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Stochastic theory of accelerated detectors in a quantum field
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We analyze the statistical mechanical properties ofn detectors in arbitrary states of motion interacting with
one another via a quantum field. We use the open system concept and the influence functional method
calculate the influence of quantum fields on detectors in motion, and the mutual influence of detectors v
fields. We discuss the difference between self and mutual impedance, advanced and retarded noise, and
relations between noise-correlations and dissipation-propagation. The mutual effects of detectors on one a
other can be studied from the Langevin equations derived from the influence functional, as it contains the ba
reaction of the field on the system self-consistently. We show the existence of general fluctuation-dissipatio
relations, and for trajectories without event horizons, correlation-propagation relations, which succinctly en
capsulate these quantum statistical phenomena. These findings serve to clarify some existing confusions on
accelerated detector problem. The general methodology presented here could also serve as a platform
explore the quantum statistical properties of particles and fields, with practical applications in atomic an
optical physics problems.@S0556-2821~96!03912-4#

PACS number~s!: 32.80.2t, 04.62.1v, 05.40.1j, 42.50.Lc
t
by
ost

n
at-
to
e.
x-
em,
out

d
d

on
l
h

of
i-
in

of
ti-
v-
o-
m
e
nal

u-
al
on
I. INTRODUCTION

The physics of accelerated detectors became an inter
ing subject of investigation when Unruh showed that a d
tector moving with uniform accelerationa sees the vacuum
state of some quantum field in Minkowski space as a therm
bath with temperatureTU5\a/2pckB ~where\,kB,c are the
Planck and Boltzmann’s constants, and the speed of li
respectively! @1#. This seminal work which uses the structu
of quantum field theory of Rindler space explored by Fullin
@2#, and the Bogolubov transformation ideas invented
Parker for cosmological particle creation@3# earlier, draws a
clear parallel with the fundamental discovery of Hawkin
radiation in black holes@4#. The discovery of Unruh effect
~see also@5#! sets off the first wave of activities on this
subject. The state-of-the-art understanding of the physics
this problem in this first stage of work is represented by t
paper of Unruh and Wald@6#. We refer the readers to the
reviews of Sciama, Candelas, and Deutsch@7#, Tagaki @8#,
and Ginzburg and Frolov@9#.

The second stage of investigation on this problem w
initiated by the inquiry of Grove@10#, who challenged the
prevailing view and asked the question whether the detec
actually radiates. This was answered in the negative by
inspiring paper of Raine, Sciama, and Grove~RSG! @11# who
considered an exactly solvable harmonic oscillator detec
model and analyzed what an inertial observer sees in
forward light cone of the accelerating detector via a Lang
vin equation. Unruh@12# performed an independent calcula
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tion and concurred with the findings of RSG to the exten
that the energy-momentum tensor of the field as modified
the presence of the accelerating detector vanishes over m
of the spacetime~except on the horizons!. However, he also
showed the existence of extra terms in the two-point functio
of the field beyond its value in the absence of the acceler
ing detector, and argued that these terms would contribute
the excitation of a detector placed in the forward light con
These terms were missed out in RSG. Following these e
changes, there was a recent renewed interest in this probl
notably the series of papers by Massar, Parentani, and Br
@13# ~MPB!, who gave a detailed analysis via Hamiltonian
quantum mechanics of the two-point function and pointe
out that the missing terms contribute to a polarization clou
around the accelerating detector; Hinterleitner@14#, who in-
dependently discussed the back reaction of the detector
the field using a slightly different yet exactly solvable mode
and arrived at conclusions similar to MPB; and Audretsc
and Müller @15#, who explored nonlocal pair correlations in
accelerated detectors. However, the physical significance
the polarization cloud, its connection to the noise exper
enced by another detector, and to the inherent correlations
the free Minkowski vacuum, remain largely unexplored.

Beginning with this work we would like to add a new
dimension to this problem and open up the third stage
investigation. The new emphasis is in exploring the statis
cal mechanics of particles and fields, and in particular, mo
ing detectors on arbitrary trajectories. We analyze the st
chastic properties of quantum fields and discuss this proble
in terms of quantum noise, correlation, and dissipation. W
use the open system concept and the influence functio
method@30# to treat a system ofn detectors interacting with
a scalar field. This method enables one to examine the infl
ence of detectors in motion on quantum fields, the mutu
influences of detectors via fields, as well as the back reacti
7003 © 1996 The American Physical Society
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of fields on detectors in a self-consistent manner.
As explained earlier@16#, the influence functional method

is a generalization of the powerful effective action method
quantum field theory for treating back reaction problem
which also incorporates statistical mechanics notions such
noise, fluctuations, decoherence, and dissipation. Indeed,
of us has long held the viewpoint@17,18# that to get a more
profound understanding of the meaning of Unruh and Haw
ing effects and the black hole information and back react
problems one cannot be satisfied with the equilibrium th
modynamics description. It is necessary to probe deeper
the statistical properties of quantum fields, their correlatio
and dynamics, coherence and decoherence of the part
field system, the relation of quantum noise and thermal ra
ance, fluctuation-dissipation relations, etc. Earlier investig
tion of correlation and dissipation in the Boltzmann
Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY! scheme
@19–21# and the properties of noise and fluctuations in t
Langevin framework@22–24# are essential preparations fo
tackling such problems at a deeper level.1

With this theoretical perspective in mind, we have r
cently begun a systematic study of the accelerated dete
problem@25,23#. We show that thermal radiance can be u
derstood as originating from quantum noise under differe
kinematical ~moving detector! and dynamical~cosmology!
excitations. The aim of this paper is to~1! show on both the
conceptual and technical levels the power and versatility
this new method,~2! settle some open questions and clari
some existing confusions, such as the existence of radia
and polarization, solely from an analysis of detector r
sponse,~3! introduce new concepts such as self and mut
impedance, advanced and retarded noise, fluctuat
dissipation and correlation-propagation relations using
accelerated detectors problem as an example, and finally~4!
suggest new avenues of investigations into the statistical
chanics of particle and fields, including black hole physic

Employing a set of coupled stochastic equations for t
detector dynamics, we analyze the influence of an acce
ated detector on a probe which is not allowed to causa
influence the accelerated detector itself. We find, as did@11–
13#, that most of the terms in the correlations of the stoch
tic force acting on the probe cancel each other. This can
lation is understood in the light of a correlation-propagati
relation, derived as a simple construction from th
fluctuation-dissipation relation for the accelerated detec
Such a relation can be equivalently viewed as a construc
of the free field two-point function for each point on eithe
trajectory from the two-point function along the uniforml
accelerated trajectory alone. The remaining terms, wh
contribute to the excitation of the probe, are shown to rep
sent correlations of the free field across the future horizon
the accelerating detector. In this problem, the dissipat
properties of either detector remain unchanged by the p
ence of the other. This happens because the probe ca
influence the accelerated detector. However, the stocha
force acting on the probe plays a nontrivial role.

We also consider the problem of two inertial detecto
which can back react on each other. This mutual back re

1Our view is thus most akin to that espoused by Sciama@26#.
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tion changes the self-impedance functions of these detecto
and introduces mutual impedances as well. The dissipat
properties of each detector are thus altered because of
presence of the other one. This physical effect is in a sen
complementary to the effects manifested in the accelera
detector problem, where the probe does not back react on
accelerated detector.

The paper is organized as follows. In Sec. II we develo
the influence functional formalism describing the influenc
of a massless scalar field on a system of an arbitrary num
of detectors moving on arbitrary trajectories. The field mode
are integrated out in this formalism, and effective stochas
equations of motion for the various detectors are obtained.
Sec. III we consider some applications of this formalism t
three simple cases, the primary one being the analysis of t
inertial detectors coupled to the same quantum field. In Se
IV we treat the RSG excitation of a probe in the presence
a uniformly accelerating detector. In Sec. V we show th
existence of fluctuation-dissipation relations governing th
detector system. These relations are used as a starting p
for obtaining more general relations between the correlatio
of various detectors and the radiation mediated by the
Such relations are also discussed in the specific context
the RSG model. Finally, in Appendices A and B, we poin
out problems associated with the uncorrelated detector-fie
initial state in a minimally coupled model, and argue tha
these problems are removed in a derivative coupling mod
We present a simple prescription for switching from on
model to the other.

II. SCALAR ELECTRODYNAMICS
OR MINIMAL COUPLING MODEL

The paper by Raine, Sciama, and Grove uses the sca
electrodynamic or ‘‘minimal’’ coupling of oscillators to a
scalar field in 111 dimensions. This coupling provides a
positive definite Hamiltonian, and is of interest because
resembles the actual coupling of charged particles to an el
tromagnetic field. In this section, we derive the influenc
functional describing the effect of a scalar field on the dy
namics of an arbitrary number of detectors modelled as min
mally coupled oscillators. The detectors move along arb
trary trajectories. We assume that the field and the system
detectors are initially decoupled from each other, and that t
field is initially in the Minkowski vacuum state. The formal-
ism can be simply extended to higher dimensions, and
different choices of initial state for the field. We also obtai
coupled Langevin equations for the detector system.

A. Influence functional for N arbitrarily moving detectors

ConsiderN detectorsi51, . . . ,N in 111 dimensions
with internal oscillator coordinatesQi(t i), and trajectories
„xi(t i),t i(t i)… , t i being a parameter along the trajectory o
detectori . In the following analysis, we do not need to as
sume thatt i is the proper time, although this is, in mos
cases, a convenient choice. However, we will assume he
after that the trajectories„t i(t i),xi(t i)… are smooth and that
the parameterst i are chosen such thatt i(t i) is a strictly
increasing function oft i .
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The detectors are coupled to a massless scalar fi
f(x,t) via the interaction action

Sint5(
i
eiE

2`

t i
21

~T!
dt isi~t i !

dQi

dt i
f„xi~t i !,t i~t i !…. ~2.1!

Here,T is a global Minkowski time coordinate which define
a spacelike hypersurface,ei denotes the coupling constant o
detectori to the field,si(t i) is the switching function for
detectori ~typically a step function!, and t i

21 is the inverse
function of t i . t i

21(T) is, therefore, the value oft i at the
point of intersection of the spacelike hypersurface defined
T with the trajectory of detectori . Note that the strictly
increasing property oft i(t i) implies that the inverse, if it
exists, is unique.

