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Field theoretical quantum effects on the Kerr geometry
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We study the quantum aspects of Einstein gravity with one timelike and one spacelike Killing vec
commuting with each other. The theory is formulated as an SL~2, R!/U~1! nonlinears model coupled to
gravity. The quantum analysis of the nonlinears model part, which includes all the dynamical degrees of
freedom, can be carried out in a parallel way to ordinary nonlinears models in spite of the existence of an
unusual coupling. This means that we can investigate consistently the quantum properties of Einstein gra
though we are limited to the fluctuations depending only on two coordinates. We find the forms of theb
functions to all orders up to numerical coefficients. Finally we consider the quantum effects of the renorm
ization on the Kerr black hole as an example. It turns out that the asymptotically flat region remains intact
stable, while, in a certain approximation, it is shown that the inner geometry changes considerably, how
small the quantum effects may be.@S0556-2821~96!03112-8#

PACS number~s!: 04.62.1v, 04.60.2m, 04.70.Dy
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I. INTRODUCTION

We are far from a clear understanding at present of
quantum aspects of Einstein gravity. There exist many di
culties both conceptually and technically. One of the mo
outstanding ones is its nonrenormalizability. Because of th
we have no consistent way to investigate its quantum theo
In spite of the difficulties, many attempts have been made
incorporating quantum effects, for example, by using sem
classical or 1/N approximation. In these approaches, the fl
space-time suffers from instability in the quantum perturb
tion owing to the induced higher derivative terms or the t
chyonic modes in the gravitational propagator@1–4#. More-
over, the tachyonic modes make the actual perturba
calculation impossible. Theories with higher derivative term
are studied also as effective ones in the low energy limit
some fundamental theory such as string theory~see, e.g.,
@5#!. In these theories, higher derivative terms appear in
perturbation with respect to weak curvature. Hence we c
not deal with the region with strong curvature where qua
tum effects are expected to become important, and we
consider only small deviations from the classical solution
There is also ambiguity related to field redefinitions~@6#, for
instance!. In a much more simplified setting, the quantu
mechanics of minisuperspace@7# or the Schwarzschild black
hole have been investigated@8#. In these cases, it is still
difficult to extract their physical consequences. Thus
have not yet succeeded in grasping definite quantum asp
of general relativity even in some approximation.

Difficulties concerning quantum Einstein gravity are e
pected to be overcome when we understand a more fun
mental theory. Intensive studies have been made in this
rection, but, together with this, it may be important
accumulate certain pieces of knowledge of the quant
properties of Einstein gravity even if in a simplified settin

In this article, we shall work with Einstein gravity with
one timelike and one spacelike Killing vector commutin

*Electronic address: ysatoh@hep1.c.u-tokyo.ac.jp
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with each other. Einstein gravity with two commuting Kill-
ing vectors can be formulated as an SL~2,R!/U~1! nonlinear
s model coupled to gravity@9,10#. For the Einstein-Maxwell
system, we have a similar formulation as an SU~2,1!/SU~2!
3U~1! or SU~2,1!/SU~1,1!3U~1! nonlinears model accord-
ing to the signatures of the Killing vectors. One of the mos
important applications of these facts is the proof of th
uniqueness theorem of the Kerr-Newman solution in@11#.
The central equation of these systems is known as the Er
equation@12#. For generating the exact solutions, these sy
tems have been studied extensively and many interesting a
rich structures have been revealed@9,10,13#. In particular,
the systems possess infinite dimensional hidden symmetr
@14–16# and become integrable@17,18#. In addition, the
similarity between these hidden symmetries and those of
mensionally reduced supergravities has been recogniz
@19#, and recently applied to the study of string dualitie
@20#.

As for nonlinears models, there exists an extensive lit
erature on their quantum analysis@21–24#. In two dimen-
sions, nonlinears models are renormalizable~in the gener-
alized sense of Friedan@22#! and their quantum aspects can
be studied in a consistent way, at least perturbatively. Fu
thermore, among various models, the simplest one is t
O~3! or CP1 @SU~2!/U~1!# nonlinears model, and its target
manifold CP1 is the compact analogue of our SL~2,R!/U~1!.

