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We analyze the statistical mechanical properties detectors in arbitrary states of motion interacting with
one another via a quantum field. We use the open system concept and the influence functional method to
calculate the influence of quantum fields on detectors in motion, and the mutual influence of detectors via
fields. We discuss the difference between self and mutual impedance, advanced and retarded noise, and the
relations between noise-correlations and dissipation-propagation. The mutual effects of detectors on one an-
other can be studied from the Langevin equations derived from the influence functional, as it contains the back
reaction of the field on the system self-consistently. We show the existence of general fluctuation-dissipation
relations, and for trajectories without event horizons, correlation-propagation relations, which succinctly en-
capsulate these quantum statistical phenomena. These findings serve to clarify some existing confusions on the
accelerated detector problem. The general methodology presented here could also serve as a platform to
explore the quantum statistical properties of particles and fields, with practical applications in atomic and
optical physics problem$S0556-282(96)03912-4

PACS numbse(s): 32.80:-t, 04.62:+v, 05.40:+j, 42.50.Lc

[. INTRODUCTION tion and concurred with the findings of RSG to the extent
that the energy-momentum tensor of the field as modified by
The physics of accelerated detectors became an intereghe presence of the accelerating detector vanishes over most

ing subject of investigation when Unruh showed that a deof the spacetimeexcept on the horizonsHowever, he also
tector moving with uniform acceleratica sees the vacuum showed the existence of extra terms in the two-point function

state of some quantum field in Minkowski space as a therma(i’f the field beyond its value in the absence of the acc_:elerat-
bath with temperatur,, = i a/2mckg (Wheref kg, ¢ are the ing detgctqr, and argued that these_ terms would C(_)ntrlbute to

U B B . the excitation of a detector placed in the forward light cone.
Planck and Boltzmann’s constants, and the speed of lig

. , : ; hese terms were missed out in RSG. Following these ex-
respectively[1]. This seminal work which uses the structure ., nqes  there was a recent renewed interest in this problem,

of quantum field theory of Rindler space explored by Fullingqapiy the series of papers by Massar, Parentani, and Brout
[2], and the Bogolubov transformation ideas invented by13] (MPB), who gave a detailed analysis via Hamiltonian
Parker for cosmological particle creatif8] earlier, draws a guantum mechanics of the two-point function and pointed
clear parallel with the fundamental discovery of Hawking out that the missing terms contribute to a polarization cloud
radiation in black hole¢4]. The discovery of Unruh effect around the accelerating detector; Hinterleitfi4], who in-
(see also[5]) sets off the first wave of activities on this dependently discussed the back reaction of the detector on
subject. The state-of-the-art understanding of the physics ahe field using a slightly different yet exactly solvable model
this problem in this first stage of work is represented by theand arrived at conclusions similar to MPB; and Audretsch
paper of Unruh and Wal@i6]. We refer the readers to the and Muler [15], who explored nonlocal pair correlations in
reviews of Sciama, Candelas, and Deutfch Tagaki[8], accelerated detectors. However, the physical significance of
and Ginzburg and Froloj9]. the polarization cloud, its connection to the noise experi-
The second stage of investigation on this problem wagnced by another detector, and to the inherent correlations in
initiated by the inquiry of Grovd10], who challenged the the free Minkowski vacuum, remain largely unexplored.
prevailing view and asked the question whether the detector Beginning with this work we would like to add a new
actually radiates. This was answered in the negative by adimension to this problem and open up the third stage of
inspiring paper of Raine, Sciama, and GrdRSG [11]who  investigation. The new emphasis is in exploring the statisti-
considered an exactly solvable harmonic oscillator detectogal mechanics of particles and fields, and in particular, mov-
model and analyzed what an inertial observer sees in thiag detectors on arbitrary trajectories. We analyze the sto-
forward light cone of the accelerating detector via a Langechastic properties of quantum fields and discuss this problem
vin equation. Unrulj12] performed an independent calcula- in terms of quantum noise, correlation, and dissipation. We
use the open system concept and the influence functional
method[30] to treat a system afi detectors interacting with

“Electronic address: raval@umdhep.umd.edu a scalar field. This method enables one to examine the influ-
"Electronic address: hu@umdhep.umd.edu ence of detectors in motion on quantum fields, the mutual
*Electronic address: anglin@tdo-serv.lanl.gov influences of detectors via fields, as well as the back reaction
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of fields on detectors in a self-consistent manner. tion changes the self-impedance functions of these detectors,
As explained earlief16], the influence functional method and introduces mutual impedances as well. The dissipative
is a generalization of the powerful effective action method inproperties of each detector are thus altered because of the
guantum field theory for treating back reaction problemspresence of the other one. This physical effect is in a sense
which also incorporates statistical mechanics notions such aomplementary to the effects manifested in the accelerated
noise, fluctuations, decoherence, and dissipation. Indeed, onketector problem, where the probe does not back react on the
of us has long held the viewpoift7,18 that to get a more accelerated detector.
profound understanding of the meaning of Unruh and Hawk- The paper is organized as follows. In Sec. Il we develop
ing effects and the black hole information and back reactiorihe influence functional formalism describing the influence
problems one cannot be satisfied with the equilibrium therof @ massless scalar field on a system of an arbitrary number
modynamics description_ Itis necessary to probe deeper |ntgf deteCtOI‘S mOVing on arbitrary trajectories. The f|e|d mOdeS
the statistical properties of quantum fields, their correlationée integrated out in this formalism, and effective stochastic
and dynamics, coherence and decoherence of the partidgquations of motion for the various detectors are obtained. In
field system, the relation of quantum noise and thermal radiSec. Ill we consider some applications of this formalism to
ance, fluctuation-dissipation relations, etc. Earlier investigathree simple cases, the primary one being the analysis of two
tion of correlation and dissipation in the Boltzmann- inertial detectors coupled to the same quantum field. In Sec.
Bogoliubov-Born-Green-Kirkwood-YvoBBGKY) scheme IV we treat the RSG excitation of a probe in the presence of
[19—21] and the properties of noise and fluctuations in the? uniformly accelerating detector. In Sec. V we show the

Langevin frameworl{zz_zzﬂ are essential preparations for existence of ﬂuctuation-diSSipation relations governing the
tackling such problems at a deeper level. detector system. These relations are used as a starting point

With this theoretical perspective in mind, we have re-for obtaining more general relations between the correlations

cently begun a systematic study of the accelerated detect®f various detectors and the radiation mediated by them.

problem[25,23. We show that thermal radiance can be un-Such relations are also discussed in the specific context of

derstood as originating from quantum noise under differenth€ RSG model. Finally, in Appendices A and B, we point

kinematical (moving detector and dynamical(cosmology ~ Out problems associated with the uncorrelated detector-field

excitations. The aim of this paper is tb) show on both the initial state in a minimally coupled model, and argue that

conceptual and technical levels the power and versatility ofh€se problems are removed in a derivative coupling model.

this new method(2) settle some open questions and clarify We present a simple prescription for switching from one

some existing confusions, such as the existence of radiatiofodel to the other.

and polarization, solely from an analysis of detector re-

sponse(3) introduce new concepts such as self and mutual

impedance, advanced and retarded noise, fluctuation- Il. SCALAR ELECTRODYNAMICS

dissipation and correlation-propagation relations using the OR MINIMAL COUPLING MODEL

accelerated detectors problem as an example, and figdlly, . .

suggest new avenues of investigations into the statistical me- The paper.by R‘?}'”?'. Smgma, a'f‘d Grove uses the scalar

chanics of particle and fields, including black hole physics. electrod'ynar'mc or mmlme}l coupl!ng of o;cﬂlators_ to a
Employing a set of coupled stochastic equations for thesca!qr field n bl d|men§|ons. Th'|s coypllng provides a

detector dynamics, we analyze the influence of an accelepositive definite Hamlltonlgn, and is of interest because it

ated detector on a probe which is not allowed to causall esembles_ the_ actual co_upllng pf charged p_art|cles FO an elec-

influence the accelerated detector itself. We find, ag tld- romggneuc f|e|(_j.. In this section, we de”"? the influence

13], that most of the terms in the correlations of the stochas‘fun(:t'on‘"II describing the effect of a scalar field on the dy-

tic force acting on the probe cancel each other. This cancen"’lmics of an arbitrqry number of detectors modelled as min.i-
lation is understood in the light of a correIation-propagationmaIIy C(_)uple(_d oscillators. The detecto_rs move along arbi-
relation, derived as a simple construction from thelrary trajectories. We assume that the field and the system of

fluctuation-dissipation relation for the accelerated detectord.e'{ectors are initially decoupled from each other, and that the

Such a relation can be equivalently viewed as a constructioﬂeld IS |n|gally_|n tlhe M;nkc(;w;ktl V?](.:u;'m Zt.ate. The forma:jl— ¢
of the free field two-point function for each point on either ISm can be Simply extended to higher dimensions, and 1o
trajectory from the two-point function along the uniformly different choices of initial state for the field. We also obtain

accelerated trajectory alone. The remaining terms, whicf‘fouPleoI Langevin equations for the detector system.
contribute to the excitation of the probe, are shown to repre-
sent correlations of the free field across the future horizon of
the accelerating detector. In this problem, the dissipative
properties of either detector remain unchanged by the pres- ConsiderN detectorsi=1,... N in 1+1 dimensions
ence of the other. This happens because the probe cannwith internal oscillator coordinate®;(r;), and trajectories
influence the accelerated detector. However, the stochasti&;(7;),ti(7)) , 7; being a parameter along the trajectory of
force acting on the probe plays a nontrivial role. detectori. In the following analysis, we do not need to as-
We also consider the problem of two inertial detectorssume thatr; is the proper time, although this is, in most

which can back react on each other. This mutual back reacases, a convenient choice. However, we will assume here-

after that the trajectorief;(7,),x;(7;)) are smooth and that

the parameters; are chosen such thaf(;) is a strictly

*Our view is thus most akin to that espoused by ScifR. increasing function ofr; .

