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Field theoretical quantum effects on the Kerr geometry
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We study the quantum aspects of Einstein gravity with one timelike and one spacelike Killing vector
commuting with each other. The theory is formulated as af2SR)/U(1) nonlinearo model coupled to
gravity. The quantum analysis of the nonlinearmodel part, which includes all the dynamical degrees of
freedom, can be carried out in a parallel way to ordinary nonlimeanodels in spite of the existence of an
unusual coupling. This means that we can investigate consistently the quantum properties of Einstein gravity,
though we are limited to the fluctuations depending only on two coordinates. We find the forms gf the
functions to all orders up to numerical coefficients. Finally we consider the quantum effects of the renormal-
ization on the Kerr black hole as an example. It turns out that the asymptotically flat region remains intact and
stable, while, in a certain approximation, it is shown that the inner geometry changes considerably, however
small the quantum effects may H&0556-282(196)03112-§

PACS numbdrs): 04.62:+v, 04.60—m, 04.70.Dy

[. INTRODUCTION with each other. Einstein gravity with two commuting Kill-
ing vectors can be formulated as an(3LR)/U(1) nonlinear
We are far from a clear understanding at present of ther model coupled to gravit},10]. For the Einstein-Maxwell
guantum aspects of Einstein gravity. There exist many diffisystem, we have a similar formulation as an(3W)/SU(2)
culties both conceptually and technically. One of the most< U(1) or SU(2,1)/SU(1,1) X U(1) nonlinearc model accord-
outstanding ones is its nonrenormalizability. Because of thising to the signatures of the Killing vectors. One of the most
we have no consistent way to investigate its quantum theorymportant applications of these facts is the proof of the
In spite of the difficulties, many attempts have been made aiiniqueness theorem of the Kerr-Newman solutior] 1.
incorporating quantum effects, for example, by using semiThe central equation of these systems is known as the Ernst
classical or IN approximation. In these approaches, the flatequation[12]. For generating the exact solutions, these sys-
space-time suffers from instability in the quantum perturbatems have been studied extensively and many interesting and
tion owing to the induced higher derivative terms or the ta-rich structures have been revealg10,13. In particular,
chyonic modes in the gravitational propagaftb+4]. More-  the systems possess infinite dimensional hidden symmetries
over, the tachyonic modes make the actual perturbativel4—16 and become integrablgl7,18. In addition, the
calculation impossible. Theories with higher derivative termssimilarity between these hidden symmetries and those of di-
are studied also as effective ones in the low energy limit oimensionally reduced supergravities has been recognized
some fundamental theory such as string the@wse, e.g., [19], and recently applied to the study of string dualities
[5]). In these theories, higher derivative terms appear in thg20].
perturbation with respect to weak curvature. Hence we can- As for nonlinearc models, there exists an extensive lit-
not deal with the region with strong curvature where quan-erature on their quantum analygi81—24. In two dimen-
tum effects are expected to become important, and we casions, nonlinear models are renormalizablén the gener-
consider only small deviations from the classical solutionsalized sense of Frieddi22]) and their quantum aspects can
There is also ambiguity related to field redefinitidf8], for ~ be studied in a consistent way, at least perturbatively. Fur-
instancg. In a much more simplified setting, the quantumthermore, among various models, the simplest one is the
mechanics of minisuperspaf#] or the Schwarzschild black O(3) or CP* [SU(2)/U(1)] nonlinears model, and its target
hole have been investigatd®]. In these cases, it is still manifold CF is the compact analogue of our &, R)/U(1).
difficult to extract their physical consequences. Thus we Therefore we can expect to make use of the vast knowl-
have not yet succeeded in grasping definite quantum aspeaglige in the literature. The purpose of this article is to study
of general relativity even in some approximation. the quantum theory of Einstein gravity reduced to two di-
Difficulties concerning quantum Einstein gravity are ex- mensions and to investigate its effects on geometry. Of
pected to be overcome when we understand a more fundaeurse, in our formulation in which some of the quantum
mental theory. Intensive studies have been made in this dffuctuations are truncated, we can say only a little about the
rection, but, together with this, it may be important to statistical aspects of the original Einstein gravity. However,
accumulate certain pieces of knowledge of the quantunitturns out that we can actually deal with the quantum theory
properties of Einstein gravity even if in a simplified setting. of this reduced Einstein gravity and evaluate some effects on
In this article, we shall work with Einstein gravity with geometry in a consistent and simple way. We believe that
one timelike and one spacelike Killing vector commuting our analysis gives some insights into quantum aspects of
Einstein gravity.
The rest of this article is organized as follows. In Sec. Il,
*Electronic address: ysatoh@hep1l.c.u-tokyo.ac.jp we formulate Einstein gravity with the two Killing vectors as
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an SL(2, R)/U(1) nonlinearoc model and equations govern- introduce an auxiliary field,,,, add a term to the Lagrang-
ing the system are derived. Next, in Sec. lll, we investigatdan £ as