The action of the system of detectors is

Sosc5
1

2(i E
2`

t i
21

~T!
dt i@~]t i

Qi !
22V i

2Qi
2#. ~2.2!

The scalar field action is given by

Sfield5
1

2E2`

T

dtE dx@~] tf!22~]xf!2# ~2.3!

and the complete action

S5Sfield1Sosc1Sint . ~2.4!

Expanding the field in normal modes,

f~x,t !5A2

L(k
8 @qk

1~ t !coskx1qk
2~ t !sinkx#, ~2.5!

where (k8 denotes that the summation is restricted to t
upper halfk space,k.0. Then the action for the scalar fiel
is given by (s51,2)

Sfield5
1

2(k,s
8 @~ q̇k

s!22vk
2qk

2# ~2.6!

and the interaction action is

Sint5(
i
eiA2

LE2`

t i
21

~T!
dt i

dQi

dt i
(
k

8 @qk
1
„t i~t i !…coskxi~t i !

1qk
2
„t i~t i !…sinkxi~t i !#si~t i !

5(
i
eiA2

LE2`

`

dtE
2`

t i
21

~T!
dt id„t2t i~t i !…

dQi

dt i

3(
k

8 @qk
1~ t !coskxi~t i !1qk

2~ t !sinkxi~t i !#si~t i !.

~2.7!

We havet i(t i),T, which follows fromt i,t i
21(T) and the

property thatt i(t i) is a strictly increasing function. Hence
we may replace the upper limit of thedt integration byT.
This replacement leads to the expression
eld

s
f

by

he
d

,

Sint52(
k,s

8 E
2`

T

dtJk
s~ t !qk

s~ t !, ~2.8!

where

Jk
s~ t !52(

i
eiA2

LE2`

t i
21

~T!
dt id„t2t i~t i !…

dQi

dt i
uk

s~t i !si~t i !

~2.9!

and

uk
1~t i !5coskxi~t i !, uk

2~t i !5sinkxi~t i !. ~2.10!

The actionSfield1Sint , therefore, describes a system of de
coupled harmonic oscillators each driven by separate sour
terms. The zero temperature influence functional~corre-
sponding to the initial state of the field being the Minkowsk
vacuum! for this system has the form@22#

F@J,J8#5expH 2
1

\(
k,s

8 E
2`

T

dsE
2`

s

ds8@Jk
s~s!2Jk8

s~s!#

3@zk~s,s8!Jk
s~s8!2zk* ~s,s8!Jk8

s~s8!#J , ~2.11!

where

zk[nk1 imk5
1

2vk
exp@2 ivk~s2s8!#. ~2.12!

If the field is initially in a thermal state, the influence func-
tional has the same form as above, and the quantityzk be-
comes

zk5
1

2vk
FcothS bvk\

2 D cosvk~s2s8!2 isinvk~s2s8!G ,
~2.13!

b being the inverse temperature. We shall restrict our atte
tion to the zero temperature case.

Substituting for theJk
s’s in the influence functional, and

carrying out thed-function integrations, one obtains

F@$Q%;$Q8%#5expH 2
1

\ F (
i , j51

N E
2`

t i
21

~T!

3dt isi~t i !E
2`

t j
21

„t i ~t i !…dt j8sj~t j8!

3S dQi

dt i
2
dQi8

dt i
D S Zi j ~t i ,t j8!

dQj

dt j8

2Zi j* ~t i ,t j8!
dQj8

dt j8
D G J , ~2.14!

where

Zi j ~t i ,t j8!5
2

L
eiej(

k,s
8 zk„t i~t i !,t j~t j8!…uk

s~t i !uk
s~t j8!.

~2.15!



tor
a-
s
p-
s-

s-

of
r-

-
;

y,

a

7006 53ALPAN RAVAL, B. L. HU, AND JAMES ANGLIN
In the above, the continuum limit in the mode sum is reco
ered through the replacement(k8→(L/2p)*0

`dk. We then
obtain, after substituting foruk

s andzk ,

Zi j ~t i ,t j8!5
eiej
2p E

0

`dk

k
exp$2 ik@ t i~t i !

2t j~t j8!#%cosk„xi~t i !2xj~t j8!…. ~2.16!

In this form,Zi j is proportional to the two-point function of
the free scalar field in the Minkowski vacuum, evaluated f
the two points lying on trajectoriesi and j of the detector
system. It obeys the symmetry relation

Zi j ~t i ,t j8!5Zji* ~t j8 ,t i !. ~2.17!

Corresponding to (2.12), we may also splitZi j into its real
and imaginary parts. Thus, we define

Zi j ~t i ,t j8!5 ñ i j ~t i ,t j8!1 i m̃ i j ~t i ,t j8! ~2.18!

where

ñ i j ~t i ,t j8!5
eiej
2p E

0

`dk

k
cosk„t i~t i !2t j~t j8!…

3cosk„xi~t i !2xj~t j8!…,

m̃ i j ~t i ,t j8!52
eiej
2p E

0

`dk

k
sink„t i~t i !2t j~t j8!…

3cosk„xi~t i !2xj~t j8!…. ~2.19!

ñ and m̃ are proportional to the anticommutator and th
commutator of the field in the Minkowski vacuum, respe
tively.

The quantitiesZi j are also conveniently expressed
terms of advanced and retarded null coordina
v i(t i)5t i(t i)1xi(t i) andui(t i)5t i(t i)2xi(t i), as

Zi j ~t i ,t j8!5Zi j
a ~t i ,t j8!1Zi j

r ~t i ,t j8!, ~2.20!

where

Zi j
a ~t i ,t j8!5

eiej
4p E

0

`dk

k
exp@2 ik„v i~t i !2v j~t j8!…#,

Zi j
r ~t i ,t j8!5

eiej
4p E

0

`dk

k
exp@2 ik„ui~t i !2uj~t j8!…#,

~2.21!

and the superscriptsa and r denote advanced and retarde
respectively.2 Similar decompositions forñ i j and m̃ i j thus
follow.

2The terminology ‘‘advanced’’ and ‘‘retarded’’ refers to the nu
coordinates. Equivalently, they can be called ‘‘left moving’’ an
‘‘right moving,’’ respectively, when the sense of motion refers
the future direction in time. This terminology is used in wave a
string theories.
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The influence functional, along with the action for the
detector system, can be employed to obtain the propaga
for the density matrix of the system of detectors. This prop
gator will contain complete information about the dynamic
of the detectors. However, we shall take the alternative a
proach of deriving Langevin equations for the detector sy
tem in order to describe its dynamics.

B. Langevin equations

In this subsection, we wish to derive the effective stocha
tic equations of motion for theN-detector system. In the
previous subsection, we integrated out the field degrees
freedom. The effect of this is to introduce long-range inte
actions between the various detectors.

Going back to the form (2.11) for the influence func
tional, we define the center of mass and relative variables

Jk
1s~s!5„Jk

s~s!1Jk8
s~s!…/2,

Jk
2s~s!5Jk

s~s!2Jk8
s~s!. ~2.22!

Correspondingly, we also find it convenient to define

Qi
1~t i !5„Qi~t i !1Qi8~t i !…/2,

Qi
2~t i !5Qi~t i !2Qi8~t i !. ~2.23!

Then, Eq. (2.11) yields

uF@J,J8#u5expH 2
1

\(
k,s

8 E
2`

T

dsE
2`

s

ds8Jk
2s~s!

3nk~s,s8!Jk
2s~s8!J ~2.24!

5E Pk,s8 ~Djk
sP@jk

s#!expS 2
i

\(
k,s

8 E
2`

T

dsJk
2s~s!jk

s~s! D .
~2.25!

uFu is the absolute value ofF, containing the kernelnk . The
phase ofF contains the kernelmk . In the second equality,
we have used a functional Gaussian integral identit
P@jk

s# being the positive definite measure

P@jk
s#5Nexp

3H 2
1

2\E2`

T

dsE
2`

T

ds8jk
s~s!nk

21~s,s8!jk
s~s8!J ,

~2.26!

normalized to unity. It can, therefore, be interpreted as
probability distribution over the function spacejk

s .
The influence functional can thus be expressed as

ll
d
to
nd
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F@$Q%,$Q8%#5K expH 2
i

\(
k,s

8 E
2`

T

dsJk
2s~s!F jk

s~s!

12E
2`

s

ds8mk~s,s8!Jk
1s~s8!G J L

[K expS i\ SinfD L , ~2.27!

where angular brackets denote expectation value with res
to the joint distributionPk,s8 P@jk

s#. Sinf will be called the
stochastic influence action. We find

^jk
s~s!&50,

^$jk
s~s!,jk8

s8~s8!%&5\dkk8dss8nk~s,s8!, ~2.28!

where$ ,% denotes the anticommutator.
Substituting forJk

2s and Jk
1s in terms of the detector

degrees of freedom$Qi%, the stochastic influence actio
Sinf is obtained as

Sinf52(
i51

N E
2`

t i
21

~T!
dt i

dQi
2

dt i
si~t i !Fh i~t i !

12(
j51

N E
2`

21„t i ~t i !…
dt j8

dQj
1

dt j8
sj~t j8!m̃ i j ~t i ,t j8!G

~2.29!

with

h i~t i !5ei(
k,s

8A2

L
uk

s~t i !jk
s
„t i~t i !…. ~2.30!

From Eq. (2.29) we see that the quantitiesm̃ i j , iÞ j mediate
long-range interactions between the various detectors and
quantitiesm̃ i i describe self-interaction of each detector b
cause of its interaction with the field. This self-interactio
typically manifests itself as a dissipative~or radiation reac-
tion! force in the dynamics of the detectors. We will, ther
fore, refer tom̃ i j , iÞ j as a ‘‘propagation kernel,’’ andm̃ i i as
a ‘‘dissipation kernel.’’

