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Principle of nongravitating vacuum energy and some of its consequences
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For Einstein’s general relativity~GR! or the alternatives suggested up to date, the vacuum energy gravitate
We present a model where a new measure is introduced for integration of the total action inD-dimensional
spacetime. This measure is built fromD scalar fieldswa . As a consequence of such a choice of the measure
the matter LagrangianLm can be changed by adding a constant while no gravitational effects, such as
cosmological term, are induced. Such anongravitating vacuum energy theoryhas an infinite dimensional
symmetry group which contains volume-preserving diffeomorphisms in the internal space of scalar fieldswa .
Other symmetries contained in this symmetry group suggest a deep connection of this theory with theorie
extended objects. In generalthe theory is different from GRalthough for certain choices ofLm , which are
related to the existence of an additional symmetry, solutions of GR are solutions of the model. This is achie
in four dimensions ifLm is due to fundamental bosonic and fermionic strings. Other types of matter where th
feature of the theory is realized, are, for example, scalars without potential or subjected to nonlinear c
straints, massless fermions, and point particles. The point particle plays a special role, since it is a g
phenomenological description of matter at large distances. de Sitter space is realized in an unconventional
where the de Sitter metric holds, but such de Sitter space is supported by the existence of a variable scalar
which in practice destroys the maximal symmetry. The only spacetime where maximal symmetry is n
broken, in a dynamical sense, is Minkowski space. The theory has nontrivial dynamics in 111 dimensions,
unlike GR.@S0556-2821~96!04712-1#

PACS number~s!: 04.62.1v, 04.20.Cv, 04.50.1h
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I. INTRODUCTION

As is known, in the general theory of relativity energy
a source of gravity, which is described by the metric tens
gmn . This makes an important difference to ideas develop
for flat space physics where the origin with respect to whi
we measure energy does not matter; that is, the energ
defined up to an additive constant. For general relativity
contrast, all the energy has a gravitational effect; therefo
the origin with respect to which we define the energy
important.

In quantum mechanics, there is the so-called zero-po
energy associated with the zero-point fluctuations. In
case of quantum fields, such zero-point fluctuations turn
to have an associated energy density which is infinite. In f
there is a zero-point vacuum energy-momentum tensor of
form Tmn

vac5Ahmn in flat space~hmn is the Minkowski metric!,
or Tmn

vac5Agmn1~terms}R! in curved space. HereA is infi-
nite.

Notice that the appearance of an energy-momentum t
sor proportional togmn in Einstein’s equations is equivalen
@1# to what Einstein called the ‘‘cosmological constant’’ o
‘‘ L term.’’ It was introduced by Einstein@2# in the form

Rmn2
1

2
gmnR2Lgmn5

k

2
Tmn . ~1!

Such aL term does not violate any known symmetr
Therefore, normally we would not consider excluding it,

*Electronic address: GUENDEL@BGUmail.BGU.AC.IL
†Electronic address: ALEXK@BGUmail.BGU.AC.IL
531/96/53~12!/7020~6!/$10.00
is
or
ed
ch
y is
in
re,
is

int
the
out
act
the

en-
t
r

y.
if

we were to apply the arguments usually made in quantu
field theory. However, we get into trouble if we note that th
natural scale of such a term, obtained on dimension
grounds, is of the order of magnitude of the Planck densit
The problem is more severe once we realize that the ze
point vacuum energy appears as an infinite quantity.

Indeed, in order to get agreement with observations, d
ferent sources of energy density have to compensate w
each other almost exactly to high accuracy, thus creating
acute ‘‘fine-tuning problem.’’

In order to explain this so-called ‘‘cosmological constan
problem,’’ a variety of ideas have been developed; see, f
example, the reviews in Ref.@3#. Among these attempts, pos-
sible changes in gravity theory were studied@3#, where the
result was that the cosmological constant appeared as an
tegration constant, for example, in ‘‘nondynamicalA2g’’
models. The reason why such a constant should be pick
zero is unclear, however.