A. Influence functional for N arbitrarily moving detectors
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The detectors are coupled to a massless scalar field

¢(x,t) via the interaction action

=3 e[ Mdnsa de)(x(mt(r.)) @

Here,T is a global Minkowski time coordinate which defines Jg(t)=— >
a spacelike hypersurface, denotes the coupling constant of !

detectori to the field,s;(7;) is the switching function for
detectori (typically a step functiop andt;” s the inverse
function of t;. t7(T) is, therefore, the value of; at the

point of intersection of the spacelike hypersurface defined by

T with the trajectory of detector. Note that the strictly
increasing property of;(7;) implies that the inverse, if it
exists, is unique.

The action of the system of detectors is

1 t M 2_02A2
S5 | dnl(2;,Q07-0fQf]. (2.2
The scalar field action is given by
(T 2 2
Sfield:EJ:wdtJ dx[(dyp)°—(9xp)7] 2.3
and the complete action
S= Syiela T Sosct Sint - (2.9

Expanding the field in normal modes,

2Qr . o
d)(x,t):\[tz [g¢ (t)cokx+qy (t)sinkx], (2.5)

where =, denotes that the summation is restricted to the §k—2 o
upper halfk spacek>0. Then the action for the scalar field

is given by c=+,-)

-, .
Steia=52  [(6)?~ o] (2.6

and the interaction action is
2 -1 d i ’ +
Sn=2 € NG [T Man S 10 reosin(n)
+ay (ti(7))sinkx; () ]si( 1)

2 (= -1 d i
-S e \[zf_mdtﬁ'm (T)dnfxt—ti(n))d—i

x;’ [ay (1)coskxi(7;) + ay (1)sinkx;(77)]si(7).

(2.7

We havet;(7;)<T, which follows from ’Ti<ti_l(T) and the

property thatt;(7;) is a strictly increasing function. Hence,

we may replace the upper limit of thit integration byT.
This replacement leads to the expression

7005

T
su--3' [ aoagn. @8

where

2 _71 d i
€ \[Eftlm (T)dTia(t_ti(Ti))d_?iug(Ti)Si(Ti)

(2.9

and

(2.10

The actionS;eq+ Sy, therefore, describes a system of de-
coupled harmonic oscillators each driven by separate source
terms. The zero temperature influence functiofadrre-
sponding to the initial state of the field being the Minkowski
vacuum for this system has the forfi22]

f[J,J’]zexW’ - %E '
k,o

Uy (r)=cokx(), U (7)=sinkx().

T s
wdsﬁxds’[\lﬂ(s)—\];"(s)]

X[ﬁk(s,s’)J?(S’)—§I(S,S')J{<‘T(S’)]], (2.11

where

. 1 .
(= vk+|Mk=2—exr[—|wk(s—s’)]. (2.12
Wi
If the field is initially in a thermal state, the influence func-
tional has the same form as above, and the quadiite-
comes
Bwfi .
cot 5 Cosw(s—s')—isinw(s—s')|,

(2.13

B being the inverse temperature. We shall restrict our atten-
tion to the zero temperature case.

Substituting for thely’s in the influence functional, and
carrying out thes-function integrations, one obtains

1 % ft(lm
hlifTe1 ) -«

J’”[{Q}:{Q’}]=exp{ -7

RCIED)

xd7si(7, )f drisi(7{)

dr dn dr

gl

e.e,E Gti(m) (T U (r)ug (7).
(2.19

dQ, dQ{)( dQ,
X — ij (730 7] T )—

ZI](TI , (2.149

where

Z|1(7'| 1 7j =
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In the above, the continuum limit in the mode sum is recov- The influence functional, along with the action for the
ered through the replacemeBf— (L/27)[{dk. We then detector system, can be employed to obtain the propagator

obtain, after substituting fony and ¢, , for the density matrix of the system of detectors. This propa-
gator will contain complete information about the dynamics

e,eJ of the detectors. However, we shall take the alternative ap-

Zij(7i,7] )_ 5 —exp[ ik[ti(7) proach of deriving Langevin equations for the detector sys-

tem in order to describe its dynamics.
—tj(7) Jecok(xi(7;) —x;(7{)). (2.16

In this form, Z;; is proportional to the two-point function of
the free scalar field in the Minkowski vacuum, evaluated for In this subsection, we wish to derive the effective stochas-
the two points lying on trajectoriesand j of the detector tic equations of motion for théN-detector system. In the

B. Langevin equations

system. It obeys the symmetry relation previous subsection, we integrated out the field degrees of
freedom. The effect of this is to introduce long-range inter-
Zj(7i,7)=Z}(7] , 7). (2.17  actions between the various detectors.

Going back to the form (2.11) for the influence func-
Corresponding to (2.12), we may also sgljf into its real  tional, we define the center of mass and relative variables;
and imaginary parts. Thus, we define
~ - I 7(8)=(9) + I ()12,
Zj(7i 7)) =wij (7, 7)) +ipg (7, 7)) (2.18

where I 7(8) =3¢ (s) = I (9). (2.22
Biy(ri,7))= %f ﬂ(cosk(t () —t;(7)) Correspondingly, we also find it convenient to define
X cok(xi(7i) =X;(7)), Q" (1) =(Qi(7)+Q{ ()2,
€ — !
Hij (7,7 >——#f Skt () = t(7))) Qi (m)=Qi(7) = Q{ (7). (2.23
X coK(X;(7i) = X; (7). (219  Then, Eq. (2.11) yields
7 and u are proportional to the anticommutator and the 1 .
commutator of the field in the Minkowski vacuum, respec- 11— _ N 5 -0
tively. |F3,97| exp[ h% J dsj_wds 3 ’(s)

The quantitiesZ;; are also conveniently expressed in
terms of advanced and retarded null coordinates -
X (8,8 (s’ 2.2
vi(n)=t(7) +x(7) andui(n) =t;(7;) —x(7), as (88K )] (229

ZlJ(TlvT) Vis (TIYT)J'_ZIJ(TIY ), (2.20 .
where =f Hé,o(DSEP[fﬂ)exr{ - %k%

!

;
fxdsJk"(s)fk‘(S))-

a , eiej »dk . , (223
Zij(TiiTj):EJ 1 ik@i(r) o ()],
° | A is the absolute value o, containing the kernet, . The
ee (=dk phase ofF contains the k_ernepk. In th_e se.cond quality,.
(T, )= Lf ?ex;{—ik(ui(ri)—uj(q’))], we Uhave_ used a _ft_mctlon_al_ Gaussian integral identity,
2.23 P[£¢] being the positive definite measure

and the superscripts andr denote advanced and retarded, P[&/]=Nexp
respectively> Similar decompositions fow;; and ;; thus

1 T T
follow. x[ - ﬁj,wdsj,mdsl EX(S) vy (s, ) EX(S) |,
(2.26

°The terminology “advanced” and “retarded” refers to the null
coordinates. Equivalently, they can be called “left moving” and
“right moving,” respectively, when the sense of motion refers to Normalized to unity. It can, therefore, be interpreted as a
the future direction in time. This terminology is used in wave andprobability distribution over the function spagg.
string theories. The influence functional can thus be expressed as
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i, (T as noise in the detector dynamics. Hence, we ealla
A{QHQ}= < EXD‘ - gz f dsJ ()| &(s) “noise kernel” and;;, i#], a “correlation kernel.®
ko S The full stochastic effective action for tié-detector sys-
s tem is given by
+Zf ds’ uy(s,s")Jy °(s") ]>
o Seft= SoscT St - (2.32
E<ex;{l_smf > (2.277  We may now express this in terms of the variab@@$s and
i Q; defined earlier. Thus, we obtain

where angular brackets denote expectation value with respect N

to the joint distributionIl; ,P[£¢]. Sy will be called the — Sy= 2 dr,
stochastic influence action. We find

Q Q" —0fQ Qf —Q/ si(m) mi( )

Tl “1t(r) . _ )
<§k(s)>_01 ZQI SI Tl)z de,thSj(Tj,)Mij(Ti ,Tj) ,
({&(9), fkr(s D=1 Sspvi(S,S"),  (2.28 (2.33
where{ ,} denotes the anticommutator. wherei‘izdfi/dri , i‘j,Ede /drj.