the quantum theory of the nonlinear model part. TheB

functions are obtained to all orders up to numerical coeffi- L—L+C™"F = (dA) mal, (2.3
cients determined by explicit loop calculations. Then the

equations including the renormalization effects are givenand regardF,, as an independent field. By integrating out
Section IV is devoted to the analysis of the quantum effect€mn, We getF,,=(dA)y, and the original action. On the
on the Kerr black hole. We find that the asymptotically flatother hand, the integration %, leads toV,,C™"=0 and
region remains intact and stable. On the other hand, in Aence C,,, can be written by a scalar fielB as
certain approximation at one loop order, it is shown that thec™"= 1 ¢35 B, whereV,, and ¢, are the covariant de-

inner geometry undergoes a considerable change no mattgyative operator and the volume element, respectively. Fi-

how small the quantum effects may be. Finally, a brief dis-naly, by the further integration d¥,,,, we get the Lagrang-
cussion is given in Sec. V. Throughout this article, we adopigp,

the sign convention in which the flat space-time metric in
four dimensions ispyy= diag(—1,1,1,1). 1

eL®=elR®¥(e)— Eym“A‘z(amBath?mAanA)}

II. DIMENSIONALLY REDUCED EINSTEIN GRAVITY (2.9

In tr_us section, we consider the _dmer_@onal reduction Ofand the relation betweeR,, andB:
Einstein gravity with two commuting Killing vectors. By
dropping the dependence on the direction of one isometry, AF = —€nmd B. (2.5
and performing a dual transformation, we find that the theory mn mn

is described by an SB, R)/U(1) nonlinears model coupled  \ye can check that the model obtained in this way is actually

to gravity in three dimensions. Then we further reduce theequivalent on shell to the original one. As intendé has
theory to two dimensions. We shall follow the method 5, SL(2, R) symmetry:

adopted i 10], and deal with the case in which one Killing

vector is timelike and the other is spacelike. aZ+b a b
We begin with the following vierbein in a triangular 72—-7'= , )eSL(Z;R), (2.6
gauge: cZ+d d
A~12ga  AL2A whereZ=B+iA. Z is related to the so-called Ernst potential
EQ=( 2 ) : 2) Eby
0 A
E=iZ=A+iB. 2.7

where M (=0-3 and m (=1-3 refer to the space-time
indices andA (=0-3) anda (=1-3 to those of its tangent
space. Assuming that all the components are independent Q
the timelike coordinate? the Einstein-Hilbert action is re-

oreover, we find that the model described B{?) is an
L(2, R)/U(1) nonlinearo model (coupled to gravity, and
this is a noncompact analogue of at3D(CP?) nonlinear

duced to o model. The analogy becomes obvious in the form
1 1
g =— | g4 4) 1
7 SEH ﬁxf d*xERV(E) —Eym“A*Z(amBanBJramAﬁnA)
= Lf d®xe R®)(e)+ EAZF Fmn 1
B 4= o mn == 5 V" 20nEonE
1 mnA —2 W
—5Y A0, AdA |, (2.2 __pym W W
(1-ww)?

