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A formalism and its numerical implementation is presented which allows one to calculate quan- 
tities determining the spacetime structure in the large directly. This is achieved by conformal 
techniques by which null infinity (ti) and future timelike infinity (i+) are mapped to grid points 
on the numerical grid. The determination of the causal structure of singularities, the localization of 
event horizons, the extraction of radiation, and the avoidance of unphysical reflections at the outer 
boundarv of the erid. are demonstrated with calculations of spherically symmetric models with a 

- -I 

scalar field as matter and radiation model. 

PACS number(s): 04.20.Dw, 04.20.Ha, 04.25.Dm 
I. INTRODUCTION 

A. General framework 

From the singularity theorems of Hawking and Pen- 
rose it is known that the appearance of singularities in 
general relativity is an unavoidable feature for “strong” 
initial data [l]. Conversely, it has been proven recently 
that for Small initial data the future of the initial value 
hypersurface looks in’ the large in a certain sense like 
the future of flat space data [2-41. Unfortunately, it has 
turned out to be extremely difficult to obtain reasonable 
conjectures, not to mention the proofs, about the prop- 
erties of a spacetime given by an initial value problem, 
as illustrated, for example, by the history of the cosmic 
censorship hypothesis. 

Getting an overview for the phenomena appearing and 
making reasonable conjectures is an area in which numer- 
ical relatively can contribute a lot to and actually already 
has, most impressively illustrated by the discovery of the 
echoing property by Choptuik [5]. But most of the codes 
used so far are designed to analyze local behavior. State- 
ments about the behavior in the large (“global issues”) 
are obtained by assuming that the extension of the grid 

used approximates an infinite grid well enough. This way 
it is very difficult, if not impossible, to get a reliable error 
estimzite and to decide what is sufficiently far. 

But what global issues are of interest and why are they 
interesting? 

First, there are questions related to cosmic censorship, 
especially the location and penetration of an event bori- 
zon, which is the boundary .of the region of spacetime 
from where no null geodesic reaches null infinity. In a 
recent review article [6] about cosmic censorship Clarke 
writes about the location of event horizons: “In terms 
of numerical simulations, this means that it is essential 
to perform the simulations in the compactified picture in 
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which Zc is represented explicitly.” 
Secondly, there is the whole topic of gravitational ra- 

diation on asymptotically flat spacetimes. Because of 
the gauge freedom and the nonlinearity of the theory the 
classification of radiation as ingoing and outgoing is a 
difficult issue. In- and outgoing gravitational waves are 
defined with respect to null infinity only. The related dif- 
ficulties in extracting gravitational waves from the grid 
at finite distances and the problem with the avoidance 
of an unphysical reflection on the outer boundary of the 
,grid are well known and have been a topic for research 
for a long time. In most methods developed so far the 
error made consists of the error &XXI reading off at finite 
distances and the discretization error. 

In this paper I will present the numerical implementa- 
tion of a formalism allowing one to calculate a “compact- 
ified” spacetime including Z+ ,and i+. The solution of 
the problems concerning radiation is trivial by construc- 
tion as will be seen. The only errors which appear are 
caused by the discretization error of the numerical par- 
tial differential equation solver. These errors can be es- 
timated and controlled by grid extrapolation techniques 
(e.g., Richardson extrapolation). Although the calada- 
tions have been done under the assumption of spherical 
symmetry with a scalar field as model for radiation the 
simplicity and exactness of radiation extraction hold for 
arbitrary symmetry assumptions. 

Furthermore, due to the spherical symmetry a special 
coordinate gauge could be found allowing one to cover the 
complete domain of dependence of the initial hypersur- 
face and to calculate the causal structure of a singularity. 
The location of the event horizon is straightforward. The 
formalism is based on conformal techniques developed by 
Penrose to describe asymptotically flat spacetime_s. By 
a’rescaling gaa = @&,a the physical spacetime @4,&b) 
is mapped to an unphysical spacetime (M,g,a,Q) with 
boundary Z. The boundary represents null infinity. M is 
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702 PETER HtiBNER 3 
a “compactified”’ version of fi. Gravitational radiation 
is the value of certain components of the Weyl spinor 
on that boundary. In the originally suggested form the 
formalism is not suited to describe initial value prob- 
lems. Friedrich has modified it to describe initial value 
problems-one has to solve a set of evolution equations 
for the unphysical spacetime (M, gas, 0). The rescaling 
factor Q acts like an artificial matter field for the Einstein 
equations. Subsection IIB reviews the equations for the 
unphysical spacetime. Winicow and Gomez have devel- 
oped an approach which uses Bondi’s ideas for describ- 
ing gravitational radiation: Outgoing null cones, with 
the area distance and the direction angle as coordinates 
on it, are compactified td represent future null infinity 
by grid points. Their method gives simpler equations 
but has certain disadvantages: The existence of smooth 
outgoing null cones is essential. Null caustics, which are 
caused, e.g., by gravitational lensing effects, must not 
appear. Furthermore their evolution scheme cannot pen- 
etrate event horizons.’ The extraction of some radia- 
tive quantities like the Bondi mass is complicated slightly 
as the Weyl spinor is not a variable of the system-the 
determination of gravitational radiation requires one to 
calculate numerically derivatives on Z. Their formalism 
solves a characteristic initial value problem; the formal- 
ism presented here solves a “normal,” spacelike initial 
value problem in unphysical spacetime. 

B. Description of asymptotically flat spacetimeG 
with conformal techniques 

Shortly after Bondi et al. [7] proved that gravitational 
radiation is not a gauge effect Penrose suggested a co- 
ordinate independent way to characterize asymptotically 
flat spaces and gravitational radiation. A thorough dis- 
cussion of the ideas and the interpretation can be found 
at various places in the literature, e.g., [8,9]. The defini- 
tions of asymptotical flatness given in the literature differ 
slightly. The following will be used here. 

Definition 1. A spacetime (M,&,b) is ca&d asymp- 
totically fiat if there is another “unphysical” spacetime 
(M, gab) with boundary Z and a smooth embedding by 
which fi can be identified with M-Z such that (1) there 
is a smooth function 0 on M with 

Cl = 0 and V,R # 0 , 

‘M is not really compact in a strict sensein Minkowski 
spacetime there are three points, future and past timelike and 
spacelike infinity, missing. In general M cannot be smoothly 
extended to contain those points. 

‘Using noncompactified null cones allows one to penetrate 
the event horizon. 
and (3) each null geodesic in (A?, &,b) acquires a past and 
a future end point on 1. 

Because of item (3) null geodesically incomplete space- 
times like Schwarzschild are not asymptotically flat. The 
next definition includes spacetimes whih have only an 
asymptotically flat part like Schwarzschild. 

Definition 2. A spacetime is called weakly asymptoti- 
cally flat if definition 1 with the exception of item (3) is 
satisfied. 

Definitions 1 and 2 classify spacetimes; they do not re- 
quire that the Einstein equation is fulfilled. For a physical 
problem one would like to give “asymptotically flat data” 
and evolve them according to the Einstein equation. 

Nevertheless the geometrically description was ex- 
tremely helpful in analyzing asymptotically flat space- 
times and it has been successfully used as a guideline to 
construct a formalism for analyzing initial value prob- 
lems. This method has been developed and applied to 
various matter source$ by Friedrich [3,IO-151 and myself 

141. 141. 
The idea is to choose a spacetime initial valuesurface The idea is to choose a spacetime initial valuesurface 

in the unphysical spacetime (M,gab) and to evolve it. in the unphysical spacetime (M,gab) and to evolve it. 
For Minkowski space the unphysical spacetime (M,gob) For Minkowski space the unphysical spacetime (M,gob) 
can be smoothly extended with three Doints, future ci+) can be smoothly extended with three Doints, future ci+) _ 
and past (i-) t&wlike infmity, the end and the star&g 

point of all timelike geodesics of (ti, &a), respectively, 
,and spacelike infinity (i”), the end point of all spacelike 
geodesics of (ni, &a). The point i” divides Z into two dis- 
junct parts, future (Z+) and past (Z-) nulls infmity. It is 
well known and has been discussed elsewhere that there 
are unsolved problems insmoothly extending a “normal” 
Cauchy hypersurface of M to i” if the spacetime has non- 
vanishing Amowitt-Deer-Mimer (ADM) mass. Certain 
curvature quantities blow up at i”, reflecting the nonin- 
variance of the mass under rescalings. 