Substituting forJ,  and J; “ in terms of the detector Extremizing the effective action with respect @ and
degrees of freedonfQ;}, the stochastic influence action settingQ;=Q/ at the end22], we obtain a set of coupled

Sif IS obtained as equations of motion, the Langevin equations, for the system
of detectors:
dQr
t; (T)
Sinf=— 2 i d7, ——Si(7)| 7i(7) dZQ, N1 Q]
FEa) drs,m CICIIE R
N T 7
(@ (T.)) dQ
2 f J dr J/ S](T )Mu(Tl 1 Tj )} 2 d
o + 4 Qi:F(Si(Ti)ni(Ti))- (2.39
(2.29 '
i Because of the back reaction of each detector on the field,
Wi

and consequently on other detectors, the effective dynamics
> of the detector system is highly nontrivial and, as such, can
N SY e Tt (o be solved in closed form only for simple trajectories or under
7(7i) e';;, \/: Ui(m) &t (7). (2.30 simplifying assumptions such as ignoring the back reaction
of certain detectors on the field. For instance, if we choose to
From Eq. (2.29) we see that the quantiﬁia,)s i #] mediate ignore the back reaction of detecioon the field, this can be
long-range interactions between the various detectors and thefected by settinge;; =0, for all j, includingj =i, while at
quantitiesu;; describe self-interaction of each detector be-the same time keepmg” #0 for j#i. The part|cu|ar case
cause of its interaction with the field. This self-interactionz;; =0 amounts to ignoring the radiation reaction of detector
typically manifests itself as a dissipativer radiation reac- i. This is necessary because the radiation reaction effect
tion) force in the dynamics of the detectors. We will, there-arises because of a modification of the field in the vicinity of
fore, refer tow;; , i #] as a “propagation kernel,” and;; as  the detector as a consequence of the back reaction of the
a “dissipation kernel.” detector on the field.

We now turn to the interpretation of the quantities. Of course, it is, in general, inconsistent to ignore the back
They appear as source terms in the effective action of theeaction of a detector, as it leads to a direct violation of the
detector system. Also, being linear combinations of thesymmetry (2.17). As is well known, it also leads to unphysi-
quantities &, , they are stochastic in nature. Indeed, fromcal predictions. For example, in the treatment of an atom on

Egs. (2.28) and (2.30), we can obtain an inertial trajectory, coupled to a quantum field, balance of
vacuum fluctuations and radiation reaction is necessary to
(mi(7))=0, ensure the stability of the ground state. As explained above,

ignoring back reaction implies ignoring the radiation reaction
force. Such a treatment would render the ground state un-

, , o 2 .
<{77i(7i)v77j(7j,)}>:eiei§r kz, U(kr(Ti)uk'(Tj)([) stable.

X(EL(E(T))Ep (7)) 3 o _ o
The distinction between noise and correlation is unnecessary
=ﬁ'17ij(ri ,TJ-’). (2.31 from the point of view of the field. “Noise,” as used here, also
represents free field correlations for points on a single trajectory.
Thus,'ﬂij appears as a correlator of the stochastic forges However, from the point of view of each detector, these two quan-
and »; . Along a fixed trajectory, this correlation manifests tities play a different role. Hence, the choice of terminology.
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However, in certain cases, the quantifigs may not con- A. One inertial detector

tribute to the dynamics of detectgr as in Sec. IV below, Consider the case of one detector moving on an inertial
where the trajectory of one detector is always outside th‘?rajectory x(7)=0, t(r)=7, and switched on forever

causal future of the other one. Hence, there is no retardefjs(T)zl]_ The noise and dissipation kernels take the form
effect of one of the detectors on the other.
Our formal treatment of the detector-field system is exact e? (=dk
in that it includes the full back reaction of the detectors on V(7 7)= ﬂf T CoK(T— 1), 3.1
the field, which is manifested in the coupled Langevin equa- 0
tions of the various detectors. The coupled equations of mo-
tion give rise to a sort of “dynamical correlation” between -, , ,
the various detectors. Nondynamical correlations also occur p(r,7')=— 274 Tsmk( T—17'). (3.2
because of the intrinsic correlations in the state of the field
(Minkowski vacuun). These correlations are purely quantum ) )
mechanical in origin, and they are reflected in the correlatorg—he Langevin equation becomes
of the stochastic forces;; . Correlations between stochastic
forces on different detectors induce correlations between the d’Q e*dQ ., _dy
coordinatexQ; of different detectors. d2 + 2 dr +0Q50= dr 3.3
As we shall show in a later section, our exact treatment
makes it possible to demonstrate the existence of generaliz%th
fluctuation-dissipation and correlation-propagation relations
governing the detector system.

2 ©

{n(n), n()})=hv(7, 7). (3.9

lll. EXAMPLES It will be convenient to define the dissipation constant

In this and the following section, we consider some appli-¥=€%/4. We will restrict our attention to the underdamped
cations of the Langevin equations derived in the previou$ase ¢<{o). Note that the form of the dissipation term in
section to the cases of a single detector in the MinkowskEd. (3.3) above is usually known to arise from the Wigner-
vacuum moving on an inertial trajectory, a single detector on/Veisskopf approximatiorisee, for example[11]). In this
a uniformly accelerated trajectory, two detectors on inertialcontext, however, it turns out to be exact when the con-
trajectories, and the case of one detector on a uniformly adinuum limit is taken in the mode sum defining
celerated trajectory and another one on an arbitrary trajec- Introducing the Fourier transform
tory, functioning as a probe.

The first two examples serve to illustrate the formalism, % .
and describe the well-known physical effects of the dressing Q(T)=f dwe'"Q(w),
of a particle by the field and the thermal Unruh noise expe- -
rienced by a uniformly accelerated particle.

In the example of two inertial detectors, we introduce the ~ 1 (= Cion
notions of “self” and “mutual” impedances which govern Qlw)= ﬂfﬁwd“’e Q(7), 3.5
the response of either detector. The effect of the back reac-
tion of each detector on the field and consequently, on the o .
other detector is to introduce the so-called mutual impedanc@nd similarly for»(7), we obtain
in the detector response as well as to modify the self-
impedance of each detector from its value in the absence of Q(w):)(w’,}(w) (3.6)
the other one.

In the next section we shall con5|der_ the example of ON& iih the impedance functioy, defined as
detector on a uniformly accelerated trajectory and a probe,
which moves along an unspecified trajectory. We switch on
the probe after it intersects the future horizon of the uni- Xo=io(—0?+Q5+2iwy) "t 3.7
formly accelerated detector, so that it cannot causally influ-

ence the uniformly accelerated one. Thus, the uniformly actn the above solution for the detector coordinate in frequency
celerated detector in this case is effec“vely In an Unperturbegpace, it should be noted that transients have already been
Unruh heat bath, and this situation mimics most closely thyeglected. Transient terms correspond to delta functions in
RSG model. The missing terms in the RSG analysis, whichrequency space, the coefficients of these delta functions be-
contribute to a polarization cloud around the accelerated osng determined by the initial conditions. For the complete

cillator, but not to the energy-momentum tensor, lead to aojution these terms should be added to the right-hand side
modified noise kernel in the Langevin equation for the probeqf Eq. (3.6). We may thus obtain

In all cases, we can solve exactly for the detector coordi-
nates, at least in the late time limithis limit is actually ~ ~ _ -,
realized at any finite time when the two detectors have been ({Q(@),Q(0")}) =XuXuo {M(w) n(0")}), (3.8
switched on forever, and corresponds to the neglect of tran-
sients in the solutions for the detector coordinates where
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1 0 o . o 2 o
<{7;(w),7;(w')}>=mf dff dr'e ler e'ks'”“e;f dacogba+imal2)K, (k) (3.15
—® — 0
xe ' ({n(r), n(7")}) and the formuld 28]
Y >dk T
=h— 8w+ o) 0(w)—0(—w)]. J—Kia(k)=—, (3.19
T o k [ Ta
2asm?‘<—)
(3.9 2
We can therefore obtain the correlator@{r) andQ(7'),  WhereK;,(a) is a Bessel function of imaginary argument, to
as yield
0 © ) o, - , 82 wdk 7Tk §< , 31
! j— IAlOTalw T = — —_— —_— p—
(.= | do|” doreve T = 50 ] Wt g eox(rm ), (349

