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Path integrals and instantons in quantum gravity: Minisuperspace models
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While there does not at this time exist a complete canonical theory of full 311 quantum gravity, there does
appear to be a satisfactory canonical quantization of minisuperspace models. The method requires no ‘‘
of time variable’’ and preserves the systems’ explicit reparametrization invariance. In the following study,
canonical formalism is used to derive a path integral for quantum minisuperspace models. As it comes fr
well-defined canonical starting point, the measure and contours of integration are specified by this constru
The properties of the resulting path integral are analyzed, both exactly and in the semiclassical limit. Part
attention is paid to the role of the~unbounded! Euclidean action and Euclidean instantons are argued
contribute ase2uSEu/\. @S0556-2821~96!04412-8#

PACS number~s!: 04.60.Gw, 04.60.Ds, 04.60.Kz
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I. INTRODUCTION

Although a complete theory of 311 quantum gravity is
not yet available, interesting arguments for the pair produ
tion of black holes@1–3#, the instability of certain vacuum
states@4#, and even for a preferred ‘‘ground state’’ of th
theory@5,6# can be made by analogy with field theories th
are better understood. A common tool in such arguments
path integral representation of a quantum gravity transiti
amplitude and/or a related semiclassical approximation. O
goal here will be to investigate this representation and t
\→0 limit by using an analogy with a different class o
systems: the ‘‘finite-dimensional reparametrization invaria
models.’’

While they are explicitly defined to have a finite numbe
of degrees of freedom, such models possess many of
properties which distinguish Einstein-Hilbert gravity from
the more common quantum mechanical systems or fi
theories. They are invariant under ‘‘time reparametrization
a gauge transformation that mixes coordinates and mome
and as a result they often possess constraints that are se
order in momenta. Such ‘‘Hamiltonian constraints’’ ar
reminiscent of the ‘‘Wheeler-DeWitt equation’’@7# of quan-
tum gravity. In addition, they share with Einstein-Hilber
gravity the property that neither the Hamiltonian functio
nor the Euclidean action is bounded below.

Since a bounded Euclidean action is required for comm
arguments involving analytic continuation to Euclidean tim
this property has raised concern about how a path integral
gravity might be defined and analyzed@8,9#. One proposal
@8,10,11# is to ‘‘rotate the contour of integration’’ in the path
integral until the Euclidean action becomes positive defini
We will study this question below and compare our results
what would follow from contour rotation.

An important and related point concerns the semiclassi
approximation. Recall that the Einstein-Hilbert action tak
the form

S5E
M

A2gR1boundary terms, ~1.1!

whereg is the determinant of some metric andR is its scalar
53821/96/53~12!/6979~12!/$10.00
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curvature. One might, therefore, expect that quantum grav
path integrals can be treated as integrals of analytic functio
and that the contour can be deformed from the original r
gion of integration. Some arguments for the contribution o
Euclidean instantons can be made in this way, by deformin
Lorentzian metrics to Euclidean ones through the comple
plane. However, once deformations into the complex plan
are allowed, one must in principle include in the semiclass
cal analysisany stationary points which lie within the do-
main of analyticity of the integrand. Because of the branc
cut introduced by theAg factor in ~1.1!, the metricg effec-
tively takes values on a Riemann surface and, at least
appropriate boundary conditions, the stationary points occ
in pairswith opposite signs of the action.This point has been
made many times@12–15# and a similar feature arises in our
finite-dimensional reparametrization-invariant models
Which stationary phase points actually contribute to the r
sult will depend on the particular contour of integration. Thi
is, however, an issue that must be analyzed and one is led
wonder what determines this contour so that, for exampl
black hole pair creation calculations predict an exponential
suppressed rate for large mass and not one that is expon
tially enhanced.

Our goal here is to investigate these issues in the finit
dimensional reparametrization invariant context by derivin
our path integral from a canonical quantum formalism. Th
existence of a canonical formalism which can be applied to
large class of models and which does not require ‘‘deparam
etrization’’ or the imposition of gauge-fixing conditions is a
fairly recent development@16–20# whose implications for
path integral methods have not yet been explored. Such
our aim here, and we will find that the resulting path integra
has two interesting properties. First, it can be written as a
integral over both ‘‘Lorentzian’’ and ‘‘Euclidean’’ paths in
which the contribution of Euclidean paths is always expo
nentially suppressedfor small \. Second, the Euclidean
semiclassical approximation yields only exponentiall
damped contributions; in particular, Euclidean instantons a
ways contribute with the weighte2uSEu/\, whereSE is the
Euclidean action of the instanton.

We begin by describing the aforementioned canonical fo
malism in Sec. II. This brief review is intended to provide a
6979 © 1996 The American Physical Society
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6980 53DONALD MAROLF
working understanding of the scheme without addressing
of the technical details or supplying all of the motivations.
discussion of these points can be found in the literatu
@16,17,19,20#.

After describing the canonical formalism, we proceed
Sec. III to define our transition amplitude and to express it
a path integral. This transition amplitude is then evaluated
Sec. IV for two classes of exactly solvable models. In both
is clear that ‘‘Euclidean’’ semiclassical contributions are e
ponentially suppressed for largeuSEu. Section V A rewrites
the path integral in a more strongly convergent form whic
may be useful for numerical investigations. Section V B th
addresses the semiclassical approximation. We close wit
brief discussion in Sec. VI.

II. THE CANONICAL FORMALISM

We now describe the specific class of models to be a
dressed and review the canonical formalism of@16,17,19# on
which our path integral will be based. The goal of this r
view is to provide a working understanding of the schem
and not to describe the technical subtleties in detail. Fo
more complete and rigorous presentation, see@16,19,20#, and
for a discussion of existence and uniqueness issues, see@20#.
Essentially the same construction was introduced in@21,22#
in slightly different contexts.

In this paper, we will study only finite-dimensional sys
tems possessing a single constraint proportional to the s
tem’s Hamiltonian. We take the system to be expressed
canonical language in terms of a phase spaceG, which we
shall assume to beT*Rn and to be equipped with coordi-
natesxi ,pi ,iP0, . . . ,n21. Finally, we assume that the con
straint is of the form

h5gi j ~x!pipj1V~x!. ~2.1!

As is well known, many such systems arise as ‘‘minisupe
space models’’ of gravitating systems@23–27# and so form a
set of some interest. Note, however, that the method app
to more general models@16,17,19,20# and has been used to
construct states of linearized gravity@21# as well as a Hilbert
space of ‘‘diffeomorphism-invariant’’ states@19# in the loop
representation approach to quantum gravity.