Therefore we can expect to make use of the vast know
edge in the literature. The purpose of this article is to stud
the quantum theory of Einstein gravity reduced to two d
mensions and to investigate its effects on geometry. O
course, in our formulation in which some of the quantum
fluctuations are truncated, we can say only a little about t
statistical aspects of the original Einstein gravity. Howeve
it turns out that we can actually deal with the quantum theo
of this reduced Einstein gravity and evaluate some effects
geometry in a consistent and simple way. We believe th
our analysis gives some insights into quantum aspects
Einstein gravity.

The rest of this article is organized as follows. In Sec. I
we formulate Einstein gravity with the two Killing vectors as
7026 © 1996 The American Physical Society
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an SL~2, R!/U~1! nonlinears model and equations govern
ing the system are derived. Next, in Sec. III, we investiga
the quantum theory of the nonlinears model part. Theb
functions are obtained to all orders up to numerical coe
cients determined by explicit loop calculations. Then t
equations including the renormalization effects are give
Section IV is devoted to the analysis of the quantum effe
on the Kerr black hole. We find that the asymptotically fl
region remains intact and stable. On the other hand, i
certain approximation at one loop order, it is shown that t
inner geometry undergoes a considerable change no m
how small the quantum effects may be. Finally, a brief d
cussion is given in Sec. V. Throughout this article, we ado
the sign convention in which the flat space-time metric
four dimensions ishMN5 diag(21,1,1,1).

II. DIMENSIONALLY REDUCED EINSTEIN GRAVITY

In this section, we consider the dimensional reduction
Einstein gravity with two commuting Killing vectors. By
dropping the dependence on the direction of one isome
and performing a dual transformation, we find that the theo
is described by an SL~2,R!/U~1! nonlinears model coupled
to gravity in three dimensions. Then we further reduce t
theory to two dimensions. We shall follow the metho
adopted in@10#, and deal with the case in which one Killing
vector is timelike and the other is spacelike.

We begin with the following vierbein in a triangula
gauge:

EM
A 5S D21/2em

a D1/2Am

0 D1/2 D , ~2.1!

whereM ~50–3! and m ~51–3! refer to the space-time
indices andA ~50–3! anda ~51–3! to those of its tangent
space. Assuming that all the components are independen
the timelike coordinatex0 the Einstein-Hilbert action is re-
duced to

1

\
SEH5

1

\kE d4xER~4!~E!

5
L

l P
2E d3xeFR~3!~e!1

1

4
D2FmnF

mn

2
1

2
gmnD22]mD]nD G , ~2.2!

wherek is given byk5G/c3, l P is the Planck length,L is
the ‘‘length’’ of the x0 direction, andE ande are detEM

A and
detem

a , respectively. Fmn is defined by Fmn5(dA)mn

[]mAn2]nAm and the indices are raised and lowered by t
three-metricgmn determined by the dreibeinem

a .
The equations of motion derived from the above reduc

action have an SL~2, R! symmetry. Although it is not mani-
fest in Eq.~2.2!, we can obtain an action manifestly invarian
under this symmetry by a dual transformation.1 First, let us

1The author would like to thank Y. Kazama for the discussion
this point.
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introduce an auxiliary fieldCmn , add a term to the Lagrang-
ian L as

L→L1Cmn@Fmn2~dA!mn#, ~2.3!

and regardFmn as an independent field. By integrating ou
Cmn , we getFmn5(dA)mn and the original action. On the
other hand, the integration ofAm leads to¹mC

mn50 and
hence Cmn can be written by a scalar fieldB as

Cmn5 1
2 emnl] lB, where¹m and emnl are the covariant de-

rivative operator and the volume element, respectively. F
nally, by the further integration ofFmn , we get the Lagrang-
ian

eL~3!5eFR~3!~e!2
1

2
gmnD22~]mB]nB1]mD]nD!G ,

~2.4!

and the relation betweenFmn andB:

D2Fmn52emnl]
lB. ~2.5!

We can check that the model obtained in this way is actua
equivalent on shell to the original one. As intended,L(3) has
an SL~2, R! symmetry:

Z→Z85
aZ1b

cZ1d
, S a b

c dD PSL~2;R!, ~2.6!

whereZ5B1 iD. Z is related to the so-called Ernst potentia
E by

E5 i Z̄5D1 iB. ~2.7!