XXwa’<{T7(w)a'77(w’)}>

_ 2hy »dk

™

B. One accelerated detector: Unruh effect

?|Xk|2005k( 7).
0

_ e’ [=dk
w(r,7)=— Efo ?su‘k( —17). (3.18

The noise experienced by the detector is thus stationary and
(3.10 the factor cothfk/a) in the noise kernel shows that it is also
thermal, at the Unruh temperatukgT=*%a/27 (we have
chosen units such that=1).
The dissipation kernel remains identical to that of the in-

In the case of an accelerated detector moving on the traertial detector. Based on the property that the two-point func-
jectory x(7)=a lcostar, t(r)=a sintar, and s(7)=1 tion of a free field on an accelerated trajectory evaluated in
(7 being the proper time along the accelerated trajegtting  the Minkowski vacuum state is identical to the two-point

noise and dissipation kernels take the form function on an inertial trajectory evaluated in a thermal state

at the Unruh temperature, this fact can be explained as fol-

~ e® (=dk k ; lows. The dissipation kernel is proportional to the commuta-
v(7,7")==—| -—cos-(sinhar—sinhar’) : , :

27 )0 a tor of the free quantum field evaluated in whatever state the

k
xcosa(coshan-— coshar’),

field is in. However, the commutator of a free field for any
(3.11) two points is just a&-number, hence its expectation value is

independent of the state of the field. In particular, it does not

distinguish between a zero temperature and a thermal state.

- , e? (=dk k ] , So the dissipation kernel is identical to that in the inertial
p(r, 7)== ﬂfo T Sing (sinhar—sinhar’) case. The anticommutator is, however, an operator whose
expectation value depends on the state of the field, and there-
’ fore shows the familiar departure from the inertial case.
X cos; (cosfar—costar’). 3.12 The Langevin equation for the detector coordinate is
2 2
These kernels can be decomposed into advanced and re- d Q+e_d_Q QzQ:d_’? (3.19
tarded parts, by writing, for example, dr* = 2 dr %% dr
_e? r=dk[ k ) with
T+ Vr:EJ s cosa(eaf—eaf) _
0 {n(n),n(s")y=tv(1,7'). (3.20
+Coslf(efaf_ e )|, (3.13  Similar to the inertial detector case, we find
a
Q@)= x,n(w). (3.21

We can then use the

changes of variables

k— skex *a/2(r—7')] to obtain Also,
o= [Tl Kt (), @1 (0.5 )= 52| o[ dreior
visvi=,— OTCO Esmhi(T_T) ,  (3.19 472 _., .
showing that the noise felt by the accelerating detector is xe ' T ({n(n), n(7)})
isotropic. y o
One can also make a similar simplification for the kernel =ﬁ—cotr( ?> Nw+w').
. These expressions can then be further simplifzs]23 e

by means of the integral transfof@7] (3.22
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Combining the two equations, - ee, 2=
Qo) =X Tl w) ~ 5 ey PqQy(w), (3.31

<{Q( T)!Q(T’)}> = wadwjfwdw’eiwreiw’r’

where
X Xwa’<{77(w) 1:7](('0/ )}>

2h dk wk
= —|Xk|2cotl-< )cosk(r ),

v

X PP =io(-w?+ 02 420y, L (3.32

The functlonsx(l) '@ are, of course, what the impedance of
each detector would be in the absence of the other one. How-
(3.23 ever, the effect of introducing a second detector is, as we
shall see, to modify the “self-impedance” of each detector
as well as introduce a “mutual impedance” which describes,
for instance, the response of detector one to the farce
_ Indeed, plugging the equation f@; in the equation for
Q,, we have

We now consider the case of two detectors moving on the
inertial trajectories X1(71) = —Xo/2, Xo(75)=Xo/2, and ég(a))=Lzz(w)Tyg(w)+L21(w)771(w), (3.33
t1(m) =ts(m) =7, coupled to a scalar field initially in the
Minkowski vacuum state, with coupling constaets,. They  whereL,, is the modified self-impedance of detector two

are separated by a fixed coordinate distangeAs before, because of the presence of detector one, lapds the mu-
we will assume that both detectors have been forevetual impedance:

switched on, i.e.5(7)=1,i=1,2.

It will be convenient to express the noise, dissipation, Lo ) Xw ((1—4y,y,e” 2'onX<1> <2>)—1,
correlation, and propagation kernels as the real and imagi-
nary parts of the function;; defined earlier. Then, for the
two-detector system, we obtain

with the impedance functiory, as defined in the inertial
case.

C. Two inertial detectors: Self and mutual impedances

Lo(@)=—2\yy 7,6 %oy 2y (1

e? (=dk X (1= 4y y,e 20Xy Dy (2)=1 (334
) 1 . )
211(7,7)=ﬂf0 ?exp[ﬂk(r—r)], (3.24

The impedancek,; andL 1, and the corresponding equation
for Q, are obtained by an interchange of indices one and two

=dk in the above equations.
Zo1,7')= 277 o e -ik(r=7)], (329 We note the symmetry
277V =Zal(7,7) La=le (339
e,6, (~dk ] , The correlatof{Q;(w),Qj(w")}), i,j=1,2 is, therefore, ob-
=27 Jo ?exr[—lk(q-— 7')]cokXo. tained from Eq. (3.32) and its counterpart, as
(3.26

2 2
<{Qi<w),Qj<w'>}>=§l 521 Lis(@)L;g(0")

The coupled Langevin equations for the system are
d2Q, €dQ; ee,dQ, , . dp X({ o @), 75(0")}).  (3.39

+ = + T— + Q =7
dr* = 2 dr 2 d7 | ool d 39 The above equation is to be viewed as a generalization of
(3.29 (3.8) to the two-detector case.
Suppose we now wish to solve for the correlatorQf.
Then, taking Fourier transforms as before and simplifying,

d?Q, e% dQ, ee,dQ;
a2 "2 dr "2 dr |TﬁXOdl_QZQZ_d_'

(3.28 . e
| . Q= [ do [ dwreer
where 7—X, is the retarded time between the two trajecto- —o —o
ries, and PRI PN
X e T ({Qx(w),Qa(w")})
i (THhY=hv(r—1'). 2
<{77|(T)a771(7 )}> VI](T 7') (3.29 _2h72J e
As before, we definey; ,=e?,4, and introduce Fourier T m o K L2kl
transforms to obtain the corresponding equations in fre- D)2 (1) (1)*
quency space. Then we obtain X[1+ ya(4yalxic’1°— )
— (X(l)e 2|kx0+X(1)* 2|kx0)]

Bu(@) = X Tp(w) — 22 e 100y (1T, (w), (3.30
1\ Xw 771 w 2 X 20w), . (337)
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The second term in the square brackets vanishes as a consedZQ2
quence of the identity (" + x(* =4y, x(V)2, which is a f ded [9(U2(72))Mzz(7'2,7'z)]
form of the fluctuation d|$5|pat|on relation for detector one.
The remaining terms simplify to yield Xty (7)) . Q
_zfj 2 [B(UZ(TZ))MH(TZ'Tl)]
(1Qul1),Qul ) = 22 d
2 12 -
4 +03Q0= g [02(72) nal(72) - 4.3
1-2y|x'Y)2 (271c052<x0 We find
2—K? d - , ,
+ lk sin2kxo) cok(7—17"). d_7_2(/"«22(7'2,7'2)):—2725( T2~ Th), (4.4

(3.38 d _ , dv, ,
d—Tz(le(szTl))Z VY172 d_7_25(02(72)—01(71))
As before, the correlator d, is obtained by interchanging
the indices one and two in the above equation.