In this paper we will also suggest a modification of grav
ity theory by imposing the principle that the vacuum energ
density, to be identified with the constant part of the La
grangian density, should not contribute to the equation
motion. The realization of this idea in the model considere
here, apart from leading to a geometrically interesting ne
theory, also leads to the possibility of new gravitational e
fects.

II. THE MODEL

A. A new measure and generally coordinate invariant action

All approaches to the cosmological constant proble
have been made under the assumption that the invariant m
sure to be used for integrating the total Lagrangian density
7020 © 1996 The American Physical Society
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the action isA2gdDx. In the present paper, this particula
assumption will be modified, and the result will be that, b
an appropriate generally coordinate invariant choice of
measure, the theory will not be sensitive to a change in
Lagrangian density by the addition of a constant, in contr
with the Einstein-Hilbert action, where such a change gen
ates a cosmological term.

Let the measure of integration in aD-dimensional space-
time be chosen asF dDx, whereF is a yet unspecified sca
lar density of weight 1. In order to achieve the result that t
vacuum energy does not gravitate, we will start from t
demand that the addition of a constant in the Lagrang
density does not affect the dynamics of the theory. T
means that*LF dDx and*~L1const!F dDx must reproduce
the same equations of motion. This is of course achieve
F is a total derivative.

The simplest choice for a scalar density of weight
which is as well a total derivative, may be realized by usi
D scalar fieldswa(x) and then defining

F[«a1a2•••aD
«a1a2•••aD~]a1

wa1
!~]a2

wa2
!•••~]aD

waD
!. ~2!

Here«a1a2•••aD51 if a150, a251,...,aD5D21 and61
according to whether~a1,a2,...,aD! is an even or an odd
permutation of ~0,1,...,D21!. Likewise for «a1a2•••aD
(ai51,2,...,D). Therefore the total action we will conside
is

S5E S 2
1

k
R1LmDF dDx, ~3!

wherek516pG, R is the scalar curvature, and we will tak
Lm not to depend on any of the scalarswa(x). Notice that
if we consider parity or time reversal transformations, th
S→2S, which does not affect the classical equations of m
tion. Quantum mechanically~considering for example the
path integral approach!, such transformation will transform
total amplitudes into their complex conjugates, therefo
leaving probabilities unchanged.

Notice thatF is the Jacobian of the mappingwa5wa(x
a),

a51,2,...,D. If this mapping is nonsingular~FÞ0! then ~at
least locally! there is the inverse mappingxa5xa(wa),
a50,1,...,D21. Since F dDx5D! dw1`dw2`...`dwD
we can think ofF dDx as integrating in the internal spac
variableswa . In addition, ifFÞ0 then there is a coordinate
frame where the coordinates are the scalar fields themse

The fieldF is invariant under the volume preserving di
feomorphisms in internal space:wa85wa8(wb) where

«a1a2•••aD

]wb1
8

]wa1

]wb2
8

]wa2

•••
]wbD

8

]waD

5«b1b2•••bD
. ~4!

B. Equations of motion

The equations of motion obtained by variation of the a
tion ~3! with respect to the scalar fieldswb are

Ab
m]mS 2

1

k
R1LmD50, ~5!
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Ab
m[«a1a2•••aD21b

«a1a2•••aD21m~]a1
wa1

!

3~]a2
wa2

!•••~]aD21
waD21

!. ~6!

It follows from ~2! that Ab
m]mwb85D21dbb8F and taking

the determinant of both sides, we get det(Ab
m)

5(D2D/D!)FD21. Therefore ifFÞ0, which we will as-
sume in what follows, the only solution for~5! is

2
1

k
R1Lm5const[M . ~7!

Variation of Sg[2(1/k)*RF dDx with respect togmn

leads to the result@4#

dSg52
1

k E F@Rmn1~gmnh2¹m¹n!#dgmndDx. ~8!