Moreover, we find that the model described byL(3) is an
SL~2, R!/U~1! nonlinears model ~coupled to gravity!, and
this is a noncompact analogue of an O~3! ~CP1) nonlinear
s model. The analogy becomes obvious in the form

2
1

2
gmnD22~]mB]nB1]mD]nD!

52
1

2
gmnD22]mE]nE

522gmn
]mw]nw̄

~12ww̄!2

52
1

2
gmnhab]mv

a]nv
b, ~2.8!

where (w21)/(w11)5E, and va is defined byw5( iv1

2v2)/(11v0), habv
avb521, and hab5diag(21,1,1)

@25#.
Now let us reduce the theory further to two dimension

As in the previous case, we take the following form of th
dreibein in a triangular gauge:

em
a 5S ldm

a rCm

0 r
D , ~2.9!on
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7028 53Y. SATOH
wherem,a51,2. SinceCm has no physical degrees of free
dom, we can setCm50. Then by dropping the dependenc
on x3, we obtain

1

\
SEH→

V

l p
2E d2xeL~2!, ~2.10!

eL~2!5eFR~2!2
1

2
gmnD22]mE]nĒG

5rdmnF22]m]nlnl2
1

2
D22]mE]nĒG ,

whereV is the ‘‘volume’’ of (x0,x3) space-time. Note that,
in the latter form, the indices are contracted effectively
the flat two dimensional metricdmn . Thus, in the following,
it is understood that the indices are raised and lowered by
flat metric.

The independent equations of motion deduced from
above action are

]m]mr50, ~2.11!

D]m~r]mE!5r]mE]mE, ~2.12!

]zr]zlnl2
1

2
]z
2r5

1

4
rD22]zE]zĒ, ~2.13!

wherez5x11 ix2. These equations are derived by the var
tions ofE andgmn . The variation ofr leads to a dependen
equation. This is related to the fact that the degree of fr
dom ofr is spurious. Indeed, sincer is a free field and there
remains the choice of the conformal gauge in two dime
sions preserving the form ofeam in ~2.9!, we can identify
r with one of the coordinates by some conformal transfo
mation.

In the reduced theory to two dimensions,~2.5! leads to
A1,250 and

D2]zA5 ir]zB. ~2.14!

Consequently, we have four basic equations, Eqs.~2.11!–
~2.14!. Equation~2.12! for E is known as the Ernst equation
and becomes integrable if we setr to be one of the coordi-
nates. There exists vast knowledge of this equation. For
tails, see@9,10,13#.

As for the metric in four dimensions, in our parametriz
tion we have

ds25gMNdx
MdxN

5hABE
A
ME

B
Ndx

MdxN

5D21$l2@~dx1!21~dx2!2#1r2~dx3!2%

2D~dx01Adx3!2. ~2.15!

III. RENORMALIZATION OF NONLINEAR s MODEL
PART

In the previous section, we formulated Einstein grav
with two commuting Killing vectors as a two dimensiona
SL~2,R!/U~1! nonlinears model coupled to gravity. In Sec
-
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III, we consider the quantization of the nonlinears model
part, which includes all the dynamical degrees of freedom
This means that we investigate the effects of the quantu
fluctuations maintaining the symmetry of the isometries~in-
dependence ofx0 and x3). Because the three dimensiona
gravity part (l,r, etc.! has no physical degrees of freedom
we can expect that it does not make major contributions
the quantum effects. Thus we left the quantization of th
part as a future problem. In quantum theory, it is ambiguo
which variables we should regard as fundamental to be qua
tized. The reasons we start our quantum analysis with th
nonlinears model are twofold. One is that the original hid-
den symmetry is manifest in this formulation. The other i
that we can make use of the knowledge of the quantu
theory of nonlinears models developed in the literature.
Due to this, the quantum analysis of our model is fairly sim
plified.

