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For Einstein’s general relativitfGR) or the alternatives suggested up to date, the vacuum energy gravitates.
We present a model where a new measure is introduced for integration of the total adDedirimensional
spacetime. This measure is built frdhscalar fieldsp, . As a consequence of such a choice of the measure,
the matter Lagrangiah,, can be changed by adding a constant while no gravitational effects, such as a
cosmological term, are induced. Suchhangravitating vacuum energy theohas an infinite dimensional
symmetry group which contains volume-preserving diffeomorphisms in the internal space of scalapfields
Other symmetries contained in this symmetry group suggest a deep connection of this theory with theories of
extended objects. In generdile theory is different from GRlthough for certain choices df,,, which are
related to the existence of an additional symmetry, solutions of GR are solutions of the model. This is achieved
in four dimensions iL ,, is due to fundamental bosonic and fermionic strings. Other types of matter where this
feature of the theory is realized, are, for example, scalars without potential or subjected to nonlinear con-
straints, massless fermions, and point particles. The point particle plays a special role, since it is a good
phenomenological description of matter at large distances. de Sitter space is realized in an unconventional way,
where the de Sitter metric holds, but such de Sitter space is supported by the existence of a variable scalar field
which in practice destroys the maximal symmetry. The only spacetime where maximal symmetry is not
broken, in a dynamical sense, is Minkowski space. The theory has nontrivial dynamieslidifnensions,
unlike GR.[S0556-282(96)04712-]

PACS numbeg(s): 04.62:+v, 04.20.Cv, 04.56:h

I. INTRODUCTION we were to apply the arguments usually made in quantum
field theory. However, we get into trouble if we note that the
As is known, in the general theory of relativity energy is natural scale of such a term, obtained on dimensional
a source of gravity, which is described by the metric tensogrounds, is of the order of magnitude of the Planck density.
g, This makes an important difference to ideas developedhe problem is more severe once we realize that the zero-
for flat space physics where the origin with respect to whichpoint vacuum energy appears as an infinite quantity.
we measure energy does not matter; that is, the energy is Indeed, in order to get agreement with observations, dif-
defined up to an additive constant. For general relativity inferent sources of energy density have to compensate with
contrast, all the energy has a gravitational effect; thereforegach other almost exactly to high accuracy, thus creating an
the origin with respect to which we define the energy isacute “fine-tuning problem.”
important. In order to explain this so-called “cosmological constant
In guantum mechanics, there is the so-called zero-poinproblem,” a variety of ideas have been developed; see, for
energy associated with the zero-point fluctuations. In theexample, the reviews in Rdf3]. Among these attempts, pos-
case of quantum fields, such zero-point fluctuations turn ousible changes in gravity theory were studigl, where the
to have an associated energy density which is infinite. In factesult was that the cosmological constant appeared as an in-
there is a zero-point vacuum energy-momentum tensor of theegration constant, for example, in “nondynamicétg”
form T‘l’f’,‘,czAn#,,in flat space 7, is the Minkowski metrig, models. The reason why such a constant should be picked
or T,5'=Ag,,+(terms=R) in curved space. HerA is infi-  zero is unclear, however.
nite. In this paper we will also suggest a modification of grav-
Notice that the appearance of an energy-momentum ternty theory by imposing the principle that the vacuum energy
sor proportional tag,,, in Einstein’s equations is equivalent density, to be identified with the constant part of the La-
[1] to what Einstein called the “cosmological constant” or grangian density, should not contribute to the equation of
“ A term.” It was introduced by Einsteif] in the form motion. The realization of this idea in the model considered
here, apart from leading to a geometrically interesting new

1 K theory, also leads to the possibility of new gravitational ef-
R,uv_ E g,u,VR_AgMVZE T,uV . (1) feCtS.

Such aA term does not violate any known symmetry. Il. THE MODEL
Therefore, normally we would not consider excluding it, if ) ) ) )
A. A new measure and generally coordinate invariant action
All approaches to the cosmological constant problem
*Electronic address: GUENDEL@BGUmail. BGU.AC.IL have been made under the assumption that the invariant mea-
"Electronic address: ALEXK@BGUmail.BGU.AC.IL sure to be used for integrating the total Lagrangian density in
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the action isy—gdPx. In the present paper, this particular
assumption will be modified, and the result will be that, by

an appropriate generally coordinate invariant choice of the
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measure, the theory will not be sensitive to a change in the