wherek is given byx=G/c3, |p is the Planck lengthl, is 1

the “length” of the x° direction, ancE ande are deE}, and =— = y"pab 29, 0", (2.9
deed, respectively. F,,, is defined by F,=(dA)m, 2
=d,A,— A, and the indices are raised and lowered by the _ a i .
three-metricy,,, determined by the dreibeigf, . Vi’h%;‘/a(f"; %))/(WJr 1)= f,: finld v a|!15d defmjc(jji:y(vi_l (1|v1)

The equations of motion derived from the above reduce(ﬂzg] vl 7Mapl U : ab 9=LL

action have an Si2, R) symmetry. Although it is not mani- : . .
fest in Eq.(2.2), we can obtain an action manifestly invariant Now let us reduce the theory further to two dimensions.

under this symmetry by a dual transformatfoRirst, let us As n 'ghe_ previous case, we take the following form of the
dreibein in a triangular gauge:

(04
The author would like to thank Y. Kazama for the discussion on a_ ( )‘5M pCM (2.9
this point. m 0 p |’
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whereu,@=1,2. SinceC, has no physical degrees of free- Ill, we consider the quantization of the nonlinearmodel
dom, we can seC,=0. Then by dropping the dependence part, which includes all the dynamical degrees of freedom.
on x%, we obtain This means that we investigate the effects of the quantum
fluctuations maintaining the symmetry of the isometf(ies
dependence ok® and x®). Because the three dimensional
gravity part (\,p, etc) has no physical degrees of freedom,
we can expect that it does not make major contributions to
the quantum effects. Thus we left the quantization of this
R~ EYWAZ%&?VET part as a future problem. In quantum theory, it is ambiguous
which variables we should regard as fundamental to be quan-
1 ., tized. The reasons we start our quantum analysis with this
—20,0,In\— 5A7%9,E9,£|, nonlinearc model are twofold. One is that the original hid-
den symmetry is manifest in this formulation. The other is
whereV is the “volume” of (x°x%) space-time. Note that, that we can make use of the knowledge of the quantum
in the latter form, the indices are contracted effectively bytheory of nonlinearc models developed in the literature.
the flat two dimensional metrié,,, . Thus, in the following, Due to this, the quantum analysis of our model is fairly sim-
it is understood that the indices are raised and lowered by thglified.

1 V[, @
gSEH—> 2 d<xeL', (2.10
P

eL?=e

=pS*

flat metric. Since the fluctuations in the” andx® directions are ig-
The independent equations of motion deduced from thd&iored, such an analysis is not enough to know the full quan-
above action are tum properties of Einstein gravity. In particular, we can say
only a little about its statistical aspects. However, we have at
d,0*p=0, (2.1)  present no consistent way to investigate the full quantum
theory of Einstein gravity because of its nonrenormalizability
Ad*(pd,E)=pd, EIE, (212 and various difficulties. Our attitude here is a modest one.
L L Although only a part of the quantum fluctuations can be
2 ) = incorporated, in this simplified setting we can carry out a
IepOdIN =5 9;p= 7 pA "0,E0.E, 213 Consistent guantum analysis of Einstein gravity and extract

some quantum effects on geometry. We believe that our
whereZ=x"+ix?. These equations are derived by the varia-analysis gives some insights into quantum aspects of general
tions of £ andy,,,. The variation ofp leads to a dependent relativity. Indeed, it turns out that we can obtain the forms of
equation. This is related to the fact that the degree of freethe g8 functions to any loop order and the renormalization
dom of p is spurious. Indeed, singeis a free field and there effects on the classical solutions.
remains the choice of the conformal gauge in two dimen- In order to respect the covariance of the target manifold,
sions preserving the form @&, in (2.9, we can identify  we rewrite the action of the nonlinearmodel part by using
p w!th one of the coordinates by some conformal transfor4ts metricg;;($) and coordinateg':
mation.