By choosing a spacelike (with respect to gas) hypersur- 
face S not intersecting i” but Z+ (Z-) we avoid the prob- 
lems with i”. S is called a hyperboloidal hypersurface- 
the corresponding initial value problem is called a hyper- 
boloidal initial value problem. 

The well posedness of the hyperboloidal initial value 
problem for general relativistic scalar fields has been dis- 
cussed in [4]. There, a precise definition of a hyper- 
boloidal initial value problem can be found, too. 

Figure 1 shows a diagram of the unphysical spacetime 
with an example of a hyperboloidal surface in it. In Fig. 
2 the corresponding physical spacetime is shown. In both 
figures only one space coordinate is drawn. All points, 
except those on the axis and i”, represent spheres. 

The ddmain of dependence D(S) of S will not contain 
the complete spacetime. The interior of S corresponds 
to an everywhere spacelike hypersurface in the physi- 
cal spacetime which approaches a null hypersurface N 
asymptotically. If N is a. light cone L then the domain of 
dependence of S is L. Therefore the hyperboloidal initial 
value problem is well suited to describe the future (past) 
of data on the spacelike hypersurface S, e.g., a stellar ob- 
ject and the gravitational radiation caused by its future 
time evolution. It is not well suited to investigate the 

structure near P. 
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FIG. 1. Unphysical Minkowski spacetime. 

Why is it advantageous to solve the initial value prob. 
lem in the unphysical sp_acetime? The future of the data 
in physical spacetime (M, &,a~) is completely determined 
by the data on the interior of S. Since the rescaling fac- 
tor 0 is known, the calculation of quantities of physical 
spacetime from the unphysical quantities is merely alge- 
bra. In unphysical spacetime 1’ is on the grid. Z+ is an 
ingoing null cone starting at the two-dimensional-surface 
in S where fl vanishes. By extending S a little bit be- 
yond the intersection with Z in unphysi_cal spacetime we 
do not change the physical spacetime (M,&). But with 
a finite number of gridpoints and thus a finite computa- 
tion time the whole future of the initial hypersurface is 
coveredl And since Z+ is an ingoing null line the val- 
ues at M and Z+, describing the physics, do not depend 
on the values at the outer boundary of the extended S. 
The numerical dependence on the outer boundary must 
converge to 0. 

Future null infinity, Z+, which can be found by search- 
ing for the Q = 0 contour, is on the grid. By an appro- 
priate choice of gauge it can even be arranged that the 
position of Z on the grid is known by analytical consider- 
ations. In the worst case, one has to interpolate between 
neighboring grid points to find the radiation emitted. In 
the case of gravitational radiation, it is given by certain 
components of the Weyl tensor, which are variables in 
the system of equations for the unphysical spacetime. 

FIG. 2. Physical Minkowski spacetime. 
II. THE MODEL AND THE SYSTEM OF 

EQUATIONS IN UNPHYSICAL SPACETIME 

A. The model 

The choice of the model is always a compromise be- 
tween generality and manageability. For this work it was 
necessary to have some model for radiation to demon- 
strate the simplicity of the radiation extraction in the 
formalism. On the other side the spacetime symme- 
try should be as high as possible to reduce the demand 
for computational resources and to simplify coordinate 
choice related questions. 

The spacetime is assumed to be spherically symmet- 
ric, the radiational degree of freedom is modeled by a 
conformally invariant scalar field. The equations are 

where the second is equivalent to Gab = &a with 

!F,b = (eJ)(v*& - ~~a,e,~ + $jPli,a 

-~&[(*&a,~) + &PI?] . (14 

The notation used is explained in Appendix A. 
The form invariance of (la) under the rescalings gab = 

Cl’&,, and # = n-$5 was the reason for not choosing 
the massless Klein-Gordon scalar field with its simpler 
equations in physical spacetime. In [4] it has been shown 
that the initial value problems for these matter models 
are equivalent for practical purposes. 

B. The equations for unphysical spacetime 

In [4] it has been argued that the Einstein equation, if 
simply translated to the unphysical spacetime, becomes 
“singular” on Z and thus is not suitable to calculate the 
unphysical spacetime (M, gab). For a derivation of reg- 
ular equations for the unphysical spacetime the reader 
is referred to [4]; here only the final first order set of 
equations is given. 

In this first order system, the variables are the com- 
ponents of the frame ek” with respect to the coordinates 
x”,ek’, the &me~components 7”ik of the F&ci rotation 
coefficients ~Ojk, certain combin&% of the components - 
of the trace&e part &, of the F&ci tensor and the reg- 
ularized Weyl tensor daad := R-lC,hd, the conformal 
factor s2, the i&ne components s2, of its gradient fl,, the 
trace of its second derivative w, the conformal scalar field 
6, the frame components & of its gradient & and com- 

binations of its second derivatives &nb =: &, + $g.&cc. 
The first order system, written in abstract index notation 
is3 

3The symbol N stands for null quantity; the first index refers 
to the quantity for which an equation will be formed by setting 
the tensor JU equal to 0. 
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Neab. := Ta& = 0 1 Pa) 

N 7”h .- ci .- Ramcd - Ra~ga~,c d-0 ~- > Pb) 

Nwc := V,,k,, + &(V[,R)g,, - fidd,hd + fim,bc 

-$fi~[,,d,d%]c 

=o, (24 

N &de := Vdd.acd - mdx + $m[,,d,d%5]c = 0 I (24 

Nn,,:=v,fl-%=o, Pe) 

N Dnab := V,& + @a, - wgab - $l’T,b = 0 , (2f) 

Nuwoa:=Vow+ &Slb+ &RR,+ &$VaR 

-$PT,@ 

0, Pd 

N+,,:=V&-&=o, (2’4 
R 
ND, := c$oa - Sb = o , (23 

N ~wobc := V,d,c + ;(4V[aR + R4[&yc 

+a,g.bc% = 0 , (24 

Nm+, := V,4ab - ;($V,R + R&z) = 0 , (21) 

where T’& is the torsion whose components are given by 

Tijk = [e&“) - ek(ei”)]e’, + +c - & , - 

the tensor Ralgobed is an abbreviation for 

&g&i = %kd + i7c[&]d - Sd[o&]c + &+da]dR , 

(3) 

the algebraic decomposition of a tensor with the same in- 
dex symmetry properties as the Riemann tensor (there- 
fore the index alg), Rd;e,,hd has the components 

Rmijk~ = e&r&) - e&(7’&) - r&75& + 7$&7% 

+7Edi7Ld + yrnji7’Ek - 7’tiT”ji 2 - - 
which is the curvature expressed as differential of the 
connection (therefore the index diff), the “energy mo- 
mentum tensor” in unphysical spacetime is 

Tab = 4046 - i44ob + a4’R,a - +gob (4X + ;4=R) 
Unfortunately the terms introduced into the system by 
the scalar field, Ta6 and rnok, complicate the equations 
a lot due to the form of the energy momentum tensor for 
the confommlly invariant scalar field. 

Furthermore there is an additional equation, 

@R + 6CZV”V,fl- 12(V”0)(V,n) = 0 , (4) 

which must be satisfied at one point to be automatically 
satisfied everywhere. If we fulfill Eq. (4) at one point 

the function R(t, r) can be given freely. It determines 
the gauge f?eedom in the conformal factor 0 to a certain 
extent. If (M, gab, 0) is a solution of the unphysical equa- 
tions so is (M, @go6, Sn) for 0 > 0. In all the calculations, 
R has been set to 6, the value obtained if the compact- 
ification for Minlcowski space given in [16] is used. The 
program code does allow one to specify R(t, 7). The con- 
formal gauge freedom has been discussed in more detail 
in [4]. 
C. Simplifications by the spherical symmetry and 
the remaining gauge freedom 

The first order system (2) is an underdetermined sys- 
tem. To make it complete the coordinate and frame 
gauge fmedom must be fixed. This will be done in tbis 
section. Furthermore the number of variables will be re- 
duced significantly by making use of the spherical sym- 
metry. 

