies of Reissner-Nordstnablack holes, though Kokko- chargeQ written as
tas and Schutil4] raised the question of the applicability of

the continued fraction method to charged black holes. 2
We are indeed motivated by Leaver's pafie3]. There is gz Te = Vs(N]Zs(r) =0, (1)
another interesting question, that is, whether a continued *
fraction method can be used for the maximally charged black
holes not discussed in his paper. In the extremal limit, théN
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Zs~1 %P P asr—o, 15
Vs:_S[Ar gst+ % ) 3) ° 19
1
Z~ef(r—1)%’e P71 asr—l1, (16)
A=r?-2Mr+Q?, (4)
which determine a prefactor of a quasinormal wave function
0o=2, (5  inthe form
—am_ 2 YN 1 ”
q1_3M \/9M +4Q (A 2): (6) ZS= eprefpﬁ(r_1)2pr74pe72p(rfl)z a.nun, (17)
n=0
d,=3M+9M?+4Q*A-2), )
whereu is specified by a point where we expand a solution.
Po=2, (8) We use a series expansion about an ordinary point, which
has a finite radius of convergence at least up to the nearest
p1=p,=4, 9 singular point. Thus, we useai=(r—2)/r instead of
u=(r—1)/r which is used in Ref[13]. In our choice ofu
A=1(1+1), (10)  the black hole horizon and infinity correspondue—1, 1,

respectively. The distances from the point 0 to two sin-
ands=0, 1, 2 are for a massless scalar field, an odd parityular pointsu=—1, 1 are equal, which can make it possible
electromagnetic perturbation, and an odd parity gravitationalo examine the boundary conditions at both sides simulta-
perturbation, respectively. The new parameperis intro-  neously. It is clear that the quasinormal mode boundary con-
duced here in order to deal with the case of the scalar field aditions are satisfied if and only £a,u" converges at both
well. Note that the definitions ofi; and g, are exchanged boundaries, horizon, and infinity. This is equivalent to the
with each other from the book of Chandrasekhab], condition that bot®a, and>(—)"a, are finite, that is, both
though the most of the other notations follow that book. TheX a,,, andX a,,., are convergent simultaneously. To exam-
scaling oft andr in this paper is such that=G=M=1. We ine the convergence of each summation, we first obtain the
also usep=—iw as a frequency variable for convenience. recurrence relation of coefficients, of the expansiorn(17),

Now we follow Leaver's procedure of getting a recur- and then attempt to obtain the recurrence relation only for
rence relation which plays a central role in a continued fracb,=a,,,., and that ofc,=a,,. The gquasinormal mode
tion method. The tortoise coordinate in the extremal limitboundary conditions are satisfied when the odd and even
becomes sequences are minimal solutions of the corresponding recur-

rence relations, respectively.

ro=r+In(r—1)2— 1 (11) After substituting the above series expangipf) into Eq.
* r—1’ (12) we obtain a five-term recurrence relation:
which makes a difference in the basic equations between ajax+ y180=0, (18
extremal and nonextremal black holes. The Zerilli-Moncrief
equation(l) is therefore rewritten in terms of the coordi- @za3+ yoa1+ 6,80=0, (19
nate as
5 - @pdns 1t Brant Ynan-1t 6pdn-2t+ €4a,-3=0 (nB?Z)b)
d<z dz r Ar
r(r—1)d;+2d—s—[ A G
r rolr=1% r=1 r-1 where the recurrence coefficients are given by
Ps 2
+ =0. ap=n"+n, (21
r(r_l)}zs 0 (12 n
B,=0, (22

This equation has irregular singular points rat1 and
r=co as we mentioned in the previous section, which makes = —4A—2n?—p.+2q.+n(2—24p) + 12p— 64p?,

the series expansion about the horizon invalid because it is (23
hopeless that the series expansion is convergent. Hence, it is
necessary to improve Leaver’'s treatment of obtaining the 6n=2(Ps—0s), (29
guasinormal modes of the extremal black holes.
The boundary conditions of a quasinormal wave function €,=n%—ps—12p+16p%+n(—3+8p). (25
are given by
For the scalar field, we can find th@,=5,=0 in the
Zs~e ' asr,—o, (13)  above relation, which means an odd sequence and even se-
quence are completely decoupled with each other, because
Z~e"x asr,——o, (14  the Zerilli-Moncrief equation in terms af is symmetric un-

der the transformation— —u. Therefore, it has only sym-
which mean there only exists purely outgoing wave at infin-metric or antisymmetric solutions as quasinormal mode func-
ity and purely ingoing wave at the black hole horizon. Thesdions. This is the same as the case of a quantum-mechanical
are also transformed to system with a reflection symmetry, where a wave function of
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energy eigenstate must be either symmetric or antisymmetvhere the quantities with double prime are recurrence coef-

ric. This makes the calculation of quasinormal frequencies oficients of transformed three-term recurrence relations in Ap-

the scalar field easy. Each sequence is characterized by tpendix B.