Since the fluctuations in thex0 andx3 directions are ig-
nored, such an analysis is not enough to know the full qua
tum properties of Einstein gravity. In particular, we can sa
only a little about its statistical aspects. However, we have
present no consistent way to investigate the full quantu
theory of Einstein gravity because of its nonrenormalizabilit
and various difficulties. Our attitude here is a modest on
Although only a part of the quantum fluctuations can b
incorporated, in this simplified setting we can carry out
consistent quantum analysis of Einstein gravity and extra
some quantum effects on geometry. We believe that o
analysis gives some insights into quantum aspects of gene
relativity. Indeed, it turns out that we can obtain the forms o
the b functions to any loop order and the renormalizatio
effects on the classical solutions.

In order to respect the covariance of the target manifol
we rewrite the action of the nonlinears model part by using
its metricgi j (f) and coordinatesf i :

1

\
SNL52

1

2e0
2E d2xrgi j ~f!]mf i]mf j , ~3.1!

where e0
25 l P

2 /V is the coupling of the model. In string
theory, V corresponds to the volume of the compactifie
space. On the contrary, in our contextV is the ‘‘volume’’ of
the real space-time (x0,x3) and hencee0

2 is an extremely
small number, i.e., the model has a quite small coupling. T
fluctuations depending only onx1 andx2 are constant modes
with respect to the reduced directionsx0 and x3, and e0

2

}V21 indicates that such fluctuations are suppressed by
‘‘volume’’ of the constant direction. In the stationary axi-
symmetric case, which has the Kerr solution, the timex0

runs from2` to 1` andV tends to infinity. We do not
know which valuee0

2 takes in such a case, but the coupling i
still expected to be quite small.

In the coordinatesf1,25D,B, we have gi j5gd i j ,
g5D22. In two dimensions, the curvature tensors are eas
calculated through

R52g21d i j ] i] j lng, ~3.2!

Ri j5
1

2
Rgi j , ~3.3!
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Ri jkl5
1

2
R~gikgjl2gil gjk!. ~3.4!

From the first equation above, we get

R5225const, ~3.5!

namely, the SL~2, R!/U~1! manifold has a negative constan
scalar curvature. Although the above form ofgi j appears
singular atD50, this is just a coordinate singularity and w
can get a regular metric even there by some appropriate
ordinate transformation.

Now let us consider the renormalization of the effectiv
action of the model. As the functional measure, we ta
)x,iAdetgi j df i(x). This is invariant under coordinate trans
formations of the target manifold, and respects the cova
ance. The only difference of our model from ordinary no
linears models is the existence of the factorr in ~3.1!. This
factor behaves as a coordinate-dependent coupling like a
laton field in string theory. In the following, we assum
r(x).0. The reality of the space-time metric requires ju
thatr(x) is real or purely imaginary@see~2.15!#. In the case
of negative or purely imaginaryr, we have only to replace
r(x) with ur(x)u. With this in mind, we shall adopt the back
ground field method and follow@23#. Thus our analysis does
not depend on which background we shall take.

First, we expand the action around the background fie
w i by normal coordinates:

2
1

\
SNL@f#52

1

\
SNL@w#1E d2xT0

21gi j ~w!]mw iDmj j

1
1

2E d2xT0
21Fgi jDmj iDmj j

1Rik1k2 j
jk1jk2]mw i]mw j

1
1

3
Dk1

Rik2k3 j
jk1jk2jk3]mw i]mw j

1
4

3
Rik1k2k3

jk1jk2Dmjk3]mw i1••• G , ~3.6!

wherej i is the tangent vector to the geodesics aroundw i ,
T0(x)5e0

2/r(x), andDmj i5]mj i1G jk
i ]mwkj j . Dk is the co-

variant derivative, e.g.,Dkj
i5]kj

i1G jk
i jk, and G jk

i is the
Christoffel symbol defined bygi j . Next, we introduce the
zweibein ĥpi(w,r) with respect toĝi j (w,r)[rgi j (w) and
with the properties

ĥpi ĥp j5ĝi j , ĥ j pĥ
q
j5dqp . ~3.7!