The quantization scheme to be followed here is known
the ‘‘refined algebraic method’’~which is closely related to
the ‘‘Rieffel induction method’’ of@16#! and may be thought
of as an elaboration of the Dirac approach@28#, in which the
constraints are required to annihilate the so-called physi
states. Specifically, the refined algebraic approach asks
we first quantize the system while completely ignoring th
constraint. This provides an ‘‘auxiliary’’ Hilbert spaceHaux
in which to work. This space is called auxiliary because
contains much more than the physical states that satisfy
constraints. In our case, we will take this space to
Haux5L2(Rn) with operatorsXi ~coordinates! andPi ~mo-
menta! acting in the usual way. For simplicity in our expres
sions, we define ourL2 space using the measurednx. In this
paper we follow the convention of@17# in denoting classical
phase space functions by lower case letters while denot
quantum operators by capital letters. We use units in wh
\51, except in Sec. V B which explicitly investigates th
\→0 limit.
all
A
re

in
as
in
, it
x-

h
en
h a

d-

e-
e
r a

-
ys-
in

-

r-

lies

as

cal
that
e

it
the
be

-

ing
ich
e

The next step in the procedure is to ‘‘quantize’’ the con
straint h50. For our purposes, this simply means that w
choose some self-adjoint operatorH onHaux which has the
function h as its classical limit. The usual ambiguities are
present at this level and we make no attempt to give a uniq
prescription. In fact, a somewhat greater ambiguity is prese
here than in quantizing the Hamiltonian of a nonrelativisti
system. The point is that, classically, the constrainth50 is
equivalent to any constraint of the formf (x)h50, although
such a rescalingcan affect our quantum prescription when
f (x) is not a constant.1 Our viewpoint here is that this is just
one more of the many ambiguities that arise when a classic
system is quantized.

Now, if the spectrum ofH were entirely discrete, the
implementation of the Dirac prescription would be straight
forward. Those eigenstates ofH with eigenvalue zero would
become the physical states of our theory and the ‘‘physic
Hilbert space’’ could simply be theH50 eigenspace of
Haux. However, in typical casesH will also have a continu-
ous spectrum at zero eigenvalue, for which the correspon
ing eigenstates will not be normalizable in the auxiliary Hil
bert space but will instead be ‘‘generalized eigenstates’’ o
H, a kind of distribution.

The strength of the refined algebraic quantization proc
dure is its ability to form a physical Hilbert space from such
generalized states using an inner product that is, in a cert
sense, induced fromHaux. This has the advantage that any
sufficiently ‘‘nice’’ operator A on Haux which commutes
with H induces a densely defined operatorAphys on the
physical Hilbert spaceHphys. In addition, the map
A°Aphys is an ‘‘*-algebra homomorphism,’’ preserving
multiplication, addition, and Hermitian conjugation of the
operators. SinceHaux is a quantum version of the phase
spaceG, it is through this induction process and the auxiliary
Hilbert spaceHaux that the *-algebraic properties of the ob-
servables onHphys are connected to the reality properties o
the classical phase space functions. This is in fact the impo
tant point, as the most ‘‘physical’’ requirement of an inne
product is that it gives the proper adjointness relations to th
quantum operators@32,33#. This construction is described
below. The reader is encouraged to consult@17,19,20# for
further details.

We shall in fact assume the spectrum ofH to beentirely
continuous atH50. That this case is in some sense sufficien
follows from the result@19,20# that the continuous and dis-
crete eigenstates ofH induce sectors of the physical Hilbert
space which aresuperselectedrelative to each other. The
presence of discrete eigenstates would, however, affect
formulation of the path integral in ways that we would prefe
to ignore. We therefore content ourselves with the observ
tion that many minisuperspace models can be formulat
with a constraint having only a continuous spectrum a
H50 and restrict ourselves to this case; for details, see@17#
and, in particular@18#, for the case of the Bianchi type IX
model.

In this situation and under a certain technical assumptio
concerning the operatorH, the physical Hilbert space is

1In particular, the proposals of@29–31# are not compatible with
our choice of inner product.
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53 6981PATH INTEGRALS AND INSTANTONS IN QUANTUM . . .
straightforward to construct. What we would really like is t
‘‘project’’ Haux onto the~generalized! states which are zero-
eigenvalue eigenvectors ofH. Of course, since none of thes
states are normalizable, this will not be a projection in t
technical sense. Instead, it will correspond to an object wh
we will call d(H), a Dirac delta ‘‘function.’’ Given the
above mentioned assumption onH ~see @20#!, the object
d(H) can be shown to exist and to be uniquely define
Technically speaking, however, it exists not as an operato
the Hilbert spaceHaux, but as a map from a dense subspa
S of Haux to the ~for our purposes, topological! dual S8 of
S. The spaceS may typically be thought of as a Schwar
space; that is, as the space of smooth rapidly decreas
functions on the configuration space. In this case,S8 is the
usual space of tempered distributions. Not surprisingly, th
is reminiscent of the study of generalized eigenfunctio
through Gel’fand’s spectral theory@34# and S,Haux,S8
forms a rigged Hilbert triple.

The key point is then as follows. While generalized eige
states ofH do not lie inHaux, they can be related to normal
izable states through the action of the ‘‘operator’’d(H).
That is, generalized eigenstatesucphys& of H with eigenvalue
0 can always be expressed in the formd(H)uc0&, where
uc0& is a normalizable state inS,Haux. This choice of
uc0& is, of course, not unique and, in fact, we associate w
the physical stateucphys& the entireequivalence classof nor-
malizable statesuc&PS satisfying

d~H !uc&5ucphys&. ~2.2!

Each equivalence class of normalizable states will form
singlestate of the physical Hilbert space.

All that is left now is to ‘‘induce’’ the physical inner
product from the auxiliary Hilbert space. Naively, the inne
product of two physical statesufphys& and ucphys& may be
written ^fud(H)d(H)uc&, whereuf& and uc& are normaliz-
able states in the appropriate equivalence classes. This in
product is clearly divergent, as it contains@d(H)#2. The
resolution is simply to ‘‘renormalize’’ this inner product by
defining thephysicalinner product to be

^fphysucphys&phys5^fud~H !uc&aux, ~2.3!

where the subscripts ‘‘phys’’ and ‘‘aux’’ on the angula
brackets indicate the two different inner products. Note th
~2.3! does not depend on which particular statesuf&,uc&
PS were chosen to represent the physical statesufphys& and
ucphys&. This construction parallels the case of a purely d
crete spectrum as, ifPH were a projection onto normalizable
zero-eigenvalue eigenstates ofH, we would have
@PH#25PH . Although d(H) is not strictly speaking an op-
erator, takinguf& and uc& to lie in S makes the above inner
product well defined, as well as Hermitian. In the case of t
free relativistic particle, this positive definite inner produ
corresponds to the Klein-Gordon inner product on the po
tive frequency states, but corresponds tominus the Klein-
Gordon inner product on the negative frequency states. T
positive and negative frequency subspaces are orthogona
usual. A similar representation of the inner product holds
certain other cases@35#.
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Perhaps the most important feature of this approach is th
it first defines the algebra of quantum observables~without
requiring them to be found explicitly! and then provides an *
representation of this algebra on the physical Hilbert spac
that is, a representation onHphys in which the proper Hermit-
ian conjugation relations hold. From the algebraic point o
view, this is the fundamental goal of any quantization
scheme, and it is this * representation that determines
physical predictions.

The representation is defined as follows. The observab
algebra is defined by the * algebra of observables that com
mute with the constraintH and act ‘‘nicely’’ on the dense set
S ~see@19,20# for details!. These are the analogues of the
~smooth! gauge invariants of classical physics. Each suc
operatorA then inducesan operatorAphys onHphys through

Aphysucphys&[d~H !Auc&, ~2.4!

where againuc& is any state for whichucphys&5d(H)uc&.
The operatorsAphys then satisfy the same algebraic and Her
mitian conjugation relations as the observables onHaux,
forming the desired * representation. The use of such ope
tors and the physical inner product~2.3! has been shown to
give physically reasonable results in interesting special cas
@17,18# and in the semiclassical limit@36#.