three-term recurrence relatiof20) starting from the two- In contrast to the scalar field case, the even and odd se-
term relation(18) or (19). We can obtain two independent quences are coupled to each other through the nonvanishing
characteristic equations below similar to one for the quasid, terms. By dividing Eq.(20) for n=3 by Eq. (20) for

normal frequencies of Schwarzschild black holes: n=5, we get the relation between the ratio of the first two
terms of odd sequence and that of even sequence as
a Y1 T €2 (€4 (y€q
P (26) as ay
ao a1 Y27 YaT Ve as— + Y5+ €5—
as ay Ay Ay
asz Y2 T €3 Q3€5 @5€y a2 Qo &,
T s o (27) ay—+ Yzt ez~
a @y  Y3— VY5 V7 ap ap
These two equations are for the modes of even-numbered as(— Qo ap
- i —= |\ Bt vz | tystes—
and those of odd-numbered overtones, respectively. a} ay a a,
For gravitational or electromagnetic quasinormal modes, = a - P (35
we have to develop a little more complicated way because a3_4+ 73_63_1 2
the presence of thé, term makes odd and even sequences a 71

dependent on each other, though it seems that they are no :
much correlated for larga because of the fact that the co- Where the second equality comes from Ef§) and the

efficient 5, becomes relatively small as increases com- transformed three-term relatio30) for n=2. The quasi-

pared with other terms. We first need to eliminate the odd Opormal mode boundary conditions are safisfied when the

even sequence to examine the convergence of the summatiEﬁgﬁg‘;ﬁﬂ;{iaccgogﬁzig?Eﬁg) Suaggfgofnié?]?é Tuh;(';etggf the
of each sequence. This procedure is presented in Append q d q

: L : extremal Reissner-Nordstroblack hole.
A. For by a five-term recurrence relation is obtained, Equation(35) can be shifted an arbitrary number of times

n to yield an equation for the ratio of successive terms of

a;b,+ B1by + ¥1be=0, (28 highern:
&abgt Baby+ Yoby+ 8,00=0, (29 anie an+2
Unys-— T Ynist€nis
. " R " R an+3 _ n+4 8n+4 8nta (36)
anbni 1+ Babnt ¥abn-1+ Snb-2+ by 3=0(n=3), Ani1 Ania an, anio
(30 a’n+2a +7n+3+€n+3a
n+2 n+2
and forc, we get the relation Equation(35) and(36) are completely equivalent since every
S — solution to(35) is also a solution t@36) when we substitute
ayC3+ BoCot ¥2C1+ 5,€0=0, (3)  a continued fraction into each ratio af/a;_,, and vice
- L o versa. Equatior{36) can be used as a check of results ob-
‘@, Chi1t BrCnt ¥nCno1+ OnCn2t+ €nCh3=0 (N=3), tained from Eq(35).

(32
IIl. NUMERICAL RESULTS

where each recurrence coefficient is also given in Appendix
A. The eigenvalue equatiori&6), (27), and(35) derived in

As mentioned previous|y, the quasinorma| mode boundihe prEViOUS section are solved USing HheBRD subroutine
ary conditions are satisfied if and only if both sequences arélistributed in miNPACK  libraries. The three least-damped
minimal solutions of recurrence relations simultaneously. Inmodes of §,1)=(2,2), (2,3), (2,4), (1,1), (1,2), (1,3),
order to use a continued fraction method, both five-term re{0,0), (0,1), (0,2) for the extremal Reissner-Nordstro
currence relations are transformed to three-term recurrenddack hole are listed in Table I. We compare our results with
relations by successive Gaussian elimination steps which ateeaver's results[13] of nearly maximally charged case
exhibited in Appendix B. Then, the ratios of the first two (99.99% charged which should be divided by two because
terms of both sequences for minimal solutions are deterof the difference of our scaling from his. These modes ap-

mined by the corresponding continued fractions in pear as complex conjugate pairsgrbecause the eigenvalue
equations are characterized by only real coefficients. We also
it v e compare them with the third order WKB quasinormal fre-
84_C2_ 7273 ﬁy“..., (33  quencies of the extremal Reissner-Nordstrilack hole.
8 C1 By— B3~ Bi— The WKB quasinormal frequencies are obtained using the
same formula of Kokkotas and Schuti4], who calculated
as by — Y. &IYh by the frequenc[es of charged black holes but did not show
—=—= e (34  those of maximally charged black holes.