Here the indices for the target manifold,i , j , are raised and
lowered by ĝi j and those for its tangent space,p,q, by
dpq . ~Henceforth we denote the quantities with respect
ĝi j with a caret.! ĥpi is expressed by the zweibeinhpj with
respect togi j as ĥ

p
i5Arhpi . Then we definej

p5hpjj
j and

ĵp5ĥpij
i5Arjp. Noting thatĥpi depends not only onw but

also onr, we have
t

e
co-
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to

ĥpjDmj j5D̂mĵp[D̂mĵp2
1

2
]mlnr• ĵp, ~3.8!

whereD̂mĵp5]mĵp1Âp
qmĵ q, Âp

qm5v̂p
qk]mwk, and v̂p

qk

5ĥpj (]kĥ
j
q1Ĝj

klĥ
l
q). Here we have usedĜjk

i 5G jk
i . In

terms ofĵp, the kinetic term has the canonical form

ĝi j Dmj iDmj j5D̂mĵpD̂mĵp5]mĵp]mĵp1•••. ~3.9!

In order to see how other terms are expressed byĵp, we
assign weight N to quantities with the property
F (N)(Lgi j )5LNF (N)(gi j ) whereL is a constant. In each
term in ~3.6!, the part withoutj i and expressed by the geo-
metrical quantities throughgi j has weight 1 because we are
originally expandinggi j (f)]mf]nf. Let us denote such a
quantity byF (1)(gi j ). Since the derivatives ofr with respect
to wk vanish, i.e.,]kr50, it holds that

rF~1!~gi j !5rF~1!~ ĝi j /r!5F~1!~ ĝi j ![F̂~1!. ~3.10!

For example,rRi jkl (gi j )5Ri jkl (ĝi j )[R̂i jkl . From Eqs.~3.8!
and ~3.10!, we obtain

2
1

\
SNL@f#52

1

\
SNL@w#1E d2xT0

21gi j ~w!]mw iDmj j

1
1

2e0
2E d2xF D̂mĵpD̂mĵp

1R̂ip1p2 j
ĵp1ĵp2]mw i]mw j

1
1

3
D̂p1

R̂ip2p3 j
ĵp1ĵp2ĵp3]mw i]mw j

1
4

3
R̂ip1p2p3

ĵp1ĵp2D̂mĵp3]mw i1••• G ,
~3.11!

where R̂pi jk5ĥl pR̂li jk , etc. Therefore we find that the
changes from the cases withoutr ~i.e., ordinary nonlinear
s models! are only~i! the replacement of all the quantities
by those with carets and~ii ! the further replacement
D̂mĵp→D̂mĵp. The term linear inj i contributes to a field
redefinition together with the source term omitted here. W
shall drop this linear term because it is irrelevant to the fo
lowing discussion. Since the transformationsf i→j i→jp are
coordinate transformations on the manifold, the function
measure is invariant, while under the last transformatio
jp→ ĵp the measure is changed into)x,pr

21dĵp(x). When
the factorr21 is raised into the action, it is proportional to
the d function. However, since we shall adopt dimensiona
regularization, it plays no role in the following calculations
at least perturbatively@21,22#.

We now proceed to the loop calculations. As long as w
are concerned with divergent parts, we can estimate the
fects due to]mlnr in D̂mĵp to all orders. First, let us note that
possible counterterms are scalars, and on dimensio
grounds they are of dimension 2 and hence include two ba
space derivatives. Second, atN-loop order, they have weight
2N11. Third, since R̂522/r and similar formulas to
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~3.2!–~3.4! are valid for the quantities with carets, the cov
riant derivatives of the curvaturesR̂,R̂i j , and R̂i jkl vanish
and any scalar without the base-space derivative]m is a func-
tion only ofr. Therefore the counterterm atN-loop order has
the factorT0

N21 . For example, at one and two loop order
the possible counterterms including]mlnr are proportional to
]mlnr]mlnr and]mlnr]mlnrR̂, respectively. Consequently, w
find the counterterms due to]mlnr in D̂mĵp to be of the form

dSNL
~r!52

1

4peE d2xS (
N51

bNT0
N21D ]mlnr]mlnr, ~3.12!

where we have adopted minimal subtraction and dimensio
regularization, i.e., dim52→n and e5n22. As for the
infrared regularization, we have adopted a simple mass
off. Since the renormalization of the model is a proble
concerned with short distances, the scheme of the infra
regularization may not be essential.bN are numerical coeffi-
cients determined by explicit calculations. It is easy to che
that b151/2. The existence ofdSNL