III. A PATH INTEGRAL FOR THE INNER PRODUCT

Having described how our models will be quantized, w
now wish to derive a path integral formalism for these sys
tems. To do so, we must first answer the question ‘‘Just wh
quantity should we derive a path integral for?’’ Path integra
are often used to represent the ‘‘transition amplitudes’’ tha
encode the time evolution of quantum systems. However, f
the cases we consider, the Hamiltonian explicitly vanishes o
the physical Hilbert space. Thus the operatore2 iHt is just the
identity.

Nevertheless, we know that the physical statesdo contain
information that we may call dynamical~see, for example
@37–41#, for general comments or@17,36# for a discussion in
the context of this particular approach!. Thus there should be
some mathematical object which, more or less, encodes o
idea of a ‘‘transition amplitude.’’

Apparently nontrivial path integral expressions for ‘‘tran-
sition amplitudes’’ have in fact been studied by a number o
authors~e.g.,@14,15,42#!. In the minisuperspace context, all
of these are transition amplitudes between tw
configurations xand x8 ~which are the analogues of the
three-geometries of 311 gravity!, or perhaps their conjugate
momenta. As a result, we will seek our transition amplitud
in the auxiliary Hilbert spaceHaux.

We take our transition amplitudes to be just the matri
elements of the operatord(H) in Haux. That is, we will
compute^xud(H)ux8& where ux& and ux8& are generalized
eigenstates of the coordinate operatorsXi . Our reasons for
this are twofold. First, while expressed in terms of the aux
iliary space, such matrix elements contain all of the informa
tion aboutHphys as they define the physical inner product
Second, when one of the coordinates~say,x0) is considered
to represent a ‘‘clock’’ and when this clock behaves sem
classically@36# this object does in a certain sense describ
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6982 53DONALD MAROLF
the amplitude for the ‘‘evolution’’ of the ‘‘state’’x at
‘‘time’’ x0 to the ‘‘state’’ x8 at ‘‘time’’ x08. Herex repre-
sents the coordinates on a slice through the configurat
space of constantx0.

It is now straightforward to represent this object as a pa
integral. To do so, consider the path integral expression
the operatore2 iNH on Haux, which we expect to exist and
which can be derived in the usual way by skeletonizati
~see, for example,@43#! of paths betweenx at ‘‘time’’ zero
and x8 at ‘‘time’’ N. Note that by ‘‘time’’ we mean an
additional parameter that we now introduce;not one of the
coordinatesxi . We then integrateN from 2` to ` to turn
e2 iHN into d(H).

The resulting path integral is then

^xud~H !ux&5
1

2pE2`

`

dNE DxDpexpS i E
0

N

dt@pẋ

2h„x~ t !,p~ t !…# D ~3.1!

where *2`
` dN denotes an integral over thesingle variable

N whileDxDp denotes the Liouville measure on the canon
cal path space@43#. Since the configuration variables ar
specified at the end points, there is ‘‘one less’’ set of int
grations over the coordinates than over the momenta. T
notation h„x(t),p(t)… stands for the ‘‘symbol’’
^p5p(t)uHux5x(t)&aux/^pux&aux of the operatorH, where
up& is an eigenstate of the momentaPi .

In the usual way, gauge-fixing machinery and redunda
integrations can now be introduced to write~3.1! in a form
where its independence of ‘‘gauge’’ is more explicit. Hall
well @29# has performed this analysis in the reverse directi
by starting with the Faddeev-Popov form and introducing t
gauge-fixing conditionṄ50. Since he arrives at just ou
result~3.1!, his work allows us to express the physical inn
product in the form

^xud~H !ux&5
1

2pE DNDxDpd~G!D~G!expS i E
0

1

dt@pẋ

2N~ t !h„x~ t !,p~ t !…# D ~3.2!

where G is now any appropriate gauge-fixing function
D(G) is the associated Fadeev-Popov determinant, and
sum is over all paths „x(t),p(t),N(t)… in which
xi(t), pi(t), andN(t) are allowed to range over the entir
real line. This is the path integral that we shall explore
Sec. V. For interested readers, the convergence propertie
~3.1! and ~3.2! are discussed in detail in Appendix A.

IV. EXACTLY SOLVABLE MODELS

Having derived a path integral for̂xud(H)ux8&, the
physical inner product, it is of interest to see what form th
distribution takes in simple cases where an exact analy
expression can be obtained. As usual, the cases that we
study are the ‘‘purely quadratic ones;’’ the perturbed Bianc
type I model ~or free relativistic particle! and the case of
coupled harmonic oscillators.
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A. Perturbed diagonal Bianchi type I

The Bianchi type I model is a minisuperspace describin
spatially homogeneous spacetimes of the formM5T33R
having a foliation by three-tori with flat Riemannian metrics
~so that the tori form spacelike hypersurfaces ofM). In the
diagonal version of this model the metric is such that, at eac
point xPM, three mutually orthogonal closed geodesics in
tersect atx and each encircles an arm of the torus once. Thi
system may be formulated on the configuration spac
Q5R3 with a constraint of the form

hBI52p0
21p1

21p2
2 . ~4.1!

In this case, the coordinatex0 describes the volume of the
three-torus while the coordinatesx1 and x2 describe the
‘‘anisotropies,’’ the ratios of the lengths of minimal curves
encircling the torus in different directions. We will consider
a perturbed and slightly more general model onQ5Rn for
which the quantum constraint is

H5
1

2 S 2P0
21 (

i51

n21

PiPi1m2D ~4.2!

for m2.0. Note that without the perturbation (m2), the ac-
tion S would vanish on every classical solution and we
would be unable to consider the semiclassical limituSu@1.
The constant factor of12 affects none of the results, but con-
forms to the usual convention for the normalization of ki-
netic terms.

Such a system looks exactly like the free relativistic par
ticle. However, we will intentionally avoid referring to this
system by that name, as we feel that thephysicsof the two
situations is quite distinct. This follows from the fact that the
metric which defines the constraint’s ‘‘kinetic term’’ has a
different interpretation in each of the two cases. A free rela
tivistic particle withp0,0 is usually interpreted as ‘‘travel-
ing backwards in time,’’ a process that we suppose to b
physically disallowed. This leads to the usual preference fo
positive frequency states over negative frequency state
However, in the Bianchi type I model, a negativep0 means
only that thex0 of the tori is decreasing with proper time—
that is, that the universe iscollapsing. This is not only a
physically interesting process but a process which classical
mustoccur in some minisuperspace models, such as Bianc
type IX @44#. Thus we are pleased to include the negative
frequency states in our model.

We now proceed to compute the integral

^xud~H !ux8&5
1

2pE2`

`

dN^xue2 iHNux8&

5
1

p
ReS E

0

`

^xue2 iHNux8& D , ~4.3!

where Re denotes the real part. The operatore2 iHN is just
e2 im2N/2 times a product of propagators for free nonrelativ-
istic particles. As a result, its matrix elements are readily
seen to be
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53 6983PATH INTEGRALS AND INSTANTONS IN QUANTUM . . .
^xue2 iHNux8&5e~ ip/2!~12n/2!~2pN!2n/2

3expF2
im2

2 SN2
~x2x8!2

m2N D G ~4.4!

for N.0. We can evaluate~4.3! using ~3.471! of @45# to
yield, for (x2x8)2.0,

^xud~H !ux8&5
2

p~2p!n/2
FA~x2x8!2

m G ~12n/2!