In order to perform the correct integration by parts we hav
to make use of the scalar fieldx[F/A2g, which is invari-
ant under continuous general coordinate transformations,
stead of the scalar densityF. Then integrating by parts and
ignoring a total derivative term which has the form
]a(A2gPa), wherePa is a vector field, we get

dSg
dgmn 52

1

k
A2g@xRmn1gmnhx2x ,m;n#. ~9!

In a similar way varying the matter part of the action~3! with
respect togmn and making use of the scalar fieldx we can
express a result in terms of the standard matter energ
momentum tensorTmn[(2/A2g)@](A2gLm)/]g

mn#. Then
after some algebraic manipulations we get instead of Ein
stein’s equations

Gmn5
k

2
$Tmn2 1

2gmn@Ta
a1~D22!Lm#%

1
1

x SD23

2
gmnhx1x ,m;nD , ~10!

whereGmn[Rmn2 1
2Rgmn .

By contracting~10! and using~7!, we get

hx2
k

D21
$M1 1

2 @Ta
a1~D22!Lm#%x50. ~11!

By using Eq.~11! we can now excludeT a
a1(D22)Lm

from Eq. ~10!:

Gmn5
k

2
@Tmn1Mgmn#1

1

x
@x ,m;n2gmnhx#. ~12!

Notice that Eqs.~5! and~10! are invariant under the addition
to Lm a constant piece, since the combination
Tmn2 1

2gmn[T a
a1(D22)Lm] is invariant. However, by fix-

ing the constant part of the differenceLm2M in the solution
~7! of Eq. ~5!, we break this invariance. To give a definite
physical meaning to the integration constantM , we conven-
tionally take the constant part ofLm equal to zero.

It is very important to note that the terms depending o
the matter fields in Eq.~12! as well as in Eq.~10! do not
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contain thex field, in contrast with the usual scalar-tens
theories, such as the Brans-Dicke theory. As a result of t
feature of the nongravitating vacuum energy~NGVE! theory,
the gravitational constant does not suffer space-time va
tions. However, the matter energy-momentum tensorTmn is
not conserved. Actually, taking the covariant divergence
both sides of Eq. ~12! and using the identity
x ;n;a

a 5~hx!,n1xaRan , Eqs.~12! and ~11!, we get the equa-
tion of matter nonconservation

Tmn
;m522

]Lm
]gmn g

ma]alnx. ~13!

C. Volume preserving symmetries and associated conserved
quantities

From the volume preserving symmetrieswa85wa8(wb) de-
fined by Eq.~4! which for the infinitesimal case implies

wa85wa1l«aa1•••aD
]Fa1a2•••aD21

~wb!

]waD

~14!

~l!1!, we obtain, through Noether’s theorem, the conserv
quantities

j V
m5Aa

mS 2
1

k
R1LmD «aa1•••aD

]Fa1a2•••aD21
~wb!

]waD

. ~15!

D. Symmetry transformations with the total Lagrangian
density as a parameter and associated conserved quantities

Let us consider the following infinitesimal shift of the
fields wa by an arbitrary infinitesimal function of the tota
Lagrangian densityL[2(1/k)R1Lm , that is

wa85wa1ega~L !, e!1. ~16!

In this case the action is transformed according to

dS5eDE Aa
mL]mga~L !dDx5eE ]mVmdDx, ~17!

whereVm[DAa
m f a(L) and f a(L) being defined fromga(L)

through the equationL(dga/dL)5d fa/dL. To obtain the last
expression in the Eq.~17! it is necessary to note tha
]mAa

m[0. By means of the Noether’s theorem, this symm
try leads to the conserved current

j L
m5Aa

m~Lga2 f a![Aa
mE

L0

L

ga~L8!dL8. ~18!

