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Transport processes in the gravitational collapse of an anisotropic fluid
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In this paper we introduce a method to study the influence of thermal conduction and viscous processe
a spherically symmetric gravitational collapse. We assume that the viscosity appears because of the intera
between the neutrinos and the matter that composes the fluid. The temperature, bulk viscous pressure
shear viscous pressure are found. The effect of the latter in the anisotropy of the fluid is studied as well. To
end it is necessary to solve two sets of partial differential equations. First, the Einstein equations are so
using the seminumerical HJR method. The causal Maxwell-Cattaneo-type transport equations form the se
set of equations to be solved. The temperature profile, found from the heat transport equation, indicates tha
energy of the neutrinos in the surface is not correlated with that of the interior. This behavior, which can
explained in terms of the Eddington approximation, allows us to estimate the thickness of the neutrinosph
The contribution of the shear viscous pressure to the anisotropy in the core of the star is found to be n
negligible.@S0556-2821~96!03512-6#

PACS number~s!: 04.25.Dm, 05.70.Ln, 97.60.2s
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I. INTRODUCTION

The physical study of relativistic stars usually rests on t
assumption of local isotropy. However, at least for high de
sities, theoretical evidence suggests that this may not b
very accurate approximation@1–3#. Then, it seems fitting to
adopt anisotropic models to carry out a more detailed ana
sis of the relativistic collapse of neutron stars arising fro
supernovae explosions. The presence of radiation flow d
ing the collapse reveals the existence of anisotropy in t
fluid even in the diffusion approximation. Effectively, if the
radiation is in this approximation, it interacts strongly wit
matter, and the interchange of momentum between the d
ferent layers of the star will enhance viscous process
Therefore, because of the presence of a shear viscous p
sure, the fluid must be treated as locally anisotropic. On t
opposite limit~free streaming! one has anisotropy associate
with the direction of propagation of the radiation. Because
this, it is suitable to introduce an anisotropic state equation
one wishes to analyze systems in which the flow of radiati
non-negligibly influences the dynamics of the collaps
@4–6#.

We shall adopt the seminumerical method of Herrer
Jiménez, and Ruggeri~HJR! @7# to solve the Einstein equa-
tions. Furthemore, to find the temperature and bulk and sh
viscous pressure it will be necessary to introduce a set
transport equations. To solve them we will adopt the explic
expressions for the transport coefficients of heat conductiv
and bulk and shear viscosity of an interacting mixture
matter and radiation found by Weinberg@8#. This requires us
to determine which reactions are more relevant in the m
mentum transport between the different star layers. The la
neutrino mean free path implies high transport coefficien
Thus, viscous processes induced by interactions betw
neutrinos and matter are much more important than tho
induced by other scattering processes. The cooling by
sorption and emission of neutrinos drive the star to equili
rium. Among the sources of neutrino opacities it seems th
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the scattering with electrons (e21n→e21n) and nucleon
absorption (n1n→e21p) may account for this process
@9–12#.

The temperature is a key quantity to decide which pro
cesses can take place during the collapse. Moreover it
indispensable to calculate the bulk and shear viscous pre
sure. Unluckily the solution of the Einstein equations doe
not provide any information about it. This is why a set o
transport equations must be adopted. The standard Eck
theory of irreversible processes@13–15# exhibits undesirable
effects ~i.e., it predicts an infinite speed of propagation fo
thermal and viscous signals and unstable equilibrium state!.
It is then necessary to resort to another thermodynam
theory of irreversible processes that does not present th
anomalous behavior. Theextended irreversible thermody-
namics~EIT! theory@16,17# seems to be a good candidate to
replace the old Eckart theory and it has been used in cosm
logical problems with good results@18–20#. Essentially the
EIT rests on two hypotheses:~1! The dissipative flows~heat
flow and viscous pressures! are considered as independen
variables; hence, the entropy function depends not only o
the classical variables~particle number and energy density!
but on these dissipative flows as well.~2! At equilibrium
state, the entropy function is a maximum. Moreover, its flow
depends on all dissipative flows and its production rate
semipositive definite. As a consequence the heat flowQm,
the bulk viscous pressureP, and the traceless viscous tenso
pmn obey the evolution equations@21#

tQQ̇nhn
m1Qm5xhmn@T,n2TU̇n2T~a0P ,n2a1Pn;r

r !#,

tPU
aP ,a1P52zU ;m

m 1a0zQ;m
m ,

and
tpṗmn1pmn

52hsmn22ha1Qa;bS h~m
a hn)

b 2
1

3
hmnh

abD ,
respectively, wheretQ , tP , andtp are the relaxation time
of thermal, bulk viscous, and shear viscous signals, respe
6921 © 1996 The American Physical Society
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6922 53J. MARTÍNEZ
tively. T stands for the temperature,x for the thermal con-
ductivity coefficient, andz and h for the bulk and shear
viscous coefficients, respectively. The parametersa0 and
a1 are connected with the characteristics of the fluid und
study. The spatial projector tensor is designed
hmn5gmn2UmUn , and smn5U (m;n)2U̇ (mUn)2hmnU ;m

m /3
is the shear tensor. Here, the overdot deno
Ȧab•••5UlAab•••;l . It can be seen that if some reasonab
assumptions are met, these equations preserve the cau
condition and predict stable equilibrium configurations@22#.
However, the transport equations for the dissipative flo
predicted by EIT are extremely involved. Nevertheless,
the linear approximation the evolution equations for dissip
tive flows reduce to

tQQ̇nhn
m1Qm.xhmn@T,n2TU̇n#,

tPU
aP ,a1P.2zU ;m

m ,

and

tpṗmn1pmn.2hsmn ,

which are the covariant formulations of Maxwell-Cattane
transport equations@23,24#. One may hope that the propaga
tion speed of the dissipative signals is comparable to
sound velocity. For this to be true the relaxation time in t
transport equations must be nearly the radiation mean
time. After calculating the temperature we shall obtain bo
the bulk and shear viscous pressures, which cannot be
rectly found from Einstein equations. In this way we wi
establish the influence of shear viscous pressure on the
isotropy of the system.

The paper is organized as follows. In Sec. II the Einste
equations, for an anisotropic sphere composed by a mix
of radiation and matter, are derived, and we resort to the H
method to solve them. In Sec. III we write the Maxwel
Cattaneo transport equations within the HJR formalism a
find the mean free path of the neutrinos as a function of
temperature. This is applied to a specific case in Sec. IV.
an initial configuration, we shall adopt the anisotropic sta
solution of Gokhroo and Mehra@25#. This one corresponds
to an anisotropic fluid with variable energy density. Lastl
Sec. V summarizes the results of this work.

We adopt metrics of signature22. The quantities sub-
scripted witha denote that they are evaluated at the surfa
of the star. The subscripts 0 and 1 indicate partial differe
tiation with respect to time (u) and radial coordinate (r ),
respectively, finally an overdot on scalar quantities mea
d/du. A caret over a quantity means that this one is me
sured by a Minkowskian observer comoving with the fluid

II. FIRST SET OF EQUATIONS:
EINSTEIN FIELD EQUATIONS

A. Interior and exterior metrics

Our aim is to describe a nonstatic spherically symmet
fluid distribution. To this end we adopt the radiation coord
nates@26,27#, then the interior metric takes the form

ds25e2bFVr du212dudrG2r 2~du21sin2udf2!,

~2.1!
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whereu5x0 is a timelike coordinate,r5x1 is the null coor-
dinate andu5x2 andf5x3 are the usual angle coordinates
Theu coordinate is the retarded time in flat space-time an
therefore, theu-constant surfaces are null cones open to th
future. The metric functionsb andV in Eq. ~2.1! are func-
tions ofu and r . A function m̃(u,r ) can be defined by

V5e2b@r22m̃~u,r !#, ~2.2!

which is the generalization, inside the distribution, of th
‘‘mass aspect’’ defined by Bondiet al. @26#. In the static
limit it coincides with the Schwarzschild mass.