(4.5

du, ,
+ d_7'2 O(up(12) —ug(1))],

IV. UNIFORMLY ACCELERATED DETECTOR AND

where vy, , are defined as in the two inertial detector cases.
PROBE: ADVANCED AND RETARDED NOISES ’

The second term in (4.5) vanishes identically because
In this section, we first consider two detectors on arbitraryl2(72) >0 andu,(7,)<0 (u=0 is a future horizon for de-

trajectories, with the following constraint&) both trajecto-  tector ong. Sincev =0 is a past horizon for detector one, we

ries are everywhere timelikéh) one of the trajectories pos- havev,(71)>0 and the first term simplifies to yield

sesses past and future event horizons, which are chosen to be dn

the null linesv =0 andu= 0, respectively(c) the detector on —~ ,

the other trajectory is switched ona0 and this trajectory d_TZ('“Zl( T1.7)= ~NNY2g 5( TR— 1) 02(72)),

does not possess any future horizon. (4.9
Because of constraintc), the second detector cannot

causally influence the first one, and thus it functions as avhere we have defined the retarded time=v; *(v,(75)).

probe in the field modified by the first detector. This is well defined since it occurs only in expressions in
Later in the analysis, we shall specify the trajectory of thewhich v,(7,)>0.

detector with horizons as being a uniformly accelerated one. Thus, we obtain the dynamical equation for the probe,

We shall continue to assume that the probe cannot causallyhich depends, as expected, @n:

influence the uniformly accelerated detector by means of the

switching condition. If it were allowed to do so, this would d’Q, €5dQ, ) dy, ee,drgdQ;

lead to a deviation of the noise experienced by the uniformly d72 2 + 5 de +Q5 2:d—72— o d_7'2 ar

accelerated detector from the precise thermal form.
We will label the detector with horizons as detector one

and the probe as detector two. The switching condition v2(72)>0. (4.7
s,(7,) = 6(u,(7,)) for the probe leads to a closed Langevin ) )
equation for detector one: Consider the quantity
dn, ee,drrdQ
2 2 - _ - =_ ==
d Q21+idQ1 1Q1_d771 .1 F(r)= dr, 2 dr, dr | (4.9
d2 2 dn R

which is a source term in the equation of motion@y. The
This is just a consequence of the fact that the trajectory ofirst part of F is the usual stochastic force arising out of the
detector one lies outside the causal future of the probe. Thguctuations of the field in the vicinity of detector two, while
arguments which lead to the above local form of dissipatiorthe second part is the retarded force because of detector one.
or radiation reaction for a general timelike trajectory are out-RSG correctly point out that these two forces are correlated.

lined in the next section. In the context of our formalism, these correlations are em-
Introducing Fourier transforms and the impedance funchodied in the correlation kernels,; andv,,.
tions y(1(?) as defined earlier, we have Using the relation (4.2), we obtain
~ ~ d e.e, d7g ([ . o
Ql(a))zxful)nl(w). (4.2 F(T2)_ 2 S —RJ dwwe""TRX(wl)f
Ty A7 d7p ) —= —w

Consider now the Langevin equation for detector two: X dszyy(s)e s, 4.9
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Consider the correlator df with the correlator ofyp, sub- iy (=
tracted out. We have (rp)=— ! zf do (l)f dseies
(F () (P~ 1 = mala) e} 9% org & 0
2hin2 dr, drp ' 722022 X e Rd—72V21(Tz,S)
:_—iﬁ ﬂm’sz’w dow (DJW dse i®s R j ~r '
T % Xw C d_TZe ﬂ’TRd—Téylz(S,Tz) . (414)
d I,? o, d — dTR : ~ f . . T ;
X FGIMRF P TZ’SHFeWRd_ v12(S,75) At this point, we specialize to the case when detector one is
2 2 2 2 uniformly accelerated. Then, we have
h‘yl’)’Z dTR dTR ’ I AloT w7
m dr, def_xdwj_mdw wo' eI e TR vi(r)=a"'e’, uyr)=-ale . (419

As shown in Sec. Il B, the noisg,; is thermal and isotro-
pic. The retarded timeg=aIn[av,(7,)]. We may substi-
tute forv,, in Eq. (4.13) and carry out the integrations over
(410 sands’, to obtain

XX(].)X f dsf— dsle*iwse*iu)'s/"l'}'ll(s’s/)'

The kernelsy,; and7,, separate into advanced and retarded

d d
parts. For the advanced parts, {F(r2) F(r)D) ~ g g (7))
ee, (~dk
72 = = — Zh d
V21( 7'2,5) pp. fo K COSk(vz( 7'2) Ul(s)) _ Y172 TR j dkaOth_COS(( TR— ’TR)
iy d7'2 dr
e.e, (=dk
= 4177.2J + COK(@1(7R) — 01(3))— V11(7'R, s) X (P + M =4y xP1D) + (r.p.). (4.1
(4.1)  The first term in the above expression vanishes as a conse-
4 similari quence of the identity (" + x("* =4v,|x{|%, mentioned
and similarly

earlier. The only contrlbutlon to the excitation of the probe
is, therefore, from the retarded parts of the correlations
4.12 andv,,. This asymmetry between retarded and advanced
' parts is really a consequence of the choice of retarded bound-
ary conditions in the formulation of the problefthe states
The advanced parts of the correlations can therefore be cowf detector and field are assumed to be uncorrelated at past
structed from the advanced part of the noise along the trajecnfinity) and the switching process ay=0. The vanishing
tory of detector one. With this simplification, we obtain of the first term in the above expression is a generalization of
the cancellation obtained by RSG for a probe moving along
, d d , an inertial trajectory. In order to study the retarded contribu-
({F(72),F(7)})— dar, FH 72(72),72(73)}) tion in greater detail, it is desirable to simplify the correla-
2 tions v, andv,,. The functionsZ}, andZ}, take the form

€
TiAs, 9= e —151(s, 7).

_ iy drg 0
B s dTZ dT, , €16, =dk ik Car ,
j Zrlz(leTz):EfO ?ex;{g[e an+auy(7y)]],
J dww)(u)f dse s (4.17
d d ot , eleZJ dk ik “ar
ot foT = — J— _— 1
x[e Rd—Tval(TR,S)‘i‘e Rd—RVll(S TR)] 21(7-2'7-1) a7 )o K ex a[e aUZ(TZ)] :
(4.18
it iwTg o' T (1)
! j dwf do’wo’e™me Ry, X Introducing the Fourier transforms
xf dsf ds'e™ % Ty (s,8) [+ (1p), o —e—arl & dwe"‘“lF i
0T 2ma a
(413 k iw/a
x| = eﬂw/(Za), k>0,
where(r.p.) denotes the retarded part:
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ik 1 (= _ ) this is the limit in which the probe trajectory approaches
ex;{ - —eafl) =53 dwe"’”lf(—> future timelike infinity, which verifies that the effect of the
” accelerated oscillator on the field is ascribed to polarization
K\ —iw/a rather than radiatiottisee alsd13]). A radiation field is ex-
x| 3 e™/(®) k>0, (419  pected to persist at future infinity.
Let us now turn to the question of the response of the
and substituting in (4.19), we obtain probe. To obtain this, we will need to specify a particular

form of trajectory for the probe as well. We will consider the

, , €18, (= wor amol23) i@ simple inertial trajector,(7,) =0, t,(7,) = 7, switched on
211, 1)= g 7, | dwe e -7 at 7,=0. Then Eq. (4.23) gives
odk (K iwla . , , d d ,
X fo Tla) ediku(] @20 (R Fm)h - g g dnar) m(m))
The integral overk can be evaluated in terms of gamma _ Zﬁ?’m’zJ“ dkk (1>(a7_ )i/ =1 (g 1y (ik/a)~1
functions. Explicitly making use of the fact thag(5)>0, 7T J_wsinhz Xk 972 2 '
and simplifying,
plifying (4.29
»dew cose [ar,+Inau,(r, . . .
Zrlz(rl,r’)=@ b [ Tl_ 2(72)], Owing_to the switching process at=0, the relation be-
4m Jo o sinhz* tweenQ, andF (the Fourier transforms o, andF) is a
(4.21) nonlocal one in frequency space, because of transient effects.
Similarl However, if we restrict our attention to the late time behavior
' of detector two, we obtain from Eq. (4.7) a local relation o
imiiarty fd btain from Eq. (4.7) a local relation of
, the form
r , €., *dw COS%) [a7'1+|nau2(7'2)]
Zy(72,7m1)= 4 — . : (2)
mJo @ sinh> ~ Xo ~
(4.22 Qz(w)=7~F(w), (4.26

Therefore, there is no contribution from the imaginary partsWhere
of Z}, andZ}, for u,(75)>0, as obtained earlidEq. (4.5)
leading to (4.6). 1 (e

Differentiating the above expressions with respectrfo Flw)= —f dre '*7F (7). (4.27
and 7,, and substituting in the expression fop.), one ob- 2mJo

tains, after carrying out the integration over ) o ) ]
In the above expression, the lower limit of thdéntegration

, d , is zero, corresponding to the step functiéfr) multiplying
({F(72),F(72)})— dar, d_r§<{ 72(72), 72(73)}) F which enforces the switching condition.