For certain matter models, the symmetry structure is ev
richer ~see discussion of the ‘‘Einstein symmetry’’ in th
next section!. The complete understanding of the grou
structure and the consequences of these symmetries is
known to us at present, but we expect to report on this
future publications.
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III. EINSTEIN SYMMETRY AND EINSTEIN SECTOR
OF SOLUTIONS

A. Einstein condition

We are interested now in studying the question of whethe
there is an Einstein sector of solutions; that is, are the
solutions that satisfy Einstein’s equations? First of all, w
see that Eqs.~12! coincide with Einstein’s equations with
cosmological constantkM only if the x field is a constant.
From Eq.~11! we conclude that this is possible only if an
essential restriction on the matter model is imposed
2M 1T a

a 1 (D2 2)Lm[2[M 1 gmn(]Lm/]g
mn)2 Lm]50.

However, we have not found any reasonable matter mod
where this condition is satisfied forMÞ0 ~recall that the
constant part ofLm is taken to be zero!. In the caseM50 this
condition becomes

gmn
]Lm
]gmn2Lm50, ~19!

which means thatLm is a homogeneous function ofgmn of
degree one, in any dimension. If condition~19! is satisfied
then the equations of motion allow solutions of general rela
tivity ~GR! to be solutions of the model, that isx5const and
Gmn5(k/2)Tmn .

B. Einstein symmetry

It is interesting to observe that when condition~19! is
satisfied, a new symmetry of the action~3! appears. We will
call this symmetry ‘‘Einstein symmetry’’@because~19! leads
to the existence of an Einstein sector of solutions#. Such
symmetry consists of the scalings

gmn→lgmn, ~20!

wa→l2~1/D !wa , ~21!

wherel5constant.

To see that this is indeed a symmetry, note that from defin
tion of scalar curvature it follows thatR→lR when the
transformation ~20! is performed. Since condition~19!
means thatLm is a homogeneous function ofg

mn of degree 1,
we see that under the transformation~20! the matter La-
grangianLm→lLm . From this we conclude that~20! and
~21! are indeed a symmetry of the action~3! when ~19! is
satisfied.

C. Examples

The situation described in the two previous subsection
can be realized for special kinds of bosonic matter models

~1! Scalar fields without potentials, including fields sub
jected to nonlinear constraints, like thes model. The general
coordinate invariant action for these cases has the for
Sm5*LmF dDx whereLm5 1

2s ,ms ,ng
mn.

~2! Matter consisting of fundamental bosonic strings. Th
condition ~19! can be verified by representing the string ac
tion in theD-dimensional form wheregmn plays the role of a
background metric. For example, bosonic strings, accordin
to our formulation, where the measure of integration in
D-dimensional spacetime is chosen to beF dDx, will be
governed by an action of the form
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Sm5E LstringF dDx,

Lstring52TE ds dt
dD„x2X~s,t!…

A2g

3Adet~gmnX,a
mX,b

m !, ~22!

where*LstringA2g dDx would be the action of a string em-
bedded in aD-dimensional spacetime in the standard theor
a, b label coordinates in the string world sheet andT is the
string tension. Notice that under a scaling~20! ~which means
that gmn→l21gmn!, Lstring→l~D22/2!Lstring, therefore con-
cluding thatLstring is a homogeneous function ofgmn of de-
gree one, that is Eq.~19! is satisfied, ifD54.

~3! It is possible to formulatethe point particle modelof
matter in a way such that Eq.~19! is satisfied. This is
because for the free falling point particle a variety o
actions are possible~and are equivalent in the context o
general relativity!. The usual actions are taken to b
S52m*F(y)ds, wherey5gab(dX

a/ds)(dXb/ds) ands is
determined to be an affine parameter except ifF5Ay, which
is the case of reparametrization invariance. In our model
must takeSm52m*LpartF d4x with Lpart52m*ds@d4„x
2X(s)…/A2g#F„y@X(s)#… where*LpartA2g d4x would be
the action of a point particle in four dimensions in the usu
theory. For the choiceF5y, condition~19! is satisfied. Un-
like the case of general relativity, different choices ofF lead
to unequivalent theories.