ar bo gy gy B3 Our results are in agreement with other results obtained
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TABLE |. The computed quasinormal frequencies are listed. Our results are very consistent with the
values of WKB quasinormal frequencies. The relative errors of WKB complex and real gravitational quasi-
normal frequencies foF=2 from our results ar€0.04%, 0.03% (0.07%, 0.1%, and (0.1%, 0.5% for
n=0, 1, 2, respectively. Leaver's value has rather large discrepancy of 3% for the real frequeameyl of
gravitational wave.

s=2,1=2 s=2,1=3 s=2,01=4
n=0 (-0.083460, 0.43134 (-0.085973, 0.70430 (-0.087001, 0.96576
Leaver (-0.083645, 0.43098
WKB (-0.08349, 0.43013 (-0.08596, 0.70398 (-0.08700, 0.96563
n=1 (-0.25498, 0.40452 (-0.25992, 0.68804 (-0.26212, 0.95381
Leaver (-0.257055, 0.39309
WKB (-0.25675, 0.40076 (-0.26014, 0.68701 (-0.26218, 0.95339
n=2 (-0.44137, 0.35340 (-0.44007, 0.65624 (-0.44064, 0.93020
Leaver (-0.442035, 0.353515
WKB (-0.44210, 0.35136 (-0.43986, 0.65575 (-0.44056, 0.93004
s=1,1=1 s=1,1=2 s=1,1=3
n=0 (-0.083460, 0.43134 (-0.085973, 0.70430 (-0.087001, 0.96576
Leaver (-0.08343, 0.431415 (-0.086205, 0.704075
WKB (-0.08349, 0.43013 (-0.08596, 0.70398 (-0.08700, 0.96563
n=1 (-0.25498, 0.40452 (-0.25992, 0.68804 (-0.26212, 0.95381
Leaver (-0.259705, 0.40602 (-0.26256, 0.68315
WKB (-0.25675, 0.40076 (-0.26014, 0.68701 (-0.26218, 0.95339
n=2 (-0.44137, 0.35340 (-0.44007, 0.65624 (-0.44064, 0.93020
Leaver (-0.44260, 0.35347 (-0.4408, 0.655675
WKB (-0.44210, 0.35136 (-0.43986, 0.65575 (-0.44056, 0.93004
s=0,1=0 s=0,1=1 s=0,1=2
n=0 (-0.095844, 0.13346 (-0.089384, 0.37764 (-0.088748, 0.62657
WKB (-0.10371, 0.12109 (-0.08936, 0.37570 (-0.08873, 0.62609
n=1 (-0.33065, 0.092965 (-0.27614, 0.34818 (-0.26909, 0.6081)7
WKB (-0.33742, 0.09157 (-0.27828, 0.34392 (-0.26944, 0.60677
n=2 (-0.58833, 0.075081 (-0.48643, 0.29846 (-0.45820, 0.57287
WKB (-0.57164, 0.05056 (-0.48145, 0.29661 (-0.45750, 0.57254

by Leaver and those obtained through the WKB methodjifferences ofV peak and Vgeak betweenV, for =1 andV,
within the accuracy of a few percent. The difference betweengr |=2 are calculated 1AV peaid Vpear= 2. 79565< 10~ 16

WKB frequencies and ours is ascribed to the fact that thgyg AVl Vireac=5.46819 101, respectively. This ex-
WKB method gives only the approximate values. Indeed, thgyjains the coincidence of a few least-damped quasinormal
tendency that the discrepancy grows with the mode numbggequencies of these two modes. Even for higher overtone
suggests the breakdown of the WKB approximation formggesn~30, however, we numerically find a remarkable
highern. The difference between Leaver’s results and ours iggincidence in the quasinormal frequencies of gravitational

from the numerical error caused by the breakdown of hisyayes ofl and those of electromagnetic waved efl for a
series expansion at the limit of maximal charge. Thus, we argije range of multipole indices, 21<10, through our
sure that our quasinormal frequencies of the extremahathod.