A spacetime is said to be spherically symmetric if it 
possesses an isometry group I which contains a subgroup 
R which is isomorphic to the three-dimensional group 
SO(3) and whose orbits are orientable submanifolds of 
dimension < 3. The orbits of R are either (fixed) points 
or spheres 8’. The lixed points form at most two timelike 
geodesics as can be seen by symmetry arguments. It is 
assumed that the initial hyperswface intersects with at 
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least one line of f&d points, i.e., there is a (regular) 
center on the initial hypersurface. 

But no attempt was made to use every simplification 
spherical symmetry provides for the following reason: It 
is well known that Einstein’s equations can be reduced 
to two ordinary differential equations (constraints) [17] 
plus matter equations in spherical symmetry. The cir- 
cumstance that no equation with a time derivative for 
the geometry variables must be solved can be viewed as 
expressing the lack of gravitational radiation in spherical 
symmetry. I have not made any attempt to incorporate 
this kind of simplification into the system for the unphys- 
ical spacetime, since the calculations are supposed to be a 
playground for testing and learning about the advantages 
and disadvantages of the formalism for a later application 
to models with less symmetry. 

In the gauge used the system is symmetric hyperbolic 
and the coordinates cover the whole domain of depen- 
dence of the initial hypersurface. It is not known to the 
author how to construct such a coordinate system in less 
symmetric spacetimes. The very nice feature of semilin- 
earity is certainly an artifact of spherical symmetry. 

In the analytical analysis of the initial value problem 
with scalar fields as source terms, a Gaussian gauge was 
used [4]. This gauge gives a symmetric hyperbolic sub- 
sidiary system of equations. If the energy momentum 
tensor f&ills certain conditions, the coordinate system 
will break down because of the formation of caustics [16]. 
Whether the region of the unphysical spacetime repre- 
senting the physical spacetime can be covered by the use 
of a Gaussian gauge in unphysical spacetime is not obvi- 
ous since. the conformal rescaling factor Q acts as a kind of 
artificial energy-momentum source in unphysical space- 
time. By numerical calculations it was straightforward 
to show that even in unphysical spacetime a Gaussian 
gauge will lead to caustics [18], atid is thus inappropriate 
to analyze the strong field regime. The system of *qua- 
tions is very similar to the one obtained in “double null” 
coordinates except that it is not semilinear. It will not 
be discussed any further. 

The construction of the coordinate system and the 
frame are described starting from an initial hypersurface. 
The remarks about the differentiability class of the ob- 
jects assume that the construction is done with respect 
to a given Cm manifold (for a definition see 116, Sec. 
1.1.11). The investigation of the differentiability is nec- 
essary to enwre that a discontinuity of a value or even 
a singular value of a variable at the center is not caused 
by lacking smoothness of the coordinates. The gauge re- 
alized in this way turns out to be an obvious adherent of 
double null coordinates. Assume we are given a space- 
like Cm hypersurface S with t = to. This hypersurface 
is factored by the orbits of the group. By the geodesics 
running from the center in the different directions the 
angle coordinate (29, VP) with line element df?’ + sin’ Zp dip 
on the unit sphere are defined on all orbits. By isotropy 
the geodesics are perpendicular to the orbits. The orbits 
are labeled by a monotonically increasing coordinate T, 
defined to be 0 at the center. Auxiliary coordinates (x, V) 
are defined by u := (to - ~)/2 and 21 := (to + ~)/2. Set 
(u, 8, v)=const along the future directed, outgoing null 
lines, (v, ti, p) =const along the future directed, ingoing 
null line. On passing through the center set u = 2). Be- 
cause of the spherical symmetry there cannot be any null 
caustic; a break down of the coordinates is aligned with 
a spacetime singularity. By (u,v) a timelike coordinate 

t=u+v 

and a spacelike coordinate 

(5) 

T=V--u 03) 

are defined everywhere in the domain of dependence of S. 
An orthonormal frame field (eo5, ei, eza, 3 e “) is defined 
except in the center (polar coo&ate singularity) by nor- 
malizing the orthogonal vector fields (a,“, &.a, asa, a,,,O). 

As shown in [18] the t =const hypersurfaces are at least 
C3 and hence sufficiently smooth. The proof proceeds in 
two steps: first it is shown that there is a Cm transfor- 
mation to radar coordinates; secondly a theorem by Proff 
119, theorem 1.2.41 about radar coordinates completes the 
proof. 

In this coordinate system the following relations hold: 
The frame-coordinate matrix is diagonal, 

(e&f, qp, %‘, e$) 

= 

( es%4 0 0 0 el'(t,r) 0 0 0 %V, 0 0 0 r) 0 0 0 e22(t,r)/sin29 i 

and 

(7) 

eo%r) = q'(t,r) (8) 

All F&ci rotation coefficients except 

7Q&, T)? 7% T) 1 

7%Z(t, v), 7%@, T) = 7%&, f-) I 

COSB 

vanish. 
Scalars invariant under rotation are functions of (t, T) 

only; rotationally invariant vectors V” are of the form 

(10) 
\ o J 
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and symmetric covariant two-tensors $6, e.g., the F&ci 
tensor R.+, invariant under rotations, look like 

s,, = 

( 

S&T) s&&T) 0 0 

S&r) S&r) 0 0 
0 0 S&~) 0 (11) 

0 0 0 S,(G T) ) 

This follows from the assumptions about the symmetry. 
All components of d,kd are either zero or proportional 
to d&. 

Due to the complicated form of the matter terms the 
set of equations is very lengthy. The equations are given 
in Appendix B; they are derived from system (2) and 

The system (2) has some remarkable features which 
should be mentioned. Fist it is semilinear. Secondly 
every equation has one of the following forms: 

au = wu,v,7) , 

a”v = bv(U,V,7) I 

at7 = bv.4 v, 77 , 

where 24, V, and 7 are variables propagating along u, 21, 

and t. U stands for 73J_R?, and & V for 73, %, and 

@, 7 for e$, e, 72,7, R2, Q, Qo, a,, 4,4~, 41, =*d hQ. 
For every 7 there also exists a constraint: 

a,7 = c&4, v, 7-) 

There are no constraints for the U and V. 

4. The regularity conditions 

Polar coordinates cause regularity conditions in the 
center, in physical spacetime as well as in unphysical 
spacetime. For the variables in the system (B3) those 
conditions are given in Appendix B 3. They express that 
locally the center behaves like Minkowski space, and in- 
dicate how a wave hitting the T = 0 (inner) boundary is 
reflected there (passes through the center). The regular- 
ity conditions at the inner boundary are the part of the 
code that would exchange if a spacetime with a throat 
were calculated. But in unphysical spacetime there are 
also necessary conditions for the regularity at 1, express- 
ing an appropriate falloff in physical spacetime and there- 
fore reflecting asymptotical flatness. 

It is not known whether those conditions are also sti- 
cient for regularity on Z in the general case. The answer 
to this requires the investigation of the constraints on a 
given hypersurface. For the case that a neighborhood 
of Z is free of matter and for a special choice of a hy- 
persurface (for technical reasons) it has been shown that 
the necessary conditions are also sufficient (201. In the 
calculations presented here those conditions are fulfilled. 
There are as many regularity conditions (at the center 
and at 1) as there are variables 7. 

III. THE NUMERICAL METHOD 

In this section the numerical methods used will be de- 
scribed shortly and the reasons given for choosing those 
methods. 

A. The initial value solver 

There are 12 constraints and 12 regularity conditions 
to be solved. The free functions in the constraints are the 
six variables U and V. But giving those makes the inter- 
pretation of a parameter study difficult. U and V repre- 
sent higher derivatives of the primary quantities, the met- 
ric gaa, the rescaling factor Sl fixing the relation between 
physical and unphysical spacetime, and the scalar field 4. 
Furthermore the regularity conditions at Z are easier to 
handle if it is known where n vanishes. A straightforward 
way to realize this is to give 0 on the initial slice. 

In the code ell, 7!&, 7@~, a, 4, and 42 are given as free 
functions (because of regularity they all must be even at 
the center). exl = coo determines the go0 respectively the 
gil component of the metric, 7%~ and 7% the extrinsic 
curvature of the initial slice in unphysical spacetime. The 
constraints which contain derivatives of these quantities 
are interpreted as algebraic conditions for the quantities 
on the right-hand side. To enswe the invertibility of 
the resulting system, including the points where n = 0, 
instead of Eq. (B29) its derivative is used. A constraint 

for R?+G results which becomes an algebraic condition 
on fi = 0 if R? + % is at least C’ [condition (B38k)l. 
This is a necessary condition for a regular 1. 