(r) shows that we have to
add an additional bare term,21/2*d2xU0

21]mlnr]mlnr, in
the action, whereU05O(e0

2).
As we have already estimated the result from the chan

D̂m→D̂m , the remaining analysis of the divergent parts c
be performed in a parallel way to ordinary nonlinears mod-
els. Thus we immediately get other counterterms up to t
loop order@22,23#:

dSNL5
1

4peE d2xF R̂i j1
e0
2

4p
R̂iklmR̂j

klmG]mw i]mw j

5
1

4peE d2xF211
T0~x!

2p Ggi j ]mw i]mw j . ~3.13!

Moreover, we can determine the form of the remaining cou
terterms to all orders. In a similar way to the previous arg
ment, we find that a tensor with two lower indices of th
target manifold is proportional togi j if it is made out of the
metric, the curvatures, and covariant derivatives. Thus
find also that the remaining counterterms are of the form

dSNL5
1

4peE d2xF (
N51

aNT0
N21Ggi j ]mw i]mw j , ~3.14!

whereaN are numerical coefficients determined by explic
calculations.~3.13! implies a1521 anda251/(2p). Note
that the sign ofa1 is opposite to the usual cases of compa
manifolds.

As the counterterms above are functions ofr(x), the
model is not strictly renormalizable. It is, however, reno
malizable in a more general sense in which the manifold
the classical action changes due to quantum effects@22#. In-
deed, we can deriveb functions for the couplingsT(x;m)
[ e2(x;m)/r(x) andU@T(x;m)#, as in the usual renormal
izable theories@22,23#. They are given by

bT~T![m
]

]m
T52

1

2p (
N51

NaN
~0!TN11, ~3.15!
a-

s,
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m
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-

bU~T![m
]

]m
U5

1

2p
U2(

N51
~NbN11

~0! 1bN
~0!]TlnU !TN,

~3.16!

wherem represents the renormalization point, andaN
(0) and

bN
(0) are the lowest parts ofaN andbN in e21, respectively. It
is easy to integrate the above equations as theb functions are
just the rational functions ofr(x).

Finally, we remark that, if we perform the integration o
r, the possible counterterms take the same forms as~3.12!
and ~3.14! because of the symmetry.

IV. QUANTUM EFFECTS ON THE KERR GEOMETRY

In the previous section, we carried out the renormalizatio
of the model and derived theb functions of the couplings. In
this section, we investigate the physical consequences of
quantum analysis. We are interested in global geometry
space-time, and the effects of the higher derivative terms
the effective action are expected to be small for long di
tances. Thus we shall focus on the quantum effects due to
quadratic derivative terms in the effective action. Let us he
regardm0 as representing the energy scale of the classic
theory of reduced gravity, wheree2(x;m0)5e2(m0)5const
holds. Then the independent equations of motion includin
the quantum effects become

]m]mr50, ~4.1!

D]m~T21]mE!5T21]mE]mE, ~4.2!

]zr]zlnl2 1
2 ]z

2r5 1
4 e

2~m0!~T
21D22]zE]zĒ

1U21]zlnr]zlnr!, ~4.3!

D2]zA5 ir]zB. ~4.4!

Here we adopt a particular choice of the conformal gauge
two dimensions represented by (x1,x2). As mentioned in
Sec. II, we can identifyr(x) as one of the coordinates since
r(x) is a free field. Thus, introducing another free fieldz
conjugate withr, we choose the gauge

x15sr, x25sz, ~4.5!

and hencez5s(r1 iz), wheres is some constant with the
dimension of length. In our context, only the Planck lengt
l P is such a constant made out of the fundamental consta
in the theory. Then we sets5 l P .