Reissner-Nordstro black hole are the most accurate. Our These two potentialsy; with a multipole index and

results and his are plotted in Fig. 1. _ B V, with a multipole index + 1, indeed give the same trans-
Notice that the quasinormal frequencies sflf=(2,2)  mission and reflection amplitude for eachwhose evidence

and those of (1,1) approach each other with increaling g presented in Appendix C. It implies that the quasinormal
and coincide in the extremal limit. We show this Curious fraquencies for both potentials are identical.

coincidence in the limit of maximal charge explicitly in Fig.
2. The trajectories of the first four lowest modes of the third
order WKB gravitational quasinormal frequencies of
1=2,3,4,5 are plotted. These quasinormal frequencies coin- We improve the continued fraction method of computing
cide with the frequencies of electromagnetic wave ofquasinormal frequencies of charged black holes in order to
=1,2,3,4 in the limit of maximal charge, respectively. The determine the quasinormal frequencies in the extremal limit
first order WKB quasinormal frequencies are given byand solve our formulas of eigenvalue equations by using a
wﬁ=vpeak—i(n+ 1/2)\ =2V peqi Using the Zerilli-Moncrief  root search program. Our results of quasinormal frequencies
Potential V, where a subscriph is a mode number. The for the maximally charged black holes are consistent with

IV. CONCLUSIONS AND DISCUSSION
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FIG. 1. Quasinormal frequen-
. cies for |=2 gravitational wave
andl=1, 2 electromagnetic wave
are plotted in thes plane with the
results of Leavef13]. Each solid
line is a trajectory of the first three
lowest =2 gravitational mode,
parametrized by the charg@. It
has a tendency to coincide at the
right end with =1 electromag-
netic mode which is shown as a
small dashed line. Marks from left
7 to right correspond toQ=0,0.4,
0.8, 0.9999 quasinormal frequen-
cies of Leaver. The frequencies of
extremal black holes we computed
are plotted as diamonds. Dashed
lines are |=2 electromagnetic
modes.

0.1 0.2 0.3 04 0.5 0.6 0.7
real part of w

0.8

every previous resultl3,14] and are the most accurate of all. stituting the continued fraction into the ratio of successive

Our procedure is summarized as follows. We expand theecurrence relations.

solution about the ordinary point and get the recurrence re- The applicability of our method is free from types of sin-
lation of the expansion coefficients. In our method we havegularities of the equation, in contrast with Leaver's method
to examine the boundary conditions at both boundarieswhich is not useful when the equation has two irregular sin-

Then, we need to divide the sequence into an odd sequenggilar points at each of the two boundaries. Though we can
and an even sequence to examine convergence of both seriese our method to determine quasinormal frequencies of
The convergence of the series at both sides occurs if andther black holes such as the Schwarzschild, nonextremal
only if each sequence is minimal. The ratio of successiveReissner-Nordstm, and Kerr black holes, we actually did

terms of each sequence is given by a continued fractiomot follow this procedure in these black holes. For these
Consequently, the eigenvalue equation is constructed by sublack holes, his method is easier to obtain the quasinormal

"08 T T T L T T
07k n=3 . i FIG. 2. Solid lines and dashed
)vf \ \ \ lines are trajectories of the third
order WKB quasinormal frequen-
-06 . cies of the gravitational and elec-
tromagnetic waves, respectively.
05 Each left end point of lines corre-
T n=2 7 sponds to the quasinormal fre-
g 3 \\ \ \\ quency of a charged black hole of
5 o4l 1 Q=0.8, and each right end point
; corresponds to the frequency in
g the limit of maximal charge. A tra-
g 03[ (S")fq.’p (12) ..... (13) ........ (_ijt) - jectory of the gravitational quasi-
= n=1 N ™~ BN BN normal frequencies depicted in a
2,2 (2,3) 24 (2,5) solid line meets at the right end
02 1 with a corresponding dashed line,
which is a trajectory of the electro-
o1l NeO | magnetic quasinormal frequencies
~ _ T T belonging to lower a multipole in-
dex by one.
0 1 1 1 1 1 1
0 0.2 0.4 0.8 1 1.2

0.6
real part of w
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frequencies because the recurrence relation and the eigeof a,,. First, we write down the recurrence relation, Egs.
value equation are simpler than ours. In our method, it i918)—(20), in the matrix expression and separate the odd se-
generally difficult to give the explicit forms of the recurrence quence from the even sequence as follows:
relations of both even and odd sequences. In that case we
will have to eliminate the even or odd sequence by numerical
elimination steps. For the extremal Reissner-Norastro
black hole, the recurrence relation, Eg0), is not so com- €3 Y3 @3 a
plicated in that it has ng, term and furthermore, thé, €5 Vs Qs ay )
term has no dependence an which makes our procedure
rather easy to accomplish.