The differential algebraic system has boundary con- 
ditions in the center and at 0 = 0. As there are a~ 
many boundary conditions as variables to solve for all 
the initial value freedom is coded in the free functions 
e11,7cu,7Qa,n,4, and 40. The system is solved with 
a~relaxation scheme combined with a Newton-Raphson 
solver derived with minor modifications !&xn the code 
given in [21]. Fist the system is solved between T = 0 
and 0 = 0. If desired the same scheme can be used 
to extend the initial hypersurface beyond the intersec- 
tion with Z. For this integration boundary conditions 
are given at 0 = 0, namely the values obtained at s2 = 0 
when solving the constraints “inside” 1. To avoid a de- 
pendency of the values at Z on the treatment of the outer 
grid boundary the initial hypersurface has to always be 
slightly extended beyond 2. 

To improve accuracy the system is solved with differ- 
ent grid sizes and the results are Richardson (or Bulirsch- 
Steer) [21] extrapolated to vanishing grid size. In the test 
cases, where an exact solution is known, the accuracy was 
limited by the rounding error of the inversion of the ma- 
trix in the Newton-Raphson part of the code. Typically 
the numerical and the exact solution differed in the last 
two digits for calculations with eight byte floating point 
numbers. 
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B. The time integrator 

Constrained evolution schemes are known to give 
in general more accurate results than &e evolution 
schemes. But there are disadvantages of constrained evo- 
lution schemes. In a constrained evolution scheme the 
values at a certain grid point depend on the values at 
many other grid points on the same time slice. Thus if 
one grid point becomes singular the property of being 
singular is spread over the time slice into regions which 
are not causally connected with the singular point. 

In most approaches used in numerical relativity the sin- 
gularity is avoided by an appropriate choice of the coor- 
dinate system, actually the necessity of singularity avoid- 
ance has become a dogma of numerical relativity [X&23]. 
A quite often used example for a singularity avoiding 
coordinate system is obtained by the radial gauge in 
spherically symmetric spacetimes [5,24]. This coordi- 
nate system cannot penetrate apparent horizons which 
are supposed to wrap around singularities by the cos- 
mic censorship hypothesis. The very interesting region 
of spacetime, where the gravitational field has become 
strong enough to prevent light rays from expanding, is 
excluded from being calculated. 

The double null-like coordinate system used does not 
avoid singularities; the coordinate lines can only end at 
a singularity. In this subsection it will be described how 
a program, crash is avoided if singular points occur and 
how the calculation is continued in the region of space- 
time which are outside the future domain of dependence 
of singular points. In the chosen approach the singular 
boundary of spacetime is represented by grid points. 

1. Inside the grid 

To avoid the spreading of the singular property out of 
the domain of influence of the equations it is necessary 
to run the scheme, at least in the very neighborhood 
of a singularity, with a Courant factor of 1. Different 
schemes have been tested 1181. The only second order 
schemes which could be run at a Courant ,factor of 1 
were the second order schemes of the class S$ [25] with 

fl= l/2. A second order Law-Wendroff scheme as follows 
has been chosen: For the equation &PI = xl&fr + b(f), 
with Xr =const and a vector of functions, f, the predictor 
step is r, 

Then the corrector step is 
If XI were a function of-f, as it is the case for other coor- 
dinate choices, it would be discretized as b. The second 
order La-We&off scheme is used to evolve gridpoints 
not depending on the values at the boundary. 

.2. At the boundaria 

The treatment at the outer boundary is irrelevant as 
long as the scheme remains stable for the following reai 
son: The initial value surface is extended beyond the 
intersection with 1. Running with a Courant factor of 
1 the points inside and on Z, representing the physical 
spacetime, do not even depend on the values at the outer 
boundary which has no intersection with 1. Even if the 
treatment of the outer boundary causes an in&bi&y it 
will not influence the physics, i.e., the values on M and 
Z. In most runs with Courant factor 1 the grid points 
depending on the outer boundary have not even been 
calculated. For a run with a Courant factor < 1 the in- 
fluence of the outer boundary treatment on the physical 
spacetime must converge to 0 with the same order the 
scheme converges. Thus as long as the treatment on the 
outer boundary is numerically stable the values at &’ and 
Z are in the limit of vanishing grid size independent of 
the outer boundary treatment at any physical time. 

Finding a stable treatment of the center wa4 a very dif- 
ficult problem. So far I could not find a treatment which 
remains stable if a fourth order scheme is built from the 
second order Lax-Wendroff by Richardson extrapolation. 
Especially it was not possible to extend the grid from the 
gridpoints at T = 0 and T = Ar to T = -Ahr and run the 
Lax-We&off scheme on the extended grid. 

The solution of the stability problems at the inner 
boundary was to replace the values near the center after 
every time step by the values obtained by other methods. 
In the method I previously used [18] the constraints were 
integrated &om grid point number 2 towards the center 
(the constraints together with the regularity conditions 
determine all the variables at the center). The values 
at grid point 1 have been obtained by interpolation. The 
solution did not look smooth on the innermost gridpoints 
for coarse grids in the very strong field regime. For very 
large fields (values of A beyond 1.10) this method even 
became unstable. Therefore another method has bken 
developed. 

In the calculations for this paper a kind of polynomial 
extrapolation with dissipation has been used to replace 
the innermost grid points. The idea is the following: Use 
the values at grid points 2 and higher and the regularity 
conditions to extrapolate towards the center by polyno- 
mial fitting and get solution I. Do the polynomial fitting 
again starting at grid point 3 to get solution II. Solu- 
tions I and II can now be added in such a way that the 
simplest grid mode with values 1, -1, 1, is eliminated. 
This adding of dissipation is necessary to ensure stability. 
I call this method polynomial extrapolation with dissipa- 
tion. 
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3. The einyularity catcher 

Since the coordinate system does not avoid singulari- 
ties some variables may become singular. Depending on 
the default setting of the compiler this causes a crash 
of the program by a floating point exception (on UNIX 
systems the signal SIGFPE is sent). The programming 
language C allows one to specify what to do in case of a 
certain signal. In the program used the action on SIGFPE 
is to flag the corresponding grid point as singular and 
to continue the calculation on the rest of the grid. In 
addition to the reception of a SIGFPE signal a grid point 
is flagged as singular if either the principal part;i.e., ee” 
or 1 - $z@, of the equation changes sign, i.e., the sys- 
tem of equations becomes singular in the sense of [4], or 
if the evaluation of the values according to the scheme 
would involve points already flagged as singular (hence 
called influence singularity). According to the latter rea- 
son every point whose values depend on values at singular 
points must be flagged singular. 

A necessary condition for the stability of a scheme 
solving symmetric hyperbolic systems is the Courant- 
fiiedrichs-Lewy condition. The domain of dependency 
of the discretized’equations must be a superset of the 
domain of dependency of the continuous equations; the 
Courant factor must be 5 1. A Courant factor of 1 means 
that both domains of dependency coincide. On the other 
hand, every grid point depending on singular gridpoints 
is singular. Thus all points in the future null cone Z of a 
singular point must be flagged singular. If the Courant 
factor is < 1 points outside Z also. For a scheme with 
a Courant factor of exactly 1 at least in the very vicin- 
ity of the singularity it is possible to distinguish time- 
like/&like singularities &am spacelike singularities. If a 
line of gridpoints is numerically singular only because of 
an influence singularity it is a strong hint for a timelike 
singularity behind. Pure influence singularities appeared 
only due to instabilities during the tests of different treat- 
ments of the center. This is in agreement with cosmic 
censorship. 

The dependence of the position of a singular line on 
the grid size has been tested intensely. In all calculated 
cases presented the position changed only by a negligible 
amount corresponding to a few grid points for calcula- 
tions with about 10 000 spatial points. The dependence 
of the first appearance of a singularity on the Courant 
factor has also been tested. It only changed by a few grid 
points when using Courant factors significantly smaller 
than 1. 

IV. CHECKING AGAINST EXACT SOLUTIONS 
AND ACCURACY ESTIMATES 

A. Comparing with exact solutions 

On the exact solutions given below a number of tests 
have been performed with grids varying from 300 to 
10 000 spatial grid points and different Courant factors. 
For most plots a coarser grid has been used, typically 
with 100 x 100 grid points. 
On the plotting grid the scheme shows the expected 

convergence behavior. For finer grids (2000 spatial points 
and more) the error is dominated by second order terms. 
For coarser grids fourth order terms (oscillations corre- 
sponding to high Fourier modes) dominate the error near 
regions with steep gradients. The error predictions by 
Richardson’s extrapolation are in good agreement with 
the actual error. 

