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Transport processes in the gravitational collapse of an anisotropic fluid
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In this paper we introduce a method to study the influence of thermal conduction and viscous processes in
a spherically symmetric gravitational collapse. We assume that the viscosity appears because of the interaction
between the neutrinos and the matter that composes the fluid. The temperature, bulk viscous pressure, and
shear viscous pressure are found. The effect of the latter in the anisotropy of the fluid is studied as well. To this
end it is necessary to solve two sets of partial differential equations. First, the Einstein equations are solved
using the seminumerical HIR method. The causal Maxwell-Cattaneo-type transport equations form the second
set of equations to be solved. The temperature profile, found from the heat transport equation, indicates that the
energy of the neutrinos in the surface is not correlated with that of the interior. This behavior, which can be
explained in terms of the Eddington approximation, allows us to estimate the thickness of the neutrinosphere.
The contribution of the shear viscous pressure to the anisotropy in the core of the star is found to be non-
negligible.[ S0556-282(96)03512-4

PACS numbegps): 04.25.Dm, 05.70.Ln, 97.66s

[. INTRODUCTION the scattering with electron®{+v—e~ +v) and nucleon
absorption ¢+n—e” +p) may account for this process
The physical study of relativistic stars usually rests on thd 9—12.
assumption of local isotropy. However, at least for high den- The temperature is a key quantity to decide which pro-
sities, theoretical evidence suggests that this may not be $£SSes can take place during the collapse. Moreover it is
very accurate approximatidd—3]. Then, it seems fitting to indispensable to calculate the bulk and shear viscous pres-

adopt anisotropic models to carry out a more detailed analy§ure' Unluckily the solution of the Einstein equations does

sis of the relativistic collapse of neutron stars arisin fromnOt provide any information about it. This is why a set of
. P oo 9 transport equations must be adopted. The standard Eckart
supernovae explosions. The presence of radiation flow du

. i . . lct’heory of irreversible processgb3—15 exhibits undesirable
ing the collapse reveals the existence of anisotropy in @gecis(je., it predicts an infinite speed of propagation for
fluid even in the diffusion approximation. Effectively, if the ermal and viscous signals and unstable equilibrium States
radiation is in th!s approximation, it interacts strongly Wlth.|t is then necessary to resort to another thermodynamic
matter, and the interchange of momentum between the difheory of irreversible processes that does not present this
ferent layers of the star will enhance viscous processesnomalous behavior. Thextended irreversible thermody-
Therefore, because of the presence of a shear viscous prefamics(EIT) theory[16,17 seems to be a good candidate to
sure, the fluid must be treated as locally anisotropic. On theeplace the old Eckart theory and it has been used in cosmo-
opposite limit(free streamingone has anisotropy associated logical problems with good resulf48-20. Essentially the
with the direction of propagation of the radiation. Because ofEIT rests on two hypothesegt) The dissipative flowgheat
this, it is suitable to introduce an anisotropic state equation iflow and viscous pressuneare considered as independent
one wishes to analyze systems in which the flow of radiatiorvariables; hence, the entropy function depends not only on
non-negligibly influences the dynamics of the collapsethe classical variablegarticle number and energy dengity
[4—6]. but on these dissipative flows as welR) At equilibrium

We shall adopt the seminumerical method of Herrerastate, the entropy function is a maximum. Moreover, its flow
Jimenez, and RuggeriHIR) [7] to solve the Einstein equa- depends_ on all Qi_ssipative flows and its production rate is
tions. Furthemore, to find the temperature and bulk and she®emipositive definite. As a consequence the heat @ty
viscous pressure it will be necessary to introduce a set di'e bulk viscous pressui¢, and the traceless viscous tensor
transport equations. To solve them we will adopt the explicit™x«» OPeY the evolution equatiori21]
expressions for the transport coefficients of heat conductivity AVRE L O — MY T — _ p
and bulk and shear viscosity of an interacting mixture of T+ QF= )W, ~TU, ~T(aoll, ~ el )]
matter anq radiat'ion founq by Weinb€ig]. This reqqires us U+ 1=~ {U% + gl Q%
to determine which reactions are more relevant in the mo-
mentum transport between the different star layers. The largend
neutrino mean free path implies high transport coefficients.
Thus, viscous processes induced by interactions between
neutrinos and matter are much more important than those =210, 27a1Q4p hf#hf)—ghwhaﬁ ,
induced by other scattering processes. The cooling by ab-
sorption and emission of neutrinos drive the star to equilibrespectively, where,, 717, and 7, are the relaxation time
rium. Among the sources of neutrino opacities it seems thadf thermal, bulk viscous, and shear viscous signals, respec-
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tively. T stands for the temperaturg, for the thermal con- whereu=x° is a timelike coordinate;,=x* is the null coor-

ductivity coefficient, and/ and » for the bulk and shear dinate andd=x? and ¢=x? are the usual angle coordinates.

viscous coefficients, respectively. The parametegsand  Theu coordinate is the retarded time in flat space-time and,

a; are connected with the characteristics of the fluid undetherefore, theu-constant surfaces are null cones open to the

study. The spatial projector tensor is designed byfuture. The metric functiong andV in Eq. (2.1) are func-

h,,=9.,,—U,U,, and o,,=U(.,)—U,U,)—h,U%/3  tions ofu andr. A function m(u,r) can be defined by

is the shear tensor. Here, the overdot denotes

Aup.. . =UMA,4 . It can be seen that if some reasonable V=e?[r—2m(u,r)], (2.2

assumptions are met, these equations preserve the causality

condition and predict stable equilibrium configurati¢gg]. which is the generalization, inside the distribution, of the

However, the transport equations for the dissipative flows'mass aspect” defined by Bondét al. [26]. In the static

predicted by EIT are extremely involved. Nevertheless, inlimit it coincides with the Schwarzschild mass.

the linear approximation the evolution equations for dissipa- In order to give a clear physical meaning to the above

tive flows reduce to formulas, we introduce local Minkowskian coordinates
: : (t,x,y,2) related to Bondi’s radiation coordinates by

T70Q"Ny+ QF=xh#*"[T ,—TU,],

THUQH’Q‘FH:—gU;ﬂ ’ dt=e ?dU‘l' vdr , (23)
and r
dx=e” i (2.9

T,T'}TM,,-}— 7TMV227]O'MV,
which are the covariant formulations of Maxwell-Cattaneo dy=rdé, (2.9
transport equation23,24]. One may hope that the propaga- dz=rsin6d ¢, (2.6)
tion speed of the dissipative signals is comparable to the
sound velocity. For this to be true the relaxation time in theand to the Schwarzschild coordinatégR,®,®) by
transport equations must be nearly the radiation mean free r
time. After calculating the temperature we shall obtain both T=u+ | —dr, 2.7)
the bulk and shear viscous pressures, which cannot be di- oV
rectly found from Einstein equations. In this way we will _ _ _
establish the influence of shear viscous pressure on the an- R=r, 0=6, ¢=¢. 28
isotropy of the system. . .. .
Th(gypaper is organized as follows. In Sec. Il the Einstein. Outside matter the metric is th? V_aldya o[rﬁSl a par-
equations, for an anisotropic sphere composed by a mixtu"rgc_mar case of the Bondi metric in whiclg=0 and
of radiation and matter, are derived, and we resort to the HIR — r—2m.
method to solve them. In Sec. Ill we write the Maxwell-
Cattaneo transport equations within the HIR formalism and B. Stress-energy tensor
find the mean free path of the neutrinos as a function of the As we mentioned above we consider an anisotropic fluid
temperature. This is applied to a specific case in Sec. IV. Agphere composed by a material medium plus radiation. The
an initial configuration, we shall adopt the anisotropic staticmaterial medium travels in the radial direction with a veloc-
solution of Gokhroo and Mehrg25]. This one corresponds jty 4, in a Minkowski coordinate system. The radiation is
to an anisotropic fluid with variable energy density. Lastly, yreated in the diffusive regime because it interacts strongly
Sec. V summarizes the results of this work. with matter. Because of this interaction, viscous processes
We adopt metrics of signature 2. The quantities sub- appear. Thus, a viscous term must be considered in the
scripted witha denote that they are evaluated at the S“rfac%tress-energy tensor. We denote this term‘i’%y and, for a