In the reduced theory to two dimension&,5) leads to 1 1 ) : .
A,,=0 and 7Sw=— _2e2f d*xpgij($)d,¢'d" ¢, 3.1
' 0

2 A
AT9A=IPIB. (219 where e2=12/V is the coupling of the model. In string
Consequently, we have four basic equations, Egsl])—  theory, V corresponds to the volume of the compactified
(2.14. Equation(2.12 for £ is known as the Ernst equation space. On the contrary, in our contékis the “volume” of

and becomes integrable if we seto be one of the coordi- the real space-timexf,x%) and henceeg is an extremely
nates. There exists vast knowledge of this equation. For desmall number, i.e., the model has a quite small coupling. The

tails, sed9,10,13. fluctuations depending only oft andx? are constant modes
As for the metric in four dimensions, in our parametriza-with respect to the reduced direction8 and x°, and €3
tion we have «V~1 indicates that such fluctuations are suppressed by the

“volume” of the constant direction. In the stationary axi-

— M N
dsz_7’MNdX dx symmetric case, which has the Kerr solution, the tinde

_ A EB q4yMy N runs from —o to + andV tends to infinity. We do not
7]ABE ME NdX dX ) 2 . . .
know which values; takes in such a case, but the coupling is
= AN (dxh?+ (dx®)?]+ p?(dx®)?} still expected to be quite small.
I 1'2: L= .
CA(DO+ A2, (2.15 In the coordinates¢™“=A,B, we have g;;=g4j;,

g=A"2. In two dimensions, the curvature tensors are easily

calculated through
lIl. RENORMALIZATION OF NONLINEAR ¢ MODEL

PART R=-g 164,0;Ing, (3.2
In the previous section, we formulated Einstein gravity
with two commuting Killing vectors as a two dimensional R-~=1R 5 3.3
SL(2, R)/U(1) nonlinearoc model coupled to gravity. In Sec. =280 '
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1 1
RijkIZER(gikgjl_gilgjk)- (3.4 hp D, &= D fp—D & — 59 uInp- &, (3.9
From the first equation above, we get whereD ,&P= 9, &P+ APy, & 9, APy, =aPyd, ok, and OPqx
=P, (akh' +FJk|h'q) Here we have used’ =Tj,. In
R=—2=const, (3.5 terms of§p the kinetic term has the canonical form
namely, the S[2, R)/U(1) manifold has a negative constant 9D £ D" =D, D ¢p=0,8Pol Ept -+ (3.9

scalar curvature. Although the above form @f appears
singular atA =0, this is just a coordinate singularity and we

can get a regular metric even there by some appropriate C@Sf"gn We'ghlg NN to quantities with the property
ordinate transformation. DM (Agj)=ANDPMN(g;;) where A is a constant. In each

Now let us consider the renormalization of the effectivet®rm in (3 6, the part W|thout§' and expressed by the geo-
action of the model. As the functional measure, we takeMetrical quantities througb;; has weight 1 because we are
1, Vdew; d¢'(x). This is invariant under coordinate trans- 0f9inally expandingg;;(¢)d, ¢d,¢. Let us denote such a

! ntity byd®) Since the derivativ with r t
formations of the target manifold, and respects the covarid4antty by (9ij). Since the derivatives of espec
ance. The only difference of our model from ordinary non-10 ¢" vanish, i.e. akP 0, it holds that
linear o models is the existence of the faciin (3.1). This (1) a1 a1 _ &
factor behaves as a coordinate-dependent coupling like a di- p® (g =p® (g /p) =2 (g =" (3.10
laton field in string theory. In the following, we assume
p(xX)>0. The reality of the space-time metric requires just
thatp(x) is real or purely imaginarjsee(2.15]. In the case
of negative or purely imaginary, we have only to replace 1 . .
p(x) with [p(x)|. With this in mind, we shall adopt the back- ~ — gSNL[d)]: - %SNL[<p]+ f d?x T, '0ii (@) d,¢' D&
ground field method and follo23]. Thus our analysis does
not depend on which background we shall take.