Notice that in the case of point particles~takingF5y!, a
geodesic equation~and therefore the equivalence principle!
is satisfied in terms of the metricgab

eff[xgab even ifx is not
constant. It is interesting also that in the four-dimension
casegab

eff is invariant under the Einstein symmetry describe
by Eqs.~20! and~21!. Furthermore, since for point particles
the theory allows an Einstein sector, we seem to have a f
mulation where at macroscopic distances there will be
difference with the standard GR, but where a substantial d
ference could appear in microphysics. The theory could
useful in suggesting new effects that may be absent in G
and that could constitute nontrivial tests of the nongravita
ing vacuum energy~NGVE! theory and of GR. Deviations
from GR may have also interesting cosmological cons
quences for the early Universe@5#.

In all the above cases 1, 2, and 3, solutions where the fi
x[F/A2g is constant exist ifM50 and then solutions of
Eq. ~12! coincide with those of the Einstein theory with zer
cosmological constant. Theories of fermions~including fer-
mionic string theories! appear also can serve as candida
matter models where there will be an Einstein-Cartan sec
of solutions, as will be studied elsewhere.

IV. THE COSMOLOGICAL CONSTANT PROBLEM

A. The de Sitter solution in the context of the NGVE theory

If we allow nonconstantx, we expect to obtaineffects not
present in Einstein gravity and cosmology. For example, as
we will see, in the NGVE theory de Sitter space is realized
an unconventional way, where the de Sitter metric holds, b
y;
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such de Sitter space is supported by the existence of a va
able scalar fieldx which in practice destroys the maximal
symmetry.

Effects of a nonconstantx can be studied first in the case
where there is no matter (Lm5Tmn50). If we require maxi-
mal symmetry of the space-time metric in such a case, th
field x must satisfy the conditionx,m;n5cxgmn wherec is a
constant. Geometry allows@6# suchx only for the value of
c52(R/12) and it is then possible to have maximally sym
metric metric with any value ofR52kM . For example a de
Sitter solution of Eqs.~11! and ~12! ~taking D54! is
ds25dt22a2dxW2, wherea5a0exp(lt), x5x0exp(lt), and
l25kM /12.

Let us consider the point particle model~considered at the
end of Sec. III! which satisfies the Einstein condition. In this
case the physics of the de Sitter space is described by ge
desics with respect to the effective metricgab

eff . Notice that
such a metric corresponds to a power law
inflation: dseff

2 5dt22t6dxW2, where t5t0exp(lt) and
l25kM /12. By examining the physical metricgab

eff we notice
that there are not the 10 Killing vectors of the de Sitter spac
We see that although the metricgmn is maximally symmetric,
the physical geometry is not maximally symmetric.

B. Particle creation, possible instability of the de Sitter space,
and the Parker condition

Some years ago, Parker@7# suggested a possible mecha-
nism, based on particle production in the early Universe, fo
selecting a zero cosmological constant. The basic assumpt
Parker made was that of the existence of an underlyin
theory where the cosmological constant can be dynamica
adjusted by a process based on something like the famili
‘‘Lenz’s law,’’ which requires that the equilibrium condition
be achieved after the cosmological constant relaxes to a c
tain value.

The idea is based on the fact that for a four-dimension
homogeneous, isotropic cosmological background, there
not real particle creation for massless conformally couple
scalar fields~MCCSF’s! satisfying

hf1
R

6
f50. ~23!

If there are massless minimally coupled scalar field
~MMCSF’s! or gravitons, in general particle creation takes
place. However, when considering particle creation effect i
a given background metric with zero scalar curvature, th
MCCSF and MMCSF theories behave in the same way@7#.
Also for such a backgroundR50, one expects no graviton
production@7#. The existence of radiation withTm

m50 does
not affect these conclusions@7#.