We believe our method can be also used for the extremal
Kerr black hole which has an irregular singular point at the 0
horizon in the equation for the radial part. Some authors a,
[16—18 have obtained the series of infinite numbers of qua- X
sinormal frequencies of the extremal Kerr black hole, which az
accumulate onto the critical frequency. Leaver also finds a :
tendency of an accumulation of quasinormal frequencies
when the Kerr parameter approaches the maximum value. It
is interesting to investigate what will happen to the distribu- | 72
tion of quasinormal frequencies in the limit of maximal ro- | €4 7ya a4 asz é
tation, where Leaver’'s method is not valid. We are in prepa-
ration for this problem through our method of computing
guasinormal frequencies.

We accidentally find a curious coincidence in the quasi-
normal frequencies of gravitational perturbations with a mul- ao
tipole index| and those of electromagnetic perturbations
with | —1. These two modes are completely decoupled but % (A2)
they have the same amplitudes of transmission and reflec- a |’
tion. In that case the only difference is a phase shift of trans-
mitted or reflected wave that means the quasinormal frequen-
cies for both modes are identical. The situation is very ] o
similar to the coincidence of the transmission and reflectioyvhere the terms, is a constant and therefore we write it as
amplitudes of odd-parity perturbations with those of even-d here, which makes us able to accomplish the below-
parity perturbation§15]. At present there is no easy way to ment|o_ned procedurg explicitly. If we ;subsutute thg right-
understand the hitherto unobserved coincidence but it is in?@nd side of Eq(A2) into the left-hand side of EJA1) like
teresting that it occurs only in the extremal limit, where thethis,
black hole may have an unknown symmetry.

Note added in proofAfter we completed the work, we |y, «a; Y2 @y a;
were informed that Andersson had calculaf&fl] the quasi- a
normal frequencies of nonextremal charged black holes| ¢ 73 <3 €4 Y4 X 3
which are also consistent with our results. His method seem €5 Y5 Qs €6 Y6 Qs as
to fail in the extremal limit as does Leaver’s method. . . S :

Y1 ag Qo 0

: (A1)

2% a.l )

€ Vs Qs as )
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the even sequence is eliminated and then we can obtain a
recurrence relation including only, which was presented in

Here, we summarize a procedure to obtain a recurrencgqg. (30) and the recurrence coefficients are explicitly given
relation for the odd sequence and that for the even sequenty

APPENDIX A

ap=—3n+n2+8n%+4n%, (A4)

Bo=4n(—n—2An—4n3+nge+ 9p— 24n%p—32np?), (A5)
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Yn=8+12A+412(1 +1)%+ 24n*— 6qs— 4Aqs+ q2— 70p — 48Ap + 24qp+ 308p%+ 128Ap2 — 64qep> — 768 °+ 1024*
+n3(— 48+ 224p) +n?(46+ 16A— 80— 336p -+ 864p?)
+2n(— 11— 8A+4qs+ 1260+ 48Ap — 24q.p — 4320°+ 7683), (A6)

8,=8+4A—16n*— (4—qq)2— 205+ 32n3(2— 5p) + 68p+ 32Ap — 160 — 440p2 — 32Ap2+ 16qp2+ 89603 — 512p*

+4n?(—21-2A+Qqs+ 1200 — 144p?) + 4n(10+ 4A— 20— 97p— 8Ap + 4Qep + 2882 — 224p°), (A7)
€,=—15n+41n?—24n%+ 4n*—30p+ 164np— 144n%p+ 32n3p+ 16402 — 288np?+ 96n2p2— 19203+ 128np>+ 64p*.
(A8)
Similarly, we get a recurrence relation fof and the recurrence coefficients are given by
a,=1-5n%+4n% (A9)
Bn=(—1+2n)(2+2A—8n—4An+12n%—8n3— s+ 2ngs+ 6p + 48np—48n%p + 32p%— 64np?), (A10)

Yo=41+ 24A+ AA%— 120,— 4Aqs+ g2+ 306 + 96Ap — 480 + 9480% + 128Ap% — 64qsp> + 15360° + 1024, (A11)