Now we consider the quantum effects on the Kerr geom
etry as an interesting example. It has been proved that
Kerr geometry is the unique solution to the stationary ax
symmetric Einstein gravity under certain physical condition
@26#. In the following, we sett[x0 andv[x3, and regard
t andv as the time and the azimuthal angle, respectivel
We shall find that the asymptotically flat region does no
undergo any quantum correction, namely, the asymptotic
gion is stable. Furthermore, in a certain approximation at o
loop order, it is shown that the geometry inside the erg
sphere changes considerably no matter how small the qu
tum effects may be.
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The Kerr solution to Eqs.~2.12!–~2.14! is usually ex-
pressed by Boyer-Lindquest coordinatesr ~the radial coordi-
nate! andu ~the polar angle!, given by

l Pr5x15Ar 222mr1a2sinu,

l Pz5x25~r2m!cosu, ~4.6!

wherem anda turn out to represent the mass and the angu
momentum per unit mass of the Kerr black hole, resp
tively. In these coordinates, the Kerr solution is given b
@13#

E5D1 iB,

D5 ~D2a2sin2u!/S , B5 2macosu/S , ~4.7!

l25
D2a2sin2u

D1~m22a2!sin2u
, A5a

2mrsin2u

D2a2sin2u
, ~4.8!

whereD5r 222mr1a2 andS5r 21a2cos2u. Then the line
element is written as

ds252S 12
2mr

S Ddt21SS dr2D 1du2D2
4mar

S
sin2udvdt

1S r 21a21
2ma2r

S
sin2u D sin2udv2. ~4.9!

The zero ofS and those ofD ~i.e., r5r6[m6Am22a2)
correspond to the locations of the curvature singularity a
the horizons, respectively, while the outer zero
D2a2sin2u ~i.e., r5r e[m1Am22a2cos2u) represents the
outer boundary of the ergosphere. The asymptotically
region is described byr ~or r) →`. In this asymptotic re-
gion, we have (dx1)21(dx2)2;(dr)21r 2(du)2, and
(x1,x2) represents the flat two-plane. Notice thatr tends to
vanish asr→r6 or sinu→0.

Since the beta functionsbT(T) andbU(T) are expanded
by power series ofT(x;m0) 5 e2(m0)/r(x), the perturba-
tion is valid except for small neighborhoods of orderl P of
the axis of the rotation, sinu50, and the horizonsr5r6 .
This means that the quantum fluctuations become large th
It is obvious that in the asymptotic region theb function
vanishes. Therefore there are no quantum corrections du
the running couplings in that region and the flat region r
mains stable.

In order to further study the physical consequences of
analysis, we have to solve Eqs.~4.2!–~4.4!. The change due
to the termU21]zlnr]zlnr in ~4.3! can be absorbed into a
factor of l. Let us definef (r;m) andlT by l5 f (r;m)lT
and f (r;m)→1 as r→`. Then taking into account
l Pr5x1, we find thatf (r;m) andlT are given by

f ~r;m!5expS 14 e2~m0!E
r

`

dr8r822U21@T~r8;m!# D ,
~4.10!

]zr]zlnlT2
1

2
]z
2r5

1

4
e2~m0!T

21D22]zE]zĒ. ~4.11!

The equation forlT is of the same form as the classica
equations forl, ~2.13!, up to the replacement ofr/e2(m0)
lar
ec-
y

nd
of

flat

ere.

e to
e-

our

l

with T21. At a generic order, however, the remaining equa
tions are quite complicated. Thus henceforth we focus o
one loop order. At this order, we haveT21(x;m)
5T21(x;m0)2(1/2p)ln(m/m0), and we can get the solution
to ~4.2! and~4.11! from the classical one by the replacement
of r andl with r2e2(m0)/(2p)ln(m/m0) andlT . Unfortu-
nately, by these replacements Eq~4.4! comes not to meet the
integrability condition. Therefore we shall resort to furthe
approximation. Here we consider the deviation from the cla
sical solution in the neighborhood ofr(x)5r0 , and approxi-
mateT21(x;m) by

e2~m0!T
21~x;m!5r~x!H 12

1

2p
e2~m0!r

21~x!ln~m/m0!J
;a~r0!r~x!, ~4.12!

where a(r0)512e2(m0)/2pr0
21ln(m/m0)5const, and it

tends to 1 asm→m0 . This approximation is valid in the
region where r(x)@1, because]x1r

2152 l P
21r22 and

]x2r
2150. In this approximation,~4.2! is the same as the

classical one and the difference between~2.13! and~4.11! is
only the exponents ofl andlT . Thus all the quantum ef-
fects are represented by the change ofl, and it is given by

l25 f 2~r0!~F1 /F2!
a~r0!, ~4.13!

whereF15D2a2sin2u andF25D1(m22a2)sin2u. There-
fore we find that in this approximation the geometry be
comes

ds252S 12
2mr

S Ddt21 f 2~r0!S F1

F2
D a~r0!21

SS dr2D 1du2D
2
4mar

S
sin2udvdt1S r 21a21

2ma2r

S
sin2u D sin2udv2.