Lagrangian density by the addition of a constant, in contras

with the Einstein-Hilbert action, where such a change generthe determinant

ates a cosmological term.
Let the measure of integration inxdimensional space-
time be chosen a® dPx, where® is a yet unspecified sca-

lar density of weight 1. In order to achieve the result that the

vacuum energy does not gravitate, we will start from the

It follows from (2) that AgaﬂcpblzD*lébb,(D and taking
of both sides, we get def)
=(D P/D!)®P L. Therefore if®+0, which we will as-
sume in what follows, the only solution f@b) is

1
= R+L,,=cons&=M. (7

demand that the addition of a constant in the Lagrangian o -
density does not affect the dynamics of the theory. This Variation of Sy=—(1/«)/R® d”x with respect tog"”

means thaf L® d°x and (L +consi® d®x must reproduce
the same equations of motion. This is of course achieved i
@ is a total derivative.

The simplest choice for a scalar density of weight 1,
which is as well a total derivative, may be realized by using
D scalar fieldsp,(x) and then defining
@Esalaz.“aDsalaZ ”aD(aaqual)(&az(Paz) T (&aD(’DaD) . (2)

Hereg“1*2"*p=1 if @;=0, a,=1,...a0p=D—1 and=*1
according to whethefw,a,,...,.ap) iS an even or an odd
permutation of (0,1,...p—1). Likewise for ega,...a;
(ai=1,2,...D). Therefore the total action we will consider
is

S ©)

f 1R+|_ & dP
K m X,

wherexk=16nG, R is the scalar curvature, and we will take
L., not to depend on any of the scalapg(x). Notice that

leads to the result4]
f

95

In order to perform the correct integration by parts we have
to make use of the scalar fiej=®/\/—g, which is invari-

ant under continuous general coordinate transformations, in-
stead of the scalar density. Then integrating by parts and
ignoring a total derivative term which has the form
9,(J—gP?), whereP® is a vector field, we get

0Sy _
P

1
—;f@[Rwﬂ—(gWD—V#V,,)]ﬁg’“’dDX. (8)

1
_; V_g[XR,U.VJ’_g,LLVDX_X,,LL;V]' (9)

In a similar way varying the matter part of the acti@ with
respect tog*” and making use of the scalar fieldwe can
express a result in terms of the standard matter energy-

momentum tenso'll'H,,E(2/\_/—g)[_(9(\/—gLm)/a_g“”]. Then _
after some algebraic manipulations we get instead of Ein-

if we consider parity or time reversal transformations, thenstein’s equations
S— — S, which does not affect the classical equations of mo-

tion. Quantum mechanicallyconsidering for example the
path integral approaghsuch transformation will transform

total amplitudes into their complex conjugates, therefore

leaving probabilities unchanged.

Notice thatd is the Jacobian of the mappirg,= ¢,(x“),
a=1,2,...D. If this mapping is nonsingulai®+0) then (at
least locally there is the inverse mapping*=x“(¢,),
@=0,1,...p—1. Since ® d°x=D! de;Ade,/\...\dep
we can think of® dPx as integrating in the internal space
variablese, . In addition, if ®+0 then there is a coordinate

frame where the coordinates are the scalar fields themselves.

The field® is invariant under the volume preserving dif-
feomorphisms in internal spaceip,= ¢}(¢p) Where

r?go{)l (7(,062 0(p{)D

€aja, - = €b;yby-bp- 4

@ ‘9‘Pal ‘9€Da2 aQDaD

B. Equations of motion

K
G,uvzz {T,uv_ %g/.w[Tg_’_(D - Z)Lm]}

1
+_
X

D-3
> 9w X X owiv ] (10
whereG ,,= RW—%RgW. .

By contracting(10) and using(7), we get

Ox— 51 M+3[Te+(D-2)Lyllx=0. (1D
By using Eq.(11) we can now excludd 4+ (D—-2)L,
from Eq. (10):

1

K
G/.LVZE[T#V+Mg/.tv]+;[X,,u;v_g,uVDX]- (12)

Notice that Egs(5) and(10) are invariant under the addition
to L, a constant piece, since the combination

The equations of motion obtained by variation of the ac-T,,~ 39,,[Ta+(D—2)L,] is invariant. However, by fix-

tion (3) with respect to the scalar fields, are

w

1
AL, =~ RiLp|=0, (5)

where

ing the constant part of the differentg,—M in the solution
(7) of Eq. (5), we break this invariance. To give a definite
physical meaning to the integration constdht we conven-
tionally take the constant part &f,, equal to zero.