As time evolution is done by a free evolution scheme 
the constraints are only initially satisfied [26]. But it has 
been checked that the violation of the constraints con- 
verges at least with second order. Convergence is partly 
dominated by the error in the discretization of the deriva- 
tive for an evaluation of the constraints. It was not pos- 
sible t,o use the violation of the constraints as a measure 
for the quality of the solution. 

i. Sealar field on flat background 

A scalar field on a flat background is obtained by set- 
ting n = 0 in the evolution eq!ations. Since the phys- 
ical axrgy-momentum tensor Tab is trac$ree the Ricci 
s&?-R in physical spacetime vanishes. 6 is determined 
by 04 = 0. 

The correspo_nding solution in unphysical spacetime is 
c$ = qS/O. On M the following rescaling has been used: 

q&T) = 
J(1+ tan2 &I + tan2 Y) 

(12) 

with an obvious choice of the sign, depending on the posi- 
tion relative to Z and i+. Scalar field pulses of the initial 
form 

with constants v and ~0, have been chosen. 
This solution is useful for testing the matter part and 

the geometry part of the code separately since n = 0 
decouples their evolution equations. But as most of the 
gear&ry variables are just constants this is only a tist 
step as test for the geometry part. 

2. By confomal yauge freedom deformed background 

For any positive function ff(t,v) the spacetimes 
(44, Pg,b, c#+9) and (M, gasr 4) correspond to the same 
physical spacetime if (M, gob, 4) is a solution of the un- 
physical equations. This gauge freedom can be used to 
obtain an unphysical representation of Minkowski space- 
time where the geometry variables evolve in time and 
are ‘not constant (except the Weyl tensor component 
dlolQ, which is zero for every representation of Minkowski 
space). For 13 an ingoing wave pulse with the initial form 
(13) plus a constant e, such that f? > 0 everywhere, has 
been chosen. + has been set to 0. 

This solution has been used to make the geometry vari- 
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ables vary in time and space and is thus a better test for 
the geometry part of the code than the test in the previ- 
ous subsection. 

In physical spacetime $=const is a solution for 
Minkowski spacetim_e. If we use const# 0, 4 = J/O is 
still a solution on M in unphysical spacetime. But this 
solution is no longer regular on Z thus the calculation can 
be done in the interior of fi only. For the tests that poses 
no restriction, since in the unphysical spacetime there is 
nothing special in the evolution equatjons on Z. Since in 
this solution K # 0 and 4 # 0 the coupling between the 
geometry and the matter part can be tested. 

B. Error estimates and problems near the critical 
parameter 

For the nonlinear regime two ways have been used to 
check the accuracy of the solution. The first is Richard- 
son extrapolation to vanishing grid size with the resulting 
error estimates. The second uses the fact that the posi- 
tion of Z is known and thus it is possible to compare the 
calculated value Q there with the exact value 0. The er- 
ror estimate for s2 by Richardson extrapolation was in all 
case.s in agreement with that deviation. 

On an approach to the critical parameter, the smallest 
parameter where a singularity appears, there is a dra- 
matic loss of accuracy although on the coarse plotting 
grid the scheme still converges quadratically. Viewing 
the fine grid used for the calculations one sees that the 
loss of accuracy is largest around grid points 5-10, and 
this maxima of the error decreases linearly with the grid 
size, meaning that there is only quadratic convergence in 
a L’ norm, but not pointwise. 

For models not to close to the critical value the ac- 
curacy problem described can be cured by using more 
grid points. But with about 50 000 spatial grid points 
that brute force method reaches its limitation. Since the 
scheme converges quadratically in a L’ norm only, build- 
ing a higher order scheme by Richardson extrapolation 
did not work. 

A detailed inspection of the reasons hints that tbis is 
partly a problem of numerical regularization as described 
in [27], pp. 13-151. When the calculations for this pa- 
per were done there was no way known to the author to 
numerically regularize the Lax-Wendroff scheme. 

V. CALCULATIONS 

In the calculations presented the &ee functions defining 
the geometry of the initial slice are given as follows: 

e&l = 1 , (14) 

rf=o, (15) 

rQ=o I (1’3) 

fl= 
J(1+ tanz & + tanz +) 

(17) 

The value of the time coordinate on the initial slice to 
is 7r/2. The form of 0 is an often used choice for the 
rescaling of Minkowski space. 

For the scalar field the initial value is given by 
4(r) = ( 0 
A[1 - 4u2(r - ~0)’ + 6u4(r -TO)* - 4+ - r# + D*(T - Q,)~] for lr - ~~1 < l/u , 

otherwise, 
,152, 
\-VI 
with o = (S/T) and Q = r/4. This function +4(~) is 
the uniquely defined C3 function with compact support 
[T,, - l/o, T,, + l/o], being a polynomial of degree 8 on the 
support and with maximal value A at ~0. A is the pa- 
rameter to be varied. d(~) should be at least C3 in order 
to have all variables in the system at least C’ avoiding 
the known problems of a Lax-Wendroff scheme at dis- 
continuities. From the numerical viewpoint this form of 
the pulse is much better than a “C” partition of the 
one” like (13), since the variation of b(r) and its spatial 
derivatives is better distributed over the support. 

4~ is chosen in such a way that the pulse would be 
purely ingoing on a flat background, which is the Einstein 
cylinder in unphysical space, i.e., 
for T - ~0 E] - l/u, l/u[ and 0 otherwise. 
A pulse with compact support provides several advan- 

tages when checking the accuracy and interpreting the 
numerical solution since part of the qualitative behavior 
of the structure in the large is known from analytic con- 
siderations. Figure 3 shows the qualitative behavior in 
the large for a regular solution. 

Region I is the compact support of the ingoing pulse 
in the linear model (K = 0), passing through the center 
and then crossing 1, the thick line. Every deviation from 
a Schwwzschild solution in region III is caused by a pure 
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FIG. 3. Qualitative picture of the structure in the large. 

backscattering effect. The deviations from flat space in 
region II are also a backscattering effect-the field gets 
caught near the center for some time. As the character- 
istics have slope 1, region IVa is a portion of flat space 
and region IVb is a portion of Schwarzschild spacetime. 
For stronger data the solution will become singular, be- 
fore reaching the tip (r, 0) a singularity will appear. To 
investigate the structure of this singularity is one of the 
goals of this work. In a regular spacetime timelike infin- 
ity, i”, lies at the point (x, 0). 

A. A parameter study 

With increasing parameter A more and more matter is 
put onto the initial slice. At some critical A* the space- 
time is expected to become singular. In this subsection 
the change of the global structure will be discussed and 
a conjecture for the critical case presented. 

When interpreting the behavior with varying parame- 
ter two things have to be kept in mind. First the char- 
acteristics, null geodesics, are a common structure of all 
models. As the coordinates are adapted to this struc- 
ture it is straightforward and well defined to compare the 
models. Second the area distance i := &to the center 
in physical spacetime, expressed in unphysical variables, 
is 

Even on the initial slice e is determined as a solution of 
differential equations, the constraints. Depending on A 
the area distance of the inner and outer edge of the shell 
of compact support of 4 vary (in this parameter study 
they monotonically grow with A). In principle it is pos- 
sible, and for a better comparison with Choptuik’s work 
desirable, to give e as a iixe function, but parts of the 
initial value solver code would have to be rewritten. But 
in doing so one can no longer give either 0 or compo- 
nents of the extrinsic curvature as free functions. The 
first case causes problems since the location of S n Z on 
the grid is no longer known; in the second case it is un- 
known whether the necessary conditions for regularity on 
Z are also sufficient. 

I. The confomal factor 

Figure 4 shows a contour plot of the rescaling factor 
fl for modestly strong initial data corresponding to a pa- 
rameter A = 0.25. That is well below the critical value 
A*, which is somewhere in the interval]0.48,0.49[. Apart 
from some minor deformations in the contour lines of fl, 
the figure looks like Minkowski spacetime, although non- 
linear effects like backscattering are already significant. 
The 0 = 0 canto? coincides with the analytic location 
of Z represented by the thick dashed line. The values 
depending on the outer boundary of the grid have not 
even been calculated. That is why there are no contours 
in the upper triangle. 