of the star. The subscripts 0 and 1 indicate partial differenyoc4) minkowskian observer comoving with the fluid, it can
tiation with respect to timeu) and radial coordinaterf, be written as

respectively, finally an overdot on scalar quantities means
d/du. A caret over a quantity means that this one is mea- TV =% —4% 4T1Ih
sured by a Minkowskian observer comoving with the fluid.

(2.9

where T o denotes the traceless viscous pressure tensor,
h.,=»,,—U,U, the spatial projection tensor, ailis the
bulk viscous pressure. For this comoving obsetvgrcom-
A. Interior and exterior metrics plies with U, = &},, and applying the conditionr,,U#=0

Our aim is to describe a nonstatic spherically symmetridogether with traceless characterf,, we obtain
fluid distribution. To this end we adopt the radiation coordi-

II. FIRST SET OF EQUATIONS:
EINSTEIN FIELD EQUATIONS

nates[26,27, then the interior metric takes the form 0 0 0 0
Y R 0 = 0 0
ds’=e?f ?du2+2dudr —r2(d6?+sirf6d¢?), Tw™l o 0 —(w/2) 0 2.19
(2.1 0 0 0 —(7l2)
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Not all anisotropies can be explained in terms of the in- pP=pm+ PR (2.17
teraction between matter and radiation. Therefore, it is nec- '
essary to bear in mind that the material part of the stress- P,=P+P+II+, (2.18

energy tensor must reflect the anisotropic character of the
fluid. For the Minkowskian observer the anisotropic material®"

part of the stress-energy tensi'))f'y is given by the expres- 3

sion P =P - §7T+///. (2.19
v ~ A A
Tuv=(pmtPYULU, =Pyt (P=POXux,, The physical variablesenergy densityp, radial pressure

(219 P,, tangential pressurB, , and heat flowQ) are obtained
as measured by the mentioned observer, and the effects of

where y,= &%, denotes the material energy densi®, L , ;
Xu™ Ou: PM gy By gravitation are clearly provided through the appropriate

the material pressure, aftj=P+ . the material part of the

tangential pressure. Thus, the pressurerefers to the traprsfortm;tl?r? t(()jacur_v |I|nefatrhcoordt|2§te sys;te.m.
anisotropies that cannot be explained as a result of the 0 study the dynamics ot In€ Sys Te., ) it is neces-
matter-radiation interaction. sary to obtain the stress-energy tensor as seen by an observer

The last term in the stress-energy tensor accounts for ! rest with respect to the Minkowskian coordinates. To this
presence of radiation. In thieagrangian frame(the proper end it is necessary to apply a Lorentz boost in the radial

frame and in the diffusive regime it readg9,30 direction toT#”. A further transformation allows us to ex-
' press the stress-energy tensor in curvilinear coordinatss
pr —Q 0 O [6] for detailg. Thus, applying a local coordinate transfor-

mation(2.3)—(2.6) and a Lorentz boost in the radial direction

R e P 00 to (2.13 we obtain the stress-energy tensor
R , (2.12
0 O P O
0 0 0o P T,LLV:(p—’_PL)U/,LUV_ Pigy,v

where pg denotes the radiation energy densigy,the heat FPmPXx0 20005, (229

flow, andP the radiation pressure. as measured by an observer using Bondi coordinates with a
Thus, for a local observer comoving with matter, with radial velocity, with respect to the matter configuration,

radial velocity w, the stress-energy tensor in local —w. After performing the transformation, expressions

Minkowskian coordinates is (2.19—(2.16 read
L S \ﬁ 1 \f 1-w) '
y7ad y7ad y7ad pv? = B — —
o _ | U.=e ( r1-o™ Vvl1re, %9
and in virtue of(2.9—(2.12 it can be written as (2.21)
TMV:(p+PL)U;LUV_PL7]MV eﬁ( \/V w \/? 1-w 1/200)
A A ~ ~ X = - _ﬁ_l ViCIPR 1Y ’
+(P—P XN +20,0,, (213 g r(1-0%? Vilte
(2.22
with and
X.=(0,1,0,0, (219  Note thatQ*U,=0 andQ=\—Q"*Q,,.
R Applying these transformations to the traceless viscous
Q,=9(0,—-1,0,0, (2.16  tensor(2.10, we get
|
2B w2 2B w 0 0
S ] K A v
w rfl—w
—e2B —_ 2B | —— 0 0
“l1ve)™ © V(l-l—w m
Typ= 2 ) (2.29
0 0 R 0
2 v
r2sirf
0 0 0 — T



6924 J. MARTINEZ 53

Outside matter the stress-energy tensor corresponds to r 272 1—w
CqL = —— —(p—20+ .
that of a null fluid: i.e., B L\(u)r—Zm 175 P2< Podr,  (2.34
Y — MV
T ek*k”, (2.29 and we may rewrite the nonstatic case as
where 2
—fr A G+ P)dr (2.39
\% IB a(u)r_zm P , .
kt=5te 28 T (2.26

with

C. Einstein field equations

~ 1
P=r—[-wp—Q(l-w)+P 2.3
Inside matter the Einstein field equatioi®, ,=8=T,,, 1+w[ w0p= Q=)+ Pl (239

can be written as ] ) . ,
being the effective pressure, which also reduces to the radial

1 =~ g o pressure in the static limit.
m[—moe +(1-2m/r)m,] Matching the Vaidya metric to the Bondi metric at the
surface (=a) of the fluid distribution implies
Ba=B(u,r=a)=0 with the continuity of the mass function
(p+2wQ+P,w?), (220  m(u,r) (i.e., the continuity of the first fundamental form

_ .2
1o and the continuity of the second fundamental form leads to
m_ 1 1 P 2.2 M| P
A 1y gP” Q@) "Rl (228 a=—[1-208| < (2.3
&/ Patpa

r-2m 1l-ow .
,812—2—2 1T(p—2Q+ Pr), (229 (see[31] for detalls.
mr w From the coordinate transformati@@.3) the velocity of
~ matter in Bondi coordinates can be written as

Boe * 1 m > Bi
T Tam Tae\ 1| PRuTART ar Ve 038
| 312y Ty 230 du ri-e
gmr = ' evaluating the last expression at the surface and comparing it
. . . . ) with (2.37) it follows that

while outside matter, the only nonvanishing Einstein equa-

tion yields Pa=— w,pa, (2.39
My=—4mr2s| 1— 2m(u)) (2.31) or equivalently using2.33 and(2.36 we get

Qa=Pra, (2.40

To algebraically solve the physical variables present in
the above set of field equatiofig.27)—(2.30 we must find  which is a well-known result for radiative sphere&2].
out boths andm. The HIJR method will help us in this task, To derive the surface equations we introduce five dimen-
but before it we must impose the junction conditions be-sionless functions:
tween exterior and interior metrics.

a
D. Junction conditions and surface equations A= m(0) !
The mass function can be expressed as
m
~ r M=——,
mzj 47rrZpdr. (2.32 m(0)
0
It involves an effective energy density given by the right- U= u (2.4
hand side 012.28: o (0) ’ ’
1
=— [p— —w)— 2M
Y 1+w[P Q(l-w)-Pw], (2.33 FEl_T’
which in the static limit reduces to the energy density of the 1

system. Q=
From (2.29 one has 1-w,
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wherem(0) is the initial mass of the system. Using the func- where the term (2 — 1) accounts for the boundary Doppler
tions just defined int@2.37) we get the first surface equation shift. Using relationshig2.45 together with the first surface
) equation we obtain the second one as
A=F(Q—1). (2.42
. 2L+F(1-F)(Q-1)

This first surface equation gives the evolution of the radius F= A : (2.48
of the star.