_First, we expand the action around the background fields + —ZJ d?x
¢' by normal coordinates:

In order to see how other terms are expresseé‘bywe

For examplepRij« (9i) = Rijii (0ij) = IA?ijkl . From Eqs(3.9)
and(3.10, we obtain

gppﬂ gp

R. .gplgpza @i&M(PJ'
1 1 , o i ' 1P1P7) 13
_%SNL[(b]:_gSNL[‘P]_FJ’ d*xTy "gij(¢)d,¢'D*¢

1. .
§D ip,P3 Jgplgngpsa ¢ &#(P
1 ) -
+§f T 1{gijD”§IDM§J 4. EP1EPID EP3gh
Ky gk ion ] 3 Ripipypgb’ 172D, 80 gl -,
+ Rik k,j £ 1620, 0' 9" ¢!
(3.11
1 o . S
+§DklRik2k3j§k1§k2§k3%¢'3“¢J where Ryjx=h',Riijx, etc. Therefore we find that the

changes from the cases withopit(i.e., ordinary nonlinear
o modelg are only(i) the replacement of all the quantities
by those with carets andii) the further replacement
M§9—>D §p The term linear ing contributes to a field
where ¢ is the tangent vector to the geodesics around redefinition t_ogether with the source term omitted here. We
To(x)=€3/p(x), andD & = M§I+Flka,u¢k§] D, is the co- isha_ll drop this linear term because it is |_rrelevaint to the fol-
owing discussion. Since the transformatiapls— £'— &P are
coordinate transformations on the manifold, the functional
measure is invariant, while under the last transformation
£ &P the measure is changed ini, p,rfldg”(x) When
the factorp ! is raised into the action, it is proportional to
ans . SO the § fgnct_lon 'However smce we shall aeiopt d|men§|onal
hPihgi=gij, h'phj=5%. (3.7 regularization, it plays no role in the following calculations,
at least perturbativelj21,22,.
Here the indices for the target manifoidj, are raised and We now proceed to the loop calculations. As long as we
Iowered bygi; and those for its tangent space,q, by  are concerned with divergent parts, we can estimate the ef-
8pq- (Henceforth we denote the quantities with respect tofects due tod,Inp in D, &P to all orders. First, let us note that
gij with a careti hP; is expressed by the zweibefi®; with  possible counterterms are scalars, and on dimensional
respect tog;; as hp JphP; . Then we defingP=hP, gJ and  grounds they are of dimension 2 and hence include two base-
£P=hP, &= /p&P. Noting thath?, depends not only op but  space derivatives. Second,Nifoop order, they have weight
also onp, we have —N+1. Third, sinceR=-2/p and similar formulas to

4
+ 3 Rik

3 fklngDﬂngaﬂQDi_}-... , (3.6

1k2k3

variant derivative, e.g.D,¢'= &k§'+l“]k§k and T, is the
Christoffel symbol defined by;; . Next, we mtroduce the
zweibein hP, i(@,p) with respect tOg,J(cp p)=pg;j(¢) and
with the properties
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(3.2—(3.4) are valid for the quantities with carets, the cova- J 1 ) - © N
riant derivatives of the curvature’,R;;, and Rjj, vanish IBU(T)E/-LﬁU =5-U NZl (Nby’; 1+ by d7InU)TT,
and any scalar without the base-space derivatjvis a func- (3.16
tion only of p. Therefore the counterterm idtloop order has

the factorTg *. For example, at one and two loop orders, where u represents the renormalization point, af@ and
the possible counterterms includiaginp are proportional to bf\,o) are the lowest parts @y andby in €1, respectively. It
d,Inpd*Inp andd,, Inpd“InpR, respectively. Consequently, we s easy to integrate the above equations agthenctions are
find the counterterms due tg,Inp in D, &P to be of the form  just the rational functions gf(x).