In order to give a clear physical meaning to the abov
formulas, we introduce local Minkowskian coordinate
(t,x,y,z) related to Bondi’s radiation coordinates by

dt5ebSAV

r
du1A r

V
dr D , ~2.3!

dx5ebA r

V
dr, ~2.4!

dy5rdu, ~2.5!

dz5rsinudf, ~2.6!

and to the Schwarzschild coordinates (T,R,Q,F) by

T5u1E
0

r r

V
dr, ~2.7!

R5r , Q5u, F5f. ~2.8!

Outside matter the metric is the Vaidya one@28#, a par-
ticular case of the Bondi metric in whichb50 and
V5r22m.

B. Stress-energy tensor

As we mentioned above we consider an anisotropic flu
sphere composed by a material medium plus radiation. T
material medium travels in the radial direction with a veloc
ity v in a Minkowski coordinate system. The radiation is
treated in the diffusive regime because it interacts strong
with matter. Because of this interaction, viscous process
appear. Thus, a viscous term must be considered in
stress-energy tensor. We denote this term byT̂mn

V and, for a
local Minkowskian observer comoving with the fluid, it can
be written as

T̂mn
V 5 t̂mn5p̂mn1Pĥmn , ~2.9!

where p̂mn denotes the traceless viscous pressure tens
ĥmn5hmn2ÛmÛn the spatial projection tensor, andP is the
bulk viscous pressure. For this comoving observerÛm com-
plies with Ûm5dm

t , and applying the conditionp̂mnÛ
m50

together with traceless character ofp̂mn , we obtain

p̂mn5S 0 0 0 0

0 p 0 0

0 0 2~p/2! 0

0 0 0 2~p/2!

D . ~2.10!
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53 6923TRANSPORT PROCESSES IN THE GRAVITATIONAL . . .
Not all anisotropies can be explained in terms of the
teraction between matter and radiation. Therefore, it is n
essary to bear in mind that the material part of the stre
energy tensor must reflect the anisotropic character of
fluid. For the Minkowskian observer the anisotropic mater
part of the stress-energy tensorT̂mn

M is given by the expres-
sion

T̂mn
M 5~rM1Pt!ÛmÛn2Pthmn1~P2Pt!x̂mx̂n ,

~2.11!

where x̂m5dm
x , rM denotes the material energy density,P

the material pressure, andPt5P1p the material part of the
tangential pressure. Thus, the pressurep refers to the
anisotropies that cannot be explained as a result of
matter-radiation interaction.

The last term in the stress-energy tensor accounts for
presence of radiation. In theLagrangian frame~the proper
frame! and in the diffusive regime it reads@29,30#

T̂mn
R 5S rR 2Q 0 0

2Q P 0 0

0 0 P 0

0 0 0 P
D , ~2.12!

whererR denotes the radiation energy density,Q the heat
flow, andP the radiation pressure.

Thus, for a local observer comoving with matter, wit
radial velocity v, the stress-energy tensor in loca
Minkowskian coordinates is

T̂mn5T̂mn
M 1T̂mn

R 1T̂mn
V ,

and in virtue of~2.9!–~2.12! it can be written as

T̂mn5~r1P'!ÛmÛn2P'hmn

1~Pr2P'!x̂mx̂n12Q̂(mÛn) , ~2.13!

with

Ûm5~1,0,0,0!, ~2.14!

x̂m5~0,1,0,0!, ~2.15!

Q̂m5Q~0,21,0,0!, ~2.16!
in-
ec-
ss-
the
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the

the

h
l

r5rM1rR, ~2.17!

Pr5P1P1P1p, ~2.18!

and

P'5Pr2
3

2
p1p. ~2.19!

The physical variables~energy densityr, radial pressure
Pr , tangential pressureP' , and heat flowQ) are obtained
as measured by the mentioned observer, and the effect
gravitation are clearly provided through the appropria
transformation to a curvilinear coordinate system.

To study the dynamics of the system~i.e.,v) it is neces-
sary to obtain the stress-energy tensor as seen by an obs
at rest with respect to the Minkowskian coordinates. To th
end it is necessary to apply a Lorentz boost in the rad
direction to T̂mn. A further transformation allows us to ex
press the stress-energy tensor in curvilinear coordinates~see
@6# for details!. Thus, applying a local coordinate transfo
mation~2.3!–~2.6! and a Lorentz boost in the radial directio
to ~2.13! we obtain the stress-energy tensor

Tmn5~r1P'!UmUn2P'gmn

1~Pr2P'!xmxn12Q(mUn) , ~2.20!

as measured by an observer using Bondi coordinates wi
radial velocity, with respect to the matter configuratio
2v. After performing the transformation, expression
~2.14!–~2.16! read

Um5ebSAV

r

1

~12v2!1/2
,A r

VS 12v

11v D 1/2,0,0D ,
~2.21!

xm5ebS 2AV

r

v

~12v2!1/2
, A r

VS 12v

11v D 1/2,0,0D ,
~2.22!

and

Qm52Qxm . ~2.23!

Note thatQmUm50 andQ4A2QmQm.
Applying these transformations to the traceless visco

tensor~2.10!, we get
pmn5S e2b
V

r S v2

12v2Dp 2e2bS v

11v Dp 0 0

2e2bS v

11v Dp e2b
r

V S 12v

11v Dp 0 0

0 0 2
r 2

2
p 0

0 0 0 2
r 2sin2u

2
p

D . ~2.24!
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Outside matter the stress-energy tensor correspond
that of a null fluid: i.e.,

Tmn5«kmkn, ~2.25!

where

km5d r
me22bAV

r
. ~2.26!

C. Einstein field equations

Inside matter the Einstein field equations,Gmn58pTmn ,
can be written as

1

4pr ~r22m̃!
@2m̃0e

22b1~122m̃/r !m̃1#

5
1

12v2 ~r12vQ1Prv
2!, ~2.27!

m̃1

4pr 2
5

1

11v
@r2Q~12v!2Prv#, ~2.28!

b1

r22m̃

2pr 2
5
12v

11v
~r22Q1Pr !, ~2.29!

2
b01e

22b

4p
1

1

8p S 122
m̃

r D S 2b1114b1
22

b1

r D
1
3b1~122m̃1!2m̃11

8pr
5P' , ~2.30!

while outside matter, the only nonvanishing Einstein equ
tion yields

m̃0524pr 2«S 12
2m̃~u!

r D . ~2.31!

To algebraically solve the physical variables present
the above set of field equations~2.27!–~2.30! we must find
out bothb andm̃. The HJR method will help us in this task
but before it we must impose the junction conditions b
tween exterior and interior metrics.

D. Junction conditions and surface equations

The mass function can be expressed as

m̃5E
0

r

4pr 2r̃dr. ~2.32!

It involves an effective energy density given by the righ
hand side of~2.28!:

r̃5
1

11v
@r2Q~12v!2Prv#, ~2.33!

which in the static limit reduces to the energy density of t
system.

From ~2.29! one has
s to

a-

in

,
e-

t-

he

b5E
a~u!

r 2pr 2

r22m̃

12v

11v
~r22Q1Pr !dr, ~2.34!

and we may rewrite the nonstatic case as

b5E
a~u!

r 2pr 2

r22m̃
~ r̃1 P̃!dr, ~2.35!

with

P̃5
1

11v
@2vr2Q~12v!1Pr # ~2.36!

being the effective pressure, which also reduces to the rad
pressure in the static limit.