Y= 38+24A+ 4A%+ 24n*— 120,— 4AQs+ 2 — 308 — 96Ap + 48q.p + 95602+ 128Ap% — 64qsp?— 15360°+ 1024p*
+32n3(—3+7p)+2n%(77+ 8A—4qs— 3360+ 432?)
+4n(—29-8A+4q4+ 18% + 24Ap— 12q.p — 432p%+ 384p%), (A12)

8,= —8+4A+6(s— 02+ 12p— 12Ap+60sp— 76p>— 16Ap>+ 8asp? — 3360° — 256p%, (A13)

8= —42—6A—16n*— (4— o)+ 3qs+32n3(3—5p) +402p + 48Ap — 24qp — 1162 — 32Ap2+ 16qp2+ 13443 — 512"

+4n?(—51— 2A+ Qs+ 180 — 144p?) + 4n(45+ 6A— 30— 247p — 8Ap+4qep + 4320°— 224p%), (A14)
€,=21-76n+83n%2—32n3+4n*— 1520+ 33np— 19n?p+ 32n3p+ 33202 — 384np?+ 96n2p?— 25603+ 128np>+ 64p*.
(A15)
[
APPENDIX B al=ay, (B9)

We give the Gaussian elimination steps to transform the y o,
five-term recurrence relations into three-term recurrence re- B1= b1, (B10)
lations. Forb,, the step defined by

YI=71 (B11)
an=ay, B1 oy o~
h=an (B1) A= al (B12)
Bl=[ i B2 St~ argan
Bn=Bn (B2) Bl=BL—a&l_ 8L, (B13)
0= Yn, (B3) Yo=Y~ Br-1O¥p-y forn=2,  (B14)
A5r'1: 3n, for n=1,2, (B4) brings us to a final three-term recurrence relation:
=, (B5) b1+ Brby+yib, =0 for n=1. (B15)
e For c, the successive elimination steps in
Bn=Bn—aq_1€nl 34 1, (B6) _
az=ay, (B16)
Y=o Br1€nl 81, (87) =
ﬁZZﬁZI (817)
8 =8~y _,e,18 _, for n=3, BS —
n~ %" Yn-1€n/0%n-1 (B8) V5=72, (B18)

transforms the five-term recurrence relation into a four-term — —
recurrence relation and the second elimination step below, 6,= 03, (B19)
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ar=an, (B20) If these two different potentials yield the same amplitudes of
transmission and reflection, the following integrals for the
Bl=PBa—al_jenld, ,, (B21) two potentials should be the same:
Yr=Ya— Bl 1€nl 51, (B22) |1=J vdr, , (C4
S =80y _j€nld,_, for n=3, (B23)
|2=f vadr, , (CH
and
ay=aj, B24
2 72 (B29 |3=f (2Ve+V'3)dr, (CH)
Br=85, (B25)
N —_— — 4 12 "2
7;:7&_&155/711 (826) I4 f (5V +10vVV' +V )dr*, (C?)
ap=ap, (B27)
noon |5=f (14V53+7TOV2V'2+ 14VV"2+V"?)dr, , (C8)
Br=Bn—an_ 164/ Va1, (B29)
o lg="---.
Ye=vn—Bh_ 160 vi_, for n=2, (B29) _
. _ Because of the simple forms, E¢&2) and(C3), we can see
give us a three-term recurrence relation: the coincidence of these integralg;~1,,, for the two po-
. — tentials. The explicit forms of the above integralg:-1s,
aiCnr1t BrCnt ¥aCho1=0 for n=2. (B30 are given by

APPENDIX C

Now, we summarize here the relation betwaénfor a
multipole index| andV, for a multipole indexl +1. If we
introduce a new functiof,

f:—z, (Cl)

which vanishes at both boundarigs;»1 andr—c, then
two potentials are given by

df

Vi=+(+1) — 413+ (1+1)%f2, (C2)
dr,
df

Vo=—(1+1)— —4f3+(1+1)%f2, (C3)

dr,

l,=(1+61+31%)/3, (C9)
I,=(4+18 +932+841%+211%)/630, (C10

| ,=(23+120 + 4762+ 15603+ 18204+ 858°
+143°%)/45045, (C1)

| ,=(1648+ 8736 + 327162+ 105868°%+ 252561
+316540°+ 2034906+ 646007+ 8075°2)/19399380,
(C12
| s=(25160+ 125820+ 437634%+ 1336860°+ 3430245*
+6563970°+ 809942T°+ 60858007 + 2687895°
+642390°+642391%/1003917915. (C13
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