We now turn to the interpretation of the quantitiesh i .
They appear as source terms in the effective action of
detector system. Also, being linear combinations of t
quantitiesjk

s , they are stochastic in nature. Indeed, fro
Eqs. (2.28) and (2.30), we can obtain

^h i~t i !&50,

^$h i~t i !,h j~t j8!%&5eiej(
k,s

8 (
k8,s8

8 uk
s~t i !uk8

s8~t j8!S 2L D
3^jk

s
„t i~t i !…jk8

s8
„t j~t j8!…&

5\ñ i j ~t i ,t j8!. ~2.31!

Thus, ñ i j appears as a correlator of the stochastic forcesh i
andh j . Along a fixed trajectory, this correlation manifes
pect

n

the
e-
n

e-

the
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m

ts

as noise in the detector dynamics. Hence, we callñ i i a
‘‘noise kernel’’ andñ i j , iÞ j , a ‘‘correlation kernel.’’3

The full stochastic effective action for theN-detector sys-
tem is given by

Seff5Sosc1Sinf . ~2.32!

We may now express this in terms of the variablesQi
1 and

Qi
2 defined earlier. Thus, we obtain

Seff5(
i51

N E
2`

t i
21

~T!
dt iF Q̇i

2Q̇i
12V i

2Qi
2Qi

12Q̇i
2si~t i !h i~t i !

22Q̇i
2si~t i !(

j51

N E
2`

21„t i ~t i !…
dt j8Q̇j 8

1sj~t j8!m̃ i j ~t i ,t j8!G ,
~2.33!

where ḟ i[d fi /dt i , ḟ j 8[d f j /dt j8 .
Extremizing the effective action with respect toQi

2 and
settingQi5Qi8 at the end@22#, we obtain a set of coupled
equations of motion, the Langevin equations, for the syste
of detectors:

d2Qi

dt i
2 22(

j51

N E
2`

21„t i ~t i !…
dt j8sj~t j8!

d

dt i
„si~t i !m̃ i j ~t i ,t j8!…

dQj

dt j8

1V i
2Qi5

d

dt i
„si~t i !h i~t i !…. ~2.34!

Because of the back reaction of each detector on the fie
and consequently on other detectors, the effective dynam
of the detector system is highly nontrivial and, as such, ca
be solved in closed form only for simple trajectories or unde
simplifying assumptions such as ignoring the back reactio
of certain detectors on the field. For instance, if we choose
ignore the back reaction of detectori on the field, this can be
effected by settingm̃ j i50, for all j , including j5 i , while at
the same time keepingm̃ i jÞ0 for jÞ i . The particular case
m̃ i i50 amounts to ignoring the radiation reaction of detecto
i . This is necessary because the radiation reaction effe
arises because of a modification of the field in the vicinity o
the detector as a consequence of the back reaction of t
detector on the field.

Of course, it is, in general, inconsistent to ignore the bac
reaction of a detector, as it leads to a direct violation of th
symmetry (2.17). As is well known, it also leads to unphysi
cal predictions. For example, in the treatment of an atom o
an inertial trajectory, coupled to a quantum field, balance o
vacuum fluctuations and radiation reaction is necessary
ensure the stability of the ground state. As explained abov
ignoring back reaction implies ignoring the radiation reactio
force. Such a treatment would render the ground state u
stable.

3The distinction between noise and correlation is unnecessa
from the point of view of the field. ‘‘Noise,’’ as used here, also
represents free field correlations for points on a single trajector
However, from the point of view of each detector, these two quan
tities play a different role. Hence, the choice of terminology.
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However, in certain cases, the quantitiesm̃ j i may not con-
tribute to the dynamics of detectorj , as in Sec. IV below,
where the trajectory of one detector is always outside
causal future of the other one. Hence, there is no retar
effect of one of the detectors on the other.

Our formal treatment of the detector-field system is exa
in that it includes the full back reaction of the detectors
the field, which is manifested in the coupled Langevin equ
tions of the various detectors. The coupled equations of m
tion give rise to a sort of ‘‘dynamical correlation’’ betwee
the various detectors. Nondynamical correlations also oc
because of the intrinsic correlations in the state of the fi
~Minkowski vacuum!. These correlations are purely quantu
mechanical in origin, and they are reflected in the correlat
of the stochastic forces,ñ i j . Correlations between stochast
forces on different detectors induce correlations between
coordinatesQi of different detectors.

As we shall show in a later section, our exact treatme
makes it possible to demonstrate the existence of general
fluctuation-dissipation and correlation-propagation relatio
governing the detector system.

III. EXAMPLES

In this and the following section, we consider some app
cations of the Langevin equations derived in the previo
section to the cases of a single detector in the Minkow
vacuum moving on an inertial trajectory, a single detector
a uniformly accelerated trajectory, two detectors on inert
trajectories, and the case of one detector on a uniformly
celerated trajectory and another one on an arbitrary tra
tory, functioning as a probe.

The first two examples serve to illustrate the formalis
and describe the well-known physical effects of the dress
of a particle by the field and the thermal Unruh noise exp
rienced by a uniformly accelerated particle.

In the example of two inertial detectors, we introduce t
notions of ‘‘self’’ and ‘‘mutual’’ impedances which govern
the response of either detector. The effect of the back re
tion of each detector on the field and consequently, on
other detector is to introduce the so-called mutual impeda
in the detector response as well as to modify the se
impedance of each detector from its value in the absence
the other one.

In the next section we shall consider the example of o
detector on a uniformly accelerated trajectory and a pro
which moves along an unspecified trajectory. We switch
the probe after it intersects the future horizon of the u
formly accelerated detector, so that it cannot causally infl
ence the uniformly accelerated one. Thus, the uniformly
celerated detector in this case is effectively in an unperturb
Unruh heat bath, and this situation mimics most closely
RSG model. The missing terms in the RSG analysis, wh
contribute to a polarization cloud around the accelerated
cillator, but not to the energy-momentum tensor, lead to
modified noise kernel in the Langevin equation for the prob

In all cases, we can solve exactly for the detector coor
nates, at least in the late time limit~this limit is actually
realized at any finite time when the two detectors have be
switched on forever, and corresponds to the neglect of tr
sients in the solutions for the detector coordinates!.
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A. One inertial detector

Consider the case of one detector moving on an inerti
trajectory x(t)50, t(t)5t, and switched on forever
@s(t)51#. The noise and dissipation kernels take the form

ñ ~t,t8!5
e2

2pE0
`dk

k
cosk~t2t8!, ~3.1!

m̃~t,t8!52
e2

2pE0
`dk

k
sink~t2t8!. ~3.2!

The Langevin equation becomes

d2Q

dt2
1
e2

2

dQ

dt
1V0

2Q5
dh

dt
~3.3!

with

^$h~t!,h~t8!%&5\ñ~t,t8!. ~3.4!

It will be convenient to define the dissipation constan
g5e2/4. We will restrict our attention to the underdamped
case (g,V0). Note that the form of the dissipation term in
Eq. (3.3) above is usually known to arise from the Wigner
Weisskopf approximation~see, for example,@11#!. In this
context, however, it turns out to be exact when the con
tinuum limit is taken in the mode sum definingm̃.

Introducing the Fourier transform

Q~t!5E
2`

`

dveivtQ̃~v!,

Q̃~v!5
1

2pE2`

`

dve2 ivtQ~t!, ~3.5!

and similarly forh(t), we obtain

Q̃~v!5xvh̃~v! ~3.6!

with the impedance functionxv defined as

xv5 iv~2v21V0
212ivg!21. ~3.7!

In the above solution for the detector coordinate in frequenc
space, it should be noted that transients have already be
neglected. Transient terms correspond to delta functions
frequency space, the coefficients of these delta functions b
ing determined by the initial conditions. For the complete
solution these terms should be added to the right-hand si
of Eq. (3.6). We may thus obtain

^$Q̃~v!,Q̃~v8!%&5xvxv8^$h̃~v!,h̃~v8!%&, ~3.8!

where
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^$h̃~v!,h̃~v8!%&5
1

4p2E
2`

`

dtE
2`

`

dt8e2 ivt

3e2 iv8t8^$h~t!,h~t8!%&

5\
g

pv
d~v1v8!@u~v!2u~2v!#.

~3.9!

We can therefore obtain the correlator ofQ(t) andQ(t8),
as

^$Q~t!,Q~t8!%&5E
2`

`

dvE
2`

`

dv8eivteiv8t8

3xvxv8^$h̃~v!,h̃~v8!%&

5
2\g

p E
0

`dk

k
uxku2cosk~t2t8!.

~3.10!

B. One accelerated detector: Unruh effect

In the case of an accelerated detector moving on the t
jectory x(t)5a21coshat, t(t)5a21sinhat, and s(t)51
(t being the proper time along the accelerated trajectory!, the
noise and dissipation kernels take the form

ñ ~t,t8!5
e2

2pE0
`dk

k
cos

k

a
~sinhat2sinhat8!

3cos
k

a
~coshat2coshat8!, ~3.11!

m̃~t,t8!52
e2

2pE0
`dk

k
sin

k

a
~sinhat2sinhat8!

3cos
k

a
~coshat2coshat8!. ~3.12!

These kernels can be decomposed into advanced and
tarded parts, by writing, for example,

ñ a1 ñ r5
e2

4pE0
`dk

k Fcoska ~eat2eat8!

1cos
k

a
~e2at2e2at8!G . ~3.13!

We can then use the changes of variabl

k→ 1
2kexp@6a/2(t2t8)# to obtain

ñ a5 ñ r5
e2

4pE0
`dk

k
cosS kasinha2 ~t2t8! D , ~3.14!

showing that the noise felt by the accelerating detector
isotropic.

One can also make a similar simplification for the kern
m̃. These expressions can then be further simplified@25,23#
by means of the integral transform@27#
ra-

re-

es

is

el

eiksinhb5
2

pE0
`

dacos~ba1 ipa/2!Kia~k! ~3.15!

and the formula@28#

E
0

`dk

k
Kia~k!5

p

2asinhS pa

2 D , ~3.16!

whereKia(a) is a Bessel function of imaginary argument, to
yield

ñ ~t,t8!5
e2

2pE0
`dk

k
cothS pk

a D cosk~t2t8!, ~3.17!

m̃~t,t8!52
e2

2pE0
`dk

k
sink~t2t8!. ~3.18!