It is very important to note that the terms depending on
the matter fields in Eq(12) as well as in Eq(10) do not
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contain they field, in contrast with the usual scalar-tensor
theories, such as the Brans-Dicke theory. As a result of this

feature of the nongravitating vacuum enefb\GVE) theory,
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IIl. EINSTEIN SYMMETRY AND EINSTEIN SECTOR
OF SOLUTIONS

A. Einstein condition

the gravitational constant does not suffer space-time varia-

tions. However, the matter energy-momentum tenggris

We are interested now in studying the question of whether

not conserved. Actually, taking the covariant divergence othere is an Einstein sector of solutions; that is, are there

both sides of Eg. (12 and using the identity
X'o=(0x) ,+XR,,, Eqs.(12) and(11), we get the equa-
tion of matter nonconservation

13

C. Volume preserving symmetries and associated conserved
guantities

From the volume preserving symmetrieé= ¢.(¢p,) de-
fined by Eq.(4) which for the infinitesimal case implies

aFalazwaD,l(QDb)

‘9‘PaD

L= pat Ne2 % (14

solutions that satisfy Einstein’s equations? First of all, we
see that Eqs(12) coincide with Einstein’s equations with
cosmological constankM only if the y field is a constant.
From Eg.(11) we conclude that this is possible only if an
essential restriction on the matter model is imposed:
2M+ T4+ (D - 2)L,=2[M + g*”(dL,/9g*") — L] =0.
However, we have not found any reasonable matter model
where this condition is satisfied fdvl #0 (recall that the
constant part of ,, is taken to be zepoIn the casé =0 this
condition becomes

L

a0

g*” (19
which means thak ,, is a homogeneous function gf*” of
degree one, in any dimension. If conditigb9) is satisfied
then the equations of motion allow solutions of general rela-

tivity (GR) to be solutions of the model, that ys=const and

(A<1), we obtain, through Noether’s theorem, the conserve®,, ,= («/2)T,,, .

guantities

é’FalaZ-AAanl( ®p)
a‘PaD

_ 1
J¢=Ag(—; R+Lm)saalmaD (15)

D. Symmetry transformations with the total Lagrangian
density as a parameter and associated conserved quantities

Let us consider the following infinitesimal shift of the
fields ¢, by an arbitrary infinitesimal function of the total
Lagrangian density. = —(1/k)R+L,,, that is

@a=@atega(l), e<l. (16)

In this case the action is transformed according to
5S= eDf Ag‘Lﬁﬂga(L)de=ef 2,0%dPx, (17

whereQ#=DA%f (L) andf,(L) being defined frong,(L)
through the equatioh(dg,/dL)=df,/dL. To obtain the last
expression in the Eq(17) it is necessary to note that

d,A5=0. By means of the Noether’s theorem, this symme-

try leads to the conserved current

L
it=AdLge-ta=AL [ gLaL. a9
0

B. Einstein symmetry

It is interesting to observe that when conditi¢i®) is
satisfied, a new symmetry of the acti@) appears. We will
call this symmetry “Einstein symmetry[becaus€19) leads
to the existence of an Einstein sector of solutijorBuch
symmetry consists of the scalings

g""—Ag"’, (20

@a— N Po,, (22)

where\=constant.

To see that this is indeed a symmetry, note that from defini-
tion of scalar curvature it follows thaR—\R when the
transformation (20) is performed. Since conditior(19)
means thalk , is a homogeneous function gf” of degree 1,

we see that under the transformati¢20) the matter La-
grangianL,—\L,. From this we conclude tha®0) and
(21) are indeed a symmetry of the acti¢®) when (19) is
satisfied.

C. Examples

The situation described in the two previous subsections
can be realized for special kinds of bosonic matter models.

(1) Scalar fields without potentials, including fields sub-
jected to nonlinear constraints, like tbemodel. The general
coordinate invariant action for these cases has the form
Sn=/Ln® d°x whereL =30 ,0 ,0"".