3K ~n/2!21„mA~x2x8!2…, ~4.5!

whereK (n/2)21 is the modified Bessel function~of the second
kind! of order (n/2)21. Similarly, for (x2x)2,0, we find

^xud~H !ux8&5
1

~2p!n/2
FA2~x2x8!2

m G ~12n/2!

3H cosFpS n21

2 D GJ~n/2!21„mA2~x2x8!2…

2sinFpS n21

2 D GN~n/2!21„mA2~x2x8!2…J .
~4.6!

An intuitive feel for just why the answer is of this form may
be obtained by noting that it describes a certain correlat
function in free scalar field theory, or alternately by perform
ing this integral in the semiclassical approximation. For t
interested reader, the semiclassical analysis is carried ou
Appendix B.

Note that, for2(x2x8)2@m2, the matrix elements are
roughly sin@mA2(x2x8)2# or cos@mA2(x2x8)2# depend-
ing on the number of degrees of freedom. That is, they
clude equal contributions from what might be called th
positive and negative frequency parts. Nevertheless, w
(x2x8)2@m2, the matrix elements contain only thedecreas-
ing exponential exp@2mA(x2x8)2#. This occurs even
though the Euclidean action is unbounded below. Simi
results hold for the casem252k2,0 for which the resulting
physical inner product is obtained by replacingm with k and
(x2x8)2 with 2(x2x8)2 in ~4.5! and ~4.6!. As might be
expected, this is related to which points of the stationa
phase contribute tôxud(x)ux8& in the semiclassical approxi-
mation. We will return to this point in Sec. V and Appendi
B.

It is interesting to compare the results~4.5! and ~4.6! to
what one might obtain by a ‘‘contour rotation prescription
of the sort suggested in@8#. The idea is to rotate the contou
of the conformal mode~represented here byx0) to imaginary
values (x0→ ix0) so that the Euclidean action become
bounded below. We can certainly perform the integral~4.3!
taking2p0

2 to be replaced byp0
2 in the Hamiltonianh. The

result is just ~4.5! above with (x2x8)2 replaced by
(x2x8)E

2[( i50
n (xi)2, since (x2x8)E

2>0. The task is then to
analytically continue back;x0→2 ix0. For (x2x8)2.0, this
clearly yields ~4.5!; the correct answer from our point o
view. However, for (x2x8)2,0, the analytic continuation is
ambiguous. Because of the branch cut that defines the sq
root, the answer will depend on which path is followe
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through the complex plane. As can be seen from~4.6!, what
we would call the ‘‘right’’ answer results from combining
these two contributions with equal weights and with a phas
that depends onn.

B. Coupled harmonic oscillators

In order to more thoroughly explore the properties of ex
actly solvable models, we now study the case of couple
harmonic oscillators. However, to fit with the general char
acter of minisuperspace models, we will take one of the o
cillators to have negative energy. That is, we will again tak
our system to be defined on the phase spaceG5T*Rn, with
the constraint

05h5
1

2 S 2p0
22~x0!2v21 (

i51

n21

@pi
21~xi !2v2# D

[
1

2
@p21v2x2# ~4.7!

for v2.0. We could, in principle, also study the case wher
one or more of the harmonic oscillators is inverted@with
Hamiltonian 1

2 (p
22v2x2)#, but we will not do so here. For

simplicity, we assumen to be even. Models of the form~4.7!
do arise as minisuperspace models of gravity interacting wi
scalar fields@46# and many of their aspects have been studie
in the literature@46–48#.

Strictly speaking, however, this model doesnot fall into
the class allowed by Sec. II. Since it is a sum of harmon
oscillator Hamiltonians, instead of the constraintH having a
purely continuous spectrum at zero@when quantized in the
usual way onL2(Rn)#, its spectrum is purelydiscrete—not
just at zero, but everywhere. This creates a number of subt
ties, such as the fact that there are rather few zero-eigenva
eigenstates of the constraint unless all of the oscillators ha
commensurate frequencies. Furthermore, unless an appro
ate constant is added toH, it will in general haveno eigen-
states with eigenvalue zero. Thus a better way to quanti
this model might be to rewrite the constraint~see, for ex-
ample,@17,18,36#! in such a way that the spectrum is purely
continuous.2 Unfortunately, this necessarily destroys the
purely quadratic form of the action and thus the exact sol
ability of the model.

Our purpose in studying this model is not to examine th
detailed predictions of the cosmological scenario of@46#, but
rather to investigate the general mathematical properties
the expressions~3.1! and~3.2! for the physical inner product.
Thus we will quantize this model using the constraint opera
tor

H5
1

2 F2P0
22~X0!2v21 (

i51

n21

@Pi
21~Xi !2v2#G1F12

n

2Gv.

~4.8!

2This continuous spectrum form of the constraint is in fact in
better accord with the global properties of the original gravitationa
model of @46#.
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The frequencies and constants in~4.8! are specifically chosen
so that there seem to be a sufficient number of ze
eigenvalue eigenvectors. We shall not concern oursel
with whether or not such choices are ‘‘natural.’’

However, if we are to proceed in this way, expressio
~3.1! and ~3.2! must be modified. This is because their ai
was to calculate the operatord(H) and, now that the spec-
trum of H is discrete, this object is highly divergent: whe
acting on a normalizable stateuc& for which Huc&50,
d(H) cannot possibly be defined.

As stated in Sec. II, the analogous object for the case o
discrete spectrum is the projectionPH50 onto the zero-
eigenvalue subspace for the operatorH. An expression for
^xuPH50ux8& analogous to~3.1! and ~3.2! can be found by
realizing that the ‘‘evolution operator’’e2 iNH is, in this case,
periodic in N with period 2p/v. This, of course, is the
source of the would-be divergence in
d(H)5(1/2p)*2`

` dNe2 iNH, but it also allows us to express
the projectionPH50 as the integral over a single cycle o
N:

PH505
v

2pE2p/v

p/v

dNe2 iNH5
v

pE0
p/v

dN~e2 iNH1eiNH!.

~4.9!

Similarly, the analogues of~3.1! and ~3.2! are given by tak-
ing N to exist on a periodic interval of length 2p/v.

As in the perturbed Bianchi type I model, the operat
e2 iHN is a product of evolution operators for nonrelativisti
particles which can be evaluated exactly; perhaps most ea
by using the semiclassical approximation~which is exact for
quadratic Hamiltonians!. Forp/v.N.0, the result is

^xue2 iHNux8&5S v

2psinvND n/2ei ~p/2!~12n/2!eiScl~x,x8;N!

~4.10!

where

Scl~x,x8;N!5
v

2

~x21x82!cosvN22x•x8

sinvN
~4.11!

is the action of the least action path betweenx and x8 tra-
versed in thegiven timeN. Note that this path is unique for
NÞ0, p/v. Here,x•x8 denotes2x0x081( i51

n-1 xixi8.
All that remains is to evaluate the integral overN in ~4.9!.

For the casen52, we may refer to@49,50#. More generally,
if we definea52v(x21x82)/2 andb5vx•x8 then the re-
sult may be expressed as

^xuPH50ux8&52vReH ~2p!2~n/2!iei ~p/2!~12n/2!