The second surface equation emerges from the luminosityhich expresses the evolution of the redshift at the surface.
evaluated at the surface of the system. The luminosity as The third surface equation is model dependent. For aniso-

seen by a comoving observer is defined as tropic fluids the relationshipT,),=0 can be written as
E=(47r2Q),_,. (2.43 P+7 - (2 -
- W +R, —|=(P,—P)| =0, (2.49
Evaluating (2.27) and (2.29 at the surface and using the TEMIN gy AT a
expansion
where
my ~m—am, , 24 ~ ~
v I A R
. . . s = T o= r | —\ = - .
the luminosity perceived by an observer at rest at infinity 2 ta’ \1—-2mir a m re a r( P a
reads (2.50
L=—M=E(2Q0—-1)F=47A2Q,(2Q—1)F. (2.45 It is possible to associate a physical meaningRiq,: the
_ _ _ first term is tied to the hydrodynamic force, the second one
The functionF is related to the boundary redshif by to the gravitational force, and the third one reflects the an-
isotropic character of the fluid. The latter is negative when
1+Za:Vi“:|:fll2_ (2.4¢  the radial pressure is larger than the tangential pressure. In
Vrec this case the fluid distribution may become more compact

than in the isotropic one.

Thus the luminosity as measured by a noncomoving observer Using expansion2.44 and

located on the surface is

0o (5+P)o,~[Ba(1=wa)]o—a(P+p)s,

= —+ 2:——: — .
E=L(1+z,) F E(2Q-1), 2.47 where(2.39 has been used, we get
|
|':+Q za+|=92 e ZFQP”"— 1-Q)| 47Ap 30-1 3+F+|=Q—'51a+2':Q P, —P 2.5
Ffa 5 = A ;).——( — )| 4mApa— G~ S = A—ﬁa( 1—=Ppal. (25
a a a a

Expression (2.51) generalizes the Tolman-Oppenheimer- (2) The effective quantitie=p(u,r) and EEE(u,r)
Volkov equation to the nonstatic radiative anisotropic case.must coincide withp, and Py, respectively, in the static
Now we are in position to briefly summarize the HIR |imijt. we assume that the dependence in effective quanti-

method[7] applied to the anisotropic case. ties is the same that in its corresponding static ones. Never-
theless, in the nonstatic case the junction conditions are dif-
E. The HJR method ferent, accomplishing expressiof2.39. This condition

llows us to find out the relation between thelependence
p=p(u,r) andP=P(u,r).
(3) Introducep(u,r) andP(u,r), into (2.32 and(2.35 to
determinem and 8 up to three unknown functions of time.
(4) The three surface equations form a system of first-
¢ order ordinary differential equations, by solving it we find

the problem because these ones are a set of ordinary diffefl® evolution of the radiusi(u), and two unknown func-
ential equations that can be solved by the Runge-KuttdONS Of time. These ones can be related with theepen-
method. The algorithm can be summarized as follows. ~ dence ofp=p(u,r) andP=P(u,r). .

(1) Take a static but otherwise arbitrary interior solution  (5) There are four unknown functions of time\( F,

of the Einstein equations for a spherically symmetric fluid€, andL). Thus, it is necessary to impose the evolution of
distribution: one of them to solve the system of three surface equations.

Usually the luminosity is taken as an input function because
Ps=P(r), ps=p(r). it can be found from observational quantities.

This method has been extensively used since last decati
to obtain models of nonstatic radiating fluids from known
static solutions of the Einstein equatiofi6,7,33, and refer-
ences therein Its use reduces the problem of the gravita-
tional collapse to the solution of the surface equati@42,
(2.48, and(2.51). This procedure simplifies the resolution o
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(6) Once these three functions are known, it is easy to fincind the velocity of the collapse. However, if one wished to
m and 8. Therefore, the interior metric is completely de- explicitly find the temperature and viscous pressure, one has
fined. to resort to the transport equations laid down by EIT.

(7) Now, the left-hand side of the Einstein equations Usually classical theor{13—15 has been employed as a
(2.279—-(2.30 is known. However, the right-hand side of first approximation to the study of gravitational collapse.
these equations contain five unknown quantities p, P, , Nevertheless, this one presents two important disabilities
P, , andQ). Thus, it is necessary to supply another equatior{ 22]: (1) It predicts an infinite speed for thermal and viscous
to close the system of field equations. In the anisotropisignals.(2) The equilibrium states turn out to be unstable.
static case a general equation can be found that relates tAderefore, as a further step in the thermodynamic study of
tangential pressure to the mass function, energy density argtavitational collapse, it seems suitable to resort to a theory

radial pressurg¢34]: free of such drawbacks. As we pointed out in Sec. | the
3 relativistic EIT may do the job. The Maxwell-Cattaneo trans-

b _p :LP +(p+ P) m+4ar P) (2.52 port equations are a particular case of those given by EIT,
Lottt 2 r—2m ' see for instanc¢23,24. The former are decoupled expres-

) o ] . sions of the EIT transport equations and they may be under-
This expression is usually generalized, in the context of HIRtgod as a first approximation to them. Thus, we consider
method, to nonstatic cases by substituting for the effectivgnat the dissipative flows are decoupled and the transport
variables the physical quantiti¢s,35] equations may be approximated by their Maxwell-Cattaneo
'E+5 form. The heat conduction equation can be written as

2

M+ 43P
r—2m

r —
P, =P =5P1+

. 2.5 - .
) (253 9@y + QF=yh*"[T ,—TU,], (3.1
Now, the Einstein equations, su_pplemented W(_Q_ISQ, whereh#"=g#*—U*U" is the spatial projection tensoy,is
make up a close system of equations and quantitie®,  the thermal conductivity coefficient, the temperature and

Py, P, , andQ can be found. S _ 7o is the relaxation time for thermal signals. The evolution
The HIR method starts from a static interior solution ofof hulk viscous pressurH is given by the expression

the Einstein equatior[s=P(r) andpg=p(r)]. The effec-

tive variableg2.33 and(2.36 must reduce in the static case U+ 1= — U . (3.2

to pg and Py, respectively. Nevertheless, these quantities

have a dependence on the retarded tim&Ve assume that The bulk ViSCOSity coefficient and relaxation time for bulk
the effective variables have the samalependence as the Viscous signals are denoted yand 7y, respectively. On
physical variables of the static situation have. This can béhe other hand, the evolution of shear viscous pressyre
justified in terms of the characteristic times for different pro-(2.24 can be written in Maxwell-Cattaneo form as

cesses involved in the collapse scenario. If the hydrostatic (3.3
time scaleZyyq,, ~1/\/Gp, is much shorter than the Kelvin- :
Helmholtz time scaleZyy, then in the first approximation \ynere shear tensoh(‘“MU,,);a—U“h /3 is denoted by

. . . . ey _ sallpy ]
the inertial terms in the equation of motipr. 1, —a=0can ;- corresponds to relaxation time for shear viscous

be ignored( [36], p. 11. The Kelvin-Helmholtz phase of the sjgnals andy indicates the shear viscosity coefficient.