~4.14!

From the above expression, we find that additional zeros a
singularities appear in the metric whereF1 or F2 vanishes.
The conformal properties of the geometry are very muc
affected by them. Moreover, we see that these singulariti
develop curvature singularities. For example, let us consid
one of the curvature invariants defined byR0303

[E 0
KE 3

LE 0
ME 3

NRKLMN
(4) . In our parametrization, it takes the

form R03035l22F3(D,B,r), whereF3 is a certain function
of D, B, andr. Since, in the case of the Kerr geometry@i.e.,
a(r0)51#, it becomes singular only atS50, R0303comes to
diverge at the zeros ofF1 or F2 unlessa(r0)51. Note that
the conditionr(x)@1 holds even there, except for in the
vicinity of the axis of rotation, as long asm anda are large
enough compared with the Planck scale. Note also that t
outermost additional zeros or singularities occur at the out
boundary of the ergosphere,r5r e . We need further investi-
gation in order to know whether or not these singularities ar
true. However, our result indicates that the geometry insid
the ergosphere, where unusual phenomena can take place
changed considerably due to the quantum effects. This is t
case no matter how small they may be, namely, as long
a(r0)Þ1.

V. DISCUSSION

In this article, we studied the quantum theory of Einstei
gravity with one timelike and one spacelike Killing vector
formulated as an SL~2, R!/U~1! nonlinear s model. We
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showed that the quantum analysis of this model can be c
ried out in a parallel way to ordinary nonlinears models in
spite of the existence of an unusual coupling. This mea
that it is possible to investigate consistently the quantu
aspects of Einstein gravity in our limited case. In cons
quence, the forms of theb functions were determined to al
orders up to numerical coefficients. As an explicit examp
we considered the quantum effects on the Kerr geome
Then we found that the asymptotically flat region undergo
no quantum effects and remains stable. We also discus
the considerable change in the inner geometry of the K
black hole. These contrast with other quantum approache
quantum properties of Einstein gravity, in which Minkows
space-time becomes unstable, and/or a solution much dif
ent from the classical one is discarded because of the vali
of the perturbations@1–6#.

It is obvious that we can deal with the case with tw
spacelike Killing vectors in the same way, in which collidin
wave solutions are known. In addition, the extension to t
Einstein-Maxwell system is straightforward, because, wh
dimensionally reduced, this system is also formulated a
nonlinears model coupled to gravity as mentioned in th
Introduction.

Admittedly, our analysis is incomplete for understandin
the full quantum properties of Einstein gravity. We can s
nothing about the effects of the truncated degrees of fr
ar-

ns
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try.
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err
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dity
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dom. Even after dimensional reduction, the gravitational pa
remains to be quantized. We should also study the effects
the higher derivative terms in the effective action. In order t
investigate the statistical aspects of Einstein gravity, we ha
to develop some other approaches. These are beyond
scope of this article and left as future problems. Since w
have seen that Einstein’s theory is formulated as a nonline
s model already in the reduction to three dimensions, it ma
be interesting to consider the application of three dime
sional nonlinears models.

Note added in proof:After submitting this paper, the au-
thor realized that it was appropriate to add several referenc
Dual transformations such as~2.3! and a quantization of di-
mensionally reduced Einstein gravity as an integrable syste
have been discussed in@27# and@28#, respectively. Rigorous
arguments about the quantization of two-dimensional nonli
ears models have been made in@29#. The author would like
to thank S. Mizoguchi and H. Suzuki, and D. Maison fo
bringing my attention to@27# and @29#, respectively.
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Kazama for useful comments and discussions. The resea
of the author was supported in part by JSPS Grant No. 0
4391 from the Ministry of Education, Science and Culture
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