Finally, we remark that, if we perform the integration of

1 p, the possible counterterms take the same form&3d®
N—1

58S\ =~ yp dZX(NEl bnTo )%'”P‘?“lnp’ (312  and(3.14 because of the symmetry.

where we have adopted minimal subtraction and dimensional V- QUANTUM EFFECTS ON THE KERR GEOMETRY

regularization, i.e., dim=2—n and e=n—2. As for the In the previous section, we carried out the renormalization
infrared regularization, we have adopted a simple mass Culy the model and derived the functions of the couplings. In

off. Since the renormalization of the model is a problemyyig section, we investigate the physical consequences of our
concerned with short distances, the scheme of the '”frare&uantum analysis. We are interested in global geometry of
regularization may not be essential are numerical coeffi-  gpace-time, and the effects of the higher derivative terms in
cients determined by explicit calculations. It is easy to checkne effective action are expected to be small for long dis-
thatb,=1/2. The existence 0#Sf) shows that we have to tances. Thus we shall focus on the quantum effects due to the
add an additional bare terms; 1/2fd?xUg 'd,Inpd*Inp, in  quadratic derivative terms in the effective action. Let us here
the action, wheréJ ,=0(e}). regardug as representing the energy scale of the classical
_ As we have already estimated the result from the changeheory of reduced gravity, where?(x; uo) = €2( o) =const
D,—D,, the remaining analysis of the divergent parts canholds. Then the independent equations of motion including
be performed in a parallel way to ordinary nonlineamod-  the quantum effects become

els. Thus we immediately get other counterterms up to two

loop order[22,23: d,0"p=0, 4.7)
-1 _T-1
R U™ U A (T~ LgmE)=T 19, E €, 4.2
5SN|_:_f d=x Rij+ _RikImR' J qo'o""‘(p]
d1e 41 ] # 1.2 _ 1.2 —1p-2 ra
_ 1 d?x| — 1+ ToX) a0 0", (3.1 +U"19,Inpd,In 4.3
“aae) 9% o |Gidue' e (313 Anpd np), :

. . A%29,A=ipd,B. (4.4
Moreover, we can determine the form of the remaining coun-

terterms to all orders. In a similar way to the previous arguyere we adopt a particular choice of the conformal gauge in
ment, we find that a tensor with two lower indices of the o dimensions represented by!(x?). As mentioned in

target manifold is proportional tg;; if it is made out of the  gec |1, we can identify(x) as one of the coordinates since
metric, the curvatures, and covariant derivatives. Thus W& (x) is a free field. Thus, introducing another free figld

find also that the remaining counterterms are of the form conjugate withp, we choose the gauge

1 _ . . xl=op, x?=o0z, (4.5
5SNL:—4W€J’ d>x| > ayTy* gijd,¢' o e, (3.149
N=1

and hence€=o(p+iz), whereo is some constant with the
dimension of length. In our context, only the Planck length
Ip is such a constant made out of the fundamental constants
in the theory. Then we set=1p.

Now we consider the quantum effects on the Kerr geom-
etry as an interesting example. It has been proved that the
Kerr geometry is the unique solution to the stationary axi-

ymmetric Einstein gravity under certain physical conditions
26]. In the following, we set=x° and w=x3, and regard
t and w as the time and the azimuthal angle, respectively.
We shall find that the asymptotically flat region does not
undergo any quantum correction, namely, the asymptotic re-
gion is stable. Furthermore, in a certain approximation at one
P 1 loop order, it is shown that the geometry inside the ergo-
=y T=— (0)TN+1 sphere changes considerably no matter how small the quan-
ArD=ng, T 27TN§::1 Nay' ™% (@19 tum effects may be.

whereay are numerical coefficients determined by explicit
calculations.(3.13 impliesa;=—1 anda,=1/(27). Note
that the sign ofa, is opposite to the usual cases of compact
manifolds.