Matching the Vaidya metric to the Bondi metric at the
surface (r5a) of the fluid distribution implies
ba5b(u,r5a)50 with the continuity of the mass function
m̃(u,r ) ~i.e., the continuity of the first fundamental form!
and the continuity of the second fundamental form leads t

ȧ52S 122
m̃a

a D P̃a

P̃a1 r̃a

~2.37!

~see@31# for details!.
From the coordinate transformation~2.3! the velocity of

matter in Bondi coordinates can be written as

dr

du
5
V

r

v

12v
, ~2.38!

evaluating the last expression at the surface and comparin
with ~2.37! it follows that

P̃a52var̃a , ~2.39!

or equivalently using~2.33! and ~2.36! we get

Qa5Pra , ~2.40!

which is a well-known result for radiative spheres@32#.
To derive the surface equations we introduce five dime

sionless functions:

A[
a

m̃~0!
,

M[
m̃

m̃~0!
,

u[
u

m̃~0!
, ~2.41!

F[12
2M

A
,

V[
1

12va
,
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wherem̃(0) is the initial mass of the system. Using the fun
tions just defined into~2.37! we get the first surface equatio

Ȧ5F~V21!. ~2.42!

This first surface equation gives the evolution of the rad
of the star.

The second surface equation emerges from the lumino
evaluated at the surface of the system. The luminosity
seen by a comoving observer is defined as

Ê5~4pr 2Q!r5a . ~2.43!

Evaluating ~2.27! and ~2.28! at the surface and using th
expansion

m̃0a
'm̃2ȧm̃1a

, ~2.44!

the luminosity perceived by an observer at rest at infin
reads

L52Ṁ5Ê~2V21!F54pA2Qa~2V21!F. ~2.45!

The functionF is related to the boundary redshiftza by

11za5
nem
n rec

5F21/2. ~2.46!

Thus the luminosity as measured by a noncomoving obse
located on the surface is

E5L~11za!
252

Ṁ

F
5Ê~2V21!, ~2.47!
c-
n

ius

sity
as

e
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where the term (2V21) accounts for the boundary Doppler
shift. Using relationship~2.45! together with the first surface
equation we obtain the second one as

Ḟ5
2L1F~12F !~V21!

A
, ~2.48!

which expresses the evolution of the redshift at the surfac
The third surface equation is model dependent. For anis

tropic fluids the relationship (Tr ;m
m )a50 can be written as

2S P̃1 r̃

122m̃/r D
0a

1R̃'a
2S 2r ~Pr2 P̃! D

a

50, ~2.49!

where

R̃'a
5 P̃1a

1S P̃1 r̃

122m̃/r D
a

S 4pr P̃1
m̃

r 2D
a

2S 2r ~P'2Pr ! D
a

.

~2.50!

It is possible to associate a physical meaning toR̃'a : the
first term is tied to the hydrodynamic force, the second on
to the gravitational force, and the third one reflects the a
isotropic character of the fluid. The latter is negative whe
the radial pressure is larger than the tangential pressure.
this case the fluid distribution may become more compa
than in the isotropic one.

Using expansion~2.44! and

~ r̃1 P̃!0a'@r̃a~12va!#02ȧ~ P̃1 r̃ !1a,

where~2.39! has been used, we get
Ḟ

F
1

V̇

V
2

ṙ̃a

r̃a

1FV2
R̃'a

r̃a

2
2

A
FV

Pra

r̃a

5~12V!F4pAr̃a

3V21

V
2
31F

2A
1FV

r̃1a

r̃a

1
2FV

Ar̃a
~P'2Pr !aG . ~2.51!
er-
if-

t-

f
ns.
se
Expression ~2.51! generalizes the Tolman-Oppenheime
Volkov equation to the nonstatic radiative anisotropic cas

Now we are in position to briefly summarize the HJ
method@7# applied to the anisotropic case.

E. The HJR method

This method has been extensively used since last dec
to obtain models of nonstatic radiating fluids from know
static solutions of the Einstein equations~@6,7,33#, and refer-
ences therein!. Its use reduces the problem of the gravit
tional collapse to the solution of the surface equations~2.42!,
~2.48!, and~2.51!. This procedure simplifies the resolution o
the problem because these ones are a set of ordinary di
ential equations that can be solved by the Runge-Ku
method. The algorithm can be summarized as follows.

~1! Take a static but otherwise arbitrary interior solutio
of the Einstein equations for a spherically symmetric flu
distribution:

Pst5P~r !, rst5r~r !.
r-
e.
R

ade
n

a-

f
ffer-
tta

n
id

~2! The effective quantitiesr̃[r̃(u,r ) and P̃[ P̃(u,r )
must coincide withrst and Pst, respectively, in the static
limit. We assume that ther dependence in effective quanti-
ties is the same that in its corresponding static ones. Nev
theless, in the nonstatic case the junction conditions are d
ferent, accomplishing expression~2.39!. This condition
allows us to find out the relation between theu dependence
of r̃[r̃(u,r ) and P̃[ P̃(u,r ).

~3! Introducer̃(u,r ) andP̃(u,r ), into ~2.32! and~2.35! to
determinem̃ andb up to three unknown functions of time.

~4! The three surface equations form a system of firs
order ordinary differential equations, by solving it we find
the evolution of the radius,A(u), and two unknown func-
tions of time. These ones can be related with theu depen-
dence ofr̃[r̃(u,r ) and P̃[ P̃(u,r ).

~5! There are four unknown functions of time (A, F,
V, andL). Thus, it is necessary to impose the evolution o
one of them to solve the system of three surface equatio
Usually the luminosity is taken as an input function becau
it can be found from observational quantities.
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6926 53J. MARTÍNEZ
~6! Once these three functions are known, it is easy to fi
m̃ and b. Therefore, the interior metric is completely de
fined.

~7! Now, the left-hand side of the Einstein equation
~2.27!–~2.30! is known. However, the right-hand side o
these equations contain five unknown quantities (v, r, Pr ,
P' , andQ). Thus, it is necessary to supply another equati
to close the system of field equations. In the anisotro
static case a general equation can be found that relates
tangential pressure to the mass function, energy density
radial pressure@34#:

P'2Pr5
r

2
P11S r1P

2 D Sm14pr 3P

r22m D . ~2.52!

This expression is usually generalized, in the context of H
method, to nonstatic cases by substituting for the effect
variables the physical quantities@5,35#

P'2Pr5
r

2
P̃11S r̃1 P̃

2 D S m̃14pr 3P̃

r22m̃ D . ~2.53!

Now, the Einstein equations, supplemented with~2.53!,
make up a close system of equations and quantitiesv, r,
Pr , P' , andQ can be found.

The HJR method starts from a static interior solution
the Einstein equations@Pst5P(r ) andrst5r(r )#. The effec-
tive variables~2.33! and~2.36! must reduce in the static cas
to rst and Pst, respectively. Nevertheless, these quantit
have a dependence on the retarded timeu. We assume that
the effective variables have the samer dependence as the
physical variables of the static situation have. This can
justified in terms of the characteristic times for different pr
cesses involved in the collapse scenario. If the hydrost
time scaleThydr, ;1/AGr, is much shorter than the Kelvin
Helmholtz time scaleTKH , then in the first approximation
the inertial terms in the equation of motion@Tr ;m

m # r5a50 can
be ignored~ @36#, p. 11!. The Kelvin-Helmholtz phase of the
birth of a neutron star last some tens of seconds@37#,
whereas for a neutron star of one solar mass and a 10
radius, we obtainThydr;1024 s. Thus, in this first approxi-
mation ther dependence of physical quantitiesP andr are
the same as in the static solution. The assumption that not
physical quantities but the effective variables~2.33! and
~2.36! have the samer dependence as the physical variabl
of the static situation is a correction to that first approxim
tion. Therefore it is expected that the introduction of tw
functions of time inr̃ and P̃ preserving the samer depen-
dence as inrst and Pst will yield good results. These two
functions of time can be related by means of the juncti
condition ~2.39!.