TaT oyt 77#,,22770'M,,,

birth of a neutron star last some tens of secof@g], Eckart transport equations are given by

whereas for a neutron star of one solar mass and a 10-km _

radius, we obtairtZ,q~ 10 * s. Thus, in this first approxi- QF=xh*'[T ,—TU,], (3.9
mation ther dependence of physical quantitifsandp are

the same as in the static solution. The assumption that not the I=—-gut, (3.5

physical quantities but the effective variabléz.33 and

(2.36 have the same dependence as the physical variablesand
of the static situation is a correction to that first approxima-
tion. Therefore it is expected that the introduction of two (3.6

functions of time inp anq P preserving the same depen-  Note that the main difference between both formulations is
dence as irps and Py will yield good results. These two  he presence of the relaxation time(B12)—(3.3). As we will
funct!qns of time can be related by means of the junctionshow in Sec. IV this discordance is important close to the
condition(2.39. surface.

If the evolution of effective variables were known the  T¢ solve this system of partial differential equations it is
functionsm and g could be found and the Einstein equations necessary to adopt an expression for transport coefficients

supplemented by2.53 would constitute a closed system of , . and. For a mixture of matter and radiation these ones
differential equations. This method will be clarified by gre given by(see, e.g.[8])

means of an example in Sec. IV.

Ty, =2n0

nv ny

4
ll. SECOND SET OF EQUATIONS: X= §bT3T, 3.7
TRANSPORT EQUATIONS

We shall use the method described above to find the heat _ ibT“r (3.9
flow, the energy density, the radial and tangential pressures, 715 ’
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and The electron number density, can be related tm, by
means of the electron fractio®, (n.=n,).). Hence, the
1 [oP)\ |? mean free path is
{=15p 3713, , (3.9
Pl 1 10%°
= ~ cm. (3.19
. - NeOe pe,Ve
wherer denotes the mean free time of radiati@m our case
neutrinog, while the constanb takes (for neutrinog the The effective mean free time which takes into account the
value 7a/8, wherea is the radiation constant. neutrino zigzag path may be written as
Expressiong3.1)—(3.3) imply a finite propagation speed
for viscous and thermal signals. Nevertheless, to guarantee 1070
relativistic causality it is necessary to restrict the possible T=A~VAehy~ e cm. (3.19
ecy

values of the different relaxation times. If we assume that the
propagation speed of thermal and viscous signals are of the Assuming that the neutrinos are generated by thermal

order of sound speed, then emission €,~kgT) we find ther dependence on tempera-
ture:
To~ TN~ Ty~ T. (3.10
T T3, (3.1

This means that the relaxation times are somewhat larger
than the mean free time of radiation. Thuszifs known, it A rigorous treatment of mean free time would comprise the
is possible to usé3.1) to find the temperature and, 1$.2) evolution of ). Nevertheless, this effort does not seem ad-
and (3.3 to calculate the viscous pressures. visable here due to the degree of the approximation adopted
and that the range of possible values }yris severely re-
stricted (0.%<)),<0.3) [10].

It is convenient to express in dimensionless form to

Thermal neutrino processes are important during the latgimplify the numerical treatment of Eq&.1)—(3.3). In vir-
stages of collapse of massive stg®d. They help to carry tue of (2.41) and(3.15,
thermal energy from the core to outer regions. Thus, we as-

A. Determination of 7 for neutrinos

sume that neutrinos are principally thermally generated with M
energies close t&gT. T~ A—s, (3.17
pNYeT

A detailed study of the contribution of different processes
to the neutrino transport has been given by Brug@j. Our where the constant takes the value 0K ¥2m=1, My is

aim Is to eStab“Sh. an approximate expression to the Me3Me initial mass of star in meter3, the K temperature, and
free time for neutrinos. Despite that the procedure used in

this work yields good results, it is highly idealized and onlyp the dimensionless energy density.
approximate. A more accurate expression fowould be
desirable, but we consider that the approach below describes
the process accurately enough. The Maxwell-Cattaneo transport equatiof3.1)—(3.3
At the typical densities of a neutron star, matter can capean be written, by means ¢8.7)—(3.9) and condition3.10),
ture neutrinos. The neutrino trapping helps to drive the neuin dimensionless form
trinos to local equilibrium. The matter opacity to the neutri-
nos takes place principally by means of electron-neutrino
scattering € +v—e +v) and nucleon absorption
(v+n—p+e).
As a first approximation the cross section for nucleon ab-

B. Maxwell-Cattaneo transport equations: Explicit form

. 7 .
TQ'h#+ QH= gaM§T3Th”V[T’,,— TU,], (3.18

2

7 .1 [P
U +11=—-aMgT 7 5 —
n

sorption may be taken gf9], Chap. 18 2 3 % !
U'n%107448,2} cn?, (3.11 (3.19
whereg, is the energy of neutrinos in MeV. Then, the neu- Tt ,zlaMgT“m Vs (3.20
trino mean free path is given by g 15 g
1 160 wherea=6.252x10" % cm 2 K ~4.
.= ~~— cm, (3.12 The expression of mean free time for neutri8sl7?) is
Nhon  pe;, given for a comoving observer. Thus, applying a Lorentz

boost to it, it is possible to write the transport equations for
where n,~6x10?% cm~2 [9,3§ is the neutron number an observer with radial velocity- w respect to matter, in

density. Bondi coordinates.
In high energetic collisions the cross section for the As we saw in the last section, by means of the method
electron-neutrino scattering can be approximated3gy HJR it is possible to solve the Einstein equations. Thus, the

quantitiesQ, p, P,, P, , and w and the metric functions
go~10 %, cnf. (3.13 B andm are known. Resorting to expressiof&17), (2.1),
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(2.2, and(2.23 it is possible, after a straightforward cal- 2

; - ~ar aMj\*® g(u,r)
culation, to write down the Maxwell-Cattaneo equations in  f(u,r) & + B =¢o+h(u,r)ed;+w(u,r)e,
terms of known quantitie®, m, B, », p, and P, and
e (3.21
their derivatives.
The evolution of the heat flou8.1) is governed by where we have introduced, for the sake of simplicity,
|
d=aMzT?, (3.22
. 15[ Qu V) V| 15e?’Quw L 2m+1~ m+'rﬁ01
W=7 12|20t Tli=g ) T @t Tl %7 7 1=0 | 72l )y (M y (e
15 V/ltw U 3.2
t7eoriT=g)Yr (3.23
15 2m
g(u,r)=7ge2ﬁ 1-—(1+w), (3.249
e’ 2m
h(u,ry=— 1-—, (3.2
l1-w r
5 26 ¢ 2m\ 1+ w 0 30
w(u,r)—ie 124/ Y (3.26
1 |1 1-2m,; ) mo 1 l-w
P p— - - —2B — -2
1rw|2r 2P 2(r—2m)}+re 7o 122 (Iteli-w)|®1T® Trameo (27
and
B= A0 (3.289
pVe '

The bulk viscous pressui8.2) can be found by solving the partial differential equation