(2) Matter consisting of fundamental bosonic strings. The

For certain matter models, the symmetry structure is evegondition (19) can be verified by representing the string ac-
richer (see discussion of the “Einstein symmetry” in the tion in theD-dimensional form wherg ,, plays the role of a
next sectioh The complete understanding of the groupbackground metric. For example, bosonic strings, according
structure and the consequences of these symmetries is not our formulation, where the measure of integration in a
known to us at present, but we expect to report on this irD-dimensional spacetime is chosen to ®ed®x, will be

future publications.

governed by an action of the form
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such de Sitter space is supported by the existence of a vari-
Sm:f L string® d®x, able scalar fieldy which in practice destroys the maximal
symmetry.
Effects of a nonconstant can be studied first in the case
P (x—X(o,7)) where there is no mattet (,=T,,=0). If we require maxi-
L string= _Tf dodr ————— mal symmetry of the space-time metric in such a case, the
field y must satisfy the conditioy ,.,=cxg,, wherec is a
% \/W (22)  constant. Geometry allow$] suchx only for the value of

c=—(R/12) and it is then possible to have maximally sym-

) i metric metric with any value dR= — kM. For example a de
where/ L g/ —g d°x would be the action of a string em- sitter solution of Eqs.(11) and (12) (taking D=4) is
bedded in @-dimensional spacetime in the standard theory;dsz:dtz_azd;(z wherea=ayexp(\t), x=x.exp(t), and
a, b label coordinates in the string world sheet ahés the  y2_ , /12 ’ 0 ’ 0 '

string tension. Notice that under a scalif#g) (which means Let us consider the point particle modebnsidered at the
thatg,,—A"79,,), Leing=MD —2/2)Lgying, therefore con-  oq of Sec. 11) which satisfies the Einstein condition. In this
cluding thatl sying is @ homogeneous function gf,, of de- 556 the physics of the de Sitter space is described by geo-

gree one, that is Eq19) is satisfied, ifD=4. desics with respect to the effective metg€f;. Notice that
(3) It is possible to formulat¢he point particle modedf ¢ .y 4 metric corresponds to a power law

matter in a way such that Eq19) is satisfied. This is ; fation: ds3=dr?—°dx?, where r=mexp(\t) and
. e ’

beqause for the. free falling po_int par'gicle a variety ofy2_, /12 By examining the physical metmf[f; we notice
actions are possibléand are equivalent in the context of w5 there are not the 10 Killing vectors of the de Sitter space.
general relativity. The usual actions are taken 10 be \ye see that although the metgg, is maximally symmetric,
S=—mJF(y)ds, wherey=g,(dX*/ds)(dX"/ds) andsis  yhe physical geometry is not maximally symmetric.
determined to be an affine parameter exceptsf y, which
is the case of reparametrization invariance. In our model wi
must take S;,= —m[ Ly ® d*x with Lya=—m/ds 8*(x
—X(3))/—g]F(y[X(s)]) where pranh d*x would be .
the action of a point particle in four dimensions in the usual Some years ago, Parkgf] suggested a possible mecha-
theory. For the choic€& =y, condition(19) is satisfied. Un-  nism, based on particle production in the early Universe, for
like the case of general relativity, different choicesFofead selecting a zero cosmological constant. The basic assumption
to unequivalent theories. Parker made was that of the existence of an underlying
Notice that in the case of point particlésking F=y), a  theory where the cosmological constant can be dynamically
geodesic equatiofand therefore the equivalence principle adjusted by a process based on something like the familiar
is satisfied in terms of the metrﬁggxgag even ifyis not  ‘Lenz'slaw,” which requires that the equilibrium condition
constant. It is interesting also that in the four-dimensionalP€ achieved after the cosmological constant relaxes to a cer-
caseg‘zf; is invariant under the Einstein symmetry describedtain value. . _
by Eqs(zo) and (21) Furthermore, since for point partic'es The idea is b.a.sed Qn the fact that for a four'd|mens|0na..|
the theory allows an Einstein sector, we seem to have a follomogeneous, isotropic cosmological background, there is
mulation where at macroscopic distances there will be ndot real particle creation for massless conformally coupled
difference with the standard GR, but where a substantial difscalar fielddMCCSF's satisfying
ference could appear in microphysics. The theory could be R
useful in suggesting new effects that may be absent in GR D¢+ = ¢=0. (23)
and that could constitute nontrivial tests of the nongravitat- 6
ing vacuum energyNGVE) theory and of GR. Deviations
from GR may have also interesting cosmological conse- [f there are massless minimally coupled scalar fields
quences for the early Univer$s]. (MMCSF’s) or gravitons, in general particle creation takes
In all the above cases 1, 2, and 3, solutions where the fiel@lace. However, when considering particle creation effect in
x=®/\—g is constant exist iM=0 and then solutions of & given background metric with zero scalar curvature, the
Eq. (12) coincide with those of the Einstein theory with zero MCCSF and MMCSF theories behave in the same Wy
cosmological constant. Theories of fermiaiscluding fer-  Also for such a backgroun&=0, one expects no graviton
mionic string theoriesappear also can serve as candidatg®roduction[7]. The existence of radiation witi;;=0 does
matter models where there will be an Einstein-Cartan sectdfot affect these conclusiog].
of solutions, as will be studied elsewhere.