The noise experienced by the detector is thus stationary a
the factor coth(pk/a) in the noise kernel shows that it is also
thermal, at the Unruh temperaturekBT5\a/2p ~we have
chosen units such thatc51).

The dissipation kernel remains identical to that of the in
ertial detector. Based on the property that the two-point fun
tion of a free field on an accelerated trajectory evaluated
the Minkowski vacuum state is identical to the two-poin
function on an inertial trajectory evaluated in a thermal sta
at the Unruh temperature, this fact can be explained as f
lows. The dissipation kernel is proportional to the commuta
tor of the free quantum field evaluated in whatever state t
field is in. However, the commutator of a free field for an
two points is just ac-number, hence its expectation value i
independent of the state of the field. In particular, it does n
distinguish between a zero temperature and a thermal sta
So the dissipation kernel is identical to that in the inertia
case. The anticommutator is, however, an operator who
expectation value depends on the state of the field, and the
fore shows the familiar departure from the inertial case.

The Langevin equation for the detector coordinate is

d2Q

dt2
1
e2

2

dQ

dt
1V0

2Q5
dh

dt
~3.19!

with

^$h~t!,h~t8!%&5\ñ~t,t8!. ~3.20!

Similar to the inertial detector case, we find

Q̃~v!5xvh̃~v!. ~3.21!

Also,

^$h̃~v!,h̃~v8!%&5
1

4p2E
2`

`

dtE
2`

`

dt8e2 ivt

3e2 iv8t8^$h~t!,h~t8!%&

5\
g

pv
cothS pv

a D d~v1v8!.

~3.22!
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Combining the two equations,

^$Q~t!,Q~t8!%&5E
2`

`

dvE
2`

`

dv8eivteiv8t8

3xvxv8^$h̃~v!,h̃~v8!%&

5
2\g

p E
0

`dk

k
uxku2cothS pk

a D cosk~t2t8!,

~3.23!

with the impedance functionxk as defined in the inertial
case.

C. Two inertial detectors: Self and mutual impedances

We now consider the case of two detectors moving on
inertial trajectories x1(t1)52x0/2, x2(t2)5x0/2, and
t1(t1)5t2(t2)5t, coupled to a scalar field initially in the
Minkowski vacuum state, with coupling constantse1,2. They
are separated by a fixed coordinate distancex0 . As before,
we will assume that both detectors have been fore
switched on, i.e.,si(t)51, i51,2.

It will be convenient to express the noise, dissipatio
correlation, and propagation kernels as the real and ima
nary parts of the functionsZi j defined earlier. Then, for the
two-detector system, we obtain

Z11~t,t8!5
e1
2

2pE0
`dk

k
exp@2 ik~t2t8!#, ~3.24!

Z22~t,t8!5
e2
2

2pE0
`dk

k
exp@2 ik~t2t8!#, ~3.25!

Z12~t,t8!5Z21~t,t8!

5
e1e2
2p E

0

`dk

k
exp@2 ik~t2t8!#coskx0 .

~3.26!

The coupled Langevin equations for the system are

d2Q1

dt2
1
e1
2

2

dQ1

dt
1
e1e2
2

dQ2

dt
ut2x0

1V1
2Q15

dh1

dt
,

~3.27!

d2Q2

dt2
1
e2
2

2

dQ2

dt
1
e1e2
2

dQ1

dt
ut2x0

1V2
2Q25

dh2

dt
,

~3.28!

wheret2x0 is the retarded time between the two traject
ries, and

^$h i~t!,h j~t8!%&5\ñ i j ~t2t8!. ~3.29!

As before, we defineg1,25e1,2
2 /4, and introduce Fourier

transforms to obtain the corresponding equations in f
quency space. Then we obtain

Q̃1~v!5xv
~1!h̃1~v!2

e1e2
2

e2 ivx0xv
~1!Q̃2~v!, ~3.30!
the

ver

n,
gi-

o-

re-

Q̃2~v!5xv
~2!h̃2~v!2

e1e2
2

e2 ivx0xv
~2!Q̃1~v!, ~3.31!

where

xv
~1!,~2!5 iv~2v21V1,2

2 12ivg1,2!
21. ~3.32!

The functionsxv
(1),(2) are, of course, what the impedance o

each detector would be in the absence of the other one. H
ever, the effect of introducing a second detector is, as
shall see, to modify the ‘‘self-impedance’’ of each detect
as well as introduce a ‘‘mutual impedance’’ which describe
for instance, the response of detector one to the forceh̃2 .

Indeed, plugging the equation forQ̃1 in the equation for
Q̃2 , we have

Q̃2~v!5L22~v!h̃2~v!1L21~v!h̃1~v!, ~3.33!

where L22 is the modified self-impedance of detector tw
because of the presence of detector one, andL21 is the mu-
tual impedance:

L22~v!5xv
~2!~124g1g2e

22ivx0xv
~1!xv

~2!!21,

L21~v!522Ag1g2e
2 ivx0xv

~2!xv
~1!

3~124g1g2e
22ivx0xv

~1!xv
~2!!21. ~3.34!

The impedancesL11 andL12 and the corresponding equatio
for Q̃1 are obtained by an interchange of indices one and t
in the above equations.

We note the symmetry

L215L12. ~3.35!

The correlator̂ $Qi(v),Qj (v8)%&, i , j51,2 is, therefore, ob-
tained from Eq. (3.32) and its counterpart, as

^$Qi~v!,Qj~v8!%&5 (
a51

2

(
b51

2

Lia~v!L jb~v8!

3^$h̃a~v!,h̃b~v8!%&. ~3.36!

The above equation is to be viewed as a generalization
(3.8) to the two-detector case.

Suppose we now wish to solve for the correlator ofQ2 .
Then, taking Fourier transforms as before and simplifying

^$Q2~t!,Q2~t8!%&5E
2`

`

dvE
2`

`

dv8eivt

3eiv8t8^$Q̃2~v!,Q̃2~v8!%&

5
2\g2

p E
0

`dk

k
uL22~k!u2

3@11g1~4g1uxk
~1!u22xk

~1!2xk
~1!* !

2g1~xk
~1!e22ikx01xk

~1!* e2ikx0!#.

~3.37!
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The second term in the square brackets vanishes as a co
quence of the identityxk

(1)1xk
(1)*54g1uxk

(1)u2, which is a
form of the fluctuation dissipation relation for detector on
The remaining terms simplify to yield

^$Q2~t!,Q2~t8!%&5
2\g2

p E
0

`dk

k
uL22~k!u2

3F122g1uxv
~1!u2S 2g1cos2kx0

1
V1

22k2

k
sin2kx0D Gcosk~t2t8!.

~3.38!

As before, the correlator ofQ1 is obtained by interchanging
the indices one and two in the above equation.

IV. UNIFORMLY ACCELERATED DETECTOR AND
PROBE: ADVANCED AND RETARDED NOISES

In this section, we first consider two detectors on arbitra
trajectories, with the following constraints:~a! both trajecto-
ries are everywhere timelike,~b! one of the trajectories pos
sesses past and future event horizons, which are chosen
the null linesv50 andu50, respectively,~c! the detector on
the other trajectory is switched on atu50 and this trajectory
does not possess any future horizon.

Because of constraint~c!, the second detector canno
causally influence the first one, and thus it functions as
probe in the field modified by the first detector.

Later in the analysis, we shall specify the trajectory of t
detector with horizons as being a uniformly accelerated o
We shall continue to assume that the probe cannot caus
influence the uniformly accelerated detector by means of
switching condition. If it were allowed to do so, this woul
lead to a deviation of the noise experienced by the uniform
accelerated detector from the precise thermal form.

We will label the detector with horizons as detector o
and the probe as detector two. The switching conditi
s2(t2)5u„u2(t2)… for the probe leads to a closed Langev
equation for detector one:

d2Q1

dt1
2 1

e1
2

2

dQ1

dt1
1V1

2Q15
dh1

dt1
. ~4.1!

This is just a consequence of the fact that the trajectory
detector one lies outside the causal future of the probe.
arguments which lead to the above local form of dissipati
or radiation reaction for a general timelike trajectory are o
lined in the next section.

Introducing Fourier transforms and the impedance fun
tionsxv

(1),(2) as defined earlier, we have

Q̃1~v!5xv
~1!h̃1~v!. ~4.2!

Consider now the Langevin equation for detector two:
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d2Q2

dt2
2 22E

2`

t2
dt28

d

dt2
@u„u2~t2!…m̃22~t2 ,t28!#

dQ2

dt28

22E
2`

t1
21

„t2~t2!…
dt18

d

dt2
@u„u2~t2!…m̃21~t2 ,t18!#

dQ1

dt18

1V2
2Q25

d

dt2
@u„v2~t2!…h2~t2!#. ~4.3!

We find

d

dt2
„m̃22~t2 ,t28!…522g2d~t22t28!, ~4.4!

d

dt2
„m̃21~t2 ,t18!…52Ag1g2Fdv2dt2

d„v2~t2!2v1~t18!…

1
du2
dt2

d„u2~t2!2u1~t18!…G , ~4.5!

whereg1,2 are defined as in the two inertial detector case
The second term in (4.5) vanishes identically becau
u2(t2).0 andu1(t1),0 (u50 is a future horizon for de-
tector one!. Sincev50 is a past horizon for detector one, we
havev1(t18).0 and the first term simplifies to yield

d

dt2
„m̃21~t1 ,t28!…52Ag1g2

dtR
dt2

d~tR2t18!u„v2~t2!…,

~4.6!

where we have defined the retarded timetR5v1
21
„v2(t2)….

This is well defined since it occurs only in expressions i
which v2(t2).0.

Thus, we obtain the dynamical equation for the prob
which depends, as expected, onQ1:

d2Q2

dt2
2 1

e2
2

2

dQ2

dt2
1V2

2Q25
dh2

dt2
2
e1e2
2

dtR
dt2

dQ1

dt U
tR

,

v2~t2!.0. ~4.7!