7 [ m [1+e[1 [P\ ] 2m\ 2m T3
i 214028 S, NARPNY S P = 2B 11— —| —— 28 - -
2aMOTe 1 2r 1 ol3 (0p) 0=II,+| e (1 ; )l—w I, +| e 1 ; (1+w) B IT.
n
(3.29
where the expansiofl can be written as
0=V = V1=~ T—2\r P J1—2mir JI—e2\r% 1 ¢ = 2mn® N1+
1_2Fﬁ/r w1 (O]
—_e 2~

+ T-wllte) | l-o © 1—2m/r}' (3.30

The description of shear viscous pressure evolut®B) is given, as in the other two dissipative flows, by a first-order
partial differential equation

14M? 2m [1+o
- SaT4e?\[1— —\|———o=my+
15\/5 r l1-w

T3/2

B

T+ T, (3.3)

2m
e?f\[1— T(1+ )

o281 2M @
rl-w
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where02=(1/2)awo”” and Einstein equations. In the static solution of Gokhroo and

Mehra [25] the energy density and radial pressure are as-

V3 o [r=2m o sumed to be
U:T —W m'i‘ §I’ . (3.32 2
p(r)=pc(1—k§z) (4.1
The transport coefficient63.7)—(3.9 as measured by a
comoving observer read and
4 oap Y P()Plzmlr2n (4.2
X=zbcT , (3.33 f(MN=Pl1=—1 1= =], .
3 p\VYe r a
where O<k=<1 andn=1 are constants. The central energy
4, Y density and radial pressure are denotedpbyand P., re-
n= 1_5bT ' (3.34 spectively, and in the static case they are related by means of
pNYe :
a constant through the expression
2
1 (0P Y P.=M\pc. 4.3
{=4bT5? 5—(—) , (3.39 o e “3
p nl LP Ve

Thus, we identifypg; asp(r) andPg asP,(r). The tangen-

tial pressure is
with Y=4.173x 10?* g cm 3 K ¥2s, P

The system of three partial differential equatiqds2l), r p+P.\(m(r)+4mr3P,
(3.29, and(3.31) can be solved provided initials, finals, and P.(r)=P,(r)=5[P ]1+ —
7. . > 2 2 r—2m(r)
boundary conditions are given. The boundary condition for

temperature in the heat conduction equat{@r2l) deserves 3 kP, , r2\n r?

special attention. As shown in Sec. IV C, the boundary con- ~10 a2 ar®| 1— 2 + mq’:
dition for the temperature must satisfy some requirements.

After solving the heat conduction equation, we shall find the (4.9

temperature, and using it in the evolution equati¢®@29), h
and(3.31) the bulk and shear viscous pressure will be deter?V"€r€

mined. Once the temperature is known, it will be easy to find
the coefficients of heat conductivity, shear viscosity and bulk
viscosity, from Eqgs(3.33—(3.35, respectively.

m 2 r2 2n
<I>:2PC(1—27) [ZWPC(].—?)

2

n r n—-1
IV. APPLICATION TO THE GOKHROO-MEHRA T aZlt a2 }
CONFIGURATION
i ape 3k r? r2
As we have seen in Sec. lll, the HIR method starts from a R Y 1-k=]|, (4.5
static solution of Einstein’s equations. It is possible to find a a
numerical models based in nuclear physics as solutions of .
: ) : S with
the Einstein equations. However, the uncertainties intro-
duced by this procedure in the HIR method make it desirable 8mp
to start from a static analytical model instead. On the other a= TC (4.6)

hand, it is suitable to adopt an initially static fluid distribu-
tion not excessively idealized. Some analytic anisotropic . .
static solutions of the field equations are kngw2,40—44. . In applying the HJR methocbegond point of the algo-
We shall adopt the static form of Gokhroo and Melf&M) gthm) we assume that the effective vanablE(su.,r) and .
[25] to illustrate the application of method described aboveP(U:r) have the same dependence as the physical quanti-
This solution corresponds to a fluid with variable energyti€S p(r) andP(r). The time dependence of these is intro-
density in which some anisotropy is initially present even induced by two arbitrary functions of timk(u) and G(u).
absence of radiation. It leads, under some circumstances, id'e form proposed here is

densities and pressures similar to the BethenBoSato

(BBS) Newtonianstate equ_atiof9,11,36,45. Thu;, this so- EZFC(U)< 1—K(u) r_z) , 4.7)
lution presents a compromise between the realism of the so- a
lutions based in nuclear physics and the desirable analytic
expression of the static solution. an
o ’r‘ﬁ r2 n
A. Introduction of the GM configuration in the HJR method P= Pc(u)( 1—27) ( 1—G(u)¥) , (4.8

Following the first point of the HIR metha&ec. Il B, it
is necessary to start from a static solutig;@ndPg) of the  where
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~ K(u) K 1 |[@(6Kr2—5A%)—5A%¢) [a(6K—5)+5
PC(U)ZPCWEPCK_v (4.9 Z==In f( ) ] f( )58 ,
0 3 @(6Kr2—5A?)+5A%¢) \ @(6K —5)—5¢
- KWK (4.19
PC(U)_PCW=PCK_OI (41@ and
The central energy density and radial pressure in the final ~ 12aK
equilibrium state must differ from their values in the initial E=\a"— SAZ - (4.18

static case. Thus, we introduce theiifectivevariablesp,

andﬁc. These variables do not enjoy any physical meaning For z=12K/5A2, 7 takes a more simple form
during the collapse, but they coincide with the central energy

density and radial pressure in the static case. Because of this, 16 1 1
it is necessary to introduce a time dependencé jnand I=——|l=5 - =5 i (4.19
P.. The correctness of expressiofts7) and (4.8) may be a’lart=2 aA*—2

seena posterioriat the sight of the obtained results, Sec. V _ _ o

below. As mentioned in Sec. Il E, the junction condition ~Following the fourth point of the HIR method it is neces-
(2.39 allows us to relate both unknown functions of time Sary to relate the unknown functions of tiffeand G with

K and G. Using (4.7) and (4.8) in (2.39 and by means of the functionsA, Q, F, or L. To this end, we evaluate ex-

(2.41) they are related by the expression pression(4.12) in the surface of the star,

(1-Q)(1-K) _ K /[aA3 3K

_ n—-__ - 7 = - | — -
(1-G)"=———. 4.19) M=fia=pe-| || 15| (4.20

To find an expression fan(u,r) andg(u,r) (third poin) ~ On the other hand, in virtue aR.41) the total mass of the
we resort to expression®.32 and(2.35. In virtue of (4.7) system is
the mass function can be written as

A
'Eyrs( 3K r? M=§(1—F). (4.2

r
. = T
m f04wr pdr 5 1 5 Az)’ (4.12

Equating the two last expressions it is possible to find the
where dependence ok on A andF,

N

K(w=K(AF)=¢

=a— (4.13

(4.22

The dependence @ on time(or equivalently omA, F, and
Q)) can be established by substituting the last expression in

and the radius of the star is written from (2.41) asA be-
cause, without loss of generality, the initial mass is taken a
unity. The expression of3(u,r), by means of(4.7) and

(4.8), reads (4.11. Thus, introducing the expressions(A,F) and
INTGA2 2\ n+1 G(A,F,Q) in (4.7, (4.9, (4.12, and(4.14, p, P, m, and
B= m (1—G)”+1—(1—G?) B are known throughout the star and for all times as func-
tions ofr andA, F, and().
5 [1-ar?+(3Ka/5AY)r*] To ascertain the physically meaningful sign(th22, we
—1gn 1—aAZ+ (3Ka/5)AZ | 16b (414 evaluate it at the initial time,
whereZ may take different values depending on the relation ZKo—1==+ 0 4.23

betweena and K/AZ2:
For 1K /5A%>a, T takes the form

F\/1-—=
5aAy

where we have made use @.41) with m(0)=1. Therefore,

7.2 arctaré (BKr?—5A?) —arctaré a(GK_5)” if the initial value of the functionk exceeds 5/6 we must
& 5AZ¢ 5¢& ' adopt the positive sign .22, and the negative one other-
(415) wise.

The functionsA, F, and() can be found from the system
where of surface equations if the luminosity is knowpoint five of
the methodl The first two surface equation®.42 and

12K _, (2.48, are model independent. In order to find a valid ex-
&= 5AZ ¢ (4.1 pression for the third one we resort to the expression given in

the last point of the algorithr2.53 which in virtue of(4.7),
For @>12K/5A2, (4.8), and(4.12 can be written as
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3 KP,_ 4 r2\n
PL(U,I')—P,-(U,I')ZE?CH 1—G¥

r2

T > 429
where
_ . m 2 . r2 2n
©=2Pg| 1-2—| | 27Pc[ 1-G
nG1 GZ”* E’ﬁcl 3K r2 L Kr2
2\ [Tt s a2
(4.25
Therefore, the system of surface equations is
A=F(Q-1), (4.26)
.1
F=Z[2L+F(1-F)(Q-1)], (4.2
and
. 'FQ K1—2KQ 4L02
“TEY R Tk MEEat 2o -—na-K)
+0(1-Q)¢, (4.28
where
_3EA1 « 30-1 3+F 2FQ VK
¢= 5 A=K —q on P aa—k YK
(4.29
‘If=i)\EA2K(1—G)”+A—2 sa 2F2(1-G)2"
10 2F| 2
2n)\GF21 G- a L 3K -
A2 ( ) +t3 5 ( )|
(4.30

This system of differential equations can be solved for a
given set of initial values of\, F, andQ imposing a bound-

ary condition(in this case the luminositi).

6931

In the static case a non-negative valuekofi.e., Ky),
ensures the conditiomp/dr=<0, while condition Ko=<1
leads to a positive energy density. The effective energy den-
sity lacks of physical meaning when the star is collapsing.
Therefore, the last argument cannot be applied to decide the
range of values of functioK here. Evaluatind2.33 in the
surface and usin@2.40 and(2.41) we obtain

Pa= 20—-1 (pa—Pra)-

(4.33

Q lies in the range 1RO <o, further the condition
p=P, must be satisfied. Thus, from the last expression,
?.=0. Applying this restriction tq4.7) evaluated in the sur-
face we obtain

K(1-K)=0=0<K<l1, (4.34
therefore the range of values physically admissible Kor
coincides with the static one.

A last remark is in order before numerically solving the
system of surface equations. Note that the generalization
adopted for the tangential pressi#e53 does not allow ex-
plosive modeld35].

B. Evolution of the GM configuration

We now are prepared to study the evolution of the initial
static fluid distribution described above in a particular case.
To this end, it is necessary to adopt a specific initial configu-
ration. The neutrinos can be studied in the diffusive regime if
the density is higher than 18- 10'? g cm™3. As mentioned
in the Introduction, the neutrino trapping is an important
source of viscosity. Because of that, in our diffusive model,
the energy density in the surface must be, at least, about
10*? g cm™ 2. On the other hand a neutron star with a radius
of about 10 km, has a central density not far from>10
g cm~3[9,11]. In this diffusive model, the energy density in
the center is a thousand times the corresponding to the sur-
face. Thus, from4.1), K;=0.999. From expressiot#.31)
one can find the initial radius for a given initial stellar mass.
Introducing the usual dimensions 4.31) we obtain

o 15
Pe™G anA3(5—3Kg)M2’

(4.35

where the initial masdM, is given in geometrized units.

means of(4.6) and(4.23, as a function of initial radius and ¢orresponding initial radius can be found fra@41):

Ko:

15

_ _ 4.3
P amA3(5—3K,) (4.39

ap=AMo=11521 m. (4.36

These values for the initial radius and mass are in the range
of the usually accepted as typical for neutron stars. So we

Thus, a large radius implies a low central energy densitySPecifically adopt as an initial configuration

Moreover, the positive character of the discriminant4r22

implies some restrictions about the evolution of the total
massM of the star. During the collapse it must satisfy the

inequality

M< Sa A3
< 2ac A

(4.32

pc=1.01x10"° gcm 3,
pa=1.01x102 gcm 3,
M0:1.3M@

and
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o - ] FIG. 1. Velocity profile a for given constant
> . - . Schwarzschild timeT=0.9 mg and two differ-
_0.008 - - ent values oK. All the figures made at constant
L ] Schwarzschild time were constructed from ex-
r ] pression(2.7).
-0.010 |- N T B
-0.012 - ]
I K, = 0.900 ]
L — K, = 0.999 i
-0.014 Lo vt b e s b i
0 2 4 6 8 10 12
r ( ki )
ag=11521m, (4.3 Note thatM, is the total energy radiated by the star in the

collapse. The values adopted f®M,, A, and Upey are
corresponding to a dense neutron star in which the diffusiom.0am,, 15, and 150, respectively. We have imposed the

approximation for neutrinos holds. - energy conditions for imperfect fluidg6] and the restriction
To completely determine the initial conditions it is neces- — 1< < 1.

sary to give a relationship between the energy density and |t js worth emphasizing the behavior of this model close

pressure in the center of the ster3). Also the parameter , gyrface of the star. The surface collapses more slowly than

n occurring in. the expression for pressure in the static casg,q adjacent layer&ig. 1). It may be traced to the profile of
(4.2) must be imposed. If we assume the center of the star e pressure gradient in this region. As seen in Fig. 2, its

a highly relativistic Fermi gas, then=1/3. In addition we absolute value is larger in the surface than in the adjacent

taken=1 for simplicity. o . L i
Therefore, the initial conditions for the system of SurfaceIayers, which find a lesser resistance to collapse. Similar be

equations(4.26—(4.28 are havior is observed for lower values Kf,. Nevertheless, for
' ’ low K, the variation in the pressure gradient is smaller than
Ao=6, for large K, and, consequently, the difference between the

velocity of surface and adjacent layers is not too high.
2 The value ofK, largely determines the radius of the star
Fo:§, once the collapse is finished. The higligy, the lower final
radius. This behavior can be related to the fact that values of
0=1, Ko far from unity follows from an equation of state close to
incompressibility. Thus, in these cases, the velocity of the
Ko=0.999, (4.39  surface is not very high and possible variations in the radius
are restricted. The highest variations in energy density and
1 radial pressure take place in the most external layers, which
Pc=§pc, comprise approximately 1000 m below the surféEgs. 3
and 4.
and The evolution of the energy density in the surface is de-
picted in Fig. 5. For Ko=0.9 [p,(u=0)=8.78< 10"
n=1. g cm~ 3] it varies about 6.5%), while foK,=0.999 the final
nergy density in the surface gets nine times its initial value.
his behavior, with that of the velocity, hints that the com-
ression of the star is higher in the shells near the surface.
his is likely due to the radiation generated in the collapse.
s it is shown in Fig. 6 the heat flow is more intense in the
inner shells than in the more external ones.
2 Initially the viscous pressure vanishes due to the absence
) . (4.39 ofradiation. This condition is also fulfilled in the equilibrium
situation once the collapse is over. Its contribution to the

These ones correspond to a neutron star, initially at rest, Witkef-
a redshift ¢,=1/\/F—1) close to 0.22.