In Fig. 5 the spacetime has become singular. The thick 
line is certainly a singular boundary of the future domain 
of dependence of the initial data since here and in all the 
following cases scalar invariants become singular. Near 
the center the singularity is spacelike. Further outside 
its slope is numerically indistinguishable tiam a null line. 
The edgy look is an effect of the plotting program and 
the coarse plotting grid, which will be seen later when 
the singularities will be examined more thoroughly-a 
finer grid near the singularity showing more details will 
be used there. 

With increasing amplitude of the initial scalar field 
(Fig. 6) the spacelike part of the singularity has grown. 
The change of the shape of the singularity on approaching 
the critical parameter froxxabove suggests the following 
conjecture: In the critical case the singularity is a null 
line. 

For further increasing A the outer edge of the singu- 
larity becomes spacelike. This part grows inwards and 
finally we get a picture like Fig. 7. Note that the con- 
tour lines of 0. are focused at the intersection of Z with 
the singularity. Outside Z the scalar fi goes to -ca; in- 
side to cu on approach to the singularity. In subsection 
VA 2 the structure of it will be examined. 

The critical case was also approached from the sub- 
critical side. In Fig. 8 the time dependence of 0 in the 
center is plotted for the three subcritical values A = 0.25, 

fl(t,r), A=0.25 
3.5F--- 

0.0 0.5 1.0 1.5 
r axis 

FIG. 4. n(t,r) for A = 0.25. 
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O(t,r), A=0.49 

J--T--- 

FIG. 5. n(t,r) for A = 0.49. 

0.45, 0.48 and the supercritical model A = 0.49. 
Approaching the critical case Cl(t, 0) seems to develop 

a zero point before i+. For spacetimes above the critical 
case the value of n(t, 0) at the singularity is greater than 
0 but again approaching 0 on approach to the critical 
case. Outside the center and away from Z, the scalar $2 
does not seem to go to 0 even in the critical case. Al- 
though the values of 0 are influenced by gauge, the state- 
ment that ~7 vanishes is not. The author cannot interpret 
this exceptional conformal structure for the critical case 
yet. Nevertheless the calculations show the critical model 
might be recognized by this behavior of 0. 

1. Are the singularities found of physical nature? 

The figures of the preceding subsection show that there 
are singularities for large values of A. In subsection 
IIIB3 it has been described when and how the pro- 
gram flags a point as singular. That does not necessarily 
mean that those points represent a singularity in physi- 
cal spacetime. In this subsection arguments will be given 
to decide that issue. Furthermore the quantities used 
classify the singularity. 

In their singularity theorems Penrose and Hawking 
have shown that a singularity is unavoidable if there are 

Cl(t,r), A=0.55 

3’5i--------- 

0.0 0.5 1.0 1.5 
r axis 

FIG. 6. n(t,r) for A = 9.55. 
fl(t,r), A=l.5 

“‘“I------ 
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FIG. 7. O(t,r) for A = 1.5. 

trapped surfaces and the energy-momentum tensor ful- 
fills certain energy conditions. The conformally invariant 
scalar field does not fulfill those energy conditions. Nev- 
ertheless I regard the appearance of trapped surfaces as 
a strong hint for singularities. With the transformation 
to the, solution of a massless Klein-Gordon field [4] it is 
easy to check for the existence of an apparent horizon in 
a massless Klein-Gordon field model which satisfies the 
relevant energy conditions. 

The null expansion of in- and outgoing null directions 
in spherical symmetry can be written as 

s 
l_ 

out,in = &““V’,i) , (20) 

iLa = (Co” + cp) 

is the outgoing null vector and 

E”;” = (ZQ” - Zi) 

is the ingoing null vector. Written in unphysical quanti- 
ties. 

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 
t OYiS 

FIG. 8. fi(t,O) for A = 0.25 (-), A = 9.45 (- - -), 
A=0.48(-...-),andA=0.49(. .). 
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&*=n(&+p,+s2,. (21) 

There is the freedom of null boosts; thus 8,,“$ and l%, are 
not gauge invariant, but their product is. On the first 

view one might expect that 6,,+, vanish for i --t CO. 
The gauge for t%,,,, chosen makes e,,nt not vanishing on 
Z+ and Bi, not vanishing on Z-. That is a pure gauge 
effect; by an appropriate null boost 6’,,, and @in can be 
made vanishing on 1. 

Another criteria for or against a “real” singularity is 
the behavior of curvature invariants of physical space- 
time, e.g., 

Ga&dc -abed = Clad,~ddnkEd = 12f16(du~)2 

Figure 9 shows the spacetime region near the singularity 
of a A = 0.55 model. The thick, dashed line is a part 
of Z+, the thick line the singularity S. The singularity 
is covered by a region of trapped surfaces, the thin line 
shows the apparent horizon. In the corresponding initial 
value problem for a massless Klein-Gordon field the same 
qualitative picture arises. 

The proper time of a Bondi observer [see Eq. (25)] 
goes to infinity on approach to the intersection point 7’ 
of the S with Z+. This is a strong hint that P is a 
singular timelike i&&y, a singular i+. Thus the last 
null line from the center which reaches Z+ at i+ is the 
event horizon (dotted line). 

These are already strong hints that S is a singularity 
of the physical spacetime. It is furt_her &rengthened by 
the fact that the curvature scalar (C,&““d)‘/2 blows 
up at least on approach to the inner (spacetime part) of 
S. There are also hints that the area radius goes to 0 on 
S, but to decide that issue nmre numerical accuracy near 
the singularity would be needed. All these considerations 
“prove” that S is a real singularity of physical spacetime. 

The situation is quite different in Fig. 10. Along S the 

0.00 0.10 0.20 0.30 0.40 0.50 
r oxis 

FIG. 9. B,,t for A = 0.55. 
e,.,, A = 1 .5 

1.8 i 
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FIG. 10. Bout for A = 1.5. 

scalar a goes to +ca inside _Z+, and to -co outside Z+. 
S is spacelike everywhere. (C,~,&“‘cd)1/2 does not show 
any sign of blow up near S, there is no region of trapped 
surfaces wrapped around S. Due to the discontinuity of 
Cl near P the formula for the proper time of an observer 
at Z+ is not applicable. 

Since only quantities of the unphysical spacetime be- 
come singular on S I conclude that S is a conformal 
singularity caused by the gauge chosen by specifying 
R(t,r) = 6. It is very similar to a coordinate singularity. 
Since the singularity is “unphysical” no correlation with 
trapped surfaces is expected. From the whole parameter 
study there are strong hints that the gauge singularity 
nmre and mcee ccwers the trapped surfaces and the phys- 
ical singularity. Only minor, unsuccessful effort has been 
spent to try to avoid the conformal singularity by using 
different choices of R(t, r). 

There is another very interesting point in the models 
with 4 2 1.2. -On the initial slice there axe regions where 
both Bi, and f?,,, are positive (“antitrapped surfaces”). 

A calculation back in time shows a. singularity in the 
past, covered by an antitrapped region, i.e., a spacetime 
with a white hole. Although the model A = 1.2 shows 
a conformal singularity in the future the existence of an 
apparent horizon suggests that the physical singularity 
is hidden behind the conformal singularity. It is obvi- 
ous to assume that beyond A* there is always a physical 
singularity which is sometimes hidden by a conformal 
singularity. 

In his study of scalar fields Choptuik found the critical 
mass scaling behavior VZBH = a(A - A*)7 with a inde- 
pendent of A and an exponent y of approximately 0.37. 
The Hawking mass 
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qt, T) = $1 + P&“&J 

can be written as 

The use of Eq. (B36) on Z is essential to write the Hawk- 
ing mass in a form not containing terms with W’ factors. 
On Z the Hawking mass is identical with the Bondi mass. 
For sc.+ field data with compact support on the initial 
slice in M the Bondi mass on the initial slice coincides 
with the ADM mass. 

Figure 11 shows a logarithmic plot of the black hole 
mass obtained for the parameter study performed here 
(the stars * mark calculated models). The black hole 
mass is determined as the Bondi mass “at i+.” The value 
of 0.4866 for the critical parameter A' has been found by 
optimizing the straight line look in Fig. 11. 