Consider the quantity

F~t2!5
dh2

dt2
2
e1e2
2

dtR
dt2

dQ1

dt U
tR

~4.8!

which is a source term in the equation of motion forQ2 . The
first part ofF is the usual stochastic force arising out of th
fluctuations of the field in the vicinity of detector two, while
the second part is the retarded force because of detector o
RSG correctly point out that these two forces are correlate
In the context of our formalism, these correlations are em
bodied in the correlation kernelsñ21 and ñ12.

Using the relation (4.2), we obtain

F~t2!5
dh2

dt2
2 i

e1e2
4p

dtR
dt2

E
2`

`

dvveivtRxv
~1!E

2`

`

3dsh1~s!e2 ivs. ~4.9!
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Consider the correlator ofF with the correlator ofh2 sub-
tracted out. We have

^$F~t2!,F~t28!%&2
d

dt2

d

dt28
^$h2~t2!,h2~t28!%&

52
i\Ag1g2

p E
2`

`

dvvxv
~1!E

2`

`

dse2 ivs

3FdtR8

dt28
eivtR8

d

dt2
ñ21~t2 ,s!1

dtR
dt2

eivtR
d

dt28
ñ12~s,t28!G

2
\g1g2

p2

dtR
dt2

dtR8

dt28
E

2`

`

dvE
2`

`

dv8vv8eivtR3eiv8tR8

3xv
~1!xv8

~1!E
2`

`

dsE
2`

`

ds8e2 ivse2 iv8s8ñ11~s,s8!.

~4.10!

The kernelsñ21 and ñ12 separate into advanced and retard
parts. For the advanced parts,

ñ 21
a ~t2 ,s!5

e1e2
4p E

0

`dk

k
cosk„v2~t2!2v1~s!…

5
e1e2
4p E

0

`dk

k
cosk„v1~tR!2v1~s!…5

e2
e1

ñ11
a ~tR ,s!

~4.11!

and similarly

ñ 12
a ~s,t28!5

e2
e1

ñ11
a ~s,tR8 !. ~4.12!

The advanced parts of the correlations can therefore be c
structed from the advanced part of the noise along the tra
tory of detector one. With this simplification, we obtain

^$F~t2!,F~t28!%&2
d

dt2

d

dt28
^$h2~t2!,h2~t28!%&

52
i\Ag1g2

p

dtR
dt2

dtR8

dt28

3F E
2`

`

dvvxv
~1!E

2`

`

dse2 ivs

3H eivtR8
d

dtR
ñ11
a ~tR ,s!1eivtR

d

dtR8
ñ11
a ~s,tR8 !J

2 i
g1

p E
2`

`

dvE
2`

`

dv8vv8eivtReiv8tR8xv
~1!xv8

~1!

3E
2`

`

dsE
2`

`

ds8e2 ivse2 iv8s8ñ11~s,s8!G1~r.p.!,

~4.13!

where~r.p.! denotes the retarded part:
ed

on-
jec-

~r.p.!52
i\Ag1g2

p E
2`

`

dvvxv
~1!E

2`

`

dse2 ivs

3FdtR8

dt28
eivtR8

d

dt2
ñ 21
r ~t2 ,s!

1
dtR
dt2

eivtR
d

dt28
ñ12
r ~s,t28!G . ~4.14!

At this point, we specialize to the case when detector one
uniformly accelerated. Then, we have

v1~t1!5a21eat1, u1~t1!52a21e2at1. ~4.15!

As shown in Sec. III B, the noiseñ11 is thermal and isotro-
pic. The retarded timetR5a21ln@av2(t2)#. We may substi-
tute for ñ11 in Eq. (4.13) and carry out the integrations ove
s ands8, to obtain

^$F~t2!,F~t28!%&2
d

dt2

d

dt28
^$h2~t2!,h2~t28!%&

52
2\g1g2

p

dtR
dt2

dtR8

dt28
E
0

`

dkkcoth
pk

a
cosk~tR2tR8 !

3~xk
~1!1xk

~1!*24g1uxk
~1!u2!1~r.p.!. ~4.16!

The first term in the above expression vanishes as a con
quence of the identityxk

(1)1xk
(1)*54g1uxk

(1)u2, mentioned
earlier. The only contribution to the excitation of the prob
is, therefore, from the retarded parts of the correlationsñ12
and ñ21. This asymmetry between retarded and advanc
parts is really a consequence of the choice of retarded bou
ary conditions in the formulation of the problem~the states
of detector and field are assumed to be uncorrelated at p
infinity! and the switching process atu250. The vanishing
of the first term in the above expression is a generalization
the cancellation obtained by RSG for a probe moving alon
an inertial trajectory. In order to study the retarded contribu
tion in greater detail, it is desirable to simplify the correla
tions ñ12

r and ñ21
r . The functionsZ12

r andZ21
r take the form

Z12
r ~t1 ,t28!5

e1e2
4p E

0

`dk

k
expS ika @e2at11au2~t28!# D ,

~4.17!

Z21
r ~t2 ,t18!5

e1e2
4p E

0

`dk

k
expS 2

ik

a
@e2at181au2~t2!# D .

~4.18!

Introducing the Fourier transforms

expS ika e2at1D5
1

2paE2`

`

dve2 ivt1GS 2
iv

a D
3S kaD

iv/a

epv/~2a!, k.0,
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expS 2
ik

a
e2at1D5

1

2paE2`

`

dveivt1GS iva D
3S kaD

2 iv/a

epv/~2a!, k.0, ~4.19!

and substituting in (4.19), we obtain

Z12
r ~t1 ,t28!5

e1e2
8p2aE2`

`

dve2 ivt1epv/~2a!GS 2
iv

a D
3E

0

`dk

k S kaD
iv/a

exp@ iku2~t28!#. ~4.20!

The integral overk can be evaluated in terms of gamm
functions. Explicitly making use of the fact thatu2(t28).0,
and simplifying,

Z12
r ~t1 ,t28!5

e1e2
4p E

0

`dv

v

cosv
a @at11 lnau2~t28!#

sinhpv
a

.

~4.21!

Similarly,

Z21
r ~t2 ,t18!5

e1e2
4p E

0

`dv

v

cosv
a @at181 lnau2~t2!#

sinhpv
a

.

~4.22!

Therefore, there is no contribution from the imaginary pa
of Z12

r andZ21
r for u2(t28).0, as obtained earlier@Eq. (4.5)

leading to (4.6)#.
Differentiating the above expressions with respect tot28

andt2 , and substituting in the expression for~r.p.!, one ob-
tains, after carrying out the integration overs,

^$F~t2!,F~t28!%&2
d

dt2

d

dt28
^$h2~t2!,h2~t28!%&

[~r.p.!

5
2\g1g2

p E
2`

` dkk

sinhpk
a

xk
~1!

3F „a2u2~t28!v2~t2!…
~ ik/a!21

du2
dt28

dv2
dt2

1„a2u2~t2!v2~t28!…~ ik/a!21
du2
dt2

dv2
dt28

G . ~4.23!

The coincidence limit of the above expression yields t
fluctuations of the random force acting on the probe: defin
dF(t)5F(t)2(d/dt)h2(t), we obtain

^dF2~t2!&5
2\g1g2

p

du2
dt2

dv2
dt2

E
2`

` dkk

sinhpk
a

3xk
~1!
„a2u2~t2!v2~t2!…

~ ik/a!21. ~4.24!

The fluctuations are thus suppressed in the limit of lar
u2v25t2

22x2
2 . For a probe trajectory without any horizon
a

rts

he
ing

ge
,

this is the limit in which the probe trajectory approache
future timelike infinity, which verifies that the effect of the
accelerated oscillator on the field is ascribed to polarizat
rather than radiation~see also@13#!. A radiation field is ex-
pected to persist at future infinity.

Let us now turn to the question of the response of t
probe. To obtain this, we will need to specify a particul
form of trajectory for the probe as well. We will consider th
simple inertial trajectoryx2(t2)50, t2(t2)5t2 , switched on
at t250. Then Eq. (4.23) gives

^$F~t2!,F~t28!%&2
d

dt2

d

dt28
^$h2~t2!,h2~t28!%&

5
2\g1g2

p E
2`

` dkk

sinhpk
a

xk
~1!~at2!

~ ik/a!21~at28!~ ik/a!21.

~4.25!

Owing to the switching process att250, the relation be-
tweenQ̃2 and F̃ ~the Fourier transforms ofQ2 andF) is a
nonlocal one in frequency space, because of transient effe
However, if we restrict our attention to the late time behavi
of detector two, we obtain from Eq. (4.7) a local relation
the form

Q̃2~v!5
xv

~2!

iv
F̃~v!, ~4.26!

where

F̃~v!5
1

2pE0
`

dte2 ivtF~t!. ~4.27!

In the above expression, the lower limit of thet integration
is zero, corresponding to the step functionu(t) multiplying
F which enforces the switching condition.

The correlator ofQ̃2 is, therefore, given by

^$Q̃2~v!,Q̃2~v8!%&52
xv

~2!xv8
~2!

vv8
^$F̃~v!,F̃~v8!%&.

~4.28!

We have already obtained the difference of the correlator
F from its value in the absence of the accelerating detec
one. Thus, we have

^$Q̃2~v!,Q̃2~v8!%&2^$Q̃2
~0!~v!,Q̃2

~0!~v8!%&

52
xv

~2!xv8
~2!

4p2vv8
E
0

`

dtE
0

`

dt8e2 ivte2 iv8t8

3F ^$F~t!,F~t8!%&2
d

dt

d

dt8
^$h2~t!,h2~t8!%&G ,

~4.29!

where the superscript (0) onQ2 refers to its value in the
absence of the accelerating detector. Performing the inte
tions overt andt8, we obtain
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^$Q̃2~v!,Q̃2~v8!%&2^$Q̃2
~0!~v!,Q̃2

~0!~v8!%&

52
\g1g2

2p3a4
xv

~2!xv8
~2!

vv8
E

2`

` dkk

sinhpk
a

xk
~1!G2S ika D

3Uvv8

a2 U2~ ik/a!21

@epk/2au~v!1e2pk/2au~2v!#

3@epk/2au~v8!1e2pk/2au~2v8!#. ~4.30!