The boundary condition, necessary to solve the system
surface equations, is supplied by the luminosity. We assumg
a Gaussian pulse fdr centered inu=upeq, and widthA:

M, 1
= ———=eX
A2 2

L=—M
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© C ] FIG. 2. Pressure gradient profile. The de-
& 20 [ B crease of P,4| close to the surface is, probably,
- Tk . the cause of the behavior shown by the velocity
~ C ] in this region. Schwarzschild timé=0.9 ms.
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tangential pressure during the collapse must be establishdldbw close to surface, that follows from the similar behavior

by means of the transport equations. shown by the energy density and radial pressure in this zone.

As the model of Gokhroo and Mehra, the BBS model and

others based on nuclear physics show the same features

[9,11]. Thus, the neutrinosphere seems to occur whenever
We have solved the transport equation for the heat flowhe adopted model is not highly idealized.

(321) fOI‘ different boundary ConditionS. The interior SO'U' Aimed to establish the boundary condition for the tem-

tion found for the temperature ceases to be sensitive to th§erature we introduce the effective temperatuFg;. This
boundary condition about 500-700 m below the surfacegne s usually defined by means of

This hints that the energy of the emergent neutrinos is not

correlated with its energy beyond this external region and, E:[47rr2ch;‘ﬁ]r:a, (4.40
consequently, most of the neutrinos escaping the star have

been generated in the inner limit of this region. This agreesvhereo=Dbc/4, and

with the idea of the neutrinosphel@8]. A possible cause of

C. Boundary and initial conditions for the transport equations

. . . — 2
this behavior can be found in the abrupt decrease of the heat E=[4mre];-a (4.4
0.020 _I LN L L S B O O I_
E - r = 0.2 . ]
L r = 0.90 A, ]
F r = 0.98 A, 3
0.015 - .
. 0.010 f~ )
ﬁ - ,/?/” ] FIG. 3. Relative variation of the energy den-
™ E ! ] sity as a function of the retarded time The
= 0.005 E 3 corresponding value foKg is 0.999.p, denotes
) r ] the initial energy density.
0.000 f ................ é
-0.005 :I TN T W TS T 0 W T B Y S W O O A v:
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is the luminosity as measured by the noncomoving observerhis one is, in the model under consideration, about 500 m
momentarily located on the surface. It is to Say would be  below the surface. At the surface vanishes. Hence, the
the temperature in the surface of the star if it would radiate asaterial temperature of the surface can be written as

a black body. The idea of effective temperature, see for in-

stance([9], p. 586 and ([38], p. 295, is applicable to the 1

most external layers of the star. It is related with the material [T4a==[Taxla. (4.43
temperature by the expression 2

T4=3Téﬁ 1+ gT) (4.42 Th_e boundary co_ndition can be found from the last ex-
2 2 pression together witli2.43), (2.47), (4.40, and (4.43. It
reads

where is the optical deptli.e., d7=—dr/\q).
According to last expression, if=2/3 the effective tem-

perature coincides with the material one. Thus, most of the T4= 20-1 (4.42)
emergent neutrinos are generated in a shell close~t@/3. a =2 2q¢ '
1.2 [NLE I L LI L O L L L B L 9.5
E —— K, = 0.999 Jo.4
1.0 } -------- K, = 0.900 = .
o E e 4 =
S E Jes &
= C b [l
L o8 £ ] )
A To2 2
?E 0.6 E, E 91 TE FIG. 5. Energy density evolution at the sur-
© = 7 © face for two different models Ky=0.999 and
w0 E ] 0 Ky=0.9). Note the different scale used in each
) - -19.0 =
© 04 E 1 5 case.
: E b e
© E — B.9 ~—
QU C ] =
C U
0.2 i
C m 8.8
0.0 :Illllllillllllllllllll\7\VKII|II1\}IIII!I}VII[I\I>B.'?
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This condition on the surface affects the evolution of themust be satisfied. And as a consequence of the regularity
temperature in the layers close to the surface but not theondition[m],_,=0, at the center of the star the generation
evolution of the inner temperatuf€ig. 7). of neutrinos is forbidden. Therefore we assume that both
To find explicitly the bulk and shear viscous pressure it isviscous pressures, vanishrat 0. Thus, the boundary condi-
necessary to impose initial and boundary conditions. Sometions imposed 0r43.29 and(3.31) are
thing about the initial condition for the viscous pressure has
been noted at the end of the last subsection. We assume that [T} —o=[7]=0=0Vu, (4.49
viscous processes appear because of the interaction between
matter and neutrinos. Therefore, initially and = must van- ~ and, from(4.45),
ish because of the absence of radiation.
At the center of the star the isotropy condition
(P, =P,) is fulfilled. Thus, in virtue of(2.19 the relation

[]r—0=0Vu. (4.47)

D. Temperature and viscous pressure: main results

3 .
Iim(/z,— —m7|l=0 (4.45 We have used the Maxwell-Cattaneo transport equations
r—0 2 instead of Eckart's since the latter ones violate relativistic
45 U T T T T T T T LU0/ I s B B B B B M
F - --r = 0.02 A, /! K R
40 = r =050 A/ N ]
C r = 0.75 A, // \ 7
35 [ .
3.0 .
nl n ]
n 0L 7] FIG. 7. Temperature as measured by an ob-
S E . served momentanously located at the surface. Its
— 20 | = maximum value at the surface is about
= F ] 5.44x 10" K. Here, and in the following figures,
1.5 | 5 V.=0.2.
1.0 | 5
0.5 [ .
0.0 E = L b e b b e ey b 8 A‘I" .
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tween the temperature found by means of the
Eckart and Maxwell-Cattaneo transport equa-
tions.
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causality. The temperature in the inner layers found bycomparison among the terms in the evolution equations
means 0f(3.2)) is the same as the one obtained usi@g) (3.29 and(3.31) points out that the term

(i.e., Fourier's lay. Nevertheless, in the neutrinosphere the

differences between both solutions cannot be neglected, es- 1 (gP\ 12
pecially in the first and late stages of the collajj6e. 8). { ( )
The main difference between Maxwell-Cattaneo and Eckart N
heat transport equations is the presence of the term

79"h% | which introduces in3.21) the term

3 (4.50

ap

is responsible for the main differences between the bulk and
aMS 3/5 shear viscous pressures.
f(u,r)<—) , (4.48 In the region in which the energy density is roughly
¢ 10** g cm 3 we find for the shear viscosity coefficient values
. about 188 dyn cmi 2 571, which is 10 times higher than the
while Q* leads to corresponding to the interactions among electrons, protons
and neutrons at the same dendi#yf]. This underlines the
g(u,r) importance of the neutrino trapping as a source of viscosity
B (4.49 in the stellar collapse. Similarly the thermal conductivity co-
efficient is greater for neutrino scattering than that mentioned

In the neutrinosphere and in the case under consideration oh&7.48. ] ] o )
hasf(u,r)~0.1g(u,r) andB~10: i.e., both terms are of The evolution ofr is shown in Fig. 11 for different layers

about the same order when temperature approachésk10 of the star. The shear viscosity value rises swiftly from zero,

Thus, the effects introduced by the presence of a relaxatiofit the center of the star, and becomes an important source of
term in heat transport equation are important there. anisotropy in the core of the stéFig. 12. For distances

The high value reached by the temperat(feg. 7) vali- from the center larger than 2 krr_n can be neglected as
dates the adopted initial and final conditions: the approximagompareOI with. as a source of anisotropy. )
tion that in the static case the temperature for the neutron star 1€ bulk viscous pressure is depicted in Fig. 13. In this
vanishes. Applying this condition witt.44) to expression modelll can be neg_lected againstin the innermost shells.
(3.2 allows us to find the evolution of the temperature. However, in the peripheral layei$ and, are of the same
Once the temperature is known, the transport coefficients capfder.
be calculated with the help @8.33—(3.35.