If the evolution of effective variables were known th
functionsm̃ andb could be found and the Einstein equation
supplemented by~2.53! would constitute a closed system o
differential equations. This method will be clarified b
means of an example in Sec. IV.

III. SECOND SET OF EQUATIONS:
TRANSPORT EQUATIONS

We shall use the method described above to find the h
flow, the energy density, the radial and tangential pressu
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-
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and the velocity of the collapse. However, if one wished t
explicitly find the temperature and viscous pressure, one h
to resort to the transport equations laid down by EIT.

Usually classical theory@13–15# has been employed as a
first approximation to the study of gravitational collapse
Nevertheless, this one presents two important disabiliti
@22#: ~1! It predicts an infinite speed for thermal and viscou
signals.~2! The equilibrium states turn out to be unstable
Therefore, as a further step in the thermodynamic study
gravitational collapse, it seems suitable to resort to a theo
free of such drawbacks. As we pointed out in Sec. I th
relativistic EIT may do the job. The Maxwell-Cattaneo trans
port equations are a particular case of those given by EI
see for instance@23,24#. The former are decoupled expres
sions of the EIT transport equations and they may be und
stood as a first approximation to them. Thus, we consid
that the dissipative flows are decoupled and the transp
equations may be approximated by their Maxwell-Cattane
form. The heat conduction equation can be written as

tQQ̇nhn
m1Qm.xhmn@T,n2TU̇n#, ~3.1!

wherehmn5gmn2UmUn is the spatial projection tensor,x is
the thermal conductivity coefficient,T the temperature and
tQ is the relaxation time for thermal signals. The evolutio
of bulk viscous pressureP is given by the expression

tPU
aP ,a1P.2zU ;m

m . ~3.2!

The bulk viscosity coefficient and relaxation time for bulk
viscous signals are denoted byz and tP , respectively. On
the other hand, the evolution of shear viscous pressurepmn

~2.24! can be written in Maxwell-Cattaneo form as

tpṗmn1pmn.2hsmn , ~3.3!

where shear tensorh(m
a Un);a2U ;a

a hmn/3 is denoted by
smn , tp corresponds to relaxation time for shear viscou
signals andh indicates the shear viscosity coefficient.

Eckart transport equations are given by

Qm.xhmn@T,n2TU̇n#, ~3.4!

P.2zU ;m
m ~3.5!

and

pmn.2hsmn . ~3.6!

Note that the main difference between both formulations
the presence of the relaxation time in~3.1!–~3.3!. As we will
show in Sec. IV this discordance is important close to th
surface.

To solve this system of partial differential equations it i
necessary to adopt an expression for transport coefficie
x, h, andz. For a mixture of matter and radiation these one
are given by~see, e.g.,@8#!

x5
4

3
bT3t, ~3.7!

h5
4

15
bT4t ~3.8!
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and

z515hF132S ]P

]r D
n

G2, ~3.9!

wheret denotes the mean free time of radiation~in our case
neutrinos!, while the constantb takes ~for neutrinos! the
value 7a/8, wherea is the radiation constant.

Expressions~3.1!–~3.3! imply a finite propagation speed
for viscous and thermal signals. Nevertheless, to guaran
relativistic causality it is necessary to restrict the possib
values of the different relaxation times. If we assume that
propagation speed of thermal and viscous signals are of
order of sound speed, then

tQ;tP;tp;t. ~3.10!

This means that the relaxation times are somewhat lar
than the mean free time of radiation. Thus, ift is known, it
is possible to use~3.1! to find the temperature and, by~3.2!
and ~3.3! to calculate the viscous pressures.

A. Determination of t for neutrinos

Thermal neutrino processes are important during the l
stages of collapse of massive stars@9#. They help to carry
thermal energy from the core to outer regions. Thus, we
sume that neutrinos are principally thermally generated w
energies close tokBT.

A detailed study of the contribution of different process
to the neutrino transport has been given by Bruenn@10#. Our
aim is to establish an approximate expression to the m
free time for neutrinos. Despite that the procedure used
this work yields good results, it is highly idealized and on
approximate. A more accurate expression fort would be
desirable, but we consider that the approach below descr
the process accurately enough.

At the typical densities of a neutron star, matter can ca
ture neutrinos. The neutrino trapping helps to drive the n
trinos to local equilibrium. The matter opacity to the neut
nos takes place principally by means of electron-neutr
scattering (e21n→e21n) and nucleon absorption
(n1n→p1e2).

As a first approximation the cross section for nucleon a
sorption may be taken as~@9#, Chap. 18!

sn'10244«n
2 cm2, ~3.11!

where«n is the energy of neutrinos in MeV. Then, the ne
trino mean free path is given by

ln5
1

nnsn
'
1020

r«n
2 cm, ~3.12!

where nn'631023r cm23 @9,38# is the neutron number
density.

In high energetic collisions the cross section for th
electron-neutrino scattering can be approximated by@39#

se'10244«n cm2. ~3.13!
tee
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The electron number densityne can be related tonn by
means of the electron fractionYe (ne.nnYe). Hence, the
mean free path is

le5
1

nese
'

1020

r«nYe
cm. ~3.14!

The effective mean free time which takes into account th
neutrino zigzag path may be written as

t5l;Aleln'
1020

rAYe«n
3
cm. ~3.15!

Assuming that the neutrinos are generated by therm
emission («n;kBT) we find thet dependence on tempera-
ture:

t}T23/2. ~3.16!

A rigorous treatment of mean free time would comprise th
evolution ofYe . Nevertheless, this effort does not seem ad
visable here due to the degree of the approximation adopt
and that the range of possible values forYe is severely re-
stricted (0.2<Ye<0.3) @10#.

It is convenient to expresst in dimensionless form to
simplify the numerical treatment of Eqs.~3.1!–~3.3!. In vir-
tue of ~2.41! and ~3.15!,

t;A
M0

rAYeT3
, ~3.17!

where the constantA takes the value 109 K 3/2m21, M0 is
the initial mass of star in meters,T the K temperature, and
r the dimensionless energy density.

B. Maxwell-Cattaneo transport equations: Explicit form

The Maxwell-Cattaneo transport equations~3.1!–~3.3!
can be written, by means of~3.7!–~3.9! and condition~3.10!,
in dimensionless form

tQ̇nhn
m1Qm.

7

6
aM0

2T3thmn@T,n2TU̇n#, ~3.18!

tUaP ,a1P.2
7

2
aM0

2T4tF132S ]P

]r D
n

G2U ;m
m ,

~3.19!

tṗmn1pmn.
7

15
aM0

2T4tsmn , ~3.20!

wherea.6.252310264 cm22 K 24.
The expression of mean free time for neutrinos~3.17! is

given for a comoving observer. Thus, applying a Lorent
boost to it, it is possible to write the transport equations fo
an observer with radial velocity2v respect to matter, in
Bondi coordinates.

As we saw in the last section, by means of the metho
HJR it is possible to solve the Einstein equations. Thus, th
quantitiesQ, r, Pr , P' , andv and the metric functions
b and m̃ are known. Resorting to expressions~3.17!, ~2.1!,
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~2.21!, and ~2.23! it is possible, after a straightforward ca
culation, to write down the Maxwell-Cattaneo equations
terms of known quantitiesQ, m̃, b, v, r, and Pr and
their derivatives.

The evolution of the heat flow~3.1! is governed by
l-
in f ~u,r !S aM0

2

f D 3/51 g~u,r !

B .f01h~u,r !f11w~u,r !f,

~3.21!

where we have introduced, for the sake of simplicity,
er
f5aM0
2T5/2, ~3.22!

f ~u,r !5
15

7 F Qv

12v2 Fv01
V

r S v

12v Dv1G1FQ01
V

r S v

12v DQ1G G2
15

7

e2bQv

12v F22b1S 12
2m̃

r D1
1

r S m̃12
m̃

r D1
m̃0

V
~12v!G

1
15

7
Qv

V

r S 11v

12v D U̇r , ~3.23!

g~u,r !5
15

7
Qe2bA12

2m̃

r
~11v!, ~3.24!

h~u,r !52
e2b

12v S 12
2m̃

r D , ~3.25!

w~u,r !5
5

2
e2bS 12

2m̃

r D S 11v

12v D U̇r , ~3.26!

U̇r5
1

11v F 12r 22b12
122m̃1

2~r22m̃!G1re22bS 12v

11v D m̃0

~r22m̃!2
2

1

~11v!2~12v! Fvv11re22b
12v

r22m̃
v0G , ~3.27!

and

B5A
M0

rAYe
. ~3.28!

The bulk viscous pressure~3.2! can be found by solving the partial differential equation

2
7

2
aM0

2T4e2bA122
m̃

r
A11v

12vF132S ]P

]r D
n

G2u.P01Fe2bS 12
2m̃

r D v

12vGP11Fe2bA12
2m̃

r
~11v!

T3/2

B GP.

~3.29!

where the expansionu can be written as

u5U ;m
m 5A12

2m̃

r

2v

A12v2 S 1r 1b1D1
1

A122m̃/r

v

A12v2 S m̃r 2 2
m̃1

r D1e22b
m̃0

r ~122m̃/r !3/2
A12v

11v

1
A122m̃/r

A12v2~11v!
F v1

12v
2e22b

v0

122m̃/r G . ~3.30!

The description of shear viscous pressure evolution~3.3! is given, as in the other two dissipative flows, by a first-ord
partial differential equation

2
14M0

2

15A3
aT4e2bA12

2m̃

r
A11v

12v
s.p01Fe2bS 12

2m̃

r D v

12vGp11Fe2bA12
2m̃

r
~11v!

T3/2

B Gp, ~3.31!
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wheres25(1/2)smnsmn and

s5
A3
r F2

v

Ar
Ar22m̃

12v21
u

3
r G . ~3.32!

The transport coefficients~3.7!–~3.9! as measured by a
comoving observer read

x5
4

3
bc2T3/2

Y

rAYe
, ~3.33!

h5
4

15
bT5/2

Y

rAYe
, ~3.34!

z54bT5/2F132S ]P

]r D
n

G 2F Y

rAYe
G , ~3.35!

with Y.4.17331024 g cm23 K 3/2 s.
The system of three partial differential equations~3.21!,

~3.29!, and~3.31! can be solved provided initials, finals, an
boundary conditions are given. The boundary condition
temperature in the heat conduction equation~3.21! deserves
special attention. As shown in Sec. IV C, the boundary co
dition for the temperature must satisfy some requiremen
After solving the heat conduction equation, we shall find t
temperature, and using it in the evolution equations~3.29!,
and~3.31! the bulk and shear viscous pressure will be det
mined. Once the temperature is known, it will be easy to fi
the coefficients of heat conductivity, shear viscosity and b
viscosity, from Eqs.~3.33!–~3.35!, respectively.

IV. APPLICATION TO THE GOKHROO-MEHRA
CONFIGURATION

As we have seen in Sec. III, the HJR method starts from
static solution of Einstein’s equations. It is possible to fin
numerical models based in nuclear physics as solutions
the Einstein equations. However, the uncertainties int
duced by this procedure in the HJR method make it desira
to start from a static analytical model instead. On the oth
hand, it is suitable to adopt an initially static fluid distribu
tion not excessively idealized. Some analytic anisotro
static solutions of the field equations are known@1,2,40–44#.
We shall adopt the static form of Gokhroo and Mehra~GM!
@25# to illustrate the application of method described abov
This solution corresponds to a fluid with variable ener
density in which some anisotropy is initially present even
absence of radiation. It leads, under some circumstances
densities and pressures similar to the Bethe-Bo¨rner-Sato
~BBS! Newtonianstate equation@9,11,36,45#. Thus, this so-
lution presents a compromise between the realism of the
lutions based in nuclear physics and the desirable anal
expression of the static solution.

A. Introduction of the GM configuration in the HJR method

Following the first point of the HJR method~Sec. II E!, it
is necessary to start from a static solution (rst andPst) of the
d
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Einstein equations. In the static solution of Gokhroo an
Mehra @25# the energy density and radial pressure are a
sumed to be

r~r !5rcS 12k
r 2

a2D ~4.1!

and

Pr~r !5PcS 12
2m

r D S 12
r 2

a2D
n

, ~4.2!

where 0<k<1 andn>1 are constants. The central energ
density and radial pressure are denoted byrc and Pc , re-
spectively, and in the static case they are related by means
a constantl through the expression

Pc5lrc . ~4.3!

Thus, we identifyrst asr(r ) andPst asPr(r ). The tangen-
tial pressure is

P'~r !2Pr~r !5
r

2
@Pr #11S r1Pr

2 D Sm~r !14pr 3Pr

r22m~r ! D
5

3

10

kPc
a2

ar 4S 12
r 2

a2D
n

1
r 2

2~122m/r !
F,

~4.4!

where

F52PcS 122
m

r D 2F2pPcS 12
r 2

a2D
2n

2
n

a2 S 12
r 2

a2D
n21G

1
arc
2 S 12

3k

5

r 2

a2D S 12k
r 2

a2D , ~4.5!

with

a5
8prc
3

. ~4.6!

In applying the HJR method~second point of the algo-
rithm! we assume that the effective variablesr̃(u,r ) and
P̃(u,r ) have the samer dependence as the physical quant
ties r(r ) andP(r ). The time dependence of these is intro
duced by two arbitrary functions of timeK(u) andG(u).
The form proposed here is

r̃5 r̃c~u!S 12K~u!
r 2

a2D , ~4.7!

and

P̃5 P̃c~u!S 122
m̃

r D S 12G~u!
r 2

a2D
n

, ~4.8!

where
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r̃c~u!5rc
K~u!

K~0!
[rc

K

K0
, ~4.9!

P̃c~u!5Pc

K~u!

K~0!
[Pc

K

K0
. ~4.10!

The central energy density and radial pressure in the fi
equilibrium state must differ from their values in the initia
static case. Thus, we introduce theireffectivevariablesr̃c

and P̃c . These variables do not enjoy any physical mean
during the collapse, but they coincide with the central ene
density and radial pressure in the static case. Because of
it is necessary to introduce a time dependence inr̃c and
P̃c . The correctness of expressions~4.7! and ~4.8! may be
seena posterioriat the sight of the obtained results, Sec.
below. As mentioned in Sec. II E, the junction conditio
~2.39! allows us to relate both unknown functions of tim
K andG. Using ~4.7! and ~4.8! in ~2.39! and by means of
~2.41! they are related by the expression

~12G!n5
~12V!~12K !

FVl
. ~4.11!

To find an expression form̃(u,r ) andb(u,r ) ~third point!
we resort to expressions~2.32! and ~2.35!. In virtue of ~4.7!
the mass function can be written as

m̃5E
0

r

4pr 2r̃dr5
ãr 3

2 S 12
3K

5

r 2

A2D , ~4.12!

where

ã5
8pr̃c

3
5a

K

K0
~4.13!

and the radius of the stara is written from ~2.41! asA be-
cause, without loss of generality, the initial mass is taken
unity. The expression ofb(u,r ), by means of~4.7! and
~4.8!, reads

b5
3lãA2

8G~n11! F ~12G!n112S 12G
r 2

A2D n11G
2

5

16
lnF12ãr 21~3Kã/5A2!r 4

12ãA21~3Kã/5!A2 G1
ã

16
I, ~4.14!

whereI may take different values depending on the relati
betweenã andK/A2:

For 12K/5A2.ã, I takes the form

I5
2

j FarctanS ã~6Kr 225A2!

5A2j D2arctanS ã~6K25!

5j D G ,
~4.15!

where

j[A12ãK

5A2 2ã2. ~4.16!

For ã.12K/5A2,
nal
l

ing
rgy
this,

V
n
e

as

on

I5
1

j
lnF S ã~6Kr 225A2!25A2j

ã~6Kr 225A2!15A2j
D S ã~6K25!15j

ã~6K25!25j
D G ,
~4.17!

and

j[Aã22
12ãK

5A2 . ~4.18!

For ã512K/5A2, I takes a more simple form

I52
16

ã3 F 1

ãr 222
2

1

ãA222
G . ~4.19!

Following the fourth point of the HJR method it is neces
sary to relate the unknown functions of timeK andG with
the functionsA, V, F, or L. To this end, we evaluate ex-
pression~4.12! in the surface of the star,

M5m̃a5
K

K0
S aA3

2 D S 12
3K

5 D . ~4.20!

On the other hand, in virtue of~2.41! the total mass of the
system is

M5
A

2
~12F !. ~4.21!

Equating the two last expressions it is possible to find th
dependence ofK on A andF,

K~u!5K~A,F !5
5

6 F16A12S 12K0

5a D S 12F

A2 D G .
~4.22!

The dependence ofG on time~or equivalently onA, F, and
V) can be established by substituting the last expression
~4.11!. Thus, introducing the expressionsK(A,F) and
G(A,F,V) in ~4.7!, ~4.8!, ~4.12!, and ~4.14!, r̃, P̃, m̃, and
b are known throughout the star and for all times as fun
tions of r andA, F, andV.

To ascertain the physically meaningful sign in~4.22!, we
evaluate it at the initial time,

6

5
K02156A12

24K0

5aA0
3, ~4.23!

where we have made use of~2.41! with m̃(0)51. Therefore,
if the initial value of the functionK exceeds 5/6 we must
adopt the positive sign in~4.22!, and the negative one other-
wise.

The functionsA, F, andV can be found from the system
of surface equations if the luminosity is known~point five of
the method!. The first two surface equations~2.42! and
~2.48!, are model independent. In order to find a valid ex
pression for the third one we resort to the expression given
the last point of the algorithm~2.53! which in virtue of~4.7!,
~4.8!, and~4.12! can be written as
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P'~u,r !2Pr~u,r !5
3

10

kP̃c
a2

ãr 4S 12G
r 2

a2D
n

1
r 2

2~122m̃/r !
F̃, ~4.24!

where

F̃52P̃cS 122
m̃

r D 2F2p P̃cS 12G
r 2

a2D
2n

2
nG

a2 S 12G
r 2

a2D
n21G1

ãr̃c

2 S 12
3K

5

r 2

a2D S 12K
r 2

a2D .
~4.25!

Therefore, the system of surface equations is

Ȧ5F~V21!, ~4.26!

Ḟ5
1

A
@2L1F~12F !~V21!#, ~4.27!

and

V̇52
Ḟ

F
V1

K̇

K

122K

12K
V1

4LV2

3ãA3~2V21!~12K !

1V~12V!j, ~4.28!

where

j5
3ã

2
A~12K !S 3V21

V D2
31F

2A
1

2FV

A~12K !
~C2K !,

~4.29!

C5
3

10
lãA2K~12G!n1

A2

2F F3ã

2
l2F2~12G!2n

2
2nlG

A2 F2~12G!n211
ã

2 S 12
3K

5 D ~12K !G .
~4.30!

This system of differential equations can be solved for
given set of initial values ofA, F, andV imposing a bound-
ary condition~in this case the luminosityL).

The initial central energy density can be written, b
means of~4.6! and~4.23!, as a function of initial radius and
K0 :

rc5
15

4pA0
3~523K0!

. ~4.31!

Thus, a large radius implies a low central energy dens
Moreover, the positive character of the discriminant in~4.22!
implies some restrictions about the evolution of the to
massM of the star. During the collapse it must satisfy th
inequality

M<
5a

24K0
A3. ~4.32!
a

y

ity.

tal
e

In the static case a non-negative value ofK ~i.e., K0),
ensures the conditiondr/dr<0, while condition K0<1
leads to a positive energy density. The effective energy de
sity lacks of physical meaning when the star is collapsing
Therefore, the last argument cannot be applied to decide t
range of values of functionK here. Evaluating~2.33! in the
surface and using~2.40! and ~2.41! we obtain

r̃a5
V

2V21
~ra2Pra!. ~4.33!

V lies in the range 1/2,V,`, further the condition
r>Pr must be satisfied. Thus, from the last expression
r̃ a>0. Applying this restriction to~4.7! evaluated in the sur-
face we obtain

K~12K !>0⇒0<K<1, ~4.34!

therefore the range of values physically admissible forK
coincides with the static one.

A last remark is in order before numerically solving the
system of surface equations. Note that the generalizati
adopted for the tangential pressure~2.53! does not allow ex-
plosive models@35#.

B. Evolution of the GM configuration

We now are prepared to study the evolution of the initia
static fluid distribution described above in a particular cas
To this end, it is necessary to adopt a specific initial configu
ration. The neutrinos can be studied in the diffusive regime
the density is higher than 1011;1012 g cm23. As mentioned
in the Introduction, the neutrino trapping is an importan
source of viscosity. Because of that, in our diffusive mode
the energy density in the surface must be, at least, abo
1012 g cm23. On the other hand a neutron star with a radiu
of about 10 km, has a central density not far from 1015

g cm23 @9,11#. In this diffusive model, the energy density in
the center is a thousand times the corresponding to the s
face. Thus, from~4.1!, K050.999. From expression~4.31!
one can find the initial radius for a given initial stellar mass
Introducing the usual dimensions in~4.31! we obtain

rc5
c2

G

15

4pA0
3~523K0!M0

2 , ~4.35!

where the initial massM0 is given in geometrized units.
AssumingA056, the initial mass is close to 1.3M( . The
corresponding initial radius can be found from~2.41!:

a05A0M0.11 521 m. ~4.36!

These values for the initial radius and mass are in the ran
of the usually accepted as typical for neutron stars. So w
specifically adopt as an initial configuration

rc.1.0131015 g cm23,

ra.1.0131012 g cm23,

M051.3M(

and
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FIG. 1. Velocity profile a for given constant
Schwarzschild time (T50.9 ms! and two differ-
ent values ofK0 . All the figures made at constant
Schwarzschild time were constructed from ex
pression~2.7!.
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a0.11 521 m, ~4.37!

corresponding to a dense neutron star in which the diffusi
approximation for neutrinos holds.

To completely determine the initial conditions it is nece
sary to give a relationship between the energy density a
pressure in the center of the star~4.3!. Also the parameter
n occurring in the expression for pressure in the static ca
~4.2! must be imposed. If we assume the center of the star
a highly relativistic Fermi gas, thenl51/3. In addition we
taken51 for simplicity.

Therefore, the initial conditions for the system of surfac
equations~4.26!–~4.28! are

A056,

F05
2

3
,

V051,

K050.999, ~4.38!

Pc5
1

3
rc ,

and

n51.

These ones correspond to a neutron star, initially at rest, w
a redshift (za51/AF21) close to 0.22.

The boundary condition, necessary to solve the system
surface equations, is supplied by the luminosity. We assu
a Gaussian pulse forL centered inu5upeak, and widthL:

L52Ṁ5
Mr

LA2p
expS 2

1

2 Fu2upeak
L G2D . ~4.39!
on

s-
nd

se
as

e

ith

of
me

Note thatMr is the total energy radiated by the star in the
collapse. The values adopted forMr , L, and upeak are
0.01M0 , 15, and 150, respectively. We have imposed th
energy conditions for imperfect fluids@46# and the restriction
21,v,1.

It is worth emphasizing the behavior of this model close
to surface of the star. The surface collapses more slowly th
the adjacent layers~Fig. 1!. It may be traced to the profile of
the pressure gradient in this region. As seen in Fig. 2, i
absolute value is larger in the surface than in the adjace
layers, which find a lesser resistance to collapse. Similar b
havior is observed for lower values ofK0 . Nevertheless, for
low K0 the variation in the pressure gradient is smaller tha
for largeK0 and, consequently, the difference between th
velocity of surface and adjacent layers is not too high.

The value ofK0 largely determines the radius of the star
once the collapse is finished. The higherK0 , the lower final
radius. This behavior can be related to the fact that values
K0 far from unity follows from an equation of state close to
incompressibility. Thus, in these cases, the velocity of th
surface is not very high and possible variations in the radiu
are restricted. The highest variations in energy density an
radial pressure take place in the most external layers, whi
comprise approximately 1000 m below the surface~Figs. 3
and 4!.

The evolution of the energy density in the surface is de
picted in Fig. 5. For K050.9 @ra(u50).8.7831013

g cm23# it varies about 6.5%, while forK050.999 the final
energy density in the surface gets nine times its initial valu
This behavior, with that of the velocity, hints that the com
pression of the star is higher in the shells near the surfac
This is likely due to the radiation generated in the collapse
As it is shown in Fig. 6 the heat flow is more intense in the
inner shells than in the more external ones.

Initially the viscous pressure vanishes due to the absen
of radiation. This condition is also fulfilled in the equilibrium
situation once the collapse is over. Its contribution to th
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FIG. 2. Pressure gradient profile. The de
crease ofuPr1u close to the surface is, probably,
the cause of the behavior shown by the velocit
in this region. Schwarzschild timeT50.9 ms.
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tangential pressure during the collapse must be establis
by means of the transport equations.

C. Boundary and initial conditions for the transport equations

We have solved the transport equation for the heat fl
~3.21! for different boundary conditions. The interior solu
tion found for the temperature ceases to be sensitive to
boundary condition about 500–700 m below the surfa
This hints that the energy of the emergent neutrinos is
correlated with its energy beyond this external region a
consequently, most of the neutrinos escaping the star h
been generated in the inner limit of this region. This agre
with the idea of the neutrinosphere@38#. A possible cause of
this behavior can be found in the abrupt decrease of the h
hed

ow
-
the
ce.
not
nd,
ave
es

eat

flow close to surface, that follows from the similar behavio
shown by the energy density and radial pressure in this zo
As the model of Gokhroo and Mehra, the BBS model an
others based on nuclear physics show the same featu
@9,11#. Thus, the neutrinosphere seems to occur whenev
the adopted model is not highly idealized.

Aimed to establish the boundary condition for the tem
perature we introduce the effective temperature,Teff . This
one is usually defined by means of

E5@4pr 2sTeff
4 # r5a , ~4.40!

wheres5bc/4, and

E5@4pr 2«# r5a ~4.41!
FIG. 3. Relative variation of the energy den-
sity as a function of the retarded timeu. The
corresponding value forK0 is 0.999.r0 denotes
the initial energy density.
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FIG. 4. Relative variation of the radial pres
sure as a function of the retarded timeu.
K050.999.
m

x-
is the luminosity as measured by the noncomoving obser
momentarily located on the surface. It is to sayTeff would be
the temperature in the surface of the star if it would radiate
a black body. The idea of effective temperature, see for
stance~@9#, p. 586! and ~@38#, p. 295!, is applicable to the
most external layers of the star. It is related with the mate
temperature by the expression

T45
1

2
Teff
4 S 11

3

2
t D , ~4.42!

wheret is the optical depth~i.e., dt52dr/leff).
According to last expression, ift52/3 the effective tem-

perature coincides with the material one. Thus, most of
emergent neutrinos are generated in a shell close tot;2/3.
ver

as
in-

rial

the

This one is, in the model under consideration, about 500
below the surface. At the surfacet vanishes. Hence, the
material temperature of the surface can be written as

@T4#a5
1

2
@Teff

4 #a . ~4.43!

The boundary condition can be found from the last e
pression together with~2.43!, ~2.47!, ~4.40!, and ~4.43!. It
reads

Ta
45Qa

2V21

2s
. ~4.44!
-

h

FIG. 5. Energy density evolution at the sur
face for two different models (K050.999 and
K050.9). Note the different scale used in eac
case.
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FIG. 6. Radial heat flowQ as measured by
the Minkowskian observer locally comoving with
matter.K050.999 andT50.95 ms.
ity
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This condition on the surface affects the evolution of t
temperature in the layers close to the surface but not
evolution of the inner temperature~Fig. 7!.

To find explicitly the bulk and shear viscous pressure it
necessary to impose initial and boundary conditions. Som
thing about the initial condition for the viscous pressure h
been noted at the end of the last subsection. We assume
viscous processes appear because of the interaction betw
matter and neutrinos. Therefore, initiallyP andp must van-
ish because of the absence of radiation.

At the center of the star the isotropy conditio
(P'5Pr) is fulfilled. Thus, in virtue of~2.19! the relation

lim
r→0

S p2 3

2
p D50 ~4.45!
he
the

is
e-
as
that
een

n

must be satisfied. And as a consequence of the regular
condition@m̃# r5050, at the center of the star the generation
of neutrinos is forbidden. Therefore we assume that bo
viscous pressures, vanish atr50. Thus, the boundary condi-
tions imposed on~3.29! and ~3.31! are

@P# r505@p# r5050;u, ~4.46!

and, from~4.45!,

@p# r5050;u. ~4.47!

D. Temperature and viscous pressure: main results

We have used the Maxwell-Cattaneo transport equatio
instead of Eckart’s since the latter ones violate relativisti
-
ts
t

FIG. 7. Temperature as measured by an ob
served momentanously located at the surface. I
maximum value at the surface is abou
5.4431011 K. Here, and in the following figures,
Ye50.2.
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FIG. 8. Difference in the neutrinosphere be
tween the temperature found by means of th
Eckart and Maxwell-Cattaneo transport equa
tions.
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causality. The temperature in the inner layers found
means of~3.21! is the same as the one obtained using~3.4!
~i.e., Fourier’s law!. Nevertheless, in the neutrinosphere th
differences between both solutions cannot be neglected,
pecially in the first and late stages of the collapse~Fig. 8!.
The main difference between Maxwell-Cattaneo and Eck
heat transport equations is the presence of the te
tQ̇nhn

m , which introduces in~3.21! the term

f ~u,r !S aM0
2

f D 3/5, ~4.48!

while Qm leads to

g~u,r !

B . ~4.49!

In the neutrinosphere and in the case under consideration
has f (u,r );0.1 g(u,r ) andB;1018; i.e., both terms are of
about the same order when temperature approaches 1011 K.
Thus, the effects introduced by the presence of a relaxa
term in heat transport equation are important there.

The high value reached by the temperature~Fig. 7! vali-
dates the adopted initial and final conditions: the approxim
tion that in the static case the temperature for the neutron
vanishes. Applying this condition with~4.44! to expression
~3.21! allows us to find the evolution of the temperatur
Once the temperature is known, the transport coefficients
be calculated with the help of~3.33!–~3.35!.

The bulk viscous coefficient,z, vanishes at the center o
the star because of the state equation~4.38! adopted there. In
the shells close to the center the state equation is nea
Pr5r/3. Thus, the value ofz is less than corresponding to
shear viscous coefficient (h) ~Figs. 9 and 10!. Nevertheless,
in virtue of ~3.9!, in stars with a central equation of stat
different from the adopted in this case, i.e., not highly re
tivistic, z can be of the order ofh. On the other hand a
by

e
es-

art
rm

one

tion

a-
star

e.
can

f

r to

e
la-

comparison among the terms in the evolution equatio
~3.29! and ~3.31! points out that the term

F132S ]P

]r D
n

G2 ~4.50!

is responsible for the main differences between the bulk a
shear viscous pressures.

In the region in which the energy density is roughly
1014 g cm23 we find for the shear viscosity coefficient value
about 1028 dyn cm22 s21, which is 109 times higher than the
corresponding to the interactions among electrons, proto
and neutrons at the same density@47#. This underlines the
importance of the neutrino trapping as a source of viscos
in the stellar collapse. Similarly the thermal conductivity co
efficient is greater for neutrino scattering than that mention
@47,48#.

The evolution ofp is shown in Fig. 11 for different layers
of the star. The shear viscosity value rises swiftly from zer
at the center of the star, and becomes an important source
anisotropy in the core of the star~Fig. 12!. For distances
from the center larger than 2 km,p can be neglected as
compared withp as a source of anisotropy.

The bulk viscous pressure is depicted in Fig. 13. In th
modelP can be neglected againstp in the innermost shells.
However, in the peripheral layersP andp, are of the same
order.

V. DISCUSSION

In this paper we have used the HJR method to gener
nonstatic solution departing from the static anisotropic flu
distribution of Gokhroo and Mehra@25#. This model shows
an initial nonuniform energy density. The presence in th
expression for the energy density of the parameterK allows
us to model without difficulties the initial features of the sta
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FIG. 9. Evolution of the bulk viscosity coef-
ficient z.
ary
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according to the radiation limit adopted on it~diffusion or
free-streaming out!.

During the collapse huge quantities of neutrinos are g
erated. These ones transport thermal energy from the m
interior regions to the exterior layers@9,10,12#. Because of
the high densities and temperature, the neutrinos inte
with matter. In their trip toward the surface they get therm
ized and drive the star to a new equilibrium state. The m
important thermalization processes are the absorption of n
trinos by neutrons and collisions between neutrinos and e
trons. Consequently we have chosen a density range acc
ing to these interactions (rc;1015 g cm23, ra;1012

g cm23), allowing us to treat the radiation in the diffusiv
limit.
en-
ost

ract
al-
ost
eu-
lec-
ord-

e

The density and pressure profile in the central layers v
little during the collapse. Therefore, the behavior of t
zones nearby the surface is perhaps the most important.
to the decrease, in these layers, of the pressure gradient
respect to the surface, the velocity of collapse of the form
is larger than the corresponding to this one. This behav
also occurs in models with a density at the surface of ab
1014 g cm23, though then the effect is not so intense. Als
the final radius of the star depends on the density at
surface. The higher initial energy density at the surface,
larger final radius. As previously mentioned, the larg
variations in energy density occur at the surface. This eff
is probably due to the importance of the radiation in t
evolution of the neutrinosphere. In that zone, the heat flow
f-
FIG. 10. Evolution of the shear viscous coe
ficient h.
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FIG. 11. Evolution of the shear viscous pres
sure in different layers of the star.
ve
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much weaker than in the inner regions. Nevertheless, i
possible that the radiation energy density in it comprise
large part of total energy density.

The knowledge of the temperature of the star is the key
establish which processes can take place in its bosom. At
variance with the heat flow, this quantity cannot be obtain
from Einstein’s equations. It is absolutely necessary then
appeal to some thermodynamic theory of irreversible p
cesses. We have taken a further step with respect to o
analysis by introducing the EIT in its covariant formulatio
@16,17#, avoiding in this way the unphysical behavior of th
conventional theory@13#. The rigorous study of transpor
equations derived from EIT is technically complex. Ther
fore, we have appealed to the so-called ‘‘truncated’’ for
that reduces to the Maxwell-Cattaneo equations@21#. To
t is
s a

to
the
ed
to
ro-
ther
n
e
t
e-
m

solve the corresponding equation for temperature we ha
found the mean free time of the neutrinos. In so doing w
have considered both reactions mentioned above, if the n
trinos are generated by thermal emission with energy ne
kBT. In this way it is possible to establish the dependence
the thermal conductivity coefficient on temperature (x
}T3/2). Then, solving the equation for the evolution of the
heat flow, we found the temperature. Also we have solve
the classic transport equation, finding out considerable d
ferences in the neutrinosphere between both theories. Th
temperatures disagree from one another in the first and l
stages of the collapse.

It is worth emphasizing a peculiarity of the temperature i
the innermost layers. This one is insensitive in that zone
the boundary condition imposed on the surface. Therefo
FIG. 12. Comparative plot of the different
contributions to the anisotropy~2.19! at
r50.1A0 . Lines markedA andB correspond to
terms23p/2 andp, respectively.
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FIG. 13. Evolution of the bulk viscous pres-
sure within the star.
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those neutrinos that manage to escape from the star
information about the temperature of the central regions,
other words their energy in the surface is not correlated w
that of the interior. This suggests that these have been
ated in a region close to the surface, the so-called neutr
sphere~@9#, p. 586,@38#, p. 295,@49#, p. 17!. The neutrino-
sphere is commonly associated with the effecti
temperature,Teff , which coincides with the material tem
perature in its lower limit. Through the introduction ofTeff
we find out the temperature at the surface. Thus, we h
obtained a credible boundary condition for the heat transp
equation. We have supposed, therefore, that the layers o
star that are sensitive to a change in the boundary condi
form the neutrinosphere with a thickness of 500–700 m. T
length approximately coincides with the neutrino mean fr
path in that zone. This fact reinforces the hypothesis that
emergent neutrinos have been created in the interior reg
that delimits the neutrinosphere.

Once the temperature was found, we went on by solv
the transport equations of the remaining dissipative flo
~bulk and shear viscous pressure!. Using Weinberg expres-
sions@8# for the viscosity coefficients and expression~3.17!,
we have obtainedz,h}T5/2. This yields a value about 1029

poise for shear viscosity coefficient. This value is mu
larger than the corresponding for interactions among el
trons, protons, and neutrons. Althoughz can be of the same
order thath, the value we have obtained forz is about 100
times lower thanh. This is because we have assumed t
center of the star as an ultrarelativistic Fermi gas and it i
plies an equation of state of the formP5r/3. It is well
known that for a fluid governed by this equation the bu
lack
in
ith
cre-
ino-

ve
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ort
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ee
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viscosity coefficient vanishes@8#. Though throughout the star
this limit is not strictly fulfilled, the relationship between the
radial pressure and energy density restricts the value ofz. In
spite of this, from 7 km of the center upward the bulk vis
cous pressure is comparable to a shear one. In an anisotro
model, shear viscous pressure is restricted by the differen
between the tangential and radial pressures. Therefore, o
can expect that its contribution to the total pressure is sma
It is worth noting the contribution of shear viscous pressur
to the anisotropy. According to the model studied here,
seems that the viscosity is responsible for an important pa
of the inner anisotropy. Then, the shear viscous pressu
greatly contributes to total anisotropy in approximately th
two nearest kilometers to the center of the star. It is certa
that in the most internal zone of the star the anisotropy is le
important that in the peripheral region. Though, under ce
tain circumstances~larger collapse speeds! the importance of
viscous pressure in connection to the anisotropy will be ex
tended to more afar zones.
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