The correlator ofQ, is, therefore, given by

=(r.p) )
2,2
© ~ ~ Xw Xw/ ~ ~ ,
_ mmf dkk @ ({Qa(@),Qa0)h) = = =22 ({F (), F(w)).
™ J-wsinhy (4.28
x| (@2U,(75)v (T ))(ik/ayl% % We have already obtained the difference of the correlator of
2 T2/vat i dr) dr, F from its value in the absence of the accelerating detector,
du. d one. Thus, we have
. _ U, du,
+(@%uy(Tp)va(mh))K-1 = 21 (4,23 ~ - ~ -
s dr, dr; ({Qa(),Qa @)}~ (105(),Q(w")})
The coincidence limit of the above expression yields the X2x2 o e . o
fluctuations of the random force acting on the probe: defining =- mf de dr'e 77! "
SF(7)=F(7)—(d/d7) (), we obtain o Jo
d d
(5F%(ry) = 21172 d_ud_f dkk X {F (. F(D) = g g (ma(n). (7)) |,
2 T dT2 dT2 —oosinh%k

(4.29
X xi @2Ua()va(2) AL (4.24) _ _ _
where the superscript (0) o@Q, refers to its value in the
The fluctuations are thus suppressed in the limit of largeabsence of the accelerating detector. Performing the integra-
u,v,=t5—x5. For a probe trajectory without any horizon, tions overr and 7', we obtain
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<{62(“’)’62(“”)})—({6(20)(“’)!6(20)@’)}) as this is the quantity which directly appears in the dissipa-
tive term of the Langevin equation derived above. The
fiyiys Xﬁuz))(f/) « dkk (D2 ik fluctuation-dissipation relation then takes the form (5.3) with

T 27%a" oo’ f_msmhﬁ_kxk Ml K defined as

!

—(ik/a)—1 K(s—s')= Jm%coﬂ{@) cok(s—s'). (5.5

ww
X a2 [e'n'k/2a0(w)+e—7'rk/2a0(_w)] 0 wk 2
X[e™220( ')+~ ™2 — )], 430 An important aspect of either form of the fluctuation-

dissipation relation is that the noise and dissipation kernels,

The step functions which distinguish positive and negativegid;(;rllosr?guenm’ are stationary; i.e., they are functions of

frequencies in the above expression are an artefact of the We wish to investigate whether a suitable generalization

switching process. of the above relation holds for the fuMl-detector system. To
this end, we assume that the detector trajectories are every-
V. FLUCTUATION-DISSIPATION where timelike and consider first only the kerng|sas they
AND CORRELATION-PROPAGATION RELATIONS characterize noise and dissipation in the dynamics of the de-

. . . o tectorsi. We also assume that the detectors are switched on
In this section we construct the fluctuation-dissipation re-,

: : .~ forever, thus excluding transient effects because of the
lations for the detector system and extend this construction tg itchi Usi q d and ded null di
obtain a new set of relations, which we call the correlation- wite Ing process. Lising acvanced an retarded null coord-

. . - . : . hates introduced earlier, we define
propagation relations for trajectories without any event hori-

zon. These relations are a simple consequence of the analytic d
properties of the massless free field two-point function. We Yi(7i,7)=— d—]lii(ri , i)
also discuss these relations in the context of the model of a i
uniformly accelerated detector and probe. e? dv;

Consider first the fluctuation-dissipation relation for a =7 5(vi(Ti)—vi(Ti'))r
guantum Brownian particle in a heat bd#2]. This can be i
expressed as a linear, nonlocal relation between the noise duy;
7(s) and dissipatior(s) kernels. Definindy by + 5(ui(7i)_ui(7'i,))a

1
By =T N+ (o _
ﬁ(S)Z%(S), (5.1) Yi (7o) +yi(Ti 1), (5.9

denoting the advanced and retarded parts of the kernel
The timelike property of the trajectories implies that
|dx; /dt;| <1. Together with the fact thaf(r;) are increasing
functions of 7;, this implies thatdu;/d7; and dv;/d+; are
~ae | g Y necessarily positive. It also implies that the functienér;)
v(s) ﬁxds K(s=s)¥s), 52 andv,(7;) have unique inverses, if they exist. This can be
proved by way of contradiction: assume thafr;)=u;(7/)
where for some 7,#7 . Then we have x;(7)—X(7)
=t;(7;) —t;(7/), which means that the points and 7/ have
okdk Bkh lightlike separation. This contradicts the fact that the trajec-
K(s—s')= 700t”<7) cok(s—s') (5.9 toryis everywhere timelike. The uniquenes)gf* is shown
0 in the same way.

. ) ) ) These two properties lead to the simplification in the ex-
is a universal kernel, independent of the spectral density gfession fory;

the bath. In particular, the kern#l is independent of the

coupling constant. Such a fluctuation-dissipation relation ei2

holds for the uniformly accelerated detectavith tempera- Yi(7i,7)= - 6(mi— 7). (5.7)

ture given by the Unruh temperatiirend the inertial detec-

tor (with zero temperatuje It was derived in[22] in the  Thyg we see that, for an arbitrary trajectory, the dissipation
context of a quantum Brownian model with bilinear coupling o radiation reaction kernel has the same form and is always
between battifield) and particle(detectoy. In such a model |5c4. This fact has been used in obtaining the dissipative

7 is indeed the quantity which characterizes dissipation inerm in the equations of motion for the accelerated detector

the finite temperature fluctuation-dissipation relation is

the effective Langevin equation for the particle. and probe (4.1) and (4.7).
In the context of the minimally coupled model, however,  The fiyctuation-dissipation relation now follows in a
we find it suitable to defing as straightforward manner:

7(S)=—d—sﬁ(s) (5.4 7;ii(7iaTi’):ffwdSKi(TivS)T’ii(S’Ti,)a (5.8
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where The correlation§ij may be constructed from the noisgeg

a . in an identical manner:
Ki(7i,8)=K{(7,8) +Kj(7i,s)

= dk —a , _eiej »dk &« 1 ,
:J'O m[cog((vi(Ti)_Ui(S)) Vij(TivTj)_E OTCO [Ui(Ti)_vi(vi UJ(T]))]

()= U e
+eoK(Ui(7) —Ui(s)]. (5.9 :é;ﬁ(n'vi_lvj(ﬁ,)), (5.13
We now ask whether a similar relation holds between the
real and imaginary parts &;;, i#j. This would not be a . . . L
fluctuation-dissipation relation in the usual sense, as the redf1ere we have inserted the identity functiopy; * in the
part of Z;; describes correlations of the field between pointsI'St step. Also,

on different trajectories rather than fluctuations, and its

imaginary part describes the propagation of radiation be- _ , e 4 ,

tween one detector and the other, rather than dissipation. We vij(7i, 7)) = g”ii(Ti Uiy (7))- (5.14
will call such relations “correlation-propagation” relations. '

If points on different trajectories have spacelike separa:l_h ¢ ts of tructi for th i d
tions, the relevan%- (defined as- dﬁij /d7;) will vanish as ese two sets o constructions for the propagation and cor-

a consequence of the vanishing of the commutator of a fre‘léelatlon kernels in terms of the dissipation and noise kernels

field for points at spacelike separations. This is simply ane_nable us to write down the correlation-propagation relations

expression of causality in the detector dynamics. HoweverSlmply by invoking the fluctuation-dissipation relations
the corresponding correlatian; need not vanish, and hence (5.8) as they separately apply to the advanced and retarded

there cannot be a general relation between these two kernef%:‘h?lrts of the noise and dissipation along single trajectories:

Such a situation is realized most clearly, for example, in the
case of two uniformly accelerating detectors, one in the right ~ar " ar ~ar ,

and the other in the left Rindler wedge. The trajectories, vij ()= | dsK(7.8)yy(si7), (519
although individually timelike, are spacelike separated ev-

erywhere. The corresponding, andy,, will therefore van- _ _ _ . "
ish identically. Howevery,, and 7, will remain nonzero, K andK{ being defined earlier (5.9). Since the quantities

~ H H o a,r
reflecting the highly correlated nature of the Minkowski 7ij &€ really justs functions and the quantitieki™ are
vacuum state. proportional tov{", these relations can be equivalently

If, however, none of the detector trajectories possessedewed as constructions of the correlationg from the
past or future horizorlin Minkowski space this is true, in NOISESY;; .
particu|ar, for geodesic trajectories, but rmﬂy for geode- The above relations hold for trajectories without any
sic trajectoriel then each of them will lie completely within €vent horizon. In the example of the uniformly accelerated
the causal future of the others. In that case, we can obtaifietector and probe, the uniformly accelerated detector trajec-
correlation-propagation relations relating separately the adory does possess event horizons. This manifests in the prop-
vanced and retarded correlations to their “propagating”erty that the range ofi; is restricted to {-%,0) and the
counterparts. These relations follow from the fluctuation-range ofv; to (0/). The probe trajectory, on the other
dissipation relations along single trajectories derived above}and, will be chosen to be free of any horizon. We will also
essentially by a method of geometric construction: definingiow assume that the probe is switched on forever. Then, we
7% =— dﬁiT/dTi and Sim"aﬂy;ig , we have can construct the correlatlom§1 and the quantmeszll from

7., and y,, exactly as described above, and obtain the cor-

3 o S8 ,\dvi responding correlation-propagation relations:
Yﬁ(fi'Tj)=%5(vi(ri)—vj(rj))d—7_'. (5.10
I