As the counterterms above are functions gfix), the
model is not strictly renormalizable. It is, however, renor-
malizable in a more general sense in which the manifold o
the classical action changes due to quantum eff@dk In-
deed, we can deriv@ functions for the couplingd (x; «)
= e?(x;u)/p(x) andU[T(x;u)], as in the usual renormal-
izable theorie$22,23. They are given by



53 FIELD THEORETICAL QUANTUM EFFECTS ON THE KERR GEOMETRY 7031

The Kerr solution to Egs(2.12—(2.14 is usually ex- with T~ 1. At a generic order, however, the remaining equa-
pressed by Boyer-Lindquest coordinate&he radial coordi- tions are quite complicated. Thus henceforth we focus on

nate and € (the polar anglg given by one loop order. At this order, we hav@ (x;u)
1 5 o =T~ Y(x; mo) — (1/27) In(u/ o), and we can get the solution
lpp=x"=r°—2mr+a‘sing, to (4.2) and(4.11) from the classical one by the replacements
) of p and\ with p—e?(ug)/(27)In(u/ ) and 1. Unfortu-
|pz=X"=(r —m)cos, (4.6 nately, by these replacements &a4) comes not to meet the

integrability condition. Therefore we shall resort to further
wherem anda turn out to represent the mass and the angulagpproximation. Here we consider the deviation from the clas-

momentum per unit mass of the Kerr black hole, respecsical solution in the neighborhood pfx) = p,, and approxi-
tively. In these coordinates, the Kerr solution is given bymateT~*(x; u) by

[13]

1
E=A+iB. (o) T 1) = p(X)} 1= 5—€%(po)p ™ *(X)IN(1/ o)
A= (D—a’sirf)/3, B=2macod/S, (4.7 ~a(pg)p(X), (4.12
D —a?sir’6 2mrsir? 6 where a(po) =1~ e*(uo)/2mp, 'IN(u/p)=const, and it

2_ _ : M Foj =25 i
A DT (m=a?)sid’ A=ag—o2aog (4.8  tends to 1 asu—uq. This approximation is valid in the

region where p(x)>1, becausedup *=—15'p"? and
whereD =r2—2mr+a? andS = r2+ a2co<6. Then the line axzp*'lzo. In this appr_oximation(4.2) is the same as_the
element is written as classical one and the difference betwg2ri3 and(4.11) is

only the exponents ok and\. Thus all the quantum ef-

2mr dr? mar fects are represented by the change\pfind it is given by
- _ _ 2 _ 2| _ H
ds?= (1 S dte+3 D +dé S sif0dwdt N2=12(po)(F1/F,)*r0), (4.13
2mar whereF ;=D —a?sir’d and F,=D + (m?—a?)sir6. There-
2 2 H i 2 . . . . .
+lre+at+ S Sin?6 | sinf 6dw®. (4.9  fore we find that in this approximation the geometry be-
comes
The zero ofS and those oD (i.e.,r=r.=m=m?—a?) N oo F,|*Po~-1 [dr? )
correspond to the locations of the curvature singularity andjszz —11- S dt“+1%(po) F_2 p F“Ld@
the horizons, respectively, while the outer zero of oma?
D—a%sirtd (i.e., r =r,=m+ m?—a2cos6) represents the _ 4mar . 2, .2, cmar , 2
outer boundary of the ergosphere. The asymptotically flat 3 siFgdwdt-+| r*+a*+ SirFg | sir6dw”
region is described by (or p) —. In this asymptotic re- (4.19

i 1\2 2\2 __ 2 2 2
gion, we have @x)°+(dx)"~(dr)"+r(dg)”, and From the above expression, we find that additional zeros and

(Xl’.xz) represents the flat two-plane. Notice tigatends to singularities appear in the metric whefg or F, vanishes.

vanish ag —r. or sing-0. The conformal properties of the geometry are very much
Since the beta functiongr(T) and By(T) are expanded affected by them. Moreover, we see that these singularities

by power series off (x; uo) = €*(uo)/p(x), the perturba-  develop curvature singularities. For example, let us consider

tion is valid except for small neighborhoods of orderof ~ one of the curvature invariants defined bfRosos

the axis of the rotation, sth=0, and the horizong=r .. . EE%ELSEthgR%_)MN_ In our parametrization, it takes the

This means that the quantum fluctuations become large therg,,m Rosos=M 2F3(A,B,p), whereF is a certain function