C. Realization of the Parker cosmological condition
in the Einstein sector of the NGVE theory

In the context of the NGVE theory, we have states with
R50 that exist among many other possible states, provide
the integration constantM is chosen zero and the matter
Lagrangian on shell equals zero@see Eq.~7!#. The last con-
dition is satisfied, for example, for the case of massless fe
mions and for electromagnetic radiation with
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T ~em!m
m 5Lem5E22B250. Such a state may be realized a

parently for the Universe filled by ultrarelativistic matter.
As Parker@7# points out, a de Sitter space, although n

satisfying the conditionR50, has a chance however of bein
stable due to its maximal symmetry. This seems in acc
dance with the calculations of Candelas and Raine@8#. In our
case however even this possibility seems to be exclud
Indeed, for the de Sitter space in the NGVE theory we ha
x5x(t)Þconst which means explicit breaking of maxima
symmetry since for a maximally symmetric space a sca
field must obey@9# the condition]mx50. Therefore we ex-
pect that in the NGVE theory the de Sitter space suffers fr
the above mentioned instability towards particle productio
Only flat spacetime allows the possibility of maximal sym
metry since in this casex may be constant, which is clea
from Eq. ~11!.

It is interesting to observe that the Parker condition in t
framework of the NGVE theory, when applied to the abo
mentioned case of an early Universe dominated by ultrare
tivistic matter~massless fermions and electromagnetic rad
tion with T ~em!m

m 5Lem5E22B250!, is a particular realiza-
tion of the Einstein condition~19!. Notice that once the
Einstein condition is satisfied, the direct coupling of thex
field with matter disappears@see Eq.~11!#. When this decou-
pling does not exist, as for example is apparent from E
~13!, for the small matter perturbations around a de Sit
space, we expect a tendency for any homogeneousx state to
lose energy to inhomogeneous degrees of freedom~from the
point of view of thermodynamics a transfer of energy fro
homogeneous degree of freedom of thex field into inhomo-
geneous degrees of freedom is more preferable than the
verse since the inhomogeneous modes are more numer!.
An effective way to describe this would be the introductio
of a friction term in the equation of motion forx. We expect
this would lead to the decay of the de Sitter space toward
Friedmann epoch withM50 andx5const. The nonequilib-
rium dynamics explaining the details of how the relaxatio
of the cosmological constant is achieved, or in our case h
the constantM is changed to zero, is a subject for futur
studies.

V. DISCUSSION

There are many directions in which research concern
the NGVE theory could be expanded. A subject of particu
interest consists of the study of the NGVE theory in 111
dimensions. In this case, the model gives equations that
incide with those of Jackiw and Teitelboim@10# when the
constant of integrationkM in the NGVE theory is identified
with the constant scalar curvature which is imposed on
vacuum solutions of that model@10# and where our fieldx
plays the same role, in the equations, as the Lagrange m
tiplier field in the Jackiw-Teitelboim model@10#.

Another model that resembles the NGVE theory studi
here is the nondynamicalA2g theory ~NDSQR! ~for re-
views, see articles of Weinberg and Ng@3#!. For the NDSQR
theory, also any de Sitter space is a solution of the theory
the constant curvature of the vacuum solutions also appe
as an integration constant. The differences between the N
SQR theory and the NGVE theory are however very ob
ous. To mention just some:~a! The NDSQR theory does no
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exist as a nontrivial theory in 111 dimensions, while the
NGVE theory does;~b! The four-dimensional de Sitter solu-
tions do not possess the maximal symmetry for the NGV
theory case~due to the fact that the scalar fieldx is not
constant! while maximal symmetry is respected in the
NDSQR theory where flat space and de Sitter space have
same symmetry;~c! In the NGVE theory, the matter energy-
momentum tensor is not covariantly conserved, while in th
NDSQR theory it is;~d! In addition, the NDSQR theory is
for all practical purposes indistinguishable from GR, while
the NGVE theory is really a new physical theory, which
could contain an Einstein sector of solutions, but in additio
there is the potential of finding out new gravitational effects