)

Since the trajectory does not possess any horizon, the null ?2'1’(7-2,71)=J dsk3'(7,5)y5) (s, m1). (5.16
coordinatesy; andv; range from—o to «. Thus, the func- -
tionsv;v; * andu;u; ! are identity functions over the entire
real line. Then we obtain, similar to Eq. (5.6), This simply follows by invoking the fluctuation-dissipation
relation along the probe trajectory, as described above. How-
ever, it is of greater interest to know whether such relations
would follow from the fluctuation-dissipation relation along
the uniformly accelerated trajectory. As explained, this will
not be completely possible because the accelerated trajectory
possesses horizons. This difficulty shows up when one tries
to write down a relation of the form (5.16) for the quantities
and T1,andyy,. To do this, we first express the functiofig in
a different form. This was done in Sec. I\ee the steps
%rj(Ti ’Tj/): g%[ﬂ ,Ui_l(Uj(Tj’))]- (5.12) leading from (3.54—(3.58] for the re;tripted case
i U,(7,)>0, v,(7,)>0. If we remove this restriction, we find

~a ’ eiej -1 ’
Yij(7i, 7)==l ()]

_i"a -1 ’
“e Vil 7,0 " (@j(7))] (5.1
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a .. €16 [*dw T ® , , cost (ar—Infav,(75)[) ,
Ziri )= 5 | | oot} | cosz (ari—Inlav(75)DAwa( )+ e 0= v(73)
H H a) ! !
—|S|ng(arl—In|au2(72)|)6(u2(72)) , (5.17
] . €16 [(*do T 2} , , cost (ar; +Infauy(73)|) ,
ZlZ(Tl'TZ)ZHLj cot o COSa(aTl+|n|aU2(7'2)|)0(_U2(7'2))+ sinhz= 0(uy(73))

—i sing(arpL Injauy(75)])0(—ux(75))

. (5.18

Z,, can be expressed in a similar way. From the above, wéelation on the uniformly accelerated trajectory, it thus places
see that the advancetretardedl correlation for v,>0  the role of thermal equilibrium in the RSG cancellation on
(u,<0) has a thermal form, because these correlations califmer ground. _ _

be constructed simply from the noise along the accelerated Y& now turn to the part of the correlations which do not
trajectory. We are, therefore, able to write down gpartake in the correlation-propagation relation above. These

correlation-propagation relation for this part of the correla-2'¢ the advancettetarded correlations for,<0 (u;>0),
tions alone. This takes the form containing the arcsinh factors, and are not expressible in

terms of the noise along the accelerated trajectory. Rather,
they represent true correlations across the fupess) hori-

O a(7))ViA 71, 75) + (= Up(72)) V1 71, 73) zon. If we specialize to the case>0 as in Sec. IV, then
w these are exactly the correlations which contribute to the ex-
=f dsKi(71,5) 1S, 75), (5.19 citation of the probe in the guise @f.p.), Eq. (4.23). The

probe may, therefore, be said to be excited by free field cor-
relations across the future horizon.

where If we specialize to the simple probe trajectory
X2(7'2):O, t2(’7'2):7'2, then we haVan(Tz):Uz(Tz):Tz
_ , duq, and the expressions (5.18) 8§, acquire a symmetric form.
V1A T1,72) = — dry In this special case, we can write down a correlation-

propagation relation for the entire kerngl,, by relating the

ee, . , , advanced part of the correlations across the horizon to the
=~ [8(ri—a"lInjava(75)[)0(va(72)) retarded part of the propagation kernel, and vice versa: we
then have
+8(m+a  Infauy(5)|) 8(— Up(75))] oe
-~ i 1=2 - ’ i
(5.20 712(7'1,7'2)27[5(7'1_3 YIn[ary]) 6(75)
and +8(m+a tnjary|)0(—75)]. (5.23
«dk @k Choosing
K ,8)= | —-coth—cok(7,—5). 5.2
1(7.8)= | peothg cok(n=s). - (5.21 =dk[  mk cok(r,+ 7))
Ki(Tlﬂ'i):J — | coth—cok(ry— )+ ——————
. . . o 7K a sinhZ
The single relation (5.19), as opposed to separate relations (5.24

between the advanced and retarded parts, is a consequence of

the fact that the thermal noise is isotropic and therefore conwe obtain
tains equal contributions from advanced and retarded parts. .
. In _the context of the analysis of Sec. IV, where the probe Tk 71,75) = f dsK{(71,8)Y12(S, ) (5.25
is switched on ati,=0, (5.19) becomes —o

" as a correlation-propagation relation in this special case. The
VAT, 7)) = J dsKi(ry,9)%5,(s, 7). (5.22  above r_elatiqn cannot be ggometrically constructed from the
— fluctuation-dissipation relation along the single accelerated
trajectory. So far, we have not been able to show the exist-
Viewed as a construction of], from 7§, this relation lies at  ence of such a relation in more general cases. The extra piece
the heart of the RSG cancellation in (4.16). Viewed alternain the interpolating kernef; comes from correlations across
tively as an extension of the thermal fluctuation-dissipatiorthe horizon, as explained earlier.
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VI. SUMMARY AND DISCUSSION A distinct feature of the influence functional formalism as

Tos . K and findi h ted used in this paper is the assumption of an uncorrelated field-
ummarize ourwork and findings, we have presented gqqj 510y initial state. As argued in the appendix, an uncor-

general formalism to treat an arbitrary number of detectorge|ateq injtial state is more readily realizable in the derivative
modelled as oscillators in arbitrary kinematic states, and.,,pjing model. However, since the minimal and derivative
minimally coupled to a massless scalar field ift 1 dimen-  coypling models are dynamically equivalent, we expect our
sions. In this approach, the scalar field has been integratgtha| results to be essentially unchanged, in particular the
out and the detector dynamics is described by a reduced sgdsults of detector response in the various cases studied. The
of effective semiclassical stochastic equations. These equgiscussion of fluctuation-dissipation relations can be refor-
tions, nonetheless, contain the full quantum dynamics of thenulated as well in a way suitable to the derivative coupling
field. Our treatment can be extended to massive fields anghodel.
higher dimensions by making appropriate changes in the We would like to mention possible extensions of this
two-point functionsZ;; . work to other problems. In discussions of the quantum
We studied four examples, starting with a single inertialequivalence principl¢29,12), one compares the response of
and uniformly accelerated detector, mainly to illustrate thed detector moving on a geodesic trajectory in Minkowski
new description, and culminating in the treatment of a uni-space, and coupled to a quantum field, to its response along
formly accelerated oscillator and a second oscillator whict® geodesic of a spacetime with a homogenous gravitational
functions as a probe. We show that there exist fluctuationfield. The idea is to derive a suitable transformation on the
dissipation relations relating the fluctuations of the stochasti§taté of the quantum field which yields the same detector
forces on the detectors to the dissipative forces. We discovéfSPONSe in both cases. If one can find such a transformation,
a related set of correlation-propagation relations between thi'€ €quality of the detector response in both cases constitutes
correlations of stochastic forces on different detectors an@ €St of the validity of the quantum equivalence principle for

the retarded and advanced parts of the radiation mediated byc@! Physical processes. However, a homogeneous gravita-
them. tional field defines a global inertial frame, and so one is

In the analysis of two inertial detectors, we find that theinclined to believe that the equivalence principle V\{ould hold
change in the state of the field because of the coupling witf°r nonlocal processes as well, such as the effective dynam-
either detector modifies the impedance functions of both del€S Of two spatially separated detectors coupled to the same
tectors, and hence their dissipative properties. Also, this coguantum field. We plan to investigate this and related issues,
pling introduces a mutual impedance which describes th&SPecially the implications of our findings on black hole back
change in the response of one detector because of the fluigaction and information problems in later works.
tuations of the field in the vicinity of the other one. The field

fIl_Jc_tuations(noise) in this case are relatively trivial, and non- ACKNOWLEDGMENTS
trivial effects can be ascribed mainly to the impedance func- .
tions. This work was supported in part by the National Science

In the case of the accelerated detector and the probe' d?pundation under Grant No. PHY94-21849. A.R. would like
the other hand, the noise because of field fluctuations and tHe thank Professor Ulrich Gerlach for the opportunity to
field correlations between the two trajectories play a domifresent an early version of this work at the Seventh Marcel
nant role. Since the probe cannot causally influence the aésrossmann Meeting in General Relativity, and the Univer-
celerated detector, the dissipative features of this problem agity of Maryland Graduate School for partial travel support.
relatively trivial. Here, we find that most of the terms con- B.L.H. acknowledges support from the General Research
tributing to the response of the probe cancel out, leavingdoard of the Graduate School of the University of Maryland
behind a contribution that arises purely from field correla-and the Dyson Visiting Professor Fund at the Institute for
tions across the horizon. This cancellation was earlieAdvanced Study, Princeton. Part of this work was done
pointed out[11,13 to be a consequence of the identity while he visited the Newton Institute for Mathematical Sci-
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ated detector and its free uncoupled dynamics. It therefore
does not explicitly involve the fluctuations of the field. We
point out that this cancellation can instead be understood to
follow because the correlations between the accelerated de-
tector and probe trajectories can be expressed partly in terms The infrared effects of the minimal couplifylC) model
of the noise or field fluctuations along the accelerated trajecare not trivial. In fact, as we will show, the proper treatment
tory alone, and also because of the isotropy of this noise. Thef this simple model, including an ultraviolet but not an in-
expression of correlation in terms of noise can be equivafrared cutoff, leads us to identify a superselection rule which
lently viewed as a consequence of the correlationprefers a particular class of bases in the model's Hilbert
propagation relations we obtain in Sec. IV, which are approspace. Using the minimal coupling model and this preferred
priate extensions of a generalized fluctuation-dissipatiorctlass of bases is equivalent to a derivative coupling model
relation directly relating field fluctuations to dissipative prop- used by Unruh and Zurek and a basis of direct products of
erties. unperturbed field and oscillator states.