It is obvious that in the asymptotic region tie function A B andp. Since, in the case of the Kerr geomefiig.,
vanishes. Therefore there are no quantum corrections due po) =11, it becomes singular only & =0, RyspsCOMeES t0

the. running couplings in that region and the flat region re-diverge at the zeros d¥, or F, unlessa(p,)= 1. Note that
mains stable. _ the conditionp(x)>1 holds even there, except for in the
In o_rder to further study the physical consequences of OWiicinity of the axis of rotation, as long am anda are large
analysis, we have to solve Eqd.2)—(4.4). The change due  gn6,gh compared with the Planck scale. Note also that the
to the termU ™4 Inpd np in (4.3 can be absorbed into a termost additional zeros or singularities occur at the outer
factor of X. Let us definef(p;u) andAy by A=F(p;u)hr  poundary of the ergosphene=r,. We need further investi-
and f(p;u)—1 as p—oo. Then taking into account gation in order to know whether or not these singularities are

lpp=x", we find thatf (p; ) andAy are given by true. However, our result indicates that the geometry inside
1 o the ergosphere, where unusual phenomena can take place, is
f(p;,u)zexp(zez(,uo)f dp'p' 2U Y T(p"; )1, changed considerably due to the quantum effects. This is the
p

case no matter how small they may be, namely, as long as
(4.10 a(po) # 1
O .

1 1 _
3pdnNt— = 2p=~eX( o) T 1A 729,E9,E. (4.11) V. DISCUSSION
(P9 2%¢F g 0 v

In this article, we studied the quantum theory of Einstein
The equation forn; is of the same form as the classical gravity with one timelike and one spacelike Killing vector
equations for\, (2.13, up to the replacement gf/e2(u) formulated as an SR, R)/U(1) nonlinear & model. We
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showed that the quantum analysis of this model can be cadom. Even after dimensional reduction, the gravitational part
ried out in a parallel way to ordinary nonlinearmodels in  remains to be quantized. We should also study the effects of
spite of the existence of an unusual coupling. This meanghe higher derivative terms in the effective action. In order to
that it is possible to investigate consistently the quantumnvestigate the statistical aspects of Einstein gravity, we have
aspects of Einstein gravity in our limited case. In conseto develop some other approaches. These are beyond the
quence, the forms of thg functions were determined to all scope of this article and left as future problems. Since we
orders up to numerical coefficients. As an explicit examplenaye seen that Einstein’s theory is formulated as a nonlinear
we considered the quantum effects on the Kerr geometry, model already in the reduction to three dimensions, it may
Then we found that the asymptotically flat region undergoeg,e interesting to consider the application of three dimen-
no quantum effects and remains stable. We also discusseghnal nonlineaw models.

the considerable change in the inner geometry of the Kerr Note added in proofAfter submitting this paper, the au-
black hole. These contrast with other quantum approaches Qo realized that it was appropriate to add several references.
quantum properties of Einstein gravity, in which Minkowski b3 transformations such #.3) and a quantization of di-
space-time becomes unstable, and/or a solution much diffefensionally reduced Einstein gravity as an integrable system
ent from the classical one is discarded because of the validity,\e peen discussed [i87] and[28], respectively. Rigorous

of the perturbation§l1—6].

arguments about the quantization of two-dimensional nonlin-

It is obvious that we can deal with the case with tWo 515 models have been made[i29]. The author would like
spacelike Killing vectors in the same way, in which colliding 5 thank S. Mizoguchi and H. Suzuki, and D. Maison for

wave solutions are known. In addition, the extension to thebringing my attention td27] and[29], respectively.
Einstein-Maxwell system is straightforward, because, when

dimensionally reduced, this system is also formulated as a The author acknowledges helpful discussions with M.
nonlinearo model coupled to gravity as mentioned in the Natsuume, Y. Okawa, and T. Yoneya, and in particular with

Introduction.

I. Ichinose and S. Mizoguchi. He would like to also thank Y.

Admittedly, our analysis is incomplete for understandingKazama for useful comments and discussions. The research
the full quantum properties of Einstein gravity. We can sayof the author was supported in part by JSPS Grant No. 06-
nothing about the effects of the truncated degrees of free4391 from the Ministry of Education, Science and Culture.
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