We should also point out that a more thorough study o
the infinite dimensional symmetry found here should b
made. In particular the restrictions on the possible induce
terms in the quantum effective action seem to be strong if th
symmetries~14! and ~16! remain unbroken after quantum
corrections are also taken into account. In particular, symm
try under the transformations~16! seems to prevent the ap-
pearance of terms of the formf ~x!F @except off ~x!}1/x# in
the effective action which although is invariant under vol
ume preserving transformations~14!, breaks symmetry~16!.
The casef ~x!}1/x is not forbidden by symmetry~16! and
appearance of such a term would mean inducing a ‘‘real
cosmological term, i.e., a term of the formA2gL in the
effective action. However, appearance of such a term see
to be ruled out because of having opposite parity propertie
to that of the action given in~3!. Of course, in the absence of
a consistently quantized theory, such arguments are only p
liminary. Nevertheless it is interesting to note that if all thes
symmetry arguments are indeed applicable, this would imp
that the scalar fieldswa can appear in the effective action
only in the integration measure, that is they preserve the
geometrical role.

The physical meaning of the symmetry~16! is puzzling.
To get a feeling of the meaning of this symmetry, it is inter
esting to notice that such transformation becomes nontrivi
if L[2(1/k)R1Lm is nota constant, in contrast to what we
have studied so far in this paper. For the derivation of Eq
~7!, which impliesL5const, we have assumed thatFÞ0.
Allowing F50 in some regions of space-time should be
equivalent to allowing for ‘‘defects’’ which could be string-
like or take the shape of other extended objects. In suc
event, the symmetry~16! would become nontrivial precisely
at the location of such defects, a situation that reminds us
the reparametrization invariance of theories of extended o
jects.

In this context, it becomes then natural to explore th
possibility that all the matter could arise as regions of spac
time whereF50, i.e., as defects described above. This coul
be a way to realize an idea of Einstein and Infeld@11# that
matter should arise as singular points from a pure gravit
tional theory. In their words@11#: ‘‘All attempts to repre-
sent matter by an energy-momentum tensor are unsatisfa
tory and we wish to free our theory from any particular
choice of such a tensor. Therefore we shall deal here on
with gravitational equations in empty space, and matter wi
be represented by singularities of the gravitational field.’’ In
GR, however, such a mechanism could lead only to sing
larities of the metric, i.e., black holes~if the cosmic censor-
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ship hypothesis@12# is correct!. Although black holes are
interesting objects, they are of course not satisfactory can
dates for the description of the matter we see around. Def
that appear in the NGVE theory are singularities of the me
sure which are not necessarily singularities of the met
Furthermore the existence of the symmetry~16! suggests to
us a close connection between these singularities and
parametrization invariance of extended objects as mentio
above.

Finally, the crucial question concerning the large distan
behavior of the model should be analyzed in detail. In p
ticular, the study of general conditions under which t
theory contains an Einstein sector of solutions or a set
solutions which deviate very little from those of the Einste
theory must be studied. In this respect, let us recall that
have already reviewed a number of cases where the Eins
condition and Einstein symmetry hold. In these cases
theory is guaranteed to contain an Einstein sector of so
tions.

However, it would be interesting to study situations whe
the answer is not so clear. We have here in mind cases w
di-
ects
a-
ric.

re-
ned

ce
ar-
he
of
in
we
tein
the
lu-

re
here

neither the Einstein condition nor the Einstein symmetry are
exactly satisfied, but that they could appear only in the long
distance behavior of the theory, without being satisfied by
the underlying microscopic theory. This possibility is sug-
gested by the fact that the point particle limit allows a for-
mulation consistent with the Einstein symmetry. In the point
particle limit, however, the underlying microscopic~field
theoretic! structure is ‘‘integrated out’’ and in this way dis-
appears. This of course suggests that the integration of m
croscopic degrees of freedom could, under very general ci
cumstances, lead to a macroscopic theory satisfying th
Einstein symmetry. The answer to this last question will of
course demand further research.
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