3S i ]

]bD ~n/2!21

H0
~1!~Ab22a2!J , ~4.12!

using~6.677! from @45#. Here,H0
(1) is the usual Hankel func-

tion of the first kind and the square root is defined b
Areiu5r 1/2eiu/2 for 0<u<p. Thus, whena2.b2, ~4.12!
takes the form
ro-
ves

ns
m

n

f a

f

or
c
sily

y

^xuPH50ux8&5
4v

p
~2p!2n/2S ]

]bD ~n/2!21

K0~Aa22b2!.

~4.13!

The results~4.12! and~4.13! may in turn be written as a sum
of Hankel functions of orders 0,n,n/221 by using the
usual Bessel function recurrence relations.

The matrix elements~4.12! have the same general struc-
ture as those of~4.5! and ~4.6!. That is, they are a Bessel
function of ordern/221 of the square root of a function of
x andx8. Recall that in the case of perturbed Bianchi type
the behavior of this Bessel function was determined by th
sign of (x2x8)2; that is, by whether the pointsx and x8
could be connected by a ‘‘Lorentzian’’ classical solution
~with real lapseN) or by a ‘‘Euclidean’’ solution with imagi-
nary lapse. A similar phenomenon occurs for our couple
oscillator model. Pairs of configurations (x,x8) may be sepa-
rated into three distinct classes: those for which2a/b.1,
those for which 1.2a/b.21, and those for which
21.21/b. Only for the first category (2a/b.1) does a
‘‘Euclidean’’ classical solution~with imaginary lapse! exist.
Such solutions come in pairs with Euclidean action
SE56Aa22b2. Similarly, a ‘‘Lorentzian’’ solution ~with
real lapse! exists only for the second case, 1.2a/b.21.
These solutions also come in pairs, with action
S56Ab22a2. For the third case (2a/b,21), the con-
figurationsx andx8 may be connected bycomplexclassical
solutions with ReN5p/v ~but no such solutions exist for the
first two classes of pairs!. The Euclidean action is also real
for this last case, and is again given bySE56Aa22b2.

The semiclassical approximation is valid~in our units!
when uSu5Aub22a2u@1 so that, once again, whenx and
x8 are connected by a Lorentzian solution, this approxima
tion contains contributions of both formseiS ande2 iS which
are equally weighted up to a phase. However, when the co
necting solution is Euclidean~or complex with real Euclid-
ean action!, only the exponentiallydecreasingsolution con-
tributes and the leading semiclassical term ise2uSEu. We
follow the usual convention ofiS52SE so that this expo-
nentially decreasing factor corresponds to the stationa
point with positive Euclidean action.

This seems to indicate a general property of the semicla
sical approximation~and perhaps of the entire expression!
for ~3.1! and~3.2! which we shall investigate further in Sec.
V. Note that this case is more subtle than that of the pe
turbed Bianchi type I model since that model had the prop
erty that ~for m2.0) the Euclidean action of a Euclidean
solution is always positive when the ‘‘Euclidean lapse’’iN
is positive. In contrast, for coupled harmonic oscillators,
Euclidean solution with positive Euclidean lapse can have
Euclidean action with either sign. This, therefore, is muc
closer to the generic case.

As in the perturbed Bianchi type I model, we briefly com
pare ~4.12! with a contour rotation scheme wherex0 is ro-
tated to ix0. Again, this gives just the right result in the
‘‘Euclidean sector’’ (a2.b2), but the branch cut of the
square root creates an ambiguity when analytically contin
ing back to the ‘‘Lorentzian sector’’a2,b2. Our result
~4.12! includes both possible outcomes, equally weighted u
to ann-dependent phase.
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V. THE GENERAL CASE

In Secs. IV A and IV B, we discoverd several interestin
properties of the exact results~4.5!, ~4.6!, and ~4.12!. We
will now argue that these properties should hold in gener
Specifically, we first show in Sec. V A that the inner produ
may be expressed as a path integral over both Lorentzianand
Euclidean paths~and combinations thereof! in which the
contribution of the Euclidean paths is exponentially su
pressed for small\. Such an expression is more converge
than ~3.1! and ~3.2! and may be of use for numerical inves
tigations. A representation of this form also indicates th
Lorentzian instantons~with either sign of the action! and
Euclidean instantons with positive Euclidean action will co
tribute to our transition amplitude in the semiclassical lim
We then argue in Sec. V B that, in addition, Euclidean i
stantons with negative action donot contribute to the semi-
classical limit.

A. A simplified expression

Our general strategy will be to simplify the path integra
by performing the integrals in~3.2! over the momentaand
over the lapse; thus we assume that we may change the o
of integration. The result will~almost! be a configuration
space path integral in which, in effect, the constraint equ
tion

gi j ~x!
ẋi ẋ j

N2 1V~x!50 ~5.1!

has been solved for the lapseN. That is, we will obtain a
path integral based on a Baierlein-Sharp-Wheeler-like@51#
form

S5E dtAgi j ẋi ẋ jV~x! ~5.2!

of the classical action.
We begin with the expression~3.2! for the matrix ele-

ments ^xud(H)ux8&. Having written the integral in a form
where Faddeev-Popov technology applies, we are now f
to use any gauge-fixing condition we wish. Because w
would like to integrate out the momenta, we will use a gau
condition of the formG(x)50 whereG is a function of the
coordinate variablesonly ~see @52# for a discussion of ca-
nonical gauges in this context!. In addition, we assume
¹G•¹G.0; that is, that¹G is spacelike. Unfortunately,
G50 is not really a ‘‘good’’ gauge condition@53# as there
will always exist points in phase space at which the Poiss
brackets$G,H%5p•¹G of G with H vanish~such as where
all momenta vanish!. Nevertheless, such a condition is ofte
‘‘good’’ on all but a set of measure zero. Having admitte
our treatment to be heuristic, we assume that we may
such a gauge condition below.

Now, since there is only a single constraint, the Faddee
Popov determinant takes the particularly simple form of
product over timest:

D~$G,H%!5)
t

u$G,H%~ t !u5)
t

u¹G~ t !• tp~ t !u ~5.3!
g
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where the inner product• t denotes a contraction through the
~co!metricgi j „x(t…).

For common factor orderings of the quantum constrai
H, the symbolh(x,p) will be quadratic in the momentap.
We shall assume that it takes the form

h~x,p!5gi j ~x!pipj1Vq~x! ~5.4!

where the subscriptq on V indicates that the potential may
receive quantum corrections such as terms proportional
the curvature ofgi j @54,55#. In order to be explicit, we shall
assume the signature ofg to be everywhere (1,n21).

Most of the the momentum integrals are of the form
*2`

` dpei (pẋ2lp2) and can be performed exactly using sta
tionary phase methods. However, the presence of the ab
lute valueu¹G•pu means that, for each value oft, there will
be one momentum integral which cannot be performed
this way. It will be sufficient for our purposes to leave thi
integral undone, and to simply perform the others. The com
ponent ofp in the direction of¹G„x(t…… will be denoted
pi . Similarly,ni„x(t)… will be the unit vector in the direction
of ¹G„x(t)…. Performing these momentum integrals yield
the expression

^xud~H !ux8&5E DNDxDpiexpF i 12E01dtgi j'
ẋi ẋ j

N

2N„Vq~x!1pi
2
…G

3)
t
expF i psgn~N!