5. Particle creation, possible instability of the de Sitter space,
and the Parker condition

C. Realization of the Parker cosmological condition

IV. THE COSMOLOGICAL CONSTANT PROBLEM in the Einstein sector of the NGVE theory

In the context of the NGVE theory, we have states with
R=0 that exist among many other possible states, provided
If we allow nonconstang, we expect to obtaieffects not the integration constant! is chosen zero and the matter

present in Einstein gravity and cosmolodyor example, as Lagrangian on shell equals zefreee Eq(7)]. The last con-
we will see, in the NGVE theory de Sitter space is realized indition is satisfied, for example, for the case of massless fer-
an unconventional way, where the de Sitter metric holds, butnions and for electromagnetic  radiation  with

A. The de Sitter solution in the context of the NGVE theory
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Tlmu=Lem=E’—B?=0. Such a state may be realized ap-exist as a nontrivial theory in-11 dimensions, while the
parently for the Universe filled by ultrarelativistic matter. NGVE theory doestb) The four-dimensional de Sitter solu-
As Parker[7] points out, a de Sitter space, although nottions do not possess the maximal symmetry for the NGVE
satisfying the conditiolR=0, has a chance however of being theory case(due to the fact that the scalar fiejdis not
stable due to its maximal symmetry. This seems in accoreonstant while maximal symmetry is respected in the
dance with the calculations of Candelas and Rgfeln our  NDSQR theory where flat space and de Sitter space have the
case however even this possibility seems to be excludedame symmetry(c) In the NGVE theory, the matter energy-
Indeed, for the de Sitter space in the NGVE theory we havenomentum tensor is not covariantly conserved, while in the
x=x(t) #const which means explicit breaking of maximal NDSQR theory it is;(d) In addition, the NDSQR theory is
symmetry since for a maximally symmetric space a scalafor all practical purposes indistinguishable from GR, while
field must obey[9] the conditiond, x=0. Therefore we ex- the NGVE theory is really a new physical theory, which
pect that in the NGVE theory the de Sitter space suffers frongould contain an Einstein sector of solutions, but in addition
the above mentioned instability towards particle productionthere is the potential of finding out new gravitational effects.
Only flat spacetime allows the possibility of maximal sym- ~ We should also point out that a more thorough study of
metry since in this casg may be constant, which is clear the infinite dimensional symmetry found here should be
from Eq. (11). made. In particular the restrictions on the possible induced
It is interesting to observe that the Parker condition in the®MS in the quantum effective action seem to be strong if the
framework of the NGVE theory, when applied to the aboveSymmetries(14) and (16) remain unbroken after quantum
mentioned case of an early Universe dominated by ultrarelgcOrrections are also taken into account. In particular, symme-
tivistic matter(massless fermions and electromagnetic radial’y under the transformationid ) seems to prevent the ap-
tion with Tty =Le=E2—B2=0), is a particular realiza- Pearance of terms of the forfiix)® [except off (x)=1/x] in
tion of the Einstein condition19). Notice that once the the effective action which although is invariant under vol-
Einstein condition is satisfied, the direct coupling of the Ume preserving transformations4), breaks symmetry16).
field with matter disappeafsee Eq(11)]. When this decou- 1he casef(x)<1/x is not forbidden by symmetry16) and
pling does not exist, as for example is apparent from Eq@PPearance of such a term would mean inducing a “real”
(13), for the small matter perturbations around a de Sitteosmological term, i.e., a term of the forgi-gA in the
space, we expect a tendency for any homogenm]ate to effective action. However, appearance of such a term seems
lose energy to inhomogeneous degrees of freetfoom the 10 be ruled out because of having opposite parity properties
point of view of thermodynamics a transfer of energy fromto that of the action given if8). Of course, in the absence of
homogeneous degree of freedom of fhéield into inhomo- @ consistently quantized theory, such arguments are only pre-
geneous degrees of freedom is more preferab]e than the r&:l’]'linary. Nevertheless it is interesting to note that if all these
verse since the inhomogeneous modes are more numerousymmetry arguments are indeed applicable, this would imply
An effective way to describe this would be the introductionthat the scalar fieldg, can appear in the effective action
of a friction term in the equation of motion for. We expect Only in the integration measure, that is they preserve their