The step functions which distinguish positive and negat
frequencies in the above expression are an artefact of
switching process.

V. FLUCTUATION-DISSIPATION
AND CORRELATION-PROPAGATION RELATIONS

In this section we construct the fluctuation-dissipation r
lations for the detector system and extend this constructio
obtain a new set of relations, which we call the correlatio
propagation relations for trajectories without any event ho
zon. These relations are a simple consequence of the ana
properties of the massless free field two-point function. W
also discuss these relations in the context of the model o
uniformly accelerated detector and probe.

Consider first the fluctuation-dissipation relation for
quantum Brownian particle in a heat bath@22#. This can be
expressed as a linear, nonlocal relation between the n
ñ (s) and dissipationm̃(s) kernels. Definingg̃ by

m̃~s!5
dg̃

ds
~s!, ~5.1!

the finite temperature fluctuation-dissipation relation is

ñ ~s!5E
2`

`

ds8K~s2s8!g̃~s8!, ~5.2!

where

K~s2s8!5E
0

`kdk

p
cothS bk\

2 D cosk~s2s8! ~5.3!

is a universal kernel, independent of the spectral density
the bath. In particular, the kernelK is independent of the
coupling constante. Such a fluctuation-dissipation relatio
holds for the uniformly accelerated detector~with tempera-
ture given by the Unruh temperature! and the inertial detec-
tor ~with zero temperature!. It was derived in@22# in the
context of a quantum Brownian model with bilinear couplin
between bath~field! and particle~detector!. In such a model
g̃ is indeed the quantity which characterizes dissipation
the effective Langevin equation for the particle.

In the context of the minimally coupled model, howeve
we find it suitable to defineg̃ as

g̃ ~s!52
d

ds
m̃~s! ~5.4!
ive
the

e-
n to
n-
ri-
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n

g
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r,

as this is the quantity which directly appears in the dissip
tive term of the Langevin equation derived above. Th
fluctuation-dissipation relation then takes the form (5.3) wit
K defined as

K~s2s8!5E
0

` dk

pk
cothS bk\

2 D cosk~s2s8!. ~5.5!

An important aspect of either form of the fluctuation
dissipation relation is that the noise and dissipation kerne
and consequentlyK, are stationary; i.e., they are functions o
s2s8 alone.

We wish to investigate whether a suitable generalizatio
of the above relation holds for the fullN-detector system. To
this end, we assume that the detector trajectories are eve
where timelike and consider first only the kernelsZii as they
characterize noise and dissipation in the dynamics of the d
tectorsi . We also assume that the detectors are switched
forever, thus excluding transient effects because of t
switching process. Using advanced and retarded null coor
nates introduced earlier, we define

g̃ i i ~t i ,t i8!52
d

dt i
m̃ i i ~t i ,t i8!

5
ei
2

4 Fd„v i~t i !2v i~t i8!…
dv i
dt i

1d„ui~t i !2ui~t i8!…
dui
dt i

G
5g̃ i i

a~t i ,t i8!1g̃ i i
r ~t i ,t i8!, ~5.6!

denoting the advanced and retarded parts of the kernelg̃.
The timelike property of the trajectories implies tha

udxi /dti u,1. Together with the fact thatt i(t i) are increasing
functions oft i , this implies thatdui /dt i and dv i /dt i are
necessarily positive. It also implies that the functionsui(t i)
and v i(t i) have unique inverses, if they exist. This can b
proved by way of contradiction: assume thatui(t i)5ui(t i8)
for some t iÞt i8 . Then we have xi(t i)2xi(t i8)
5t i(t i)2t i(t i8), which means that the pointst i andt i8 have
lightlike separation. This contradicts the fact that the traje
tory is everywhere timelike. The uniqueness ofv i

21 is shown
in the same way.

These two properties lead to the simplification in the ex
pression forg̃ i i

g̃ i i ~t i ,t i8!5
ei
2

2
d~t i2t i8!. ~5.7!

Thus, we see that, for an arbitrary trajectory, the dissipatio
or radiation reaction kernel has the same form and is alwa
local. This fact has been used in obtaining the dissipati
term in the equations of motion for the accelerated detec
and probe (4.1) and (4.7).

The fluctuation-dissipation relation now follows in a
straightforward manner:

ñ i i ~t i ,t i8!5E
2`

`

dsKi~t i ,s!g̃ i i ~s,t i8!, ~5.8!
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where

Ki~t i ,s!5Ki
a~t i ,s!1Ki

r~t i ,s!

5E
0

` dk

2pk
@cosk„v i~t i !2v i~s!…

1cosk„ui~t i !2ui~s!…#. ~5.9!

We now ask whether a similar relation holds between t
real and imaginary parts ofZi j , iÞ j . This would not be a
fluctuation-dissipation relation in the usual sense, as the
part ofZi j describes correlations of the field between poin
on different trajectories rather than fluctuations, and
imaginary part describes the propagation of radiation b
tween one detector and the other, rather than dissipation.
will call such relations ‘‘correlation-propagation’’ relations

If points on different trajectories have spacelike sepa
tions, the relevantg̃ i j ~defined as2dm̃ i j /dt i) will vanish as
a consequence of the vanishing of the commutator of a f
field for points at spacelike separations. This is simply
expression of causality in the detector dynamics. Howev
the corresponding correlationñ i j need not vanish, and henc
there cannot be a general relation between these two kern
Such a situation is realized most clearly, for example, in t
case of two uniformly accelerating detectors, one in the rig
and the other in the left Rindler wedge. The trajectorie
although individually timelike, are spacelike separated e
erywhere. The correspondingg̃12 andg̃21 will therefore van-
ish identically. However,ñ12 and ñ21 will remain nonzero,
reflecting the highly correlated nature of the Minkows
vacuum state.

If, however, none of the detector trajectories posses
past or future horizon~in Minkowski space this is true, in
particular, for geodesic trajectories, but notonly for geode-
sic trajectories!, then each of them will lie completely within
the causal future of the others. In that case, we can ob
correlation-propagation relations relating separately the
vanced and retarded correlations to their ‘‘propagatin
counterparts. These relations follow from the fluctuatio
dissipation relations along single trajectories derived abo
essentially by a method of geometric construction: defini
g̃ i j
a52dm̃ i j

a/dt i and similarlyg̃ i j
r , we have

g̃ i j
a ~t i ,t j8!5

eiej
4

d„v i~t i !2v j~t j8!…
dv i
dt i

. ~5.10!

Since the trajectoryi does not possess any horizon, the n
coordinatesui andv i range from2` to `. Thus, the func-
tions v iv i

21 anduiui
21 are identity functions over the entire

real line. Then we obtain, similar to Eq. (5.6),

g̃ i j
a ~t i ,t j8!5

eiej
4

d@t i2v i
21
„v j~t j8!…#

5
ej
ei

g̃ i i
a@t i ,v i

21
„v j~t j8!…# ~5.11!

and

g̃ i j
r ~t i ,t j8!5

ej
ei

g̃ i i
r @t i ,ui

21
„uj~t j8!…#. ~5.12!
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The correlationsñ i j may be constructed from the noisesñ i i
in an identical manner:

ñ i j
a ~t i ,t j8!5

eiej
4p E

0

`dk

k
cosk@v i~t i !2v i„v i

21v j~t j8!…#

5
ej
ei

ñ i i
a
„t i ,v i

21v j~t j8!…, ~5.13!

where we have inserted the identity functionv iv i
21 in the

first step. Also,

ñ i j
r ~t i ,t j8!5

ej
ei

ñ i i
r
„t i ,ui

21uj~t j8!…. ~5.14!

These two sets of constructions for the propagation and c
relation kernels in terms of the dissipation and noise kerne
enable us to write down the correlation-propagation relatio
simply by invoking the fluctuation-dissipation relations
(5.8) as they separately apply to the advanced and retard
parts of the noise and dissipation along single trajectories

ñ i j
a,r~t i ,t j8!5E

2`

`

dsKi
a,r~t i ,s!g̃ i j

a,r~s,t j8!, ~5.15!

Ki
a andKi

r being defined earlier (5.9). Since the quantitie
g̃ i j are really justd functions and the quantitiesKi

a,r are
proportional to ñ i i

a,r , these relations can be equivalently
viewed as constructions of the correlationsñ i j from the
noisesñ i i .

The above relations hold for trajectories without an
event horizon. In the example of the uniformly accelerate
detector and probe, the uniformly accelerated detector traje
tory does possess event horizons. This manifests in the pr
erty that the range ofu1 is restricted to (2`,0) and the
range of v1 to (0,̀ ). The probe trajectory, on the other
hand, will be chosen to be free of any horizon. We will als
now assume that the probe is switched on forever. Then,
can construct the correlationsñ21 and the quantitiesg̃21 from
ñ 22 and g̃22 exactly as described above, and obtain the co
responding correlation-propagation relations:

ñ 21
a,r~t2 ,t18!5E

2`

`

dsK2
a,r~t2 ,s!g̃21

a,r~s,t18!. ~5.16!

This simply follows by invoking the fluctuation-dissipation
relation along the probe trajectory, as described above. Ho
ever, it is of greater interest to know whether such relation
would follow from the fluctuation-dissipation relation along
the uniformly accelerated trajectory. As explained, this wi
not be completely possible because the accelerated trajec
possesses horizons. This difficulty shows up when one tr
to write down a relation of the form (5.16) for the quantitie
ñ 12 andg̃12. To do this, we first express the functionsZi j in
a different form. This was done in Sec. IV@see the steps
leading from ~3.54!–~3.58!# for the restricted case
u2(t2).0, v2(t2).0. If we remove this restriction, we find
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Z12
a ~t1 ,t28!5

e1e2
4p E

0

`dv

v F cothS pv

a D cosva „at12 lnuav2~t28!u…u„v2~t28!…1
cosv

a „at12 lnuav2~t28!u…

sinhpv
a

u„2v2~t28!…

2 isin
v

a
„at12 lnuav2~t28!u…u„v2~t28!…G , ~5.17!