2 S n23

2 D G
3uN~ t !u~12n!/2A2detg'd@G„x~ t !…#

3u¹G„x~ t !…uupiu ~5.5!

where the usual product of normalization factors at each tim
has been dropped~they may be absorbed into the definition
of the measure!. Heregi j

' is the induced metric on surfaces o
constantG(x).

Finally, we wish to perform the integrals overN. As in
the explicitly soluble models discussed in Sec. IV, these i
tegrals may be expressed in terms of Bessel functions. N
that each such integral is of the form

I5E
2`

`

dNexpF i psgn~N!

2 S n23

2 D G uN~ t !u~12n!/2

3expS i F12 gi j ẋ
i ẋ j

N
2N„Vq~x!1pi

2
…G D . ~5.6!

This is essentially the same integral with which we we
faced in Sec. IV A. Introducingv[V1ni

2pi
2 , k[gi j ẋ

i ẋ j ,
and dropping constant normalization factors, the integr
yields

I5~k/v !~32n!/4K ~n23!/2~Akv ! ~5.7!

whenkv.0 and

I5pRe$~2k/v !~32n!/4eip~n22!/2H ~n23!/2
~1! ~A2kv !%

~5.8!

whenkv,0.
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As a result, the physical inner product may be written

^xud~H !ux8&5E DxDpi)
t
I ~k,v !d~G!u¹GuupiuA2detg'.

~5.9!

The connection to the Baierlein-Sharp-Wheeler-like~5.2!
should be clear: since Bessel functions are exponentials
large arguments, if the momentapi were replaced by their
semiclassical valuesẋ•¹GAv/k then ~5.9! would be a path
integral based on the action~5.2!, although with a rather
complicated measure.

This expression may be thought of as a sum over bo
Lorentzian and Euclidean bits of path at each time. Here,
say that a segment of path is Lorentzian whenkv.0, so that
a real lapseN would be associated with this segment b
solving the constraint

k

N2 1v50. ~5.10!

Similarly, a bit of path withk/v,0 is Euclidean as the cor-
responding lapse is imaginary. Note that this occurs desp
the original expression~3.1! being an integral only over a
real classical lapseN. As in our exactly solvable models, the
Lorentzian bits contribute with both signs of the action b
the Euclidean path bits are always exponentiallysuppressed
when the correspondinguSEu is large. A similar result is ob-
tained if other momentum integrals are left undone as we
so long as the momenta at each time are integrated ove
least one two-plane with signature (2,1).

The argument of every Bessel function is now manifes
positive. As a result, the fact that neither the Lorentzian n
the Euclidean action is positive definite has disappeared fr
sight. If we define a slightly modified functionI e by
I e(k,v)5I (k,v) for kv.0 and

I e~k,v ![Re$~2k/v !~32n!/4eip~n22/2!

3H ~n23!/2
~1! ~ @12 i ueu#A2kv !% ~5.11!

for kv,0, thenI e(k,v) vanishes in the limit of largekv ~for
eÞ0). Our matrix elements may therefore be expressed
the form

^xud~H !ux8&5 lim
e→0

E DxDpi)
t
I e„k~ t !,v~ t !…

3d~G„x~ t !…!u¹G„x~ t !…uupiuA2detg'

~5.12!

for which the integrand is exponentially decreasing. As
converges more strongly than~3.1!, we may hope that~5.12!
will be of use in numerical computations.

B. Instantons and the semiclassical approximation

The expression~5.9! for our transition amplitude includes
an explicit sum over both Lorentzian and Euclidean paths,
well as arbitrary combinations of the two. In the semiclas
cal approximation, this result indicates that both Lorentzi
and Euclidean stationary points contribute to the physic
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inner product, so long as the latter have positive Euclide
action. In fact, since the contribution of Euclidean path bi
is exponentially suppressed in~5.9! for small \, it appears
that stationary points with negative Euclidean actionnever
contribute, as was suggested by the examples of Sec.
However, we have not yet shown this carefully. In particula
it is possible that a stationary point of the action, while no
actually on the contour over which the integration is pe
formed, might contribute to the semiclassica
approximation.3 In general, in fact, wedo expect such sta-
tionary points to contribute, as the contour of integratio
could easily be deformed to reach a complex stationary po
lying just off the real axis. If the contour, say, for the vari
able k in ~5.9! can be deformed far enough, it could wra
around the branch point atk50 to reach a stationary point
on the ‘‘second sheet’’ of the Riemann surface on whichk
exists. Such a stationary point would then contribute
e1uSEu to the inner product̂xud(H)ux8&. We will now argue
that this does not occur. Because we study the semiclass
approximation, the factors of\ will be restored below.

Let us first note that, if the semiclassical approximation
to hold, our matrix elements must be of the form

^xud~H !ux8&5eiS~x,x8!/\C~x,x8! ~5.13!

where C(x,x8) is slowly varying in comparison with

eiS(x,x8)/\. In particular, sinceS(x,x8) is continuous on re-
gionsR of Rn3Rn where the numbern of connecting paths
in constant,C(x,x8) must be continuous there as well.

In general, we expect the union of the boundaries of su
regionsR to have measure zero so that the unionU of the
interiors has measure 1. We thereforeassumethat this is so
and consider only the open subsetU on which
^xud(H)ux8& is continuous.

If the matrix element ^x0ud(H)ux08& takes the form

e1uSE(x0 ,x08)u/\ ~to leading semiclassical order4! at some pair
(x0 ,x08)PU, it must in fact take this form on some open
rectangular regionV\3W\ (V\,Rn, W\,Rn) containing
(x0 ,x08). If the diameters ofV\ andW\ are much less than
\@ u]SE /]xu#21 and \@ u]SE /]x8u#21, respectively, then
S(x,x8)/\ is essentially constant onV\3W\ . As a result,
^xud(x)ux8& is essentially real onV\3W\ and satisfies
^xud(H)ux8&>el/\ where~say! l5 1

2uSE(x,x8)u.
We now choose two statesuf& and uc& in S whose rep-

resentationŝ xuf&5 f (@x2x0#/\) and ^xuc&5g(@x2x0#/
\) are positive real, supported inV\ andW\ , respectively,
and havef (y) andg(y) independent of\. Let us define

3We have already seen an example of such behavior as the
clidean paths that are explicitly included in~5.12! correspond to
stationary points of theN integrals at imaginary lapse~and there-
fore off the originalreal contour!.
4The fact that a Euclidean path dominates does not necessa

require the matrix elements to be real and positive; there may in f
be an overall phase that we have neglected. The point is that
phase is both independent of\ ~for small \) and slowly varying
with x andx8.
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af5\2nE
Rn

^xuf&dnx5E
Rn
f ~y!dny,

ac5\2nE
Rn

^xuc&dnx5E
Rn
g~y!dny, ~5.14!

bf5\2nE
Rn

u^xuf&u2dnx, bc5\2nE
Rn

u^xuc&u2dnx.

It follows that af , ac , bf , andbc are real, positive, and
independent of\. Note that the physical inner product of ou
two states satisfies

^f\ud~H !uc\&>\2naface
l/\ ~5.15!

to leading semiclassical order and that the expression on
right diverges as\→0.

We will now derive a contradiction. To do so, we retur
to our original expression for the inner product,

^f\ud~H !uc\&5E
2`

1`

^f\ue2 iHN/\uc\&. ~5.16!

Recall that, for uf\&,uc\&PS, this integral convergesat
large N. Effectively, this is because the statesuf\& and
uc\& are characterized~to accuracye) by some minimal en-
ergy scale5 E\ and the integration over the region
uNu.T\'\/E\ yields a negligible contribution. Note, how-
ever, that sinceuf\& and uc\& have normsA\nbf and
A\nbc and since the operatore

2 iHt /\ is unitary, we have the
bounds

^f\ue2 iHN/\uc\&<\nAbfbc ~5.17!

and

^f\ud~H !uc\&<\n11CAbfbc/E\ ~5.18!

whereC is some constant independent of\. In order to
compare this bound with the semiclassical expression~5.15!,
we estimateE\ as follows.

Recall thath5gi j (x)pipj1V(x). The statesuf\& and
uc\& are characterized by coordinatesx0 andx08 ~which are
independent of\) and by momentum scales

p\5
\

diam~V\!
5F]SE]x G , p\85

\

diam~W\!
5F]SE]x8 G

~5.19!

which are also independent of\. As a result,
E\'g(x0)p\

21V(x0) is independent of\ and the bound
~5.18! vanishesas\→0, in contradiction with~5.15!. Here,
g(x0) is some bound on the components of thegi j (x) at
x5x0 . We thus conclude that, at least for minisuperspa

5This is the energy at which z^f\ud(H)uc\&
2^f\ud(H2E\)uc\& z,e. As a result, it is related to a sort of
continuity @20# of the spectral representations ofuf\& and uc\&.
E\ depends on the functionsf and g as well as on\ and the
accuracye. In particular, it is not a property of the Hamiltonian
H alone and in no way corresponds to a mass gap for the syste
r

the

n

ce

models, Euclidean instantons always contribute to our tra
sition amplitude ase2uSEu/\. Similarly, complex instantons
must contribute aseiReS/\e2uImS/\u, where Im denotes the
imaginary part.

VI. DISCUSSION

The goal of this work was to use a canonical formalism
~the refined algebraic or Rieffel induction method! to repre-
sent a minisuperspace transition amplitude as a path integ
and to investigate this expression both exactly and in th
semiclassical limit. We have seen that the path integral m
be written in the form~5.12! which explicitly sums over both
Lorentzian path bits~which appear with both signs of the
action! and Euclidean path bits which are exponentially sup
pressed. As a result, we conclude that any Lorentzian
positive action Euclidean stationary point may contribute t
our transition amplitude in the semiclassical limit. We als
argued in Sec. V B that Euclidean instantons withnegative
Euclidean action~which would be exponentially enhanced!
do not contribute in the semiclassical limit.

It seems reasonable to assume that similar results hold
full 311 gravity, Kaluza-Klein theory, dilaton gravity, or
any other diffeomorphism-invariant theory of gravity with
indefinite Euclidean action. However, it should be noted th
the most interesting instantons in quantum gravity~e.g.,
@1–6,13–15,56–58#! are rather far from our minisuperspace
models. In particular, they involve processes in which th
spatial topology of the initial state differs from the spatia
topology of the final state; an effect which appears to b
ruled out by construction in our context~see, however,
@14,15#!. An argument could certainly be made that suc
instantons are qualitatively different and that our results ha
no bearing on their interpretation. On the other hand, we no
that the arguments of Sec. V B did not rely on the details o
our model, but followed from the unitarity ofe2 iHN and the
existence of an appropriate subspaceS,Haux. One would
expect such arguments to generalize readily if refined alg
braic or Rieffel induction methods are applicable at all. A
the very least, our arguments are suggestive, and it is wor
while to briefly discuss below the hypothesis that our resul
do generalize to such cases.

Many instanton calculations, such as the pair creation ca
culations of@1–3#, implicitly assume that the relevant sta-
tionary point is the one with positive Euclideanlapse. So
long as the corresponding Euclidean action is positive~as it
is in all of the pair creation examples@1–3#!, this is just the
conclusion that would follow from Sec. V B. We will there-
fore concentrate on situations where the Euclidean action
negative. Perhaps the most interesting use of such instanto
was seen in the arguments of Baum@56#, Hawking@57#, and
Coleman@58# that the cosmological constantL should van-
ish. They supposed that, in some way, the quantum state
the universe provides a probability distribution forL and
proceeded to estimate this distribution through instanton ca
culations. The large negative action of four-sphere instanto
for small positiveL was used to argue that this distribution
is exponentially large~or even larger@58#! for L near zero.

While we have been interested in the transition amplitud
and not in a particular quantum state, we note thateverym.
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physical stateucphys& in our scheme may be expressed in t
form

^xucphys&5E dx8^xud~H !ux8&^xuc& ~6.1!

for some uc&PS. As a result, the arguments of Sec. V
imply that no physical state has a ‘‘wave function
^xucphys& which behaves aseuSE(x)u in any region of super-
space. This suggests that the instantons of@56–58# would
not, in fact, contribute to the desired distribution. Followin
a similar line of reasoning,@9,59# arrive at this same conclu
sion. Other arguments against and comments on the Ba
Coleman-Hawking mechanism include@60–64#.

Another point to be addressed is the argument of@13# that
only stationary points with ReAgE>0 ~wheregE is the Eu-
clidean metric! should contribute to the path integral. In ou
notation this restriction would be Re(iN)>0; i.e., positive
Euclidean lapse. The argument of@13# was based on consid
ering the normalizability of an induced quantum state for t
matter~nongravitational! fields. The issue concerned wheth
this state is an exponentially growing or decaying function
these fields; that is, it had to do with the state functional
large values of the matter fields. While we have argued t
stationary points with Re(iN),0 may contribute, the fact
that the Euclidean action of matter fields is positive f
Re(iN).0 means that for large values of the matter fiel
our condition of positive Euclidean action is equivalent
the condition Re(iN).0 of @13#. This is as one would ex-
pect since exponentially increasing functions do not defi
generalized eigenstates of the constraint. As a result, we
that our arguments are consistent with the general requ
ments of@13# for reproducing quantum field theory in curve
spacetime.
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APPENDIX A: CONVERGENCE OF THE PATH
INTEGRAL REPRESENTATIONS

In this appendix we discuss in detail the convergen
properties of the path integrals~3.1! and~3.2! for the physi-
cal inner product. These expressions do in fact converge
long as all integrations are appropriately interpreted.

Let us begin by noting that̂fue2 iHNuc& is well defined
for all uf&,uc&PHaux, and, in particular, for alluf&,uc&
PS. This follows from the fact thateiHN is a unitary~and
therefore bounded! operator on Haux. As a result,
^xue2 iHNux8& is a well-defined distribution onS3S; that is,
^xue2 iHNux8& is a member of the dual spaceS83S8.
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Note that this holds forall real N, even though the ex-
pression for̂ xue2 iHNux8& ~for the caseH52P0

21P1
25m2,

for example! as a function ofN, x, and x8 may have an
essential singularity atN50 ~see, e.g.,@14,15#!. This is noth-
ing more than the fact that the distributiond(x2x8) cannot
be represented by a smooth function. In fact,^xue2 iHNux8& is
a continuousfunction ofN in the topology ofS83S8, even
atN50. There is thus no difficulty with theN integral at any
finite value ofN.

We expect the result of this integral to be^xud(H)ux8&.
Our technical assumptions guarantee that the limit

lim
a→2`
b→1`

E
a

b

dN^xue2 iHNux8& ~A1!

does in fact converge tôxud(H)ux8& ~in the topology of
S83S8), and does so independently of how the limits ofa
andb are taken@20#. Any lack of convergence of~3.1! must
therefore arise from the path integral representation
^xue2 iHNux8&. It is to this expression that we now turn.

Our assumptions~from @20#! guarantee that (12 iHt )
mapsS into S so that the operator (12 iHN/k)k is also a
member ofS83S8. It follows that the integrations in the
k-skeletonized path integral

I k5E dp0
2p )

i51

k
dp~ t i !dq~ t i !

2p
eip~ t i !@q~ t i !2q~ t i21!#

3S 12 i
N

k
h„p~ t i !,q~ t i !…D ~A2!

must converge in the sense of defining elements ofS83S8.
In addition, for fixed statesuf&PS and uc&PS, we have

^fue2 iHt uc&2^fu~12 iHt !uc&<Ct2 ~A3!

for small t and some~state-dependent! constantC. Thus the
k→` limit of the k-skeletonized path integral converges~as
a sequence inS83S8) to ^xue2 iHNux8&. We conclude that,
when appropriately interpreted, the expression~3.1! does, in
fact, converge, despite the oscillatory nature of the expone
tial and the fact that the ‘‘Euclidean action’’ is unbounde
below. Since~3.2! is designed to exactly reproduce~3.1!, we
have established the convergence of this expression as w

APPENDIX B: STATIONARY POINTS
AND ANALYTICITY OF THE MEASURE

We now show how the the analytic structure of the me
sure in~4.3! determines the overall form of the results~4.5!
and ~4.6! by evaluating this result in the semiclassical ap
proximation. The structure of the results~4.12! and ~5.9! is
determined in essentially the same way.

Consider the integral~4.3!:
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^xud~H !ux8&5
1

2pE2`

`

dN

expF i p

2 S 12
n

2D sgn~N!G
~2puNu!n/2

3expS 2 i
m2

2 FN2
~x2x8!2

m2N G D
5

1

2pE2`

`

dN
e2 ipn/4

~2pN!n/2
e~ ip/2!sgn~N!

3expS 2 i
m2

2 FN2
~x2x8!2

m2N G D ~B1!

where the functionNn/2 is (AN)n andAN is defined to have
a branch cut along thepositive imaginary axis. Note that
sgn(N) may be interpreted as an analytic function which
constant on the left and right half planes with a cut along t
entire imaginary axis.

Now, for largeN ~and m2.0), the exponential factor
decays in the lower half plane but grows in the upper h
plane. As a result, the contour may be closed in the low
half plane. Note that, because of the cut corresponding
sgn(N), the integrations along the negative imaginary ax
do not cancel, but instead give equal contributions and a
together. Since, for (x2x8)2.0, the integrand vanishes a
N approaches zero from the lower half plane, the essen
singularity atN50 does not contribute in the semiclassic
limit. This limit is therefore dominated by the stationar
point in the lower half plane, for which the integrand in Eq

~B1! is exponentially suppressed by a factor ofe2mA(x2x8)2

in agreement with the leading behavior of~4.5!.
-

y

992,
er
@1# G. W. Gibbons, inFields and Geometry, Proceedings of the
22nd Karpacz Winter School of Theoretical Physics: Fiel
and Geometry, Karpacz, Poland, edited by A. Jadczyk~World
Scientific, Singapore, 1986!.

@2# D. Garfinkle and A. Strominger, Phys. Lett. B256, 146~1992!.
@3# F. Dowker, J. Gauntlett, G. Gibbons, and G. Horowitz, Phy

Rev. D52, 6929~1995!; F. Dowker, J. Gauntlett, S. Giddings
and G. Horowitz,ibid. 50, 2662~1994!.

@4# E. Witten, Nucl. Phys.B195, 481 ~1982!.
@5# S. W. Hawking, inAstrophysical Cosmology, edited by H. A.

Brück et al. ~Pontifica Academia Scientarium, Vatican City
1982!.

@6# J. B. Hartle and S. W. Hawking, Phys. Rev. D28, 2960
~1983!; S. W. Hawking, Nucl. Phys.B239, 257 ~1984!.

@7# B. DeWitt, Phys. Rev.160, 1113~1967!.
@8# G. W. Gibbons, S. W. Hawking, and M. J. Perry, Nucl. Phy

B138, 141 ~1978!.
@9# S. B. Giddings, Int. J. Mod. Phys. A5, 3811~1989!.

@10# J. B. Hartle and K. Schleich, inQuantum Field Theory and
Quantum Statistics, edited by T. A. Batalinet al. ~Hilger, Bris-
tol, 1987!.

@11# K. Schleich, Phys. Rev. D39, 2192~1989!.
@12# J. B. Hartle, J. Math. Phys.30, 452 ~1989!.
@13# J. J. Halliwell and J. B. Hartle, Phys. Rev. D41, 1815~1990!.
@14# J. J. Halliwell and J. Louko, Phys. Rev. D39, 2206~1989!.
@15# J. J. Halliwell and J. Louko, Phys. Rev. D42, 3997~1990!.
@16# N. P. Landsman, J. Geom. Phys.15, 285 ~1995!.
@17# D. Marolf, Class. Quantum. Grav.12, 1199~1994!.
@18# D. Marolf, Class. Quantum. Grav.12, 1441~1995!.
@19# A. Ashtekar, J. Lewandowski, D. Marolf, J. Moura˜o, and T.

Thiemann, J. Math. Phys.36, 6456~1995!.
@20# D. Marolf, in Proceedings of the Symposium on Differenti

Geometry and Mathematical Physics,edited by W. Kondracki
~Banach Center Publications, Warsaw, in press!.

@21# A. Higuchi, Class. Quantum. Grav.8, 1961 ~1991!; 8, 1983
~1991!; 8, 2005~1991!; 8, 2023~1991!.

@22# M. Henneaux and C. Teitelboim, Ann. Phys.~N.Y.! 143, 127
~1982!.

@23# C. Misner, inMagic Without Magic, edited by J. R. Klauder
~W.H. Freeman, San Francisco, 1972!.
ds

s.
,

,

s.

al

@24# C. Misner, K. Thorne, and J. Wheeler,Gravitation ~W. H.
Freeman, New York, 1973!, p. 805.

@25# R. Jantzen, Commun. Math. Phys.64, 211 ~1979!; in Cosmol-
ogy of the Early Universe, edited by L. Fang and R. Ruffini
~World Scientific, Singapore, 1984!.

@26# M. Ryan and L. Shepley,Homogeneous Relativistic Cosmolo
gies ~Princeton University Press, Princeton, NJ, 1975!.

@27# A. Ashtekar, R. Tate, and C. Uggla, Int. J. Mod. Phys. D2, 15
~1993!.

@28# P. A. M. Dirac, Lectures on Quantum Mechanics~Yeshiva
University, New York, 1964!.

@29# J. J. Halliwell, Phys. Rev. D38, 2468~1988!.
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