The critical exponent is 0.37, but due to the uncer- 
tainty in A* the error is certainly f0.05. Hence the 
results are compatible with the results of others, but I 
would not claim more. 

Although the mass caught by the black hole increases 
the percentage of the caught mass has a significant max- 
imum at A bi: 0.75 (see Fig. 12). For large A almost 
all the mass escapes to Z+. Actually for A >o 1.0 the 
given value is only an upper bound since i+ is hidden be- 
hind the conformal singularity and thus the Bondi rnas 
at the intersection of Z+ with the conformal singularity 
may further decrease. The figures for the black hole mass 
of the corresponding Klein-Gordon models show the same 
behavior. 

For models with large initial scalar field amplitudes A 
there are number of significant changes in the structure 
of spacetime. Although most of the scalar field is still 
contained in region I the shell with most of the Hawking 
mass in it expands and crosses Z in region III. Mass and 
scalar field “decouple” and propagation of mass is almost 
completely determined by nonlinear terms. 

100.00 : x 

0.01 ; 
0.001 0.010 0.100 1.000 10.000 

A- 0.486600 

FIG. 11. Scaling relation for the black hole mass ~BH. 
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FIG. 12. Fraction of the ADM mass ~ADM caught by the 
black hole. 

B. Christodoulou’s theorem 

Christodoulou investigated the general relativistic 
massless Klein-Gordon field in spherically symmetric 
spacetimes in a number of papers; for a list of references 
see [28]. He found sufficient conditions for the appear- 
ance of a spacetime singularity. The theorems proven 
there contain the following statement. 

Theorem 1 L28]. Consider on the initial future null 
geodesic cone Co’_an annular region bounded by the two 
spheres %l,o and S2,o with &,o in the exterior of S& and 
area1 radii fl,o and ~2~0. Let 

6, := z - 1 E 0,; 
( > 

, 

and 

E(Y) := (1 :y,z -&)+5-y]. 

A sufficient condition for a nontimelike singular boundary 
in the future of @ is 

The model with a conformal scalar field calculated here 
is (almost) equivalent to the massless Klein-Gordon field 

[4]. If (ti, &b, 4) iS a solution for the general relativistic 
conformal scalar field model, (A?,ga.s, d) is a solution for 
the general relativistic massless Klein-Gordon field with 

6 = v&m&h; , (23) 

(34) 

The area radius ? and the Hawking mass fi are given by 
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F=ldi, 

with w = ,/w. 1’ is the area radius, rn the 

Hawking mass, and &,,,;, the null expansion of the out- 
and ingoing null directions with null vectors cu and E, 
in the conformal scalar field model. I% can be written 
in a form which does not, even implicitly, contain terms 
proportional to a-‘. For the purpose of tbis subsection 
it is not necessary to write 7sL in a form obviously regular 
on z. 

In Fig. 13 170 - E(60) is plotted for three outgoing 
light cones versus the area radius F. For a parameter of 
A = 0.75, a model far beyond the critical value with a dis- 
tinct singularity in physical spacetime, the solution has 
been printed out for 100 time slices with 100 grid points. 
On outgoing null cones 70 - E($) has been evaluated. 
The sufficient condition is satisfied if 70 -E(&) 2 0. The 
grid points are marked with squares, diamonds, and tri- 
angles. The first light cone (squares) lies outside the 
event horizon; the criteria are nowhere fulfilled. The 
second light cone (diamonds) approximately coincides 
with the event horizon. The criteria are not fulfilled 
either. Only if the apparent horizon is crossed (trian- 
gles) ~0 - E(&) becomes larger than 0. Although many 
outgoing light cones in various singular models have been 
checked the criteria were only fulfilled wheti the light cone 
crossed the apparent horizon. Thus I conclude that the 
criteria are not very sharp. This is in agreement with the 
results in [29]. 

C. Extraction of radiation 

In addition to the already presented determination of 
the Bondi mass I am going to demonstrate the simplicity 

Christodoulou’s criteria 
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FIG. 13. Christodoulou’s criteria v)o - E(b) versus area 
radius ? for various light cones. 
of radiation extraction on two more examples in this sub- 
section. In the first case the effects of the nonlinearities 
in the equations are analyzed-the purely backscattered 
radiation in region III and the decay of the radiation in 
region II of a regular spacetime model. In the second 
case values of’the Bondi mass in a singular model are 
compared with values of the mass read off at finite radii. 

1. Effects of nonlinearity 

Figure 14 compares 4 on z, i.e., the coefficient of the 
l/i term of the scalar field &I in physical spacetime, for 
a model with an initial amplitude of A = 0.40 for the 
linear model (K = 0, dotted line) and the nonlinear model 
(K = 1, continuous line). In the model with gravitation 
a significant amount of radiation, reflected outward by 
backscattering, has already crossed Z before the linear 
signal reaches Z (region III). The main signal is stronger 
in the nonlinear case and there is some scalar field left in 
region II. 

In Fig. 15 the Bondi mass is shown in the pure 
backscatter region III. Later times correspond to the 
backscattering of a matter shell which has decreased in 
size during the infall. 

In Fig. 16 the scalar field 4 is displayed in a double 
logarithmic plot of the scalar field versus the proper time 
7 of an observer at 1. This observer is obtained by taking 
a world line at fixed area radius i (and angle) and taking 
the limit i: + ca. In the unphysical variables one gets 

s 

t 
7-700= tD +-dt))dt I (25) 

where r=(t) is the coordinate T in unphysical spacetime 
of Z at unphysical time t and 

Scalar field on 9 
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1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

1 1 

FIG. 14. 4 for the whole time evolution. 
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Change of Bond8 rnms in region III 

o~11g’5- 

0.11910 

0.11905 I .‘?r 

1.8 2.0 2.2 2.4 
t 

FIG. 15. msondi in region III. 

I . (26) 

The dots represent grid points of the calculation with 
5000 grid points. Since on approach to i+ the center 
is approached and the values become inaccurate, only 
those points have been included in the plot where the re 
suits of a Richardson extrapolation with 5000 and 10 000 
grid points are visually indistinguishable from those of 
an extrapolation with 10 000 and 20 000 grid points. In 
this plot the last 10 (of 5000) points on Z before i+ are 
missing. The slope in the asymptotical region is approx- 
imately 0.34. Thus for very late times C$ N (7 - TO)‘.~~. 

Unfortunately the Bondi mass falls off so fast that 
rounding errors of the graphic program, with which the 

Decaying radiation in region II 

R’ 3 

0.0100 
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0.0010 ;\. 
I.,.. . . . . . .,, 

,,,,,,,, 

0.0001 
102 ,03 104 105 106 lo7 

proper time at 9 

FIG. 16. 4 in region II. 
calculation of the mass is done and which has only sin- 
gle precision, do not allow one to, enter the asymptotical 
region with the constant slope for 4. But in spite of the 
accuracy problem near the center, Fig. 16 illustrates an 
advantage of the conformcd method: The time scale of 
the collapse of the initial matter shell is of order 1; the 
falloff of the decay could be investigated for almost 10’ 
times the dynamical time scale. 

2. Radiative quantities at finite physical distance and 
at z 

A rough estimate of the errors which are to be expected 
by reading of radiative quantities at finite radius has been 
made in the following way: Given a lower bound for the 
area radius, the grid on a titie slice has been searched 
for the first grid point P with larger area radius. At that 
point P the value for the Hawking mass maaw,cn and the 
“finite” Bondi mass, 

have been calculated. Those values have been compared 
with the Bondi mass on the intersection point of the fu- 
ture directed light cone of P and 1’. The model used 
corresponds to the parameter A = 0.55’and develops 
strong gravitational fields, the spacetime has a singular- 
ity which catches approximately 85% of the ADM mass 
of 0.22. The touter boundary of the compact support of 
the scalar field lies at an area radius ? = 2.7, P has been 
chosen at two, five, and ten times that value. P is at 10, 
25, or 50 expressed in units of the ADM mass. 

The maximal relative error, i.e., error over ADM mass, 
is approximately 2%, l%, and 0.1%. But the relative 
error in the backscattering region III (error/mass loss in 
region III) is by a factor of 10 larger. Those errors are 
the errors made by approximating null infinity by a grid 
which ends at a finite physical distance. There is almost 
no difference between m8aw,an and mg,,di,sn. 

