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Path integrals and instantons in quantum gravity: Minisuperspace models
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While there does not at this time exist a complete canonical theory of full uantum gravity, there does
appear to be a satisfactory canonical quantization of minisuperspace models. The method requires no “choice
of time variable” and preserves the systems’ explicit reparametrization invariance. In the following study, this
canonical formalism is used to derive a path integral for quantum minisuperspace models. As it comes from a
well-defined canonical starting point, the measure and contours of integration are specified by this construction.
The properties of the resulting path integral are analyzed, both exactly and in the semiclassical limit. Particular
attention is paid to the role of th@inbounded Euclidean action and Euclidean instantons are argued to
contribute as ™ISl [S0556-282196)04412-9

PACS numbsg(s): 04.60.Gw, 04.60.Ds, 04.60.Kz

I. INTRODUCTION curvature. One might, therefore, expect that quantum gravity
path integrals can be treated as integrals of analytic functions
Although a complete theory of431 quantum gravity is and that the contour can be deformed from the original re-
not yet available, interesting arguments for the pair producgion of integration. Some arguments for the contribution of
tion of black holeq1-3], the instability of certain vacuum Euclidean instantons can be made in this way, by deforming
states[4], and even for a preferred “ground state” of the Lorentzian metrics to Euclidean ones through the complex
theory[5,6] can be made by analogy with field theories thatplane. However, once deformations into the complex plane
are better understood. A common tool in such arguments is are allowed, one must in principle include in the semiclassi-
path integral representation of a quantum gravity transitiorcal analysisany stationary points which lie within the do-
amplitude and/or a related semiclassical approximation. Oumain of analyticity of the integrand. Because of the branch
goal here will be to investigate this representation and theut introduced by the/g factor in (1.1), the metricg effec-
fi—0 limit by using an analogy with a different class of tively takes values on a Riemann surface and, at least for
systems: the “finite-dimensional reparametrization invariantappropriate boundary conditions, the stationary points occur
models.” in pairswith opposite signs of the actiofhis point has been
While they are explicitly defined to have a finite number made many timegl2—15 and a similar feature arises in our
of degrees of freedom, such models possess many of thite-dimensional  reparametrization-invariant ~ models.
properties which distinguish Einstein-Hilbert gravity from Which stationary phase points actually contribute to the re-
the more common quantum mechanical systems or fieldult will depend on the particular contour of integration. This
theories. They are invariant under “time reparametrization,”is, however, an issue that must be analyzed and one is led to
a gauge transformation that mixes coordinates and momentaonder what determines this contour so that, for example,
and as a result they often possess constraints that are secasiéick hole pair creation calculations predict an exponentially
order in momenta. Such “Hamiltonian constraints” are suppressed rate for large mass and not one that is exponen-
reminiscent of the “Wheeler-DeWitt equatior{7] of quan- tially enhanced.
tum gravity. In addition, they share with Einstein-Hilbert — Our goal here is to investigate these issues in the finite-
gravity the property that neither the Hamiltonian function dimensional reparametrization invariant context by deriving
nor the Euclidean action is bounded below. our path integral from a canonical quantum formalism. The
Since a bounded Euclidean action is required for commomxistence of a canonical formalism which can be applied to a
arguments involving analytic continuation to Euclidean time,large class of models and which does not require “deparam-
this property has raised concern about how a path integral fastrization” or the imposition of gauge-fixing conditions is a
gravity might be defined and analyz¢8,9]. One proposal fairly recent developmen16—20 whose implications for
[8,10,11 is to “rotate the contour of integration” in the path path integral methods have not yet been explored. Such is
integral until the Euclidean action becomes positive definiteour aim here, and we will find that the resulting path integral
We will study this question below and compare our results tchas two interesting properties. First, it can be written as an
what would follow from contour rotation. integral over both “Lorentzian” and “Euclidean” paths in
An important and related point concerns the semiclassicalhich the contribution of Euclidean paths is always expo-
approximation. Recall that the Einstein-Hilbert action takesnentially suppressedor small z. Second, the Euclidean
the form semiclassical approximation yields only exponentially
damped contributions; in particular, Euclidean instantons al-
ways contribute with the weight~ISel’% where S¢ is the
Euclidean action of the instanton.
We begin by describing the aforementioned canonical for-
whereg is the determinant of some metric aRds its scalar malism in Sec. Il. This brief review is intended to provide a

S= f v—gR+boundary terms, (1.7
M
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working understanding of the scheme without addressing all The next step in the procedure is to “quantize” the con-
of the technical details or supplying all of the motivations. A strainth=0. For our purposes, this simply means that we
discussion of these points can be found in the literaturehoose some self-adjoint operatdron H,,, which has the
[16,17,19,2] function h as its classical limit. The usual ambiguities are
After describing the canonical formalism, we proceed inpresent at this level and we make no attempt to give a unique
Sec. |l to define our transition amplitude and to express it aprescription. In fact, a somewhat greater ambiguity is present
a path integral. This transition amplitude is then evaluated irhere than in quantizing the Hamiltonian of a nonrelativistic
Sec. IV for two classes of exactly solvable models. In both, itsystem. The point is that, classically, the constraintO is
is clear that “Euclidean” semiclassical contributions are ex-equivalent to any constraint of the forfix)h=0, although
ponentially suppressed for larg8g|. Section V A rewrites such a rescalingan affect our quantum prescription when
the path integral in a more strongly convergent form whichf(x) is not a constant.Our viewpoint here is that this is just
may be useful for numerical investigations. Section V B thenone more of the many ambiguities that arise when a classical
addresses the semiclassical approximation. We close with system is quantized.

brief discussion in Sec. VI. Now, if the spectrum ofH were entirely discrete, the
implementation of the Dirac prescription would be straight-
Il. THE CANONICAL FORMALISM forward. Those eigenstates df with eigenvalue zero would

become the physical states of our theory and the “physical
Hilbert space” could simply be théd=0 eigenspace of
Haux- However, in typical caseld will also have a continu-
ous spectrum at zero eigenvalue, for which the correspond-
8ng eigenstates will not be normalizable in the auxiliary Hil-
Bert space but will instead be “generalized eigenstates” of
H, a kind of distribution.

The strength of the refined algebraic quantization proce-
dure is its ability to form a physical Hilbert space from such
generalized states using an inner product that is, in a certain
sense, induced frorft,,,. This has the advantage that any
%’ufﬁciently “nice” operator A on H,, which commutes
With H induces a densely defined operatdg, s on the
physical Hilbert spaceHg,s. In addition, the map
A—Aqnys is an ‘“*-algebra homomorphism,” preserving
multiplication, addition, and Hermitian conjugation of the
operators. Sincé,,, is a quantum version of the phase

hzgij(x)pipj +V(X). (2.1) spacer, it is through this induction process an_d the auxiliary

Hilbert spaceH,, that the *-algebraic properties of the ob-

As is well known, many such systems arise as “minisuper-servables ort,, s are connected to the reality properties of
space models” of gravitating systerf23—27 and so form a  the classical phase space functions. This is in fact the impor-
set of some interest. Note, however, that the method appligsint point, as the most “physical” requirement of an inner
to more general modeld6,17,19,20 and has been used to product is that it gives the proper adjointness relations to the
construct states of linearized gravj®1] as well as a Hilbert quantum operator§32,33. This construction is described
space of “diffeomorphism-invariant” statd49] in the loop  below. The reader is encouraged to con$f,19,2Q for
representation approach to quantum gravity. further details.

The guantization scheme to be followed here is known as We shall in fact assume the spectrumtbfto beentirely
the “refined algebraic method(which is closely related to continuous aH =0. That this case is in some sense sufficient
the “Rieffel induction method” of{ 16]) and may be thought follows from the resul{19,2Q that the continuous and dis-
of as an elaboration of the Dirac approd@8], in which the  crete eigenstates ¢f induce sectors of the physical Hilbert
constraints are required to annihilate the so-called physicadpace which aresuperselectedelative to each other. The
states. Specifically, the refined algebraic approach asks thptesence of discrete eigenstates would, however, affect the
we first quantize the system while completely ignoring theformulation of the path integral in ways that we would prefer
constraint. This provides an “auxiliary” Hilbert spad€,,,  to ignore. We therefore content ourselves with the observa-
in which to work. This space is called auxiliary because ittion that many minisuperspace models can be formulated
contains much more than the physical states that satisfy theith a constraint having only a continuous spectrum at
constraints. In our case, we will take this space to beHd=0 and restrict ourselves to this case; for details,[4&¢
Hau=L2(R™ with operatorsX' (coordinatesand P; (mo-  and, in particulaf18], for the case of the Bianchi type 1X
menta acting in the usual way. For simplicity in our expres- model.
sions, we define our? space using the measuwi®x. In this In this situation and under a certain technical assumption
paper we follow the convention §17] in denoting classical concerning the operatad, the physical Hilbert space is
phase space functions by lower case letters while denoting
guantum operators by capital letters. We use units in which—————
fi=1, except in Sec. V B which explicitly investigates the In particular, the proposals ¢29—31 are not compatible with
A—0 limit. our choice of inner product.

We now describe the specific class of models to be ad
dressed and review the canonical formalisnji8,17,19 on
which our path integral will be based. The goal of this re-
view is to provide a working understanding of the schem
and not to describe the technical subtleties in detail. For
more complete and rigorous presentation,[4€¢19,2(Q, and
for a discussion of existence and uniqueness issue$26ke
Essentially the same construction was introducefih 22|
in slightly different contexts.

In this paper, we will study only finite-dimensional sys-
tems possessing a single constraint proportional to the sy
tem’s Hamiltonian. We take the system to be expressed i
canonical language in terms of a phase spgacevhich we
shall assume to b&*R" and to be equipped with coordi-
natesx',p;,i €0, ... n—1. Finally, we assume that the con-
straint is of the form



53 PATH INTEGRALS AND INSTANTONS IN QUANTWM.. .. 6981

straightforward to construct. What we would really like isto  Perhaps the most important feature of this approach is that
“project” H,,, Onto the(generalizefstates which are zero- it first defines the algebra of quantum observaliiegshout
eigenvalue eigenvectors bf. Of course, since none of these requiring them to be found explicithyand then provides an *
states are normalizable, this will not be a projection in therepresentation of this algebra on the physical Hilbert space;
technical sense. Instead, it will correspond to an object whiclhat is, a representation Gt,,,sin which the proper Hermit-

we will call §(H), a Dirac delta “function.” Given the ian conjugation relations hold. From the algebraic point of
above mentioned assumption &h (see[20]), the object view, this is the fundamental goal of any quantization
S8(H) can be shown to exist and to be uniquely definedscheme, and it is this * representation that determines all
Technically speaking, however, it exists not as an operator iphysical predictions.

the Hilbert spacé,,,, but as a map from a dense subspace The representation is defined as follows. The observable
S of H,, to the (for our purposes, topologidatiual S’ of  algebra is defined by the * algebra of observables that com-
S. The spaceS may typically be thought of as a Schwarz mute with the constrairtl and act “nicely” on the dense set
space; that is, as the space of smooth rapidly decreasing (see[19,2Q for detailg. These are the analogues of the
functions on the configuration space. In this caSejs the  (smooth gauge invariants of classical physics. Each such
usual space of tempered distributions. Not surprisingly, thi®peratorA theninducesan operatoi s 0n Hppys through

is reminiscent of the study of generalized eigenfunctions

through Gel'fand's spectral theory84] and SCH,,,CS’ Aphyd Yphye = 6(H)A|4), (2.9
forms a rigged Hilbert triple.

The key point is then as follows. While generalized eigen-where again¢) is any state for which 9= 6(H)|).
states oH do not lie inH,,y, they can be related to normal- The operatord\,,s then satisfy the same algebraic and Her-
izable states through the action of the “operatof(H).  mitian conjugation relations as the observables 7og,,,

That is, generalized eigenstaigs,,,y of H with eigenvalue forming the desired * representation. The use of such opera-

0 can always be expressed in the fod(H)|,), where tors and the physical inner produ@.3) has been shown to

|o) is a normalizable state iSCH,,. This choice of give physically reasonable results in interesting special cases

|4o) is, of course, not unique and, in fact, we associate wittj17,18 and in the semiclassical limfg86].

the physical statéy,, o the entireequivalence clasef nor-

malizable statey)) < S satisfying lll. A PATH INTEGRAL FOR THE INNER PRODUCT

S(H) )= tonys- (2.2 Having described how our models will be quantized, we
now wish to derive a path integral formalism for these sys-

Each equivalence class of normalizable states will form a’{ems.t.;l'o cri]o slc&, we(;nu_st first atr;]s_w:er th(’f fqusftl'aor][h ‘.]utSt whlat

single state of the physical Hilbert space. quanfltys oud ;Ne erve atpt{;: ‘I‘rt] egr{:}[_ or: ? ('jn e”grﬁs

All that is left now is to “induce” the physical inner are often used to represent the “transition amplitudes™ that

product from the auxiliary Hilbert space. Naively, the innerenCOde the time evolution of quantum systems. However, for

procctof o physicl Sttty ) an ) may be 11 S S SEneKer, he Hamonen el vriahes o
written { ¢| S(H) 8(H)| ¢), where|¢) and|) are normaliz- idenFt)ity ! ! pace. thu P IS Justine
able states in the appropriate equivalence classes. This inner Y. . .

) ! X . > Nevertheless, we know that the physical stategontain
product is clearly divergent, as it contaifg(H)]°. The . : ;

NN " T information that we may call dynamicasee, for example
resolution is simply to “renormalize” this inner product by 37-41), for general comments 17,36 for a discussion in
defining thephysicalinner product to be [  1or gene : '

the context of this particular approgcihus there should be
some mathematical object which, more or less, encodes our
( Dpnyd Wonys phys= (Dl S(H) |4 auxs (2.3 idea of a “transition amplitude.”

Apparently nontrivial path integral expressions for “tran-
where the subscripts “phys” and “aux” on the angular sition amplitudes™” have in fact been studied by a number of
brackets indicate the two different inner products. Note thatwuthors(e.g.,[14,15,43). In the minisuperspace context, all
(2.3 does not depend on which particular states,|y) of these are transition amplitudes between two
e S were chosen to represent the physical stafgg,9 and  configurations xand x" (which are the analogues of the
|#ony9 - This construction parallels the case of a purely dis-three-geometries of-81 gravity), or perhaps their conjugate
crete spectrum as, P, were a projection onto normalizable momenta. As a result, we will seek our transition amplitude
zero-eigenvalue eigenstates ofi, we would have in the auxiliary Hilbert spaceét,.

[P4]?=Py. Although 8(H) is not strictly speaking an op- We take our transition amplitudes to be just the matrix
erator, taking ¢) and|y) to lie in S makes the above inner elements of the operataf(H) in H,,. That is, we will
product well defined, as well as Hermitian. In the case of thecompute(x|S(H)|x') where|x) and |x') are generalized
free relativistic particle, this positive definite inner product eigenstates of the coordinate operat¥ts Our reasons for
corresponds to the Klein-Gordon inner product on the posithis are twofold. First, while expressed in terms of the aux-
tive frequency states, but correspondsnimusthe Klein- iliary space, such matrix elements contain all of the informa-
Gordon inner product on the negative frequency states. Thigon about’, s as they define the physical inner product.
positive and negative frequency subspaces are orthogonal &econd, when one of the coordinateay,x°) is considered
usual. A similar representation of the inner product holds into represent a “clock™ and when this clock behaves semi-
certain other casg$5]. classically[36] this object does in a certain sense describe



6982 DONALD MAROLF 53

the amplitude for the “evolution” of the “state”x at A. Perturbed diagonal Bianchi type |

™ ” 0 m ” ™ ” 0 e . . . .. L.
time” x" to the “state” x' at “time” x”'. Herex repre- The Bianchi type | model is a minisuperspace describing
sents the coordinates on a slice through the configuratiogpatially homogeneous spacetimes of the fokf=T3XR
space of constant’. having a foliation by three-tori with flat Riemannian metrics

It is now straightforward to represent this object as a pathiso that the tori form spacelike hypersurfacesid). In the
integral. To do so, consider the path integral expression fogiagonal version of this model the metric is such that, at each
the operatore™ ™" on H,,,, which we expect to exist and pointx e M, three mutually orthogonal closed geodesics in-
which can be derived in the usual way by skeletonizationersect ak and each encircles an arm of the torus once. This

(see, for example[43]) of paths betweex at “time” zero  system may be formulated on the configuration space
and x’ at “time” N. Note that by “time” we mean an Q=R3 with a constraint of the form

additional parameter that we now introducet one of the
coordinatesx'. We then integraté\ from —o to o to turn hg = — p3+p3+ p3. (4.2
e ""Ninto 8(H).

The resulting path integral is then In this case, the coordinaté® describes the volume of the

1 (= N three-torus while the coordinates’ and x* describe the
(X| 8(H)|x)= _f de DxDpexp( if dt[ px “anisotropies,” the ratios of the lengths of minimal curves
2m ) - 0 encircling the torus in different directions. We will consider
a perturbed and slightly more general model @& R" for
(3.1  which the quantum constraint is

—h(x(t),p(1))]

n-1
where [ .dN denotes an integral over thengle variable 1 2 2
. 2 . =-| —Pg+ iPi+ .
N while DxDp denotes the Liouville measure on the canoni- H 2 Po .21 PiPi+m “.2
cal path spacg43]. Since the configuration variables are
specified at the end points, there is “one less” set of inte-for m2>0. Note that without the perturbatiom?), the ac-

grations over the coordinates than over the momenta. Thg . . 4
. " ., ton S would vanish on every classical solution and we
notation h(x(t),p(t)) stands for the “symbol

- - would be unable to consider the semiclassical lifs{t>1.
|<S>_i§(;2]| ';J;;}égéag}/iﬁéxkgxmog ,g;e operatoH, where The constant factor of affects none of the results, but con-

. . orms to the usual convention for the normalization of ki-
In the usual way, gauge-fixing machinery and redundan

integrations can now be introduced to wr{e1) in a form etic terms. . L
where its independence of “gauae” is more exolicit. Halli- Such a system looks exactly like the free relativistic par-
P ! -gauge i phicit. Hall ole. However, we will intentionally avoid referring to this
well [29] has performed this analysis in the reverse dlrectlonsystem by that name, as we feel that pte/sicsof the two
by startl.ng with the_ Faqld_eev-Pppov form an d mtroqlucmg thesituations is quite distinct. This follows from the fact that the
gauge-fixing conditiorN=0. Since he arrives at just Our \neyic which defines the constraint's “kinetic term” has a
result(3.1), his work allows us to express the physical inner yitterent interpretation in each of the two cases. A free rela-
product in the form tivistic particle withpo<O0 is usually interpreted as “travel-
1 1 ing backwards in time,” a process that we suppose to be
(X|8(H)|x)= z_f DNDxDp5(G)A(G)ex;< if dt[ px physically disallowed. This leads to the usual preference for
m 0 positive frequency states over negative frequency states.
However, in the Bianchi type | model, a negatipg means
—N(t)h(x(t),p(t))]) (3.2  only that thex? of the tori is decreasing with proper time—
that is, that the universe isollapsing This is not only a
h G i . fixing T . physically interesting process but a process which classically
where G IS now any appropriate gauge-fixing function, ., istoccur in some minisuperspace models, such as Bianchi

A(G) i_s the associated Fadeev-Popov determinant,_and tht?pe IX [44]. Thus we are pleased to include the negative
sum is over all paths (x(t),p(t),N(t)) in which frequency states in our model.

x'(t), pi(t), andN(t) are allowed to range over the entire We now proceed to compute the integral
real line. This is the path integral that we shall explore in

Sec. V. For interested readers, the convergence properties of
(3.1) and(3.2) are discussed in detail in Appendix A. (x| 8(H)[x') = ifx aNxe )
277 )

IV. EXACTLY SOLVABLE MODELS

1 o .

Having derived a path integral fofx|S(H)|x’), the :;Re( fo (x|e”"N|x")
physical inner product, it is of interest to see what form this
distribution takes in simple cases where an exact analytic N e
expression can be obtained. As usual, the cases that we wihere Re denotes the real part. The operafof™ is just
study are the “purely quadratic ones;” the perturbed Bianchie "™ N2 times a product of propagators for free nonrelativ-
type | model(or free relativistic particle and the case of istic particles. As a result, its matrix elements are readily
coupled harmonic oscillators. seen to be

, 4.3
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(x|e”MN|x"y =gl m2A=N2) (2 7N)~1/2 through the complex plane. As can be seen fi(dmg), what

- - we would call the “right” answer results from combining
« ex;{ _ ﬂ( N— ﬂ these two contributions with equal weights and with a phase
2 m°N that depends on.

} (4.9

for N>0. We can evaluaté4.3) using (3.471) of [45] to

yield, for (x—x")?>0, B. Coupled harmonic oscillators

(1-n/2) In order to more thoroughly explore the properties of ex-
actly solvable models, we now study the case of coupled
harmonic oscillators. However, to fit with the general char-

- acter of minisuperspace models, we will take one of the os-

XKz - 1(My(x=x")?), (4.9 cillators to have negative energy. That is, we will again take

our system to be defined on the phase sgaed*R", with

the constraint

(x=x")

(X|a(H)|x') = .

’7T( 277_) n/2

whereK () 1 is the modified Bessel functidiof the second
kind) of order (/2)— 1. Similarly, for (x—x)?<0, we find

n—-1
J=(x=x")Z|t~"2 O=h=£ D2 (x0) 202+ 21 (%1242
<x|5(H)|x’)=(27T)n,2[ - 5| ~Po— (X)) Zl [pi+ (X)) o?]
1
n—-1 —rn2 2,2
X CO{W(T)}J(nlz)—l(m\/_(x_xl)z) =3Pt “.9
-1
—sin Tr(n—”N(n,z)1(m\/—(x—x’)2)]_ for w?>0. We could, in principle, also study the case where
2 one or more of the harmonic oscillators is inverfgdth

(4.69  Hamiltonian3 (p?— w?x?)], but we will not do so here. For
simplicity, we assuma to be even. Models of the fori@.7)
An intuitive feel for just why the answer is of this form may do arise as minisuperspace models of gravity interacting with
be obtained by noting that it describes a certain correlatiogcalar field§46] and many of their aspects have been studied
function in free scalar field theory, or alternately by perform-in the literature{46—48§.
ing this integral in the semiclassical approximation. For the  Strictly speaking, however, this model doest fall into
interested reader, the semiclassical analysis is carried out #e class allowed by Sec. Il. Since it is a sum of harmonic
Appendix B. oscillator Hamiltonians, instead of the constradihthaving a
Note that, for—(x—x’)*>m?, the matrix elements are purely continuous spectrum at zewhen quantized in the
roughly siimy—(x—x")“] or cogmy—(x—x")“] depend- usual way onL?(R")], its spectrum is purelgliscrete—not
ing on the number of degrees of freedom. That is, they injust at zero, but everywhere. This creates a number of subtle-
clude equal contributions from what might be called theties, such as the fact that there are rather few zero-eigenvalue
positive and negative frequency parts. Nevertheless, whegigenstates of the constraint unless all of the oscillators have
(x—x")?>m?, the matrix elements contain only tdecreas-  commensurate frequencies. Furthermore, unless an appropri-
ing exponential exb—m\/(x—x’)z]. This occurs even ate constant is added td, it will in general haveno eigen-
though the Euclidean action is unbounded below. Similastates with eigenvalue zero. Thus a better way to quantize
results hold for the case?= —k?<0 for which the resulting this model might be to rewrite the constraifsee, for ex-
physical inner product is obtained by replacimgvith k and  ample,[17,18,38) in such a way that the spectrum is purely
(x—x")2 with —(x—x')? in (4.5) and (4.6). As might be  continuous® Unfortunately, this necessarily destroys the
expected, this is related to which points of the stationarypurely quadratic form of the action and thus the exact solv-
phase contribute téx| 5(x)|x’) in the semiclassical approxi- ability of the model.
mation. We will return to this point in Sec. V and Appendix  Our purpose in studying this model is not to examine the
B. detailed predictions of the cosmological scenarid4d], but
It is interesting to compare the resuls.5 and(4.6) to  rather to investigate the general mathematical properties of
what one might obtain by a “contour rotation prescription” the expression€.1) and(3.2) for the physical inner product.
of the sort suggested {18]. The idea is to rotate the contour Thus we will quantize this model using the constraint opera-
of the conformal modérepresented here b¥?) to imaginary  tor
values §°—ix% so that the Euclidean action becomes
bounded below. We can certainly perform the inted#aB)

n—-1
taking — p3 to be replaced by in the Hamiltoniarh. The 1o o2 2 2. yiv2, 2 n
result is just (4.5 above with «—x')? replaced by H 2 Po= (X0 +i21 [P+ (X)) +] 1 2|
(x—x")2=3"_(x")?, since k—x')2=0. The task is then to 4.9

analytically continue backs®— —ix°. For (x—x’)?>0, this

clearly yields (4.5); the correct answer from our point of

view. However, for k—x')2<0, the analytic continuation is  2This continuous spectrum form of the constraint is in fact in
ambiguous. Because of the branch cut that defines the squasetter accord with the global properties of the original gravitational
root, the answer will depend on which path is followed model of[46].
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The frequencies and constantg4n8) are specifically chosen Ao / (n2)-1

so that there seem to be a sufficient number of zero- <X|PHO|X,>:7(27T)HZ(% Ko(vVa®—b?).
eigenvalue eigenvectors. We shall not concern ourselves 4.13

with whether or not such choices are “natural.”

However, if we are to proceed in this way, expressions
(3.1) and (3.2) must be modified. This is because their aim The resultq4.12) and(4.13 may in turn be written as a sum
was to calculate the operatéfH) and, now that the spec- ©Of Hankel functions of orders Qv<n/2—1 by using the
trum of H is discrete, this object is highly divergent: when usual Bessel function recurrence relations.

acting on a normalizable states) for which H|#)=0,
S8(H) cannot possibly be defined.

The matrix element$4.12) have the same general struc-
ture as those of4.5 and (4.6). That is, they are a Bessel

As stated in Sec. Il, the analogous object for the case of &inction of ordem/2—1 of the square root of a function of

discrete spectrum is the projectidhy-, onto the zero-

eigenvalue subspace for the operdthr An expression for

(X|PH=¢|X") analogous td3.1) and (3.2) can be found by

realizing that the “evolution operatoré~'NH is, in this case,

periodic in N with period 27/w. This, of course, is the

source of the would-be divergence in
S(H)=(1/27)[* .dNe "NH but it also allows us to express
the projectionP o as the integral over a single cycle of
N:

w [mo Cing_ @ [T ZiNH__ SiNH
PH:O_EJ_W/mdNe —;fo dN(e +e'"M).

4.9

Similarly, the analogues dB3.1) and (3.2) are given by tak-
ing N to exist on a periodic interval of lengthm .

As in the perturbed Bianchi type | model, the operator
is a product of evolution operators for nonrelativistic
particles which can be evaluated exactly; perhaps most easi

e—iHN

by using the semiclassical approximati@gvhich is exact for
quadratic Hamiltonians For 7w/ w>N>0, the result is

/2
<X|eiHN|X/>:< w )ﬂ i(ﬂ-/2)(1fnl2)eisc|(x,x’;N)
2msinoN
(4.10
where
S Ny (x%>+x'?)coswN—2x-x’ at
C|(X1X ) )_E SIan ( . :D

is the action of the least action path betweeandx’ tra-
versed in thegiventime N. Note that this path is unique for
N#0, 7/w. Here,x-x’ denotes—x°x%’ + =% xix!”.

All that remains is to evaluate the integral owein (4.9).
For the casen=2, we may refer t449,50. More generally,
if we definea=— w(x?+x'2)/2 andb=wx-x’ then the re-
sult may be expressed as

<X|PH_0|XI>:2wR%(2ﬂ_)(n/2)iei(ﬂ'/2)(ln/2)

X

5\ (M2-1
) (4.12

'9b

HE (B3

using(6.677 from [45]. Here,H{" is the usual Hankel func-

x andx’. Recall that in the case of perturbed Bianchi type I,
the behavior of this Bessel function was determined by the
sign of (x—x')?; that is, by whether the points and x’
could be connected by a “Lorentzian” classical solution
(with real lapseN) or by a “Euclidean” solution with imagi-
nary lapse. A similar phenomenon occurs for our coupled
oscillator model. Pairs of configurations,k’) may be sepa-
rated into three distinct classes: those for whiela/b>1,
those for which >—a/b>-1, and those for which
—1>—1/b. Only for the first category ta/b>1) does a
“Euclidean” classical solutionwith imaginary lapsgexist.
Such solutions come in pairs with Euclidean actions
Se=++a?—b?% Similarly, a “Lorentzian” solution (with
real lapsg exists only for the second casext-a/b>—1.
These solutions also come in pairs, with actions
S==*b?—a? For the third case {a/b<—1), the con-
figurationsx andx’ may be connected bgomplexclassical
solutions with R&l= 77/ w (but no such solutions exist for the
B;st two classes of paiysThe Euclidean action is also real
or this last case, and is again given 8y= *+ \a?—b?.

The semiclassical approximation is valigh our unit9
when |§|=|b?—a?[>1 so that, once again, when and
x' are connected by a Lorentzian solution, this approxima-
tion contains contributions of both fornes® ande 'S which
are equally weighted up to a phase. However, when the con-
necting solution is Euclideator complex with real Euclid-
ean actiof, only the exponentiallylecreasingsolution con-
tributes and the leading semiclassical termeig®el. we
follow the usual convention ofS= — S¢ so that this expo-
nentially decreasing factor corresponds to the stationary
point with positive Euclidean action.

This seems to indicate a general property of the semiclas-
sical approximationland perhaps of the entire expresgion
for (3.1) and(3.2) which we shall investigate further in Sec.
V. Note that this case is more subtle than that of the per-
turbed Bianchi type | model since that model had the prop-
erty that(for m?>>0) the Euclidean action of a Euclidean
solution is always positive when the “Euclidean lapsa\
is positive. In contrast, for coupled harmonic oscillators, a
Euclidean solution with positive Euclidean lapse can have a
Euclidean action with either sign. This, therefore, is much
closer to the generic case.

As in the perturbed Bianchi type | model, we briefly com-
pare(4.12 with a contour rotation scheme whex& is ro-
tated toix®. Again, this gives just the right result in the
“Euclidean sector” @>>b?), but the branch cut of the
square root creates an ambiguity when analytically continu-

tion of the first kind and the square root is defined bying back to the “Lorentzian sectora?<b?. Our result

Jre'?=rY%92 for 0<@<m. Thus, whena?>b?, (4.1
takes the form

(4.12 includes both possible outcomes, equally weighted up
to ann-dependent phase.
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V. THE GENERAL CASE where the inner product denotes a contraction through the
. . . (cometric g (x(t)).
In S_ecs. IVA and IVB, we discoverd several interesting For common factor orderings of the quantum constraint
properties of the exact resultd.5), (4.6), and (4.12. We |, o symbolh(x,p) will be quadratic in the momenta.
will now argue that these properties should hold in generalW’e shall assume ’that it takes the form
Specifically, we first show in Sec. V A that the inner product

may be expressed as a path integral over both Lorengzidn h(x,p)=g" (x)pip;+ V() (5.9

Euclidean pathsand combinations therepin which the ‘where the subscripg on V indicates that the potential may

contribution of the Euclidean paths is exponentially sup . : h ional
ressed for smak. Such an expression is more convergen receive quantum corrections such as terms proportional to
P : tthe curvature ofy;; [54,55. In order to be explicit, we shall

':_har:_(&l) ‘an (3.2 an? {nay bfeﬂc:_f u]:se for ?um_eg(_:altlnve;ds]- tassume the signature gfto be everywhere (fh—-1).
Lorentzian instantonswith efther Sign of the actionand 0%, 2f the the momentum integrals are of the form
g [7.dp€eP*"*P) and can be performed exactly using sta-

Euclidean instantons with positive Euclidean action will con i h thods. H th f the ab
tribute to our transition amplitude in the semiclassical limit. lonary phase methods. However, the presence ot thé abso-
We then argue in Sec. V B that, in addition, Euclidean in-lu'[e value| VG- p| means that, fo_r each value gfthere will ;

. N ’ ; ’ . be one momentum integral which cannot be performed in
stantons V.V't.h negative action dmt contribute to the semi- this way. It will be sufficient for our purposes to leave this
classical limit. integral undone, and to simply perform the others. The com-

ponent ofp in the direction of VG(x(t)) will be denoted
A. A simplified expression py- Similarly, nj(x(t)) will be the unit vector in the direction
of VG(x(t)). Performing these momentum integrals yields

Our general strategy will be to simplify the path integral the expression

by performing the integrals i(3.2) over the momentand

over the lapse; thus we assume that we may change the order 11 Xl
of integration. The result wil(almos} be a configuration <X|5(H)|X'>=f DNDxDpex 'Ef dtgile
space path integral in which, in effect, the constraint equa- 0
tion
" —N(V4(x)+pf)
x'x!
9ij(x) gz +V(x)=0 (5.1)
~asgnN) [n—3
x| ex — =
has been solved for the lapde That is, we will obtain a !
path integral based on a Baierlein-Sharp-Wheeler{i& X |N(t)| 12/~ deg" S[G(x(1))]
form
X|VGXx(1)|[pl (5.5
szf dt*/gijk'X'V(x) (5.2  Where the usual product of normalization factors at each time
has been droppedhey may be absorbed into the definition
] ) of the measure Heregﬁj is the induced metric on surfaces of
of the classical action. constantG(x).
We begin with the expressio8.2) for the matrix ele- Finally, we wish to perform the integrals ovar. As in

ments(x|§(H)|x’). Having written the integral in a form the explicitly soluble models discussed in Sec. IV, these in-

where Faddeev-Popov technology applies, we are now freggrals may be expressed in terms of Bessel functions. Note
to use any gauge-fixing condition we wish. Because W&nat each such integral is of the form

would like to integrate out the momenta, we will use a gauge
condition of the formG(x) =0 whereG is a function of the = [ dNexd wsgn(N) (n—3 N(E)[(1-)72
coordinate variablesnly (see[52] for a discussion of ca- I exp 2 2 INC)]
nonical gauges in this contgxtin addition, we assume _
VG-VG>0; that is, thatVG is spacelike. Unfortunately, 1 X NTLY, 2
G=0 is not really a “good” gauge conditiof53] as there xexp i159ij o ~NVg() +p
will always exist points in phase space at which the Poisson _ ) ) )
brackets{G,H}=p- VG of G with H vanish(such as where This is essentially the same integral with which we were
all momenta vanish Nevertheless, such a condition is often faced in Sec. IV A. Introducing)=V+ nfpf . k=g;;x'x,
“good” on all but a set of measure zero. Having admittedand dropping constant normalization factors, the integral
our treatment to be heuristic, we assume that we may usgelds
such a gauge condition below. B (3—n)/a

Now, since there is only a single constraint, the Faddeev- I=(klv) Kin-g)2l Vko) 5.7
Popov determinant takes the particularly simple form of ayhenky >0 and

product over times: _
| = 7Re{(—k/v)® MHgimn=22h D) | (\—kv)}

). (5.6)

(5.8
A({G,H}>=H |{G,H}<t>|=ﬂ IVG(t)-p(t)| (5.3

whenkv <0.
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As a result, the physical inner product may be written inner product, so long as the latter have positive Euclidean
action. In fact, since the contribution of Euclidean path bits
<x|5(H)|x’>=f DXDDHH 1(k,v)3(G)|VG||py| \/Tegl. is exponentially suppressed {8.9) for small 7, it appears
f that stationary points with negative Euclidean acti@ver
(5.9 contribute, as was suggested by the examples of Sec. IV.

. N ) However, we have not yet shown this carefully. In particular,
The connect|on. to the Baierlein-Sharp-Wheeler-lfe2) ;¢ possible that a stationary point of the action, while not
should be clear: since Bessel functions are exponentials at

. .~ actually on the contour over which the integration is per-
large arguments, if the momenpg were replaced by their formed miaht  contribute  to  the  semiclassical
semiclassical values- VG+v/k then(5.9) would be a path ' g

T
complicated measure. yp : g

This expression may be thought of as a sum over botﬁoum easily be deformed to reach a complex stationary point

Lorentzian and Euclidean bits of path at each time. Here, w&/iNg just off the real axis. If the contour, say, for the vari-
say that a segment of path is Lorentzian wherr 0, so that a@plek in (5.9 can be deformed far enough, it could wrap

a real lapseN would be associated with this segment byaround the branch point &=0 to reach a stationary point
solving the constraint on the “second sheet” of the Riemann surface on which

exists. Such a stationary point would then contribute as
e"I5e! to the inner productx| S(H)|x’). We will now argue
that this does not occur. Because we study the semiclassical
o _ _ _ . approximation, the factors df will be restored below.
Similarly, a bit of path withk/v <0 is Euclidean as the cor- Let us first note that, if the semiclassical approximation is
responding lapse is imaginary. Note that this occurs despitgy hold, our matrix elements must be of the form
the original expressio§3.1) being an integral only over a
real classical lapsH. As in our exactly solvable models, the (x| 5(H)|x’>=e‘S<X*X'>/ﬁC(x,x’) (5.13
Lorentzian bits contribute with both signs of the action but
the Euclidean path bits are always exponentialippressed
when the correspondin@e| is large. A similar result is ob-  \yhere C(x,x') is slowly varying in comparison with
tained if other momentum integrals are left undone as well i x')/x In particular, sinceS(x,x’) is continuous on re-
so long as the momenta at each time are integrated over dt ) np n ' ' :
least one two-plane with signature (+) gionsR of R"X R" where the numben of connecting paths
. ; , :

The argument of every Bessel function is now manifestly!™ constantC(x,x’) must be continuous there as well.

positive. As a result, the fact that neither the Lorentzian nor [N general, we expect the union of the boundaries of such

the Euclidean action is positive definite has disappeared frofff9ionsR to have measure zero so that the unidrof the
sight. If we define a slightly modified function, by  interiors has measure 1. We therefagsumethat this is so

k
W—FU:O. (51@

| .(k,v)=1(k,v) for kv>0 and and consider only the open subsdl on which
_ (x| 8(H)|x"} is continuous.
| (k,v)=Re{(—k/v) 3~ Mlagin(n=22 If the matrix element(xo|8(H)|x() takes the form

, *ISe0 X0t (1o leading semiclassical orderat some pair
xHY o ([1—ie[]V=—k 51y °© 9 P
o [1=Tle[IV=ko)b - (513 (X0,X4) €U, it must in fact take this form on some open
for kv <0, thenl (k,v) vanishes in the limit of largiv (for ~ rectangular region/; X Wj (V;CR", W;CR") containing
e#0). Our matrix elements may therefore be expressed ifiXo.Xo). If the diameters ol/; andW;, are much less than
the form A[|oSelox|1™t and A[|dSg/ax’'|]172, respectively, then
S(x,x")/% is essentially constant ovf; X W, . As a result,
L (x| 8(x)|x") is essentially real onV;,xW, and satisfies
KlaHlx'y _l'i'IJ DxDp L] 1fk(t).0(0) (x| 8(H)|x")=€M" where(say \=3Se(xx")].
We now choose two statég) and|) in S whose rep-
X 8(G(X(1)|VG(x(1))|[p|V—de” resentations(x| ¢) = f([x—Xo]/%) and (x|¢)=g([x—Xo]/
h) are positive real, supported W, andW;, , respectively,
(5.12 and havef(y) andg(y) independent ofi. Let us define

for which the integrand is exponentially decreasing. As it
converges more strongly th&8.1), we may hope that.12

will be of use in numerical computations. 3We have already seen an example of such behavior as the Eu-

clidean paths that are explicitly included {6.12 correspond to
stationary points of th&l integrals at imaginary laps@nd there-
fore off the originalreal contouy.

The expressio5.9) for our transition amplitude includes  “The fact that a Euclidean path dominates does not necessarily
an explicit sum over both Lorentzian and Euclidean paths, agquire the matrix elements to be real and positive; there may in fact
well as arbitrary combinations of the two. In the semiclassi-be an overall phase that we have neglected. The point is that this
cal approximation, this result indicates that both Lorentziarphase is both independent &f (for small %) and slowly varying
and Euclidean stationary points contribute to the physicalvith x andx’.

B. Instantons and the semiclassical approximation
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a,=1" | (lgyx= | ey,
a¢=h‘”jRn<x|zp>d“x= JRng(y)d“y, (5.14

b=t I, by=n" [ [oxlu) e
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models, Euclidean instantons always contribute to our tran-
sition amplitude as IS, Similarly, complex instantons
must contribute ag'R&S" e~ M4 \where Im denotes the
imaginary part.

VI. DISCUSSION

The goal of this work was to use a canonical formalism

It follows thata,, a,, b,, andb, are real, positive, and (the refin_e(_JI algebraic or Rieff_el induct?on methad repre-
independent ofi. Note that the physical inner product of our Se€nt a minisuperspace transition amplitude as a path integral

two states satisfies

(¢l 8(H)|gy)=1*"a,a,eM* (5.15

to leading semiclassical order and that the expression on t

right diverges ag¢—0.

We will now derive a contradiction. To do so, we return

to our original expression for the inner product,

(lalu= [ (ile g, (50

Recall that, for|y),|#) e S, this integral convergesat
large N. Effectively, this is because the statpg;) and
|44) are characterize@to accuracye) by some minimal en-

ergy scald E, and the integration over the region
IN|>T,~#/E, yields a negligible contribution. Note, how-

ever, that since/¢;) and [;) have normsy4"b, and
V™, and since the operater """ is unitary, we have the
bounds

(prle” ™ gy <a"™byb, (5.17)
and
(pul8(H)|gy)<h""'Cybyb,/E, (5.18

where C is some constant independent ®f In order to
compare this bound with the semiclassical expres&atb),
we estimateE; as follows.

Recall thath=g"(x)p;p;+V(x). The states|¢,) and
|;,) are characterized by coordinates andx; (which are
independent ofi) and by momentum scales

h JISg , h IS
pﬁ:mzﬁ’ ph:mzﬁ
(5.19
which are also independent ofi. As a result,

Ehmg(xo)p,%JrV(xo) is independent ofi and the bound
(5.18 vanishesas#—0, in contradiction with(5.15. Here,
g(Xg) is some bound on the components of #ig(x) at

he

and to investigate this expression both exactly and in the
semiclassical limit. We have seen that the path integral may
be written in the form(5.12 which explicitly sums over both
Lorentzian path bitgwhich appear with both signs of the
action and Euclidean path bits which are exponentially sup-
pressed. As a result, we conclude that any Lorentzian or
positive action Euclidean stationary point may contribute to
our transition amplitude in the semiclassical limit. We also
argued in Sec. V B that Euclidean instantons withgative
Euclidean actionwhich would be exponentially enhanged
do not contribute in the semiclassical limit.

It seems reasonable to assume that similar results hold in
full 3+1 gravity, Kaluza-Klein theory, dilaton gravity, or
any other diffeomorphism-invariant theory of gravity with
indefinite Euclidean action. However, it should be noted that
the most interesting instantons in quantum gravigyg.,
[1-6,13-15,56-5@ are rather far from our minisuperspace
models. In particular, they involve processes in which the
spatial topology of the initial state differs from the spatial
topology of the final state; an effect which appears to be
ruled out by construction in our contexsee, however,
[14,159). An argument could certainly be made that such
instantons are qualitatively different and that our results have
no bearing on their interpretation. On the other hand, we note
that the arguments of Sec. V B did not rely on the details of
our model, but followed from the unitarity & "N and the
existence of an appropriate subsp&eH,,. One would
expect such arguments to generalize readily if refined alge-
braic or Rieffel induction methods are applicable at all. At
the very least, our arguments are suggestive, and it is worth-
while to briefly discuss below the hypothesis that our results
do generalize to such cases.