this would lead to the decay of the de Sitter space towards geometrical role.
Friedmann epoch withl =0 and y=const. The nonequilib-  The physical meaning of the symmet(¥6) is puzzling.
rium dynamics explaining the details of how the relaxationT0 get a feeling of the meaning of this symmetry, it is inter-
of the cosmological constant is achieved, or in our case howsting to notice that such transformation becomes nontrivial
the constantM is changed to zero, is a subject for future if L=—(1/k)R+L, is nota constant, in contrast to what we
studies. have studied so far in this paper. For the derivation of Eq.
(7), which impliesL=const, we have assumed th&t0.
V. DISCUSSION Allowing ®=0 in some regions of space-time should be
equivalent to allowing for “defects” which could be string-
There are many directions in which research concerningike or take the shape of other extended objects. In such
the NGVE theory could be expanded. A subject of particularevent, the symmetry16) would become nontrivial precisely
interest consists of the study of the NGVE theory ift1l  at the location of such defects, a situation that reminds us of
dimensions. In this case, the model gives equations that cahe reparametrization invariance of theories of extended ob-
incide with those of Jackiw and TeitelboifiO] when the jects.
constant of integratiogM in the NGVE theory is identified In this context, it becomes then natural to explore the
with the constant scalar curvature which is imposed on thgossibility that all the matter could arise as regions of space-
vacuum solutions of that mod€10] and where our fieldy  time where®=0, i.e., as defects described above. This could
plays the same role, in the equations, as the Lagrange mube a way to realize an idea of Einstein and Infgld] that
tiplier field in the Jackiw-Teitelboim modgLO]. matter should arise as singular points from a pure gravita-
Another model that resembles the NGVE theory studiedional theory. In their word$11]: “All attempts to repre-
here is the nondynamical—g theory (NDSQR (for re- sent matter by an energy-momentum tensor are unsatisfac-
views, see articles of Weinberg and Ngj). For the NDSQR tory and we wish to free our theory from any particular
theory, also any de Sitter space is a solution of the theory anchoice of such a tensor. Therefore we shall deal here only
the constant curvature of the vacuum solutions also appeavsith gravitational equations in empty space, and matter will
as an integration constant. The differences between the NIbe represented by singularities of the gravitational field.” In
SQR theory and the NGVE theory are however very obvi-GR, however, such a mechanism could lead only to singu-
ous. To mention just somé¢a) The NDSQR theory does not larities of the metric, i.e., black holé#f the cosmic censor-
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ship hypothesi§12] is correc}. Although black holes are neither the Einstein condition nor the Einstein symmetry are
interesting objects, they are of course not satisfactory candexactly satisfied, but that they could appear only in the long
dates for the description of the matter we see around. Defectlistance behavior of the theory, without being satisfied by
that appear in the NGVE theory are singularities of the meathe underlying microscopic theory. This possibility is sug-
sure which are not necessarily singularities of the metricgested by the fact that the point particle limit allows a for-
Furthermore the existence of the symmd{t$) suggests to mulation consistent with the Einstein symmetry. In the point
us a close connection between these singularities and rgarticle limit, however, the underlying microscopiéeld
parametrization invariance of extended objects as mentionetthieoreti¢ structure is “integrated out” and in this way dis-
above. appears. This of course suggests that the integration of mi-
Finally, the crucial question concerning the large distanceroscopic degrees of freedom could, under very general cir-
behavior of the model should be analyzed in detail. In parcumstances, lead to a macroscopic theory satisfying the
ticular, the study of general conditions under which theEinstein symmetry. The answer to this last question will of
theory contains an Einstein sector of solutions or a set ofourse demand further research.
solutions which deviate very little from those of the Einstein
theory must be s_tudled. In this respect, let us recall thgt we ACKNOWLEDGMENTS
have already reviewed a number of cases where the Einstein
condition and Einstein symmetry hold. In these cases the We would like to thank H. Aratyn, J. Bekenstein, K.
theory is guaranteed to contain an Einstein sector of soluBronnikov, A. Feinstein, J. Friedman, A. Guth, A. Heckler,
tions. J. Ibanez, C. Kiefer, R. Mann, V. Mostepanenko, L. Parker,
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