Z12
r ~t1 ,t28!5

e1e2
4p E

0

`dv

v F cothS pv

a D cosva „at11 lnuau2~t28!u…u„2u2~t28!…1
cosv

a „at11 lnuau2~t28!u…

sinhpv
a

u„u2~t28!…

2 isin
v

a
„at11 lnuau2~t28!u…u„2u2~t28!…G . ~5.18!
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Z21 can be expressed in a similar way. From the above,
see that the advanced~retarded! correlation for v2.0
(u2,0) has a thermal form, because these correlations
be constructed simply from the noise along the accelera
trajectory. We are, therefore, able to write down
correlation-propagation relation for this part of the correl
tions alone. This takes the form

u„v2~t28!…ñ12
a ~t1 ,t28!1u„2u2~t28!…ñ12

r ~t1 ,t28!

5E
2`

`

dsK1~t1 ,s!g̃12~s,t28!, ~5.19!

where

g̃12~t1 ,t28!52
dm̃12

dt1

5
e1e2
4

@d„t12a21lnuav2~t28!u…u„v2~t28!…

1d„t11a21lnuau2~t28!u…u„2u2~t28!…#

~5.20!

and

K1~t1 ,s!5E
0

` dk

pk
coth

pk

a
cosk~t12s!. ~5.21!

The single relation (5.19), as opposed to separate relat
between the advanced and retarded parts, is a consequen
the fact that the thermal noise is isotropic and therefore c
tains equal contributions from advanced and retarded pa

In the context of the analysis of Sec. IV, where the pro
is switched on atu250, (5.19) becomes

ñ 12
a ~t1 ,t28!5E

2`

`

dsK1
a~t1 ,s!g̃12

a ~s,t28!. ~5.22!

Viewed as a construction ofñ12
a from ñ11

a , this relation lies at
the heart of the RSG cancellation in (4.16). Viewed altern
tively as an extension of the thermal fluctuation-dissipati
we

can
ted
a
a-

ions
ce of
on-
rts.
be

a-
on

relation on the uniformly accelerated trajectory, it thus place
the role of thermal equilibrium in the RSG cancellation o
firmer ground.

We now turn to the part of the correlations which do no
partake in the correlation-propagation relation above. The
are the advanced~retarded! correlations forv2,0 (u2.0),
containing the arcsinh factors, and are not expressible
terms of the noise along the accelerated trajectory. Rath
they represent true correlations across the future~past! hori-
zon. If we specialize to the caseu2.0 as in Sec. IV, then
these are exactly the correlations which contribute to the e
citation of the probe in the guise of~r.p.!, Eq. (4.23). The
probe may, therefore, be said to be excited by free field co
relations across the future horizon.

If we specialize to the simple probe trajectory
x2(t2)50, t2(t2)5t2 , then we haveu2(t2)5v2(t2)5t2
and the expressions (5.18) forZ12 acquire a symmetric form.
In this special case, we can write down a correlation
propagation relation for the entire kernelñ12, by relating the
advanced part of the correlations across the horizon to t
retarded part of the propagation kernel, and vice versa: w
then have

g̃12~t1 ,t28!5
e1e2
4

@d~t12a21lnuat28u!u~t28!

1d~t11a21lnuat28u!u~2t28!#. ~5.23!

Choosing

K18~t1 ,t18!5E
0

` dk

pk Fcothpka cosk~t12t18!1
cosk~t11t18!

sinhpk
a

G ,
~5.24!

we obtain

ñ 12~t1 ,t28!5E
2`

`

dsK18~t1 ,s!g̃12~s,t28! ~5.25!

as a correlation-propagation relation in this special case. T
above relation cannot be geometrically constructed from t
fluctuation-dissipation relation along the single accelerat
trajectory. So far, we have not been able to show the exi
ence of such a relation in more general cases. The extra pi
in the interpolating kernelK18 comes from correlations across
the horizon, as explained earlier.
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VI. SUMMARY AND DISCUSSION

To summarize our work and findings, we have presente
general formalism to treat an arbitrary number of detect
modelled as oscillators in arbitrary kinematic states, a
minimally coupled to a massless scalar field in 111 dimen-
sions. In this approach, the scalar field has been integra
out and the detector dynamics is described by a reduced
of effective semiclassical stochastic equations. These eq
tions, nonetheless, contain the full quantum dynamics of
field. Our treatment can be extended to massive fields
higher dimensions by making appropriate changes in
two-point functionsZi j .

We studied four examples, starting with a single inert
and uniformly accelerated detector, mainly to illustrate t
new description, and culminating in the treatment of a u
formly accelerated oscillator and a second oscillator wh
functions as a probe. We show that there exist fluctuati
dissipation relations relating the fluctuations of the stochas
forces on the detectors to the dissipative forces. We disco
a related set of correlation-propagation relations between
correlations of stochastic forces on different detectors a
the retarded and advanced parts of the radiation mediate
them.

In the analysis of two inertial detectors, we find that th
change in the state of the field because of the coupling w
either detector modifies the impedance functions of both
tectors, and hence their dissipative properties. Also, this c
pling introduces a mutual impedance which describes
change in the response of one detector because of the
tuations of the field in the vicinity of the other one. The fie
fluctuations~noise! in this case are relatively trivial, and non
trivial effects can be ascribed mainly to the impedance fun
tions.

In the case of the accelerated detector and the probe
the other hand, the noise because of field fluctuations and
field correlations between the two trajectories play a dom
nant role. Since the probe cannot causally influence the
celerated detector, the dissipative features of this problem
relatively trivial. Here, we find that most of the terms con
tributing to the response of the probe cancel out, leav
behind a contribution that arises purely from field correl
tions across the horizon. This cancellation was ear
pointed out @11,13# to be a consequence of the identit
xk1xk*54guxku2 or variations thereof, which is a form o
fluctuation-dissipation relation. Although we utilize thi
identity in our calculation, we observe, however, that th
really follows from the dissipative properties of the accele
ated detector and its free uncoupled dynamics. It theref
does not explicitly involve the fluctuations of the field. W
point out that this cancellation can instead be understood
follow because the correlations between the accelerated
tector and probe trajectories can be expressed partly in te
of the noise or field fluctuations along the accelerated traj
tory alone, and also because of the isotropy of this noise. T
expression of correlation in terms of noise can be equi
lently viewed as a consequence of the correlatio
propagation relations we obtain in Sec. IV, which are app
priate extensions of a generalized fluctuation-dissipat
relation directly relating field fluctuations to dissipative pro
erties.
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A distinct feature of the influence functional formalism a
used in this paper is the assumption of an uncorrelated fie
oscillator initial state. As argued in the appendix, an unco
related initial state is more readily realizable in the derivativ
coupling model. However, since the minimal and derivativ
coupling models are dynamically equivalent, we expect o
final results to be essentially unchanged, in particular th
results of detector response in the various cases studied.
discussion of fluctuation-dissipation relations can be refo
mulated as well in a way suitable to the derivative couplin
model.

We would like to mention possible extensions of thi
work to other problems. In discussions of the quantu
equivalence principle@29,12#, one compares the response o
a detector moving on a geodesic trajectory in Minkowsk
space, and coupled to a quantum field, to its response alo
a geodesic of a spacetime with a homogenous gravitatio
field. The idea is to derive a suitable transformation on th
state of the quantum field which yields the same detect
response in both cases. If one can find such a transformati
the equality of the detector response in both cases constitu
a test of the validity of the quantum equivalence principle fo
local physical processes. However, a homogeneous grav
tional field defines a global inertial frame, and so one
inclined to believe that the equivalence principle would hol
for nonlocal processes as well, such as the effective dyna
ics of two spatially separated detectors coupled to the sa
quantum field. We plan to investigate this and related issu
especially the implications of our findings on black hole bac
reaction and information problems in later works.
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APPENDIX A: INFRARED PROBLEMS
IN THE MINIMAL COUPLING MODEL

The infrared effects of the minimal coupling~MC! model
are not trivial. In fact, as we will show, the proper treatmen
of this simple model, including an ultraviolet but not an in
frared cutoff, leads us to identify a superselection rule whic
prefers a particular class of bases in the model’s Hilbe
space. Using the minimal coupling model and this preferre
class of bases is equivalent to a derivative coupling mod
used by Unruh and Zurek and a basis of direct products
unperturbed field and oscillator states.
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The MC Hamiltonian is

HMC5HF0
1

1

2M
@P2ef~0!#21

k

2
Q2. ~A1!

It is straightforward to show that the expectation value
HMC for soft photon states~i.e., low energy eigenstates of th
free field Hamiltonian! has a contribution proportional to the
inverse of their unperturbed energy. This suggests that
true low energy states of this model must have strong co
lations between the field and the oscillator. If we reject
infrared cutoff as unphysical, then we must conclude th
states that are direct products of field and oscillator sta
will actually have energies very much higher than that of t
true ground state of the model.

The poor behavior of the basis of unperturbed~i.e.,
e→0) energy eigenstates reflects the fact that, since there
field modes at all frequencies, expanding arounde50 cor-
rectly requires degenerate perturbation theory. Since we
trying to set up an open quantum system, however,
choice of basis is not merely a matter of convention. Diffe
ent bases can imply different partitions of the complete H
bert space into ‘‘system’’ and ‘‘environment’’ subspaces.
the influence functional formalism, one traces over the fin
states of the environment, and assumes an initial state w
is often a direct product of system and environment. If w
change what we mean by ‘‘system’’ and ‘‘environment,’’ th
final trace becomes a different operation, and the initial st
becomes a different state.

It is not the model itself, of course, but only the naiv
basis that is badly behaved: the full Hamiltonian is quadra
and hence equivalent to a set of decoupled harmonic osc
tors. To understand the problems with the basis of unp
turbed energy eigenstates, and to identify a better basis,
should diagonalize the full Hamiltonian.

The MC Hamiltonian may be diagonalized by definin
new creation and annihilation operators. If the original fie
and conjugate momentum operators aref(x) andp(x), the
diagonalizing annihilation operators are

ak5
1

A2\puku S E2`

`

dx@C~k!Ek~x!1 isinkx#

3@ ukuf~x!1 ip~x!# D 1eC~k!@ iQ2ukuP#, ~A2!

where Ek(x)5(12k2M /k)coskx2@e2k/(2k)#sinkuxu and
C(k)5@(12k2M /k)21e4k2/(4k2)#21/2, for a massless
field.