VI. SUMMARY 

In the work reported in this paper a mathematical for- 
malism, designed to investigate the structure of a space- 
time in the large by conformal techniques, has been in- 
troduced into numerics. Tbis paper demonstrates that 
global properties of a spacetime are numerically calcula- 
ble and must not necessarily be estimated from a numer- 
ical simulation by heuristic arguments. 

The set of equatic+s can be solved either by a space- 
time or a characteristic initial value problem. The form 
of the equations differs from Einstein’s equations. The 
technical tricks developed for the numerical solution of 
Einstein’s equations cannot be used unchanged. The ac- 
curacy problem as described in Sec. IVB shows that 
there is still the potential for further progress. Recently, 
too late to be included in this paper, a new way of dis- 
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cr&zing was found, which propagates the regularity con- 
dition at the center without switching schemes near the 
center, as done here. The accuracy has improved by a 
factor of 10 for models near the critical parameter. 

In tbis formalism important properties of spacetimes 
are automatically fulfilled, the ADM mass is always con- 
served, the energy radiated away equals the change in the 
Bondi mass, and there is no spurious ingoing wave caused 
by an unphysical reflection at the outer boundary. Fur- 
thermore the location of event horizons is straightforward 
and the calculation yields “Penrose” diagrams allowing 
one to read off the causal structure of singularities. 

The obvious advantages might not be worth the ef- 
fort for the investigation of astrophysical questions where 
most of the uncertainty originates in an approximate 
equation of state. But if one is interested in the use 
of numerical relativity as a substitute for the lacking ex- 
perimental approach to the open problems of mathemat- 
ical relativity, the conformal techniques provide a very 
promising approach. In this circumstance it should be 
mentioned that Friedrich has developed the conformal 
techniques further [30]. There the rescaling factor 0 is 
no longer a variable of the system fixed in a complicated 
way by the gauge source function R(t,r). The gauge free- 
dom in the rescaling is fixed directly by specifying 0(&r). 
The approach is used by Friedrich [31] to investigate the 
structure of i” for special choices of data. 
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APPENDIX A: NOTATION 

The signature of the Lorentzian metric gob is 
(-,+,+,+). Whenever possible I use abstract indices 
as described in [32, Chap. 21. Small Latin letters de- 
note abstract indices, underlined small Latin letters are 
frame indices. For the components of a tensor with re- 
spect to coordinates small Greek letters are used. The 
fiame (8/&Y)” is constructed f?om the coordinate z“, 
ei” denotes an arbitrary frame. In this notation v, is a 
covector, I+ a scalar, namely v,ep. v(f) is defined to 
be the action of the vector ua on the function f, i.e., for 
every covariant derivative V, : t(j) = t”V,f. 

The transformation between abstract, coordinate, and 
frame indices is done by contracting with ei“ and 0. 
All indices may be raised and lowered with the m&c 

‘gas and the inverse gAB, gACgCB = b*?; A ??d B are 
arbitrary indices, e.g., eja = gabegb and eh = g%i.. 

For a frame ee and a covariant derivative Vi the Ricci 
rotation coefficients are defined as 
From this definition follows 

ei”ei,(v,t”) = e&q +-y&k 

With respect to a coordinate frame ep’O e (a/&“)” the 
components ^I~,,” are the Christoffel symbols I”,,,,. 

The torsion Ta& is defined by 

V,Vbf - VbV,f = -Tc,bV,f 

and the Riemann tensor Rabd by 

V,Vaw, - VbVouc = R,k%d - Td,aVdw, . 

Contraction gives the F&ci tensor, 

R,a = Lbc , 

and the F&ci scalar, 

R = Raag”* 

The Einstein tensor is given by 

Gab = %a - ;%a 

The speed of light c is set to 1. The gravitational constant 
K. in Gab = nT,b has been set to 1 or 0 in the calculations, 
corresponding to the full nonlinear theory or a scalar field 
on a flat background, respectively. 

APPENDIX B: THE SYSTEM OF EQUATIONS 
IN DOUBLE NULL COORDINATES 

1. The time evolution equations 

From the system (2) the following set of equations can 
be derived, where the abbreviations 

71=ra~+rQ~, 

72 = 7% > 
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and the substitutions 

40-i; 1 

w -i pi?! - gP& - &) - 72RQ - $11 ) 

and 

42 = $00 - 6~ + -2940 - 2z4L - ;42 , (l32) 

which follow from spherical symmetry, have been used: 
(ag + &)73 = -(7371) + d&i2 + $ (; - q , 

(B3) 

(8, + %,)R*3 = Cdl&Q + mn + s,--,)/[I - +v/~)“l 

+[-71($%?? + 2%)+72(R? - %) 

+ i (a& - % @WI , (‘34) 

with 
I 

(‘35) 

(a0 + a,)$ = 72@ - @) - 27l@ + $ (-(ii? - %) - dlol% + i% - :R + 27271) 

+$ +s@, w 

sG = r{[(&/r)r + 72 4% + $4R + z + &y + 71(4&)} for 7 # 0 , 
77i a,+, for T = 0 , 

(&a,)71 = -(7371)+ d&Q+; (f-iii) , 637) 

(%-a~)~ = (h'%+fim+Sfi)/[l- n(n~6/2)~]+[-73(+%+2R?)-72(R? -%)- i(d,R)- &(tl,R)] , 

FW 

(a, - aL)$ = -72(& - @) - 2$73 + 2 (” - %‘- dlol% + in?: - :R + 27372) 

+2 
( 

-(R?+i%-;R ++ -;(a,R)+;73R-&aR) 
> ( > 

+SG, 639) 

sfi = 7{-[(4i/r)7+72&+ $bR+$ +%]/~+(4~/~)73} for T # 0, 
771 a,4, for T = 0 , 

%!eo” = -+fi”(73 + 71) ) C-3 

aCe = -e72 ,’ WI) 

8~72 = -(72)'- ;d,%+; -(R?+%)- $5+; +S+ , 
> 

W4 
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;(73 -71)/v for T f 0 , 

s,, = 
;a,(73 - 71) for T = 0 , 

a,, = -727 -I- ;[(73 - 71)72 + (R? - %%)I , (Bl3) 

&@ = [-2&m + d&QJ + S,-,]/[l - @$/2)“] + (72[-2(R? + R^3) - 3E] - k&R)) , (Bl4) 

s,, = 

1 

7{--2[1- ~(Q4/2)‘1(R?; zp + ~a(4~/~)(%4 + 4&)} for 7 # 0 , 

7{-2[1- ~(WJ/~)~]&(RI - R3) + KO(OQ~ + 4@)&&} for T = 0 , 

a& = Q, , (B15) 
where rn stands for 
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2. The constraints 

From (2) the following set of constraint equations can 
be derived: 

QfiO = -&3 - 71) I W74 

ae&2% 
L for T # 0, 0 otherwise , (~23) T 

for T # 0, 0 otherwise , (B24) 

+73)72 for T # 0, 0 otherwise , (B25) 
8$2 = 272@ - R?) - i&R) 

+[-Wmc + d&W + sz21/[1 - 4W/2)2] , 

3~~ = 7{-2[1- n(S-@/2)“](R? + % - @‘)/r 

+3”“(w)(w + 4&l 

for T # 0, 0 otherwise , (B26) 

+;R3 24e41p1 + 4@ - z) + $ (ii? - R^3)) , 

P-8) 
I 

a,n, = 
71+73 --++,-~~-~+~) 

2 

for p # 0 , WY 

(B36) 

(B31) 
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Equation (4), which must be fulfilled at one point, becomes 

RS-12 f 6%Cl= - 2472C@ f 12~~02 - 24$slL - 12QL2 - ;R@@ 
Because of spherical symmetry there is also the identity 

nd& = y + (72)2 - ;z2 - ; . (B37) 

3. The regularity conditions 

At the center the following must hold for a regular 

spacetime: 

e=-y=t+, (B38a) 

73 = 71 , 

72= ;(73+71) I 

(B38b) 

(BW 
E = &Ti , (B38d) 

iz = 2(R? + z3) ( (B38e) 

Q,=O, W%) 

4Ll=O, (~38h) 

O~Z 

$i=@. (B38i) 
WW 

(B38k) 

Equation (B38j) also guarantees that equation (B36) is satisfied on at least one point in M, namely Z. 
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