APPENDIX A: INFRARED PROBLEMS
IN THE MINIMAL COUPLING MODEL
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The MC Hamiltonian is ing operators. We find that either of these operators maps the
ground state onto a highly excited state, whose expected en-
ergy is infrared divergent. Consequently, observations that
are restricted to the oscillator sector aldmes it is defined
from Eq. (Al)] may be said to require infinite amounts of
It is straightforward to show that the expectation value ofenergy. Considering the field that appears in &) to be
Hc for soft photon state§.e., low energy eigenstates of the an unobserved environment is therefore unphysical.
free field Hamiltoniap has a contribution proportional to the We can, however, change our basis so that the Hamil-
inverse of their unperturbed energy. This suggests that thgnian appears more benign in terms of the transformed op-
true low energy states of this model must have strong correerators. We may effect this transformation using the unitary
lations between the field and the oscillator. If we reject anoperator U=exp(— (i/4)eQ(0)). This transformation
infrared cutoff as unphysical, then we must conclude thamixes the field and oscillator sectors, and so changes what is
states that are direct products of field and oscillator statemeant by an observation of the oscillator alone. We can
will actually have energies very much higher than that of thecheck that the new oscillator raising and lowering operators,
true ground state of the model. acting on the ground state, now produce states whose energy
The poor behavior of the basis of unperturbéce., is ultraviolet divergent, instead of infrared. A physically
€—0) energy eigenstates reflects the fact that, since there aggausible UV cutoff then renders this energy finite, and it
field modes at all frequencies, expanding arous€0 cor-  becomes reasonable to consider the new field sector as un-
rectly requires degenerate perturbation theory. Since we asbserved. Furthermore, a direct product of the unperturbed
trying to set up an open quantum system, however, ouground state of the transformed field and any finite-energy
choice of basis is not merely a matter of convention. Differ-oscillator state now has finite energy, and so is not unreason-
ent bases can imply different partitions of the complete Hil-able as an initial state for the coupled system.
bert space into “system” and “environment” subspaces. In  An alternative way of expressing the advantage of the
the influence functional formalism, one traces over the finatransformed variables is to say that in order for a degree of
states of the environment, and assumes an initial state whidhkeedom in the theory to be observable in isolation, it must
is often a direct product of system and environment. If werequire finite energy to excite or de-excite it without affect-
change what we mean by “system” and “environment,” the ing other degrees of freedom, and it must also be spatially
final trace becomes a different operation, and the initial statgcal (except possibly at small scajesSuch an observed
becomes a different state. degree of freedom will be some linear combination of the
It is not the model itself, of course, but only the naive exact normal modes. If we require the coefficients in this
basis that is badly behaved: the full Hamiltonian is quadraticlinear combination to vanish at high energies and remain
and hence equivalent to a set of decoupled harmonic oscilldinite everywhere else, we can ensure finite energy observ-
tors. To understand the problems with the basis of unperability. If we require that the coefficients are constant at low
turbed energy eigenstates, and to identify a better basis, wgnergies, we also ensure local observability.
should diagonalize the full Hamiltonian. We would then like to have a basis in which this observed
The MC Hamiltonian may be diagonalized by defining linear combination “looks like” a harmonic oscillator
new creation and annihilation operators. If the original fieldcoupled to a scalar field. Given our conditions of local and
and conjugate momentum operators gfe) and 7(x), the  finite energy observability, our original basis does not pro-
diagonalizing annihilation operators are vide this feature, but our second basis does.
The transformed Hamiltoniahkl,,c becomes, in the new
1 o . operators, precisely the Hamiltonian of the Unruh-Zurek
ak:\/ZfL:7T|k|( f,de[C(k)Ek(x)ﬂsmkx] model. We have, therefore, found that, even if we begin by
analyzing the minimally coupled model, we may be com-
. pelled in the end to study the Unruh-Zurek mo@eith a UV
+eC(K)[iQ—|k|P], (A2) cutoff) instead. More convenient for our subsequent calcula-
tions than the Hamiltonian for this model is its Lagrangian:

_ 1 2. Ko
Huc=Ho,* W[P_ﬂﬁ(o)] +§Q . (A1)

X[|klp(x) +im(x)]

where  E,(x)=(1—k2M/«)cokx—[eX/(2«)]sinklx  and

— (1 K2 2.4 _4,2](0,.2\1- 112 1. 1 e
f?éllé)—[(l k“M/k)“+€k/(4x?)]" 7%, for a massless LDczz(MQZ—KQZ)JrEf dkdy O, — K2DF D,
Note that the set of fieldlike operatofa, ,a/} diagonal-
izes the entire Hamiltonian. There is no normal mode of the _ LQ((DPL ). (A3)
coupled system which corresponds even weakly to the un- V2

perturbed oscillator, and all of the normal modes contain

very nonlocal excitations of the field. If we wish to consider Here,®, is the time-dependent, spatial Fourier transform of

the oscillator as an open system coupled to the field as athe field ¢.

unobserved environment, then, the basis of exact energy Note that, even in the more benign Unruh-Zurek basis,

eigenstates of the combined system will not be particulariydistinguishing the oscillator as a system observable indepen-

convenient. The fact that this model is easily solved exactlydently of the field directly implies that there must be a UV

does not make the system-environment problem trivial. cutoff. One often argues that a cutoff is appropriate because
We can now, however, determine the effect on the truene is not interested in accurately describing physics at in-

ground state of the unperturbed oscillator raising and loweraccessible energy scales; but in the case of the oscillator
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coupled to a field, there must really be a cutoff in the cou-The stochastic effective action in the derivative coupling

pling in order for there to be any accessible energy scale.

APPENDIX B: CORRESPONDENCE BETWEEN
MINIMAL AND DERIVATIVE COUPLING MODELS

In the minimal coupling model, the derivative of the os-

cillator coordinate couples to the field, whereas in the deriva-
tive coupling model the oscillator coordinate couples to the

derivative of the field. These two models thus differ by a
total derivative term in the Lagrangian. In particular, they

have the same Heisenberg operator dynamics. The aboy

subsection describes the issue of the initial state, and argu
that an uncorrelated initial state is physically more realisti
in the derivative coupling model. However, since the two
models have the same dynamics, this should translate to
simple prescription for switching from one model to the
other in the context of the influence functional treatment.

In the previous sections, we have derived all results from
the minimal coupling model. One can obtain corresponding

guantities in the influence functional of the derivative
coupling model via the prescription below:

(B1)

model is then given by

Noro1 o
SEﬁ:izl iix (T)d"i Q Q-0 Q —Q si(m) mi(m)

N
_ 7 (), o~ ,
_2Qi si(Ti)jzl fﬁj dTI Q;—/SJ(TI)/.L”(T, ,’Tj).

(B2)

l\éote that the quantitie’ﬁij in the above equation refer to the
newly defined quantities in the derivative coupling model.

%ey are obtained by differentiating the corresponding quan-
Sities in the MC model twice.

The Langevin equations are
N
22
i=1

=si(7) (7).

The noise kernel, as the correlator gf and 7;, is also
obtained by the corresponding noise kernel in the MC model
by differentiating twice, according to the correspondence es-
tablished above.

The infrared-divergent energy of the initially uncorrelated
state does have an effect: the propagation kernel, in the mini-
mal coupling model, contains an initial “shock wave” term,
as well as the expected dissipation and propagation terms,
and this term is not present in the derivative coupling model.
Since this shock wave is a transient, it has no significance in
our late-time analysis.

a
d?Q;
— -
I

R CIED S ~ , 2
drisj(7j)si(7i)wij(7i, 7)) Qj+ QFQ

— o0

(B3)
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