Note that the set of fieldlike operators$ak ,ak
†% diagonal-

izes the entire Hamiltonian. There is no normal mode of t
coupled system which corresponds even weakly to the
perturbed oscillator, and all of the normal modes conta
very nonlocal excitations of the field. If we wish to consid
the oscillator as an open system coupled to the field as
unobserved environment, then, the basis of exact ene
eigenstates of the combined system will not be particula
convenient. The fact that this model is easily solved exac
does not make the system-environment problem trivial.

We can now, however, determine the effect on the tr
ground state of the unperturbed oscillator raising and low
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ing operators. We find that either of these operators maps
ground state onto a highly excited state, whose expected
ergy is infrared divergent. Consequently, observations th
are restricted to the oscillator sector alone@as it is defined
from Eq. ~A1!# may be said to require infinite amounts o
energy. Considering the field that appears in Eq.~A1! to be
an unobserved environment is therefore unphysical.

We can, however, change our basis so that the Ham
tonian appears more benign in terms of the transformed o
erators. We may effect this transformation using the unita
operator U5exp„2( i /\)eQf(0)…. This transformation
mixes the field and oscillator sectors, and so changes wha
meant by an observation of the oscillator alone. We ca
check that the new oscillator raising and lowering operator
acting on the ground state, now produce states whose ene
is ultraviolet divergent, instead of infrared. A physically
plausible UV cutoff then renders this energy finite, and
becomes reasonable to consider the new field sector as
observed. Furthermore, a direct product of the unperturb
ground state of the transformed field and any finite-ener
oscillator state now has finite energy, and so is not unreaso
able as an initial state for the coupled system.

An alternative way of expressing the advantage of th
transformed variables is to say that in order for a degree
freedom in the theory to be observable in isolation, it mu
require finite energy to excite or de-excite it without affect
ing other degrees of freedom, and it must also be spatia
local ~except possibly at small scales!. Such an observed
degree of freedom will be some linear combination of th
exact normal modes. If we require the coefficients in th
linear combination to vanish at high energies and rema
finite everywhere else, we can ensure finite energy obse
ability. If we require that the coefficients are constant at lo
energies, we also ensure local observability.

We would then like to have a basis in which this observe
linear combination ‘‘looks like’’ a harmonic oscillator
coupled to a scalar field. Given our conditions of local an
finite energy observability, our original basis does not pro
vide this feature, but our second basis does.

The transformed HamiltonianHMC becomes, in the new
operators, precisely the Hamiltonian of the Unruh-Zure
model. We have, therefore, found that, even if we begin b
analyzing the minimally coupled model, we may be com
pelled in the end to study the Unruh-Zurek model~with a UV
cutoff! instead. More convenient for our subsequent calcul
tions than the Hamiltonian for this model is its Lagrangian

LDC5
1

2
~MQ̇22kQ2!1

1

2E dkḞk* Ḟk2k2Fk*Fk

2
e

A2p
Q~Ḟk1Ḟk* !. ~A3!

Here,Fk is the time-dependent, spatial Fourier transform o
the fieldf.

Note that, even in the more benign Unruh-Zurek basi
distinguishing the oscillator as a system observable indepe
dently of the field directly implies that there must be a UV
cutoff. One often argues that a cutoff is appropriate becau
one is not interested in accurately describing physics at
accessible energy scales; but in the case of the oscilla
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coupled to a field, there must really be a cutoff in the co
pling in order for there to be any accessible energy scale

APPENDIX B: CORRESPONDENCE BETWEEN
MINIMAL AND DERIVATIVE COUPLING MODELS

In the minimal coupling model, the derivative of the o
cillator coordinate couples to the field, whereas in the deri
tive coupling model the oscillator coordinate couples to t
derivative of the field. These two models thus differ by
total derivative term in the Lagrangian. In particular, the
have the same Heisenberg operator dynamics. The ab
subsection describes the issue of the initial state, and arg
that an uncorrelated initial state is physically more realis
in the derivative coupling model. However, since the tw
models have the same dynamics, this should translate
simple prescription for switching from one model to th
other in the context of the influence functional treatment.

In the previous sections, we have derived all results fro
the minimal coupling model. One can obtain correspond
quantities in the influence functional of the derivativ
coupling model via the prescription below:

dQi

dt i
→Qi ,

dQi8

dt i
→Qi8 , ~B1!

Zi j ~t i ,t j8!→
d

dt i

d

dt j8
Zi j ~t i ,t j8!.
u-
.

s-
va-
he
a
y
ove
ues
tic
o
to a
e

m
ing
e

The stochastic effective action in the derivative couplin
model is then given by

Seff5(
i51

N E
2`

t i
21

~T!
dt iF Q̇i

2Q̇i
12V i

2Qi
2Qi

12Qi
2si~t i !h i~t i !

22Qi
2si~t i !(

j51

N E
2`

t j
21

„t i ~t i !…dt j8Qj 8
1sj~t j8!m̃ i j ~t i ,t j8!.

~B2!

Note that the quantitiesm̃ i j in the above equation refer to the
newly defined quantities in the derivative coupling mode
They are obtained by differentiating the corresponding qua
tities in the MC model twice.

The Langevin equations are

d2Qi

dt i
2 22(

j51

N E
2`

t j
21

„t i ~t i !…dt j8sj~t j8!si~t i !m̃ i j ~t i ,t j8!Qj1V i
2Qi

5si~t i !h i~t i !. ~B3!

The noise kernel, as the correlator ofh i and h j , is also
obtained by the corresponding noise kernel in the MC mo
by differentiating twice, according to the correspondence
tablished above.

The infrared-divergent energy of the initially uncorrelate
state does have an effect: the propagation kernel, in the m
mal coupling model, contains an initial ‘‘shock wave’’ term
as well as the expected dissipation and propagation ter
and this term is not present in the derivative coupling mod
Since this shock wave is a transient, it has no significance
our late-time analysis.
te

-

a-

l

@1# W.G. Unruh, Phys. Rev. D14, 870 ~1976!.
@2# S. Fulling, Phys. Rev. D7, 2850~1973!.
@3# L. Parker, Phys. Rev.183, 1057~1969!.
@4# S.W. Hawking, Commun. Math. Phys.43, 199 ~1975!.
@5# P.C.W. Davies, J. Phys. A8, 609 ~1975!; B.S. DeWitt, Phys.

Rep.19C, 295 ~1975!.
@6# W.G. Unruh and R.M. Wald, Phys. Rev. D29, 1047~1984!.
@7# D. Sciama, P. Candelas, and D. Deutsch, Adv. Phys.30, 327

~1981!.
@8# S. Takagi, Prog. Theor. Phys. Suppl.88, 1 ~1986!.
@9# V.L. Ginzburg and V.P. Frolov, Sov. Phys. Usp.30, 1073

~1988!.
@10# P.G. Grove, Class. Quantum Grav.3, 801 ~1986!.
@11# D.J. Raine, D.W. Sciama, and P. Grove, Proc. R. Soc. Lond

A 435, 205 ~1991!.
@12# W.G. Unruh, Phys. Rev. D46, 3271~1992!.
@13# S. Massar, R. Parentani, and R. Brout, Class. Quantum Gr

10, 385 ~1993!.
@14# F. Hinterleitner, Ann. Phys.~N.Y.! 226, 165 ~1993!.
@15# J. Audretsch and R. Mu¨ller, Phys. Rev. D49, 6566~1994!.
@16# B.L. Hu, ‘‘Quantum Statistical Fields in Gravitation and Cos

mology,’’ in Proc. Third International Workshop on Therma
Field Theory and Applications, edited by R. Kobes and G.
Kunstatter~World Scientific, Singapore, 1994!, Report No. gr-
qc/9403061~unpublished!.

@17# B.L. Hu, Physica A158, 399 ~1989!.
on

av.

-
l

@18# B.L. Hu, in Proceedings of the CAP-NSERC Summer Institu
in Theoretical Physics, Vol. 2, Edmonton, Canada, 1987, ed-
ited by K. Khanna, G. Kunstatter, and H. Umezawa~World
Scientific, Singapore, 1988!.

@19# E. Calzetta and B.L. Hu, Phys. Rev. D37, 2878~1988!.
@20# E. Calzetta and B.L. Hu, ‘‘Decoherence of Correlation Histo

ries,’’ in Directions in General Relativity, Vol. II: Brill
Festschrift, edited by B.L. Hu and T.A. Jacobson~Cambridge
University Press, Cambridge, England, 1993!.

@21# E. Calzetta and B.L. Hu, ‘‘Correlations, Decoherence, Dissp
tion and Noise in Quantum Field Theory,’’ inHeat Kernel
Techniques and Quantum Gravity, edited by S. Fulling~Texas
A&M University Press, College Station, TX, 1995!.

@22# B.L. Hu, J.P. Paz, and Y. Zhang, Phys. Rev. D45, 2843
~1992!; 47, 1576~1993!.

@23# B.L. Hu and A. Matacz, Phys. Rev. D49, 6612~1994!.
@24# E. Calzetta and B.L. Hu, Phys. Rev. D49, 6636~1994!.
@25# J.R. Anglin, Phys. Rev. D47, 4525~1993!.
@26# D.W. Sciama, ‘‘Thermal and Quantum Fluctuations in Specia

and General Relativity: an Einstein Synthesis,’’ inCentenario
di Einstein~Editrici Giunti Barbera Universitaria, 1979!.

@27# I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series,
and Products~Academic, New York, 1965!, p. 684~6.561-16!
and p. 937~8.332-3!.

@28# I.S. Gradshteyn and I.M. Ryzhik@27#, p. 503~3.981-1!.
@29# P. Candelas and D.W. Sciama, Phys. Rev. D27, 1715~1983!.
@30# R.P. Feynman and F.L. Vernon, Ann. Phys.~N.Y.! 24, 118

~1963!.