The bulk viscous coefficient;, vanishes at the center of
the star because of the state equat38 adopted there. In V. DISCUSSION
the shells close to the center the state equation is near to In this paper we have used the HIR method to generate
P,=p/3. Thus, the value of is less than corresponding to nonstatic solution departing from the static anisotropic fluid
shear viscous coefficienty) (Figs. 9 and 10 Nevertheless, distribution of Gokhroo and Mehri25]. This model shows
in virtue of (3.9), in stars with a central equation of state an initial nonuniform energy density. The presence in the
different from the adopted in this case, i.e., not highly rela-expression for the energy density of the param&tellows
tivistic, £ can be of the order of;. On the other hand a us to model without difficulties the initial features of the star
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according to the radiation limit adopted on(diffusion or The density and pressure profile in the central layers vary

free-streaming ouit little during the collapse. Therefore, the behavior of the
During the collapse huge quantities of neutrinos are genzones nearby the surface is perhaps the most important. Due
erated. These ones transport thermal energy from the mosi the decrease, in these layers, of the pressure gradient with
interior regions to the exterior layef9,10,13. Because of respect to the surface, the velocity of collapse of the former
the high densities and temperature, the neutrinos interaé$ larger than the corresponding to this one. This behavior
with matter. In their trip toward the surface they get thermal-also occurs in models with a density at the surface of about
ized and drive the star to a new equilibrium state. The mos10* g cm™3, though then the effect is not so intense. Also,
important thermalization processes are the absorption of netthe final radius of the star depends on the density at the
trinos by neutrons and collisions between neutrinos and elesurface. The higher initial energy density at the surface, the
trons. Consequently we have chosen a density range accordrger final radius. As previously mentioned, the largest
ing to these interactions p(~10® gcm 3, p,~10 variations in energy density occur at the surface. This effect
g cm ), allowing us to treat the radiation in the diffusive is probably due to the importance of the radiation in the

limit. evolution of the neutrinosphere. In that zone, the heat flow is
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sure in different layers of the star.

-1.00

( 10® dyn cm

—-1.25

-1.50

-1.75

P O VO D T 0 B O Y N R

O T T T S T T T T T T O 0 W O v

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

-2.00

=]

m
L2 L L e B B B

u ( ms )

much weaker than in the inner regions. Nevertheless, it isolve the corresponding equation for temperature we have
possible that the radiation energy density in it comprises dound the mean free time of the neutrinos. In so doing we
large part of total energy density. have considered both reactions mentioned above, if the neu-
The knowledge of the temperature of the star is the key tdrinos are generated by thermal emission with energy near
establish which processes can take place in its bosom. At theT. In this way it is possible to establish the dependence of
variance with the heat flow, this quantity cannot be obtainedhe thermal conductivity coefficient on temperaturg (
from Einstein’s equations. It is absolutely necessary then to<T%?). Then, solving the equation for the evolution of the
appeal to some thermodynamic theory of irreversible proheat flow, we found the temperature. Also we have solved
cesses. We have taken a further step with respect to othée classic transport equation, finding out considerable dif-
analysis by introducing the EIT in its covariant formulation ferences in the neutrinosphere between both theories. These
[16,17), avoiding in this way the unphysical behavior of the temperatures disagree from one another in the first and last
conventional theonf13]. The rigorous study of transport stages of the collapse.
equations derived from EIT is technically complex. There- It is worth emphasizing a peculiarity of the temperature in
fore, we have appealed to the so-called “truncated” formthe innermost layers. This one is insensitive in that zone to
that reduces to the Maxwell-Cattaneo equati¢pBs]. To  the boundary condition imposed on the surface. Therefore,

_\ TT T [T T T T [T T T T[T T T T (T T I T T T T I [T T T T T TT i rITTTTTTT]
0.4 | 4
0.2 N n
o —-0.1 B 4
g L ] ) .
© L - FIG. 12. Comparative plot of the different
£ o4l ] contributions to the anisotropy(2.19 at
:’ r : 1 r=0.1A,. Lines markedA andB correspond to
= L P.=P; 4 terms—3m/2 and., respectively.
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those neutrinos that manage to escape from the star lackscosity coefficient vanishd$]. Though throughout the star
information about the temperature of the central regions, irthis limit is not strictly fulfilled, the relationship between the
other words their energy in the surface is not correlated wittradial pressure and energy density restricts the value bf
that of the interior. This suggests that these have been crapite of this, from 7 km of the center upward the bulk vis-
ated in a region close to the surface, the so-called neutrinagsous pressure is comparable to a shear one. In an anisotropic
sphere([9], p. 586,[38], p. 295,[49], p. 17. The neutrino- model, shear viscous pressure is restricted by the difference
sphere is commonly associated with the effectivebetween the tangential and radial pressures. Therefore, one
temperature T, Which coincides with the material tem- can expect that its contribution to the total pressure is small.
perature in its lower limit. Through the introduction ®f; It is worth noting the contribution of shear viscous pressure
we find out the temperature at the surface. Thus, we havi® the anisotropy. According to the model studied here, it
obtained a credible boundary condition for the heat transporseems that the viscosity is responsible for an important part
equation. We have supposed, therefore, that the layers of tleg the inner anisotropy. Then, the shear viscous pressure
star that are sensitive to a change in the boundary conditiogreatly contributes to total anisotropy in approximately the
form the neutrinosphere with a thickness of 500—700 m. Thisdwo nearest kilometers to the center of the star. It is certain
length approximately coincides with the neutrino mean fredhat in the most internal zone of the star the anisotropy is less
path in that zone. This fact reinforces the hypothesis that thenportant that in the peripheral region. Though, under cer-
emergent neutrinos have been created in the interior regiotain circumstanceflarger collapse speedihe importance of
that delimits the neutrinosphere. viscous pressure in connection to the anisotropy will be ex-
Once the temperature was found, we went on by solvingended to more afar zones.
the transport equations of the remaining dissipative flows
(bulk and shear viscous pressurblsing Weinberg expres-
sions[ 8] for the viscosity coefficients and expressi@l7),
we have obtained, 7= T%2 This yields a value about 19 | would like to thank the staff of the Laboratorio de
poise for shear viscosity coefficient. This value is muchFisica Teoica de la Universidad de Los Andgdlérida,
larger than the corresponding for interactions among elecvenezuelafor their hospitality, especially to LaiNinez for
trons, protons, and neutrons. Althougltan be of the same bringing [25] to my attention and for useful discussions at
order that, the value we have obtained fgris about 100 different stages of this work. Also Diego Pavis acknowl-
times lower thany. This is because we have assumed theedged for his encouragement and advice. This work was par-
center of the star as an ultrarelativistic Fermi gas and it im¢tially supported by the Programa de Formac®ientfico de
plies an equation of state of the for=p/3. It is well  la Universidad de Los Anded/érida, Venezuelpand by the
known that for a fluid governed by this equation the bulk Spanish Ministry of Education under Grant No. PB94-0718.
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