Many instanton calculations, such as the pair creation cal-
culations of[1-3], implicitly assume that the relevant sta-
tionary point is the one with positive Euclidedapse So
long as the corresponding Euclidean action is positaseit
is in all of the pair creation exampl¢$—3]), this is just the
conclusion that would follow from Sec. V B. We will there-
fore concentrate on situations where the Euclidean action is
negative Perhaps the most interesting use of such instantons
was seen in the arguments of Bals6], Hawking[57], and

X=Xo. We thus conclude that, at least for minisuperspaceéColeman[58] that the cosmological constant should van-

SThis is the energy at

which (| 8(H)| )

— (| (H—E;)|)|<e. As a result, it is related to a sort of

continuity [20] of the spectral representations |af;) and |i;).
E; depends on the functions and g as well as onz and the

accuracye. In particular, it is not a property of the Hamiltonian

ish. They supposed that, in some way, the quantum state of

the universe provides a probability distribution far and

proceeded to estimate this distribution through instanton cal-

culations. The large negative action of four-sphere instantons

for small positiveA was used to argue that this distribution

is exponentially largdéor even largef58]) for A near zero.
While we have been interested in the transition amplitude

H alone and in no way corresponds to a mass gap for the systerand not in a particular quantum state, we note thatry
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physical stat¢¢phys> in our scheme may be expressed in the Note that this holds foall real N, even though the ex-
form pression forx|e "MN|x’) (for the caseH=—P3+P2=m?,
for examplé as a function ofN, x, andx’ may have an
essential singularity & =0 (see, e.g[14,15). This is noth-
, , ing more than the fact that the distributidiix—x') cannot
<X|thys>:J dx'(x| S(H)|x"){x| ) 6.2 pe represented by a smooth function. In fagte~'HN|x") is
a continuousfunction of N in the topology ofS’ X §’, even
atN=0. There is thus no difficulty with thN integral at any
for some|4) e S. As a result, the arguments of Sec. V B finite value ofN.
imply that no physical state has a “wave function” We expect the result of this integral to Ke|S(H)|x').
(X|¢phye which behaves aslSe™! in any region of super- Our technical assumptions guarantee that the limit
space. This suggests that the instanton$56~58 would
not, in fact, contribute to the desired distribution. Following

a similar line of reasoning9,59 arrive at this same conclu- lim fbdN<x|efiHN|Xr> (A1)
sion. Other arguments against and comments on the Baum- as—o Ja
Coleman-Hawking mechanism inclufi@0—64. b—s +o0

Another point to be addressed is the argumeniL8f that
only stationary points with Rgge=0 (whereg is the Eu-
clidean metri¢ should contribute to the path integral. In our

Eota}.t(ljon th||s reSth'_%t'on would thBR‘N)Zt? ; "3" p05|t|V(_ad andb are taker{20]. Any lack of convergence af3.1) must
uclideéan fapse. g_argumer)[ ] was based on consid- therefore arise from the path integral representation of
ering the normalizability of an induced quantum state for the

e . : x|e HN|x’). It is to this expression that we now turn.
matter(nongravitationalfields. The issue concerned Whether< | [x') b

this state is an exponentially growing or decaying function of Our assumptiondfrom [20)) guarantee that (EiHt)

: ) o . ) apsS into S so that the operator (2iHN/k)¥ is also a
these fields; that is, it had to do with the state functional a{;ember ofS'xS'. It follows that the integrations in the

large values of the matter fields. While we have argued thal%-skeletonized ath intearal
stationary points with Rél)<0 may contribute, the fact P g
that the Euclidean action of matter fields is positive for

does in fact converge tox|5(H)|x’) (in the topology of
§'XS'), and does so independently of how the limitsaof

Re(iN)>0 means that for large values of the matter fields dp, k dp(t)dq(t,)

our condition of positive Euclidean action is equivalent to l= f _OH VT aint)latt) —alti—g)]

the condition Rei(N)>0 of [13]. This is as one would ex- 2mi=1 2

pect since exponentially increasing functions do not define N

generalized eigenstates of the constraint. As a result, we see x| 1—i—h(p(t;),q(t)) (A2)
that our arguments are consistent with the general require- k

ments off 13] for reproducing quantum field theory in curved

spacetime. . -
P must converge in the sense of defining elementS'of S'.

In addition, for fixed statesp) € S and|¢) € S, we have
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APPENDIX A: CONVERGENCE OF THE PATH below. Sincg3.2) is designed to exactly reproduc& 1), we
INTEGRAL REPRESENTATIONS have established the convergence of this expression as well.

In this appendix we discuss in detail the convergence

properties of the path integra{8.1) and(3.2) for the physi- APPENDIX B: STATIONARY POINTS

cal inner pr_oduct. These expressions do in fact converge, so AND ANALYTICITY OF THE MEASURE
long as all integrations are appropriately interpreted.
Let us begin by noting thats|e ""N|y) is well defined We now show how the the analytic structure of the mea-

for all |¢),|¢) € Hayx, and, in particular, for all#),|##)  sure in(4.3) determines the overall form of the resu(ts5)

e S. This follows from the fact thae'™N is a unitary(and  and (4.6) by evaluating this result in the semiclassical ap-
therefore bounded operator on H,,. As a result, proximation. The structure of the resul$.12 and (5.9 is
(x|e""MN|x"}) is a well-defined distribution 05X S; that is,  determined in essentially the same way.

(x|e"™N|x") is a member of the dual spacéxS’. Consider the integrai.3):
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K n sgn(N) may be interpreted as an analytic function which is
1 (e e 2 1- 2 sgrn(N) constant on the left and right half planes with a cut along the
x| S(H)|x")= _J dN entire imaginary axis.
(x| X7 2m) s (2mN])™ Now, for large N (and m?>0), the exponential factor

plane. As a result, the contour may be closed in the lower
half plane. Note that, because of the cut corresponding to
. 4 sgn(N), the integrations along the negative imaginary axis
_ LJ dN e elim2sgnN) do not cancel, but instead give equal contributions and add
27) o (2wN)™2 together. Since, for{—x')?>0, the integrand vanishes as
5 ' N approaches zero from the lower half plane, the essential
><exp< i m_[ _ (x—x") D (B1) s_in_gulari_ty atN=0 does not contri_bute in the semicl:_:lssical
limit. This limit is therefore dominated by the stationary
point in the lower half plane, for which the integrand in Eq.

(B1) is exponentially suppressed by a factoreof™ —x")
where the functioN"? is (yN)" and N is defined to have in agreement with the leading behavior (@£5).
a branch cut along theositive imaginary axis. Note that

) decays in the lower half plane but grows in the upper half

m? \ (x—x")?
xexp —1 o |N= =N
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