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Spectral representation of the spacetime structure:
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We investigate the representation of the geometrical information of the Universe in terms of spectra, i.e
set of eigenvalues of the Laplacian defined on the Universe. Here, we concentrate only on one specific pro
along this line: to introduce a concept of distance between universes in terms of the difference in the spe
We can find such a measure of closeness from a general discussion. First, we introduce a suitable funct
PG @•#, where the geometrical informationG ~represented by the spectra! determines the detailed shape of the
functional. Then, the overlapping functional integral betweenPG @•# andPG 8@•# is taken, providing a measure
of closeness betweenG and G 8, d~G ,G 8!. The basic properties of this distance~hereafter referred to as
‘‘spectral distance,’’ for brevity! are then investigated. First, it can be related to a reduced density-matr
element in quantum cosmology betweenG andG 8. Thus, calculating the spectral distanced~G ,G 8! gives us
insight into the quantum theoretical decoherence between two universes, corresponding toG andG 8. Second,
the spectral distance becomes divergent except for whenG andG 8 have the same dimension and volume. This
is very suggestive if the above-mentioned density-matrix interpretation is taken into account. Third,d~G ,G 8!
does not satisfy the triangular inequality, which illustrates clearly that the spectral distance and the dista
defined by the DeWitt metric on the superspace are not equivalent. We then pose a question: Do two unive
with different topologies interfere with each other quantum mechanically? In particular, we concentrate on
difference in the orientabilities. To investigate this problem, several concrete models in two dimensions are
up, and the spectral distances between them are investigated: distances between tori and Klein’s bottles
those between spheres and real projective spaces. Quite surprisingly, we find many cases of spaces
different orientabilities in which the spectral distance turns out to be very short. This may suggest that, with
any other special mechanism, two such universes interfere with each other quite strongly, contrary to
intuition. We discuss some curious features of the heat kernel for tori and Klein’s bottles in terms of Epstei
theta and zeta functions. Differences and parallelisms between the spectral distance and the DeWitt dis
are also discussed.@S0556-2821~96!06910-X#

PACS number~s!: 04.20.Gz, 02.40.Ma, 04.60.Gw, 98.80.Hw
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I. INTRODUCTION

There are many situations in spacetime physics in wh
space and spacetime topology takes part. First of all, it i
central problem of modern cosmology to determine wheth
our Universe is open or closed~i.e., noncompact or compact!
@1# and what kind of topological structure our Universe po
sesses@2–4#. The so-called worm holes~topological handles
attached to the Universe! can cause many interesting phe
nomena, e.g., geons@5#, charge without charge@6#, and time
machines@7#. The phenomenon of the topology change
one of the most intriguing problems in quantum cosmolo
@8#.

Among these phenomena, we now look at the sca
dependent topology~or physical topology! @9,10# in more
detail. Mathematically, topology can be looked upon as
global property of a manifold classified by the concept
continuity or continuous deformations@11#. Thus by defini-
tion, it is a scale-independent concept; i.e., objects with d
ferent scales, but being continuously deformed to each ot
are identified.

However, once the concept of topology is applied
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spacetime physics, the situation becomes different@10#: Be-
cause of the limitation in the observational energy scale, th
objects smaller thanE21 cannot be observed~E is the energy
scale of observation!. Suppose the Universe is topologically
complicated, with two kinds of small topological handles1

attached, one kind of scalel and the other kind of scaleL,
l!L. If our observational energy is betweenL21 and l21,
the smaller handles cannot be observed and the effective
pology becomes simpler than the original one. If the energ
scale is decreased further, such that it becomes less t
L21, bigger handles also cannot be observed, resulting in
much simpler effective topology. Such a picture of spacetim
structure, that the real Universe is topologically very compl
cated, but the effective topology becomes simpler when t
observational energy scale becomes lower, originates fro
Wheeler’s spacetime foam picture@12#. In short, the scale-
dependent topology~physical topology! can be looked upon
as topology with distinction between big and small handle

1The term ‘‘handle’’ usually means an object diffeomorphic to
Dr3Dn2r ~0<r<n), whereDk stands for ak-dimensional disk,
andn is the dimension of a manifold. In this paper, however, an
object that is topologically nontrivial is generally called ‘‘handle.’’
6902 © 1996 The American Physical Society
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53 6903SPECTRAL REPRESENTATION OF THE SPACETIME . . .
There is a clear lack of suitable language to describe su
phenomena sketched in the previous paragraph. To desc
a sequential change in the effective topology of a space a
function of observational energy, we first need to formula
closeness between two spaces whose geometries are diffe
globally as well as locally. There is no known mathematic
theory suitable for this purpose. The aim of this paper is
formulate the concept of closeness between two spaces f
the viewpoint of spacetime physics.

The main obstacle is the fact that we have to repres
information of topology as well as local geometry in a qua
titative, unified manner. Let us then pay attention to the id
of using the spectra to characterize the geometrical cont
of the Universe: Basic vibrations~harmonics! of some matter
field on the Universe should reflect the local and global g
ometry of the Universe. For definiteness, let~M,g! be a com-
pact Riemannian manifold. Hereg is a positive definite met-
ric. Therefore,~M,g! is regarded either the spatial section o
the (n11)-dimensional universe, or the Euclidea
n-dimensional universe. As the simplest elliptic operato
take the Laplace-Beltrami operator D5gabDaDb

5~1/Ag!]a~Aggab]b), whereDa stands for the covariant de-
rivative operator. Then, we can set up the eigenvalue pro
lem on ~M,g!; Dc1lc50 with a suitable boundary condi-
tion. For simplicity, let us assume]M5B here. Then, a set
of eigenvalues is obtained:$lk%, 05l0,l1<l2•••↑`. This set
of eigenvalues of the Laplacian clearly contains the inform
tion of both local and global geometry of~M,g!. Hereafter,
these eigenvalues of the Laplacian shall be calledspectra, for
brevity. We may be able to treat these spectra as a part of
fundamental quantities of spacetime physics.

The above idea of representing the geometrical conten
the Universe in terms of spectra is deeply related to a we
known mathematical problem, which is usually stated
‘‘can one hear the shape of a drum?’’@13#, i.e., a problem
asking to what extent spectra reflect the underlying geo
etry. In this spirit, the motto of our approach may be stat
as ‘‘let us hear the shape of the Universe.’’ Here, the appe
ance of two terms ‘‘hear’’ and ‘‘shape’’ symbolizes the in
teraction between physics and mathematics. In short,
idea is to convert the space~time! structure~a mathematical
object! into spectra or ‘‘components of sound’’~physical ob-
jects!. This conversion may be called ‘‘spectral represent
tion’’ of the spacetime structure.

There are several advantages of such a representat
First, spectra represent the information of local and glob
geometry in a unified manner, which is suitable for applic
tions of quantum gravity and cosmology. Second, the sp
tral representation is a representation of the geometry
terms of a countable set of real, positive numbers, which
easy to handle. Third, spectra are the diffeomorphism inva
ant quantities, which is appropriate from the viewpoint o
general relativity.

However, we should keep the following point in mind
from the very beginning: There exist the isospectral man
folds, i.e, two Riemannian manifolds that are nonisometric
each other, but have identical spectra. Such a case has
been constructed by Milnor onT16 @14#, and several other
cases have also been presented later@15–17#. Thus, in gen-
eral, the information contained in geometry is larger than t
one represented by spectra. It is uncertain, however, as
ch
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what extent these counterexamples are influential on spa
time physics. In any case, it is clear that the idea of th
spectral representation is still worthwhile to pursue exte
sively.

In this spirit, we shall concentrate on one specific, tra
table problem, which has been already implied above, i.
the introduction of a measure of closeness between two u
verses of different geometrical structures.

In Sec. II, we shall construct a general theory of th
‘‘spectral distance,’’ i.e., a measure of closeness betwe
two manifolds in terms of spectra. Then, the physical inte
pretation of this spectral distance shall be investigated. A
terwards, the necessary condition for the convergence of
spectral distance shall be studied. We shall also define
scale-dependent spectral distance, which provides a qua
tative description of the scale-dependent topology. Finall
we shall discuss a peculiar property of the spectral distan
i.e., the failure of the triangular inequality. This result clearl
illustrates the nonequivalence between the spectral dista
and the distance defined by the DeWitt metric on the supe
space@18#.

In Sec. III, we shall pose a quantum cosmological que
tion as to whether universes with different topologies~espe-
cially different orientabilities! interfere with each other quan-
tum mechanically. We shall use the spectral distance as
suitable tool for analyzing this question. To investigate th
problem, we shall construct concrete two-dimensional mo
els ofT2 and Klein’s bottles, and those ofS2 andRP2. We
shall then calculate the spectral distances between them.
shall find many cases in which the spectral distance betwe
two manifolds of different orientabilities turns out to be sur
prisingly short. This result may imply that two universe
with different orientabilities sometimes interfere quite
strongly, contrary to our intuition. The DeWitt distance
shall be also calculated for the cases ofT2 and they are
compared with the spectral distances. We shall also constr
and investigate the heat kernel forT2 and Klein’s bottles in
terms of Epstein’s theta and zeta functions@17,19,20#.

In the final section, the spectral distance and the distan
defined by the DeWitt metric shall be compared with eac
other in detail. Several other discussions shall also be p
sented.

II. THE SPECTRAL DISTANCE AND ITS PROPERTIES

A. The spectral distance

In this subsection, we shall search for the measure
closeness between two given manifolds. Let~M,g! be an
n-dimensional Riemannian manifold. For clarity of discus
sion, we shall assume that~M,g! is compact andg has the
Riemannian signature, and not the pseudo-Riemannian s
nature. @Thus, ~M,g! can be regarded as a mathematica
model of the spatial section of the (n11)-dimensional uni-
verse, or a model of the Euclideann-dimensional universe.
Hereafter, we may sometimes refer to~M,g! as just
‘‘space’’ or ‘‘universe,’’ depending on the context.# The
manifold ~M,g! includes two types of information: local ge-
ometry and global topology. We shall use the termgeometry
in the broadest sense, including both. We shall also use
symbolG to represent the geometrical information containe
in ~M,g! in this broad sense.
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Now, suppose two geometriesG andG 8 are given, cor-
responding to manifolds~M,g! and ~M8,g8!, respectively.
Our goal is to find a suitable formula for the ‘‘distance’
d~G ,G 8!, representing a closeness betweenG and G 8 in
terms of the eigenvalues~hereafterspectra, for brevity! of
some elliptic differential operatorD. From the viewpoint of
physical applications, the most interesting and simple
choice is to take asD the Laplace-Beltrami operatorD,
D5gabDaDb5(1/Ag)]a(Aggab]b), whereDa stands for the
covariant derivative operator.2 The basic idea for doing this
is as follows:~1! Instead of comparing geometries directl
~which is difficult!, introduce a suitable functionalPG @•#,
where the information of a geometryG enters into this func-
tional as a parameter and reflects on the shape of the fu
tional. ~2! By taking the overlapping functional integral be
tween PG @•# and PG 8@•#, we can indirectly measure the
closeness of two geometriesG andG 8.

As a preliminary consideration, let us deal with function
instead of functionals: Suppose we need to introduce a c
cept of closeness in a setS 5$a,b,...%. First we fix a func-
tion in which each element ofS enters as a parameter
$pa(•),pb(•),...%. @For instance,S is a set of positive num-
bers andpa~•! is a Gaussian function with dispersiona.# Let
us choose functionspi~•! ( i5a,b,...) such thatpi~•!>0 and
*2`

` pi(x)dx51. In this case, a suitable overlapping integr
is j i j5* 2`

` [pi(x)pj (x)]
1/2dx, which has the properties~i!

j i j5j j i , ~ii ! 0<j i j<1, and j i j50⇔pi~•!pj ~•![0,
j i j51⇔pi~•![pj ~•!.

Thus, we can define a measure of closeness betweeni and
j as

d~ i , j !52 lnj i j52 lnE
2`

`

@pi~x!pj~x!#1/2dx.

Then,d( i , j ) takes some value between 0~complete overlap-
ping! and` ~complete nonoverlapping!. Here ends this pre-
liminary consideration.

There are several possibilities for the choice ofPG @•# and
the form of the overlapping functional integral. Here, we a
interested mainly in the physical applications of the distanc
so that we have to select a ‘‘physically interesting’’ distanc
among other possibilities.

First, we clearly need a distanced~G ,G 8! that is diffeo-
morphism invariant with respect to~w.r.t.! G andG 8. As a
simple functional that is diffeomorphism invariant, which re
flects the global as well as the local geometry, and whi
includes the derivative operator~since it should be related to
the spectra of a differential operator!, we takes@•# defined
as3

s@ f #:5
1

2EM~] f !25
1

2EMgab]af ]bfAg. ~1!

2Another interesting choice asD may be the Dirac operator. In
this paper, however, let us confine ourselves to the case of
Laplacian, since it is more basic and well investigated in geomet
3We can also choose ass@f#:51

2 *M $~]f )21m2f 2%. Here,m is a
smooth function. Then, the spectra are shifted, but there is no
sential difference. Therefore, let us assume the simplest for
Eq. ~1!.
’
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Roughly speaking, in the above functional, the appearance
the metricg reflects the local geometry, while the integra
overM reflects the global geometry.

However,s@•# is not enough for our purpose since it take
an arbitrarily large positive value so that it cannot be norma
ized. Thus, let us fix a suitable functionF~•! such thatP@•#:
5F~s@•#! is well behaved. In view of the preliminary con-
sideration above,P@•# should satisfy

~ I! P@•#>0, E @d f#P@ f #51.

Furthermore, we shall need a physically sensible ‘‘dis
tance’’ applicable to the analysis of the scale-dependent
pology, which requires that smaller handles should be i
nored under certain conditions, compared with large
handles. Thus,

~II ! the weight should be higher~lower!

for the longer ~shorter! scale behavior ofG .

There are still various possibilities that remain for th
choice ofF~•!. Here, for several reasons, we shall choose o
possibility among many others,F(x)5exp~2x!: First, it is a
simple function that is easy to handle. Second, it makes
possible to relate the distance with a physical concept, i.
the quantum decoherence of the universes, which shall
discussed in detail in the next subsection. Third, it satisfi
the requirements~I! and ~II !: Consider the eigenvalue prob-
lem Dfk1lkfk50 ~with a suitable boundary condition;
mainly the case of]M5B shall be described here.! Thus we
get the spectra 05l0,l1<l2•••↑`[$lk%. If f is expanded in
terms of the eigenfunctions$fk%, f (•)5( k50

` akfk(•),
then, sG @ f #5 1

2(k50
` lkfk

2. By choosing F(x)5exp~2x!,
thus, PG @ f #5exp(21

2(k50
` lkfk

2). This satisfies~I! obvi-
ously by choosing a suitable measure for the functional int
gral. Noting that the smaller~larger! lk in $lk% coarsely
reflects the larger~smaller! scale behavior ofG , the above
choice also satisfies~II !. ~Compare two values ofPG @ f # for,
say, f;f3 and f;f100.)

Now, we shall formally generalize the procedure in th
preliminary consideration. First, from the normalization re
quirement ofPG @•# in ~I!, we find

@d f#5)
k51

` Alk

2p
dak ,

where the zero-model0 is understood to be removed if it
appears~e.g., the case of]M5B!. Formally repeating the
same procedure as in the preliminary consideration, then,

j~G ,G 8!5E @d f#~PG @ f #PG 8@ f # !1/2

5E )
k51

`
dak

~2p!1/2
~lklk8!1/4expS 2

1

4(
m51

`

~lm1lm8 !am
2 D

5)
k51

` H 12 SAlk

lk8
1Alk8

lk
D J 21/2

. ~2!

Thus,
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d~G ,G 8!52 lnj~G ,G 8!

5
1

2(k51

`

ln
1

2 SAlk

lk8
1Alk8

lk
D . ~3!

For brevity, let us refer to this quantity as the ‘‘spectral di
tance’’ betweenG andG 8.

Finally, let us note one subtlety included in the abo
procedure for deriving Eq.~2!: In taking the overlapping
functional integral,*@d f#(PG @ f #PG 8@ f #)

1/2, a prescription
for the identification of a functionf defined onG with an-
other function f defined onG 8 should be fixed. Here, we
have chosen the following prescription: LetG and G 8 be
compact Riemannian manifolds, andD be an elliptic differ-
ential operator. Let 05l0,l1<l2•••↑`[$lk% and
05l08,l18<l28•••↑`[$l k8% be spectra ofD on G and G 8,
respectively, numbered in increasing order. Then, we h
sets of eigenfunctions ofD, $fk(•)% and $f k8(•)%, corre-
sponding to$lk% and$l k8%, respectively. A functionf (•) on
G can be expanded in terms of$fk(•)%, f (•)5(kakfk~•!.
Then, our prescription is thatf (•) onG is identified w.r.t.D
with a function(kakf k8(•) on G 8.

In cases whenG andG 8 are within some one-paramete
family of geometries, this prescription may be justified ri
orously through the adiabatic theorem@21#. Therefore, this
way of identification seems to be the most natural one. T
subtlety of identifying functions on different spaces als
emerges in quantum field theory on a curved spacetime.
same prescription is implicitly adopted in this case.~See the
next subsection for more details.! Even if there is a better
prescription, the basic idea and procedures remain the sa
and only the final result Eq.~2! would be subject to some
modification. Here, let us adopt the above-mentioned p
scription.

B. The physical interpretation of the spectral distance

Physically, it is natural to expect that the geometrical i
formation reflects the behavior of a field distributed o
~M,g!. In fact, the functionals@•# @Eq. ~1!# is in the form of
the action of a scalar field on~M,g!. @Note, however, that
~M,g! is Riemannian.# Thus, one may suppose that the spe
tral distanced~G ,G 8! yields a physical interpretation. In
deed, the quantityj~G ,G 8!5exp@2d(G ,G 8!# @Eqs. ~2! and
~3!# turns out to be related to a reduced density matrix e
ment for the Universe, which appears in the discussions
the emergence of the classical world from the quantum u
verse@22–24#. Let us now see this point in order to mak
clear the assumptions behind this coincidence, i.e., the r
tion of d~G ,G 8! with a reduced density matrix element.

Let us consider the system of gravity and a massless s
lar field.4 It is interesting to consider other kinds of field
also, the Dirac field, for instance. However, the structure
the vacuum state for a fermion field looks quite differe
from that for a boson field, at least mathematically, and
quires separate investigations. To avoid extra complicatio
therefore, let us consider only a scalar field here~assumption

4There is no essential difference between the massless case
the massive case.
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a!. The total action is given by@the signature is chosen as
~2,1,•••,1!#

S@G ,f#5
1

aE RA2g1E ~2 1
2 ]af]af2 1

2m
2f2!A2g

5:Sgrav@G #1Smatter@G ,f#,

wherea is a suitable gravitational constant. Here, the spatia
geometryG and the scalar fieldf induced onG are the
configuration variables. This system obeys the quantu
theory, described by the Wheeler-DeWitt equation@18#,
HC@G ,f#50, whereH is the Hamiltonian constraint ob-
tained fromS@G ,f#. In the semiclassical region, it may be a
good approximation to do the quantum theory separately f
Sgrav@G # andSmatter@G ,f#: On the one hand, we regard that
the dynamics ofG is approximately described solely by
Sgrav@G #; On the other hand,f is described bySmatter@G ,f#,
with G treated just as parameters~assumption b!.5 Thus we
set the ansatz forC@G ,f# asC@G ,f#5w@G #h@G ,f#.

Now, let us considerh@G ,f#, described bySmatter@G ,f#.
Choosing N51, Ni50, Smatter becomes Smatter@G ,f#
51

2*$ḟ22f~2D1m2!f%Ah ~h:5dethab , hab is the induced
spatial metric!. It is natural to expandf~t,xW ) in terms of the
normalized eigenfunctions,$fk(xW )%, of the elliptic operator
D:52D1m2, satisfying eigenvalue equations
Dfk~•!5lk~G !fk~•!, with a suitable boundary condition
compatible with the action principle forSmatter@G ,f#. Thus,
f~t,•)5(kak(t)fk(•). Then, Smatter@G ,f#5(k

1
2 * [ ȧ k

2

2lk~G !a k
2]dt, which is equivalent to a collection of har-

monic oscillators~note thatG is now treated as a fixed
parameter!.6 Afterwards, it is in principle straightforward to
quantize this system. Technically, the simplest way to qua
tize it is to choose the adiabatic vacuum as a quantum sta
~assumption c!: We assume that the typical time scale of the
change in the fieldf is much shorter than that of the change
in geometryG . Then we define the vacuum state at eac
instant of time:

h@G ,f#5)
k

S lk~G !

2p D 1/4exp@2 1
4lk~G !ak

2#.

The density matrix of the Universe may be defined as

r~G ,f;G 8,f8!5C@G ,f#C* @G 8,f8#.

To give meaning to this density matrix, the wave function
C@G ,f# should yield the probabilistic interpretation. This
means thatC@G ,f# should be understood as normalized
w.r.t. a suitable inner product, or some alternative interpre

and

5Usually, this treatment is regarded as valid on grounds of th
‘‘smallness’’ of a. More rigorously, the typical amplitude of quan-
tum fluctuations of spacetime should be taken into consideration f
the justification of this treatment@4#.
6It is notable thatf appears in the theory only through a set of

expansion coefficients$ak% w.r.t. $fk(•)%, a set of eigenfunctions
for D. In this sense,$ak% can be regarded more fundamental thanf
itself.
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tation for C@G ,f# should be provided~assumption d!. To
discuss the quantum decoherence of the Universe, one
treatG as the system variable andf as the environment, and
take the partial trace w.r.t.f @remember the ansatz fo
C@G ,f##:

r reduced~G ,G 8!5E @df#r~G ,f;G 8,f!

5w@G #w* @G 8#E @df#h@G ,f#h* @G 8,f#

5: w@G #w* @G 8#j~G ,G 8!,

wherej~G ,G 8! exactly agrees with the one given by Eq.~2!,
the latter being expressed asj~G ,G 8!5exp@2d~G ,G 8!#.
Therefore, in our terms, the longer the spectral distan
d~G ,G 8! is, the smaller the corresponding off-diagonal el
ment rreduced~G ,G 8! is, implying the stronger decoherenc
between the universesG andG 8.

In taking the partial trace w.r.t.f, the operation
*@df]h[G ,f#h* @G 8,f# should be of meaning. This proce
dure contains two subtle points: First, it corresponds to co
paring states for two different harmonic oscillators with di
ferent frequencies [lk~G ! andlk~G 8!#. Mathematically, it is
just a change of basis in a functional space. However, ph
cally it presupposes the identification of two Hilbert space
one characterized bylk~G !, and the other bylk~G 8!. This is
not within the framework of ordinary quantum theory.7 Sec-
ond, a reasonable prescription to identify a functionf on G
with the same onG 8 should be fixed. The rule adopted he
is to identify (kakfk~•! with (kakf k8(•). Here, $fk(•)%
and $f k8(•)% are eigenfunctions ofD on G andG 8, respec-
tively. Thus, we face the same subtlety in identifying fun
tions defined onG andG 8 as discussed in Sec. II A. Thes
subtleties always emerge, explicitly or implicitly, whenev
we discuss the quantum field theory in curved spacetime.
we can do at present is to expect that once the inner prod
in a space of wave functions of the Universe,C@G ,f#, shall
be correctly fixed, and a complete interpretation ofC@G ,f#
shall be given, this problem would be automatically solv
~assumption e!. ~Therefore, assumptions d and e are dee
linked with each other.!

Reference@22# may be one of the earliest works that pay
attention to the reduced density matrix for the explanation
the classical behavior of the quantum universe. Refere
@23# pursues this idea explicitly for the case of the perturb
Friedmann universe with a massive scalar field, based on
model of Ref.@25#. In this case, unperturbed quantities, i.e
the scale factora(t) and the homogeneous component of t
scalar field,f~t!, correspond to ourG . For the tensor modes
of perturbations, for instance, one can essentially
lk5(k/2)a2. Then the suppression facto

7One situation in usual quantum theory, which is of some simil
ity with the present problem, appears in the discussions of the a
batic perturbations@21#. In this case, the Hilbert space for the sy
tem characterized by parameters, sayv, can be asymptotically
related with the other Hilbert space characterized byv8, when
v→v8. However, the problem of our concern requires even t
comparison of two drastically different Hilbert spaces.
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j~a,a8!5limN→`exp@2(N/4aa8!~a2a8!2# appears, which
agrees with Eq.~2!, with lk5(k/2)a2.8 Reference@24# reca-
pitulates the arguments of Refs.@22# and @23# in more gen-
eral terms. It even implies the idea of the distance, though n
further investigations~e.g., its convergence condition, com-
parison with the axioms of distance! are pursued. Needless to
say, these works@22–24# are all subject to the assumptions
and subtleties pointed out above.

Let us summarize the physical interpretation of the spe
tral distanced~G ,G 8! introduced in Sec. II A: The quantity
j~G ,G 8!5exp@2d~G ,G 8!# boils down to a reduced density
matrix element@for a system of the universe~G ! and a scalar
field ~f!, with f being traced out# under the following con-
ditions:

~a! A suitable inner product between the wave functions o
the Universe,C@G ,f# andC@G 8,f8#, can be defined,
so that the density matrix admits quantum theoretica
interpretation.

~b! The spacetime can be treated semiclassically, and t
scalar fieldf on G andG 8 is in the ground state and
can be treated adiabatically~the time scale of the
change in the field is regarded as much shorter tha
that of the change in geometry!.

This coincidence ofj~G ,G 8! boiling down to the reduced
density-matrix element suggests several important things.

First, the specific choice ofF(x)5exp~2x! in Sec. II A is
clearly distinguished among several possibilities from th
viewpoint of physical applications.

Second, once we obtain a satisfactory quantum theory
gravity in the future to computerreduced~G ,G 8! exactly, it
would be relevant to define ‘‘closeness’’ betweenG andG 8
as 2ln$rreduced~G ,G 8!/w@G #w* @G 8#%. In other words, the
more strongly two geometries interfere with each other qua
tum mechanically, the ‘‘closer’’ they can be regarded~a sug-
gestion from physics for mathematics!.

Third, one may be able to estimate
rreduced~G ,G 8!/w@G #w* @G 8# by calculating exp@2d~G ,G 8!#
according to~3! ~a suggestion from mathematics for phys-
ics!. Needless to say, we have no satisfactory theory of qua
tum gravity at present, so thatrreduced~G ,G 8! cannot be cal-
culated exactly. However, the reduction ofd~G ,G 8! ~which
has been derived from general arguments and which is a
plicable to any geometries in principle! into
2ln$rreduced~G ,G 8!/w@G #w* @G 8#% ~estimated approximately!
whenG andG 8 are restricted to be of the same dimension
ality and topology, is very suggestive and should be mea
ingful. Thus, we can infer the following equality:

d~G ,G 8!52 ln$r reduced~G ,G 8!/w@G #w* @G 8#%.

In connection with the condition~a!, we should note the
following: The inner product between two wave functions

ar-
dia-
s-

he

8More precisely, becausef~t! is also included in the category
of our G , the combination (k/2)a22i2a3mf is to be
identified with lk , yielding the factor j~a,f;a8,f8!
5limN→` exp@2~N/4aa8!~a2a8!2#exp@2~p2/4!m2aa8~f2f8!2#
@23#.
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defined on two different superspaces is much less kno
than the inner product between wave functions defined
the same superspace.~For instance, universes with differen
dimensions or with different global topologies are subject
different superspaces.! In other words, there is no establishe
way of comparing universes with different global structure
This is the main obstacle that prevents us from undertak
extensive studies on the phenomenon of the topolo
change. At the same time, this is one of the motivations
the introduction of the spectral distance~Sec. I!. At present,
we are usually forced to restrict ourselves to the compara
moderate cases in which universes lie in the same supers
~in most cases, minisuperspace or its generalization!, assum-
ing somehow the inner product.

Regarding the relation between the spectral distance
the reduced density matrix, therefore, one had better keep
following caveat in mind: Only for the cases whenG andG 8
are subject to the same superspace~typically, of the same
dimension and topology!, does the above equality hold safe
under several assumptions. For other cases, it should be
garded as an extrapolation.

Since this caveat should be always remembered whene
we connect the spectral distance with physical interpre
tions, we refer to it as caveat A, for brevity. It is quite prob
able that~some modified form of! the above equality will
turn out to be generally true once a satisfactory theory
quantum gravity is provided.

C. The convergence condition of the spectral distance

Let us now investigate the necessary condition for t
convergence of the spectral distance, since its definition
Eq. ~3! includes an infinite summation. Clearly, theneces-
sary condition for convergence is

ak~G ,G 8!:5
1

2 SAlk

lk8
1Alk8

lk
D→1 as k→`.

Note thatak>1, 5⇔ lk5l k8 . Thus the necessary conditio
for the convergence ofd~G ,G 8! is l k8/lk→1 as k→`.
Now, we have Weyl’s asymptotic formula@26,27#, which
can be represented in several ways,

(
k50

`

exp~2lkt !5
1

~4pt !n/2
V1O~1! as t↓0, ~4a!

N~L!;
vnV

~2p!n
Ln/2 as L→`, ~4b!

lk;S ~2p!n

vnV
kD 2/n as k→`, ~4c!

wheren5dimM5dimension ofM, V5volM5n-volume
of M, N(L):5#$lkulk<L%, andvn :5n-volume of a unit
n-disk in Rn ~e.g.,v25p!. Significantly, theO~1! term in
~4a! reduces tox~M!/61O~t! when n52, M is compact,
and]M5B, wherex~M! is the Euler number ofM @26#.
We shall come across the application of this result in Sec.
Weyl’s asymptotic formula~4c! states that the asymptotic
behavior oflk (k→`) depends on dimM, volM, and
wn
on
t
to
d
s.
ing
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pace
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III.

topology ofM, but does not depend on a detailed loca
geometry of~M,g!. From ~4c!,

lk8

lk
;

~vnV!2/n

~vn8V8!2/n8
k2/n822/n as k→`.

Thus the necessary condition for convergence ofd~G ,G 8! is

dimM5dimM8, volM5vol M8. ~5!

This result is quite suggestive. According to the density
matrix interpretation with caveat A, this suggests that tw
universes with different dimension or volume decohere ver
strongly.

Finally, we should note that Eq.~5! is just the necessary
condition for convergence, but not a sufficient one.

D. The scale-dependent spectral distance

From the formula Eq.~3!, we are naturally led to the
scale-dependent spectral distance by introducing a cutoff
the summation: We compare the subsets of$lk% and $l k8%
constructed from elements less thanL. It corresponds to a
coarse comparison of two geometriesG andG 8, neglecting
the difference in the smaller scale behaviors thanL21/2.

More specifically, let us define

NL :5Min~#$lkP$lk%u0<lk<L%,

#$lk8P$lk8%u0<lk8<L%).

In terms ofNL , we definel k
L as

lk
L :5H lk for k<NL

lNL
for k.NL ,

then,$l k
L%5$l0 ,l1 ,...,lNL

,lNL
,lNL

,...%. In the same way,

we define {lk8
L%5$l08 ,l18 ,...,lNl

8 ,lNL
8 ,lNL

8 ,...%. Then, we

define the scale-dependent spectral distancedL~G ,G 8! as

dL~G ,G 8!5
1

2(k51

NL

ln
1

2 SA lk
L

lk8
L1Alk8

L

lk
L D . ~6!

There are other possibilities in the way of introducing a
cutoff. For instance, instead of taking the minimum of the
two numbers in the definition ofNL , taking the average of
the two numbers is one possibility. Replacing minimum b
maximum is another possibility. Weyl’s asymptotic formula
Eq. ~4c! guarantees that the difference caused by differe
choices becomes negligible whenL is sufficiently large.

It is interesting to investigate the behavior ofdL~G ,G 8! as
a function ofL for givenG andG 8. For instance, suppose a
geometryG with a very complicated topological structure,
G5G 8#h1#h2 •••#hm , where hi ’s are some topological
handles of a typical scalel. When the cutoff parameterL is
increased smoothly, the spectral distancedL~G ,G 8! is ex-
pected to increase abruptly nearL; l22, indicating thatG
andG 8 are almost similar in the scale larger thanl, but they
are very different in the scale smaller thanl. This provides a
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quantitative representation of the scale-dependent topolo
or topological approximation@10#. As already mentioned in
Sec. I, the concept of scale-dependent topology or topolo
cal approximation has many interesting applications. Ho
ever, its rigorous quantitative formulation is quite difficult: I
requires the concept of ‘‘closeness’’ between two topolog
cally different Riemannian manifolds@10#, for which we
have no mathematical theory as yet. To make this concep
‘‘closeness’’ or ‘‘distance’’ physically sensible, it should
have some connection with physical quantities. In this r
spect, the quantitydL~G ,G 8! is a good candidate for the
measure of closeness betweenG andG 8, since it is defined
in terms of spectra~where a matter field plays the role of a
probe for the geometrical structure of the Universe! and
since it can be related to the reduced density-matrix elem
for the Universe~with caveat A! as discussed in Sec. II B. In
Ref. @10#, the quantitative description of scale-dependent t
pology has been investigated in terms of the scattering cr
sections, treating topological handles as a scatterer. One
striction of this framework is that it requires an asymptot
region with trivial topology to set up a scattering problem
On the other hand, the description in terms of the sca
dependent spectral distance does not assume such an as
totic region.

E. The failure of the triangular inequality

The ordinary requirements for a functiond: S3S→R ~S
is a set! to be regarded as a distance are

~I! Positivity: ~a! d(p,q)>0, ~b! d(p,q)50⇔p5q.
~II ! Symmetry:d(p,q)5d(q,p).
~III ! The triangular inequality:d(p,q)1d(q,r )>d(p,r ).
The spectral distanced~G ,G 8! clearly satisfies~Ia! and

~II !. As for ~Ib!, we know counterexamples that do not sa
isfy ‘‘ ⇒’’: There are examples of a pair of nonisometri
geometries G and G 8 whose spectra are identica
$lk%[$l k8%. Two nonisometric geometries onT

16 with iden-
tical spectra have been given by Milnor@14#. Later, other
examples were constructed@15,16# and they are called iso-
spectral manifolds@17#. @Note that the necessary condition
for G and G 8 to be isospectral are dimM5dimM8 and
volM5volM8 by Weyl’s asymptotic formula Eq.~4c!.#
Such a pair of isospectral manifolds cannot be separated
terms of the spectral distance w.r.t. the LaplacianD.9

These isospectral manifolds do not seem to be generic
that they may be identified in the space of all geometries. O
the identified space,~Ib! can be regarded to hold well. This
observation implies that the spectral distance is a ‘‘coarse
distance compared with the distance defined by the DeW
metric @18# ~for manifolds with the same dimension, volume
and topology!. Employing the density-matrix interpretation
of the spectral distance, it might imply that a pair of isospe
tral spaces interfere with each other strongly. However, it
uncertain as to what extent these exceptional cases have
influence on the applications to cosmology.

Finally, we investigate the validity of~III ! the triangular
inequality,d~G ,G 8!1d~G 8,G 9!>d~G ,G 9!. We mention in

9However, some other elliptic operators can yield the spectral d
tance that distinguishes the isospectral manifolds w.r.t.D.
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advance that in Sec. III, where two-dimensional models sha
be investigated, many cases shall be found in which the t
angular inequality does not hold. Thus, the spectral distan
does not satisfy the triangular inequality in general. Th
spectral distance can be written as
d~G ,G 8!51

2( k51
` dk(G ,G 8! @see Eq.~3!#. It is interesting to

investigate the condition for the term-wise violation of the
triangular inequality: First,

dk~G ,G 8!1dk~G 8,G 9!5 ln1
2 $ 1

2 ~111/a!Ab

1 1
2 ~11a!1/Ab%,

wherea:5Alk/lk8 andb:5Alk/lk9 . Next,

dk~G ,G 9!5 ln1
2 ~Ab11/Ab!.

Now, 1
2~11a21!Ab11

2~11a!Ab212(Ab1Ab21)52(1
2a)$2aAb ~a2b!%21, which is negative whenb,a,1 or
b.a.1. Thus,

dk~G ,G 8!1dk~G 8,G 9!,dk~G ,G 9!

⇔lk,lk8,lk9 or lk.lk8.lk9 . ~7!

Three geometriesG , G 8, andG 9 satisfyinglk,l k8,l k9
(k51,2,...) can beconstructed easily if the difference in
volumes is allowed. Note that the eigenvalues scale
lk}V

22/n w.r.t. n-volumeV. Thus, any conformally equiva-
lent geometries G , G 8, and G 9 such that
vol G.vol G 8.vol G 9 satisfy this condition. Thus,
dL~G ,G 8!1dL~G 8,G 9!,dL~G ,G 9! in this case.~The cut-
off L is needed, since volumes are different.! However, we
also want to know the case ofd~•,•! ~corresponding to the
case ofL→`!. We are then led to a question: Do three
geometries G , G 8, and G 9 exist such that
dimG5dimG 85dimG 9, vol G5vol G 85vol G 9, and
lk,l k8,l k9 (k51,2,...)?This is a highly nontrivial ques-
tion and it seems that the answer is not known as yet.

In this connection, let us remember the distance in th
superspace defined by the DeWitt metric@18#. Although the
DeWitt metric is not the positive definite metric, the latter is
induced on a surface of a constant volume in the superspa
On this surface, then, the distance can be defined using t
positive definite metric. Obviously, the distance thus define
satisfies the triangular inequality as in ordinary Riemannia
geometry. Thus, the failure of the triangular inequality fo
the spectral distance~examples of which shall be shown in
the next section! explicitly demonstrates that the spectral dis
tance and the distance defined by the DeWitt metric are n
equivalent to each other.

III. CLOSENESS BETWEEN THE ORIENTABLE
AND THE NONORIENTABLE UNIVERSES

We apply the spectral distance to quantum cosmolog
We ask whether universes with different topologies interfer
quantum mechanically. A probable answer that one mig
give would be that they decohere with each other since the
‘‘sound’’ different, resulting in a long spectral distance. To
investigate this problem, let us set up several concrete mo
els in two dimensions with various topologies, and invest

is-
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gate the spectral distances between them in detail. In parti
lar, we shall concentrate on the cases of~A! T2 and
RP2#RP2 ~Klein’s bottle! and~B! S2 andRP2. Here,T2 is
a covering space ofRP2#RP2 @11#, and the former is orient-
able while the latter is nonorientable. The relation betwe
S2 andRP2 is also the same. We shall construct models
T2 andRP2#RP2, both of which are locally flat. Then, we
can focus on the effect of the difference of global topologie
or the difference of orientabilities, in this case. We shall al
construct models ofS2 andRP2, both of which are homo-
geneous~constant curvature spaces!. By making the antipo-
dal identification on a 2-sphere with radiusA2R, a homoge-
neousRP2 with 2-volume 4pR2 can be constructed@11#.
Therefore, the difference betweenS2 andRP2 in this case
includes a difference of local curvature as well as a diffe
ence of orientability. Thus, this is the simplest case in whi
local as well as global geometries are different.

As discussed in the previous section, the spectral dista
can be interpreted asd~G ,G 8!52ln$rreduced~G ,G 8!/
w@G #w* @G 8#% with caveat A. Thus, the spectral distances fo
~A! and ~B! provide us with some insights for our above
mentioned question.

A. T2 and RP2#RP2

As the simplest class of models, we shall investiga
spaces~S! constructed asS.R2/G, whereG is a discrete
subgroup of the Euclid group ofR2, acting freely onR2.
There are only five types of spaces constructed in this m
ner:R2, a cylinder, a Mo¨bius’ strip,T2, andRP2#RP2 @28#.
Among them, onlyT2 andRP2#RP2 are compact. Thus we
choose these spaces as our models.

1. T2: The case oft1Þ0

A torusT2 can be constructed by choosing forG a trans-
lation group, G5$maW 1nbW % (m,nPZ!, where aW 5(1,0)/
At2, bW 5(t1,t2!/At2~t2.0!, and Z5$0,61,62,...%. Here a
set of two real parameters~t1,t2! ~t2.0! are the Teichmu¨ller
parameters, characterizing the global shape of a torus@29#.10

We fix the volume ofT2 to be unity, which is taken care of
by the factorAt2 in the choice ofaW andbW . It is convenient to
introduce a coordinate~j1,j2! defined by

S xyD5
1

At2
H j1S 10D1j2S t1

t2D J . ~8!

In this coordinate system~j1,j2!, aW and bW can be ex-
pressed asaW 5(1,0) andbW 5(0,1), and the identification by
G reads~j1,j2!;~j11m,j21n) for ;m,;nPZ.

The flat metric is given byds25dx21dy25habdj1dj2,
where

hab5
1

t2 S 1 t1

t1 utu2D @ utu2:5~t1!21~t2!2#.

Thus, the Laplacian becomes

10In this paper,t2 always represents the second component
~t1,t2!, and not the square oft :5t11i t2.
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]a~Ahhab]b!5

1

t2
~ utu2]1

222t1]1]21]2
2!.

Whent1Þ0, the spectra become

lmm5
4p2

t2
~ utu2m222t1mn1n2!5:4p2Q~m,n!, ~9!

with normalized eigenfunctions

u~0,0!51 for ~m,n!5~0,0!,

u~m,n!5A2 cos~2pmj112pnj2! for ~m,n!PR2~0,0!,

v ~m,n!5A2 sin~2pmj112pnj2! for ~m,n!PR2~0,0!

whereR:5N03Z2$0%3~2N!, N5$1,2,...% andN0:5$0%øN.
It is convenient to represent the multiplicity of eigenvalues in
the form of a ‘‘spectral diagram’’ as shown in Fig. 1~a!.

2. T2: The case oft150

The case oft150 should be treated separately. In this
case, the Laplacian reduces toD5~1/t2!@~t2!2]1

21]2
2#. The

spectra become

lmn5
4p2

t2
@~t2!2m21n2#5:4p2Q0~m,n!, ~10!

with normalized eigenfunctions

u1~m,n!5H 1, ~m,n!5~0,0!

A2 cos 2pmj1, A2 cos 2pnj2, m,nPN

2 cos 2pmj1 cos 2pnj2, ~m,n!PN3N,

u2~m,n!5HA2 sin 2pnj2, nPN ~m50!

2 cos 2pmj1 sin 2pnj2, ~m,n!PN3N,

u3~m,n!5HA2 sin 2pmj1, mPN ~n50!

2 sin 2pmj1 cos 2pnj2, ~m,n!PN3N,

u4~m,n!52 sin 2pmj1 sin 2pnj2, ~m,n!PN3N.

The spectral diagram for this case is shown in Fig. 1~b!.
Comparing the spectral diagram fort150 with that for

t1Þ0, we see that the distribution of spectra is modified bu
this modification is such as to guarantee Weyl’s asymptot
formula for N(l) @Eq. ~4b!# to hold well. @By folding the
diagram in Fig. 1~a! along them axis, one obtains a diagram
that matches that in Fig. 1~b!#.

3. RP2#RP2 (Klein’s bottle)

The Klein’s bottle can be constructed by the point identi
fication shown in Fig. 2.

In mathematical terms, it can be constructed byR2/G,
where G.~Z3Z!3SZ2 ~3S denotes semidirect product!
@28#. Now, an explicit representation ofG will be given:
Take ~j1,j2!-space asR2. Let I5diag~1,1!, B5diag~1,21!
and letuW 5 t(1,0) andvW 5 t(0,1) ~uW andvW are eigenvectors of
B with eigenvalues 1 and21, respectively!. Let tuW , tvW repre-
sent translations onR2 by uW andvW , respectively. We choose
quantities of the form (A,taW) as a group element (A5I or

of
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B! and define a multiple rule as (A,taW)(A8,taW 8)
5(AA8,taW 1AaW 8). Then, G is defined as G:
5$(B,tuW)

m(I ,tvW)
num,nPZ%. By simple manipulations,

~B,tuW !m~ I ,tvW !n5~Bm,tmuW 1~2 !mnvW !.

Here, let us note thatBm5I whenm is even, and5B when
m is odd. Then, this element ofG acts on any pointjW in R2

as (B,tuW)
m(I ,tvW)

njW5BmjW1muW 1(2)mnvW . If we represent
(Bl ,tmuW 1nvW) as [m,n:(2) l ] (m,n,lPZ!, then the multiplica-
tion rule reads

@m,n:~2 ! l #@m8,n8:~2 ! l 8#5@m1m8,n1~2 ! ln8:~2 ! l1 l 8#,

FIG. 1. ~a! The spectral diagram forT2 ~t1Þ0!. Symbols i and ii
represent the multiplicity 1 and 2, respectively. For instance,
multiplicity of the eigenvaluel~0,0! ~zero mode! is 1 and the same of
the eigenvaluel~2,3! is 2. ~b! The spectral diagram forT2 ~t150!.
The symbol iv represents multiplicity 4.
implying G.~Z3Z!3S Z2. Furthermore,R
2/G corresponds

to the point identification shown in Fig. 2, producing Klein’s
bottleRP2#RP2.

The connection of~j1,j2! with the standard coordinate
(x,y) is the same as in Eq.~8! with the restrictiont150:
Because of the particular direction of identification as shown
in Fig. 2, the deficit angle occurs whent1Þ0, contrary to the
case ofT2. Thus we shall investigate only the cases oft150.
The eigenvalues become

lmn5
4p2

t2
@~t2!2m21n2#, ~11a!

with normalized eigenfunctions

1 for ~m,n!5~0,0!,

A2 cos 2pmj1 for mPN, n50,

A2 cos 2pnj2 for m50, nPN,

2 cos 2pmj1 cos 2pnj2 for mPN, nPN,

2 sin 2pmj1 cos 2pnj2 for mPN, nPN,

and

lm11/2,n5
4p2

t2
@~t2!2~m11/2!21n2#, ~11b!

with normalized eigenfunctions

2 cos 2p~m11/2!j1 sin 2pnj2 for mPN0 , nPN,

2 sin 2p~m11/2!j1 sin 2pnj2 for mPN0, nPN.

The spectral diagram is shown in Fig. 3. Compared with the
diagram forT2~t250! @Fig. 1~b!#, the appearance of modes
characterized by half integerm is characteristic. However,

the

FIG. 2. Klein’s bottle constructed byR2/G. All line segments
that are parallel to each other should be identified, respecting th
direction shown by an arrow sign. A special letter is drawn to
visualize the way of identification.
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the distribution of spectra is again in such a way as to gu
antee Weyl’s asymptotic formula~4b! to hold good.

We should note that the 2-volume of Klein’s bottle con
structed in this manner is unity: We can define the integ
on a nonorientable manifoldM as half the integral on the
double-covering manifold ofM. The double-covering mani-
fold of RP2#RP2 is T2 @11#. Indeed, we can see in Fig. 2 the
tiles that correspond toT2 with 2-volume being 2.@For in-
stance, a rectangle defined by points~0,0!, ~2,0!, ~2,1!, and
~0,1!.# Thus the 2-volume of Klein’s bottle in our case is 1

4. The spectral distance between T2 and RP2#RP2

Having obtained spectra forT2 andRP2#RP2 in previous
subsections, we now proceed to calculate the spectral d
tances for various cases according to Eq.~3! or Eq. ~6!.

First, let us see how Weyl’s asymptotic formula hold
nicely for checking the spectra obtained. For instance, t
case ofT2 with Teichmüller parameters~t1,t2!5~0.1,1! is
shown in Figs. 4 and 5. Figure 4 is alk-k plot. In accordance
with ~4c! (n52, V51), we see that the inclination of the
plot is 4p. Figure 5 is a 4pN(L)/V-L plot, which ap-
proaches 1 in accordance with~4b!. ~Note thatV51 in our
case.!

Next, we see the spectral distancesd(T2,T2). Figure 6~a!
indicates the case of~t1,t2!5~0,1! and~t1,t2!5~0,2! and Fig.
6~b! shows adL@~0,1!,~0,2!#-L plot, giving a spectral dis-
tance of about 0.219. The convergence of the sca
dependent spectral distancedL whenL→` is fairly good.

Figure 7~a! indicates the case of Klein’s bottles with
~t1,t2!5~0,10! and ~t1,t2!5~0,100!. Figure 7~b! shows a
dL@~0,10!,~0,100!#-L plot. The spectral distance is abou
2.916 in this case.

Now, the results of calculating the spectral distances b
tweenT2 andRP2#RP2 are quite surprising: They are quite
short. For instance, Fig. 8~a! indicates the case of a torus an
Klein’s bottle with ~t1,t2!5~0,1! for a torus and
~t1,t2!5~0,10! for a Klein’s bottle, and Fig. 8~b! shows a

FIG. 3. The spectral diagram for Klein’s bottleRP2#RP2.
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dL-L plot. The spectral distance is about 0.4337, which
unexpectedly short.

Figures 9~a!–9~c! show some of spectral distances forT2,
Klein’s bottles, and mixture cases, respectively. One can
that the spectral distances betweenT2 and RP2#RP2 are
unexpectedly short. A general tendency is that the spec
distance forT22T2 is longer than that forT22RP2#RP2,
and the same forRP2#RP22RP2#RP2 is the shortest, for
fixed parameters~t1,t2! and ~t81,t82!. If we employ the
density-matrix interpretation~with caveat A!, these results
suggest that an orientable universe and a nonorientable
sometimes interfere with each other quite strongly. In oth
words, some extra mechanism is needed if they should
cohere with each other.

As mentioned in Sec. II E, many examples can be fou
in Figs. 9~a!–9~c! that do not satisfy the triangular inequality
d~G ,G 8!1d~G 8,G 9!>d~G ,G 9!. For instance, in Fig. 9~a!,

FIG. 4. A lk-k plot for a torus with~t1,t2!5~0.1,1!.

FIG. 5. A 4pN(L)-L plot for a torus with~t1,t2!5~0.1,1!.
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d@~0,1!,~0,500!#568.02, d@~0,500!,~0,1000!#557.45, while
d@~0,1!,~0,1000!#5137.12; in Fig. 9~c!, d@~0,1!,~0,10!#
50.4337, d@~0,10!,~0,100!#52.421, while d@~0,1!,~0,100!#
53.488. On the other hand, one example in Fig. 9~c! that
satisfies the inequality is, for instance,d@~0,1!,~0,50!#51.77,
d@~0,50!,~0,100!#52.668, andd@5~0,1!,~0,100!#53.488. The
failure of the triangular inequality explicitly indicates tha
the spectral distance and the DeWitt distance are not equ
lent to each other.

At this stage, it is appropriate to compare the spect
distance and the DeWitt distance with each other more
plicitly. In the case ofT2 ~the positive-definite sector of! the
DeWitt metric reduces to the Poincare´ metric on the upper-
half plane~t2.0!, GAB5~1/t2!diag~1,1!. ~As is well known,
one negative signature included in the DeWitt metric cor
sponds to the conformal deformation in the superspace.
shall come back to this point in Sec. IV.! Thus, the DeWitt
distance, namely, the geodesic distance between~t1,t2! and

FIG. 6. ~a! Two tori with ~t1,t2!5~0,1! and~t1,t2!5~0,2!. ~b! A
dL-L plot for the tori shown in~a!.
t
iva-

ral
ex-

re-
We

~t81,t82! w.r.t. the Poincare´ metric is @26,28#

dDW@~t1,t2!,~t81,t82!#5 ln
11r

12r
,

where r5u~t2t8!/~t2t8* !u, t5t11i t2, and t85t811i t82.
In particular, dDW@~0,t2!,~0,t82!#5uln t2/t82u, depending
only on the ratio t2/t82. Thus, for instance,
dDW@~0,1!, ~0,2!#5dDW@~0,10!, ~0,20!#5dDW@~0,50!, ~0,100!#
5dDW5@~0,500!,~0,1000!#50.693 ~Fig. 10!. On the other
hand, the corresponding spectral distances ared@~0,1!,~0,2!#
50.219, d@~0,10!,~0,20!#51.14, d@~0,50!,~0,100!#55.778,
and d@~0,500!,~0,1000!#557.45, which also illustrate the
nonequivalence of these two distances.

B. S2 and RP2

The comparison of the 2-sphere with the real projectiv
2-spaceRP2 is another case that can be investigated wi

FIG. 7. ~a! Two Klein’s bottles with ~t1,t2!5~0,10! and
~t1,t2!5~0,100!. ~b! A dL-L plot for Klein’s bottles shown in~a!.
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ease. As discussed at the beginning of this section, one
construct the real projective spaceRP2 of volume 4pR2 by
the antipodal identification on a sphere with radiusA2R.
This space and a sphere with radiusR are of same 2-volume
with different orientability as our previous models of tori an
Klein’s bottles. In the present case, however, the curvatu
are also different so that the local geometries are differe
Thus, this case serves as the simplest case in which the
ference of local geometries as well as the global geomet
takes part in. The spectra ofS2 are

l l5
4p

V
l ~ l11! ~multiplicity 2 l11, l50,1,2,...!,

whereV is the 2-volume ofS2. The same ofRP2 are

l l85
4p

V
l ~2l11! ~multiplicity 4 l11, l50,1,2,...!.

FIG. 8. ~a! A torus with ~t1,t2!5~0,1! ~a regular square! and
Klein’s bottle with ~t1,t2!5~0,10! ~a rectangle!. ~b! A dL-L plot for
a torus and Klein’s bottle shown in~a!.
can

d
res
nt.
dif-
ries

The spectral distanced(S2,RP2! again turns out to be
unexpectedly short, about 0.8 irrespective of the value of th
2-volumeV ~see Fig. 11!. Figure 12 showsd(S2,S2) with
different 2-volumes. It clearly shows the divergent behavio
of the spectral distance when volumes are not identical@see

FIG. 9. ~a! Spectral distances between two tori. Parameter
~t1,t2! for two tori and the spectral distance between them are in
dicated.~b! Spectral distances between two Klein’s bottles. Param
eters~t1,t2! for two Klein’s bottles and the spectral distance be
tween them are indicated.~c! Spectral distances between a torus an
Klein’s bottle. From top to bottom, parameters~t1,t2! for a torus
and Klein’s bottle, and the spectral distance between them are
dicated, in this order.



p-

r
in

he
r-

ns

,

if-

6914 53MASAFUMI SERIU
Eq. ~5!#. Significantly, in terms of the scale-dependent spe
tral distancedL , the degree of difference in volumes is rep
resented by the inclination of the curve of thedL-L plot:
The larger the difference in volume, the larger the inclinati
of thedL-L plot. In other words, althoughdL→` asL→`
when volumes are different, the asymptotic behavior ofdL

approaching infinity still contains the information of ‘‘close
ness’’ between volumes.

Even purely mathematically, it is interesting that som
manifolds with different topology~or orientability! show a
very short spectral distance between them as compare
other manifolds with identical topology. Furthermore, if on
employs the density-matrix interpretation~with caveat A! for
the spectral distance, it suggests that some universes
different orientabilities do not decohere effectively witho
any other mechanisms. We shall come back to this poin
Sec. IV.

C. Epstein’s zeta and theta functions,
and Weyl’s asymptotic formula

It is of some interest to construct and investigate in det
the heat kernel for our models,T2 andRP2#RP2. In these

FIG. 10. Distances between two tori defined by the DeWitt m
ric.

FIG. 11. The spectral distance between a 2-sphere and a
projective space with identical 2-volumes~area!.
c-
-
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cases, the heat kernel is expressed nicely in terms of E
stein’s theta functions@19,20,17#.11 In such cases, the func-
tional relation for these theta functions derives Weyl’s
asymptotic formula, and relates directly the expression fo
the heat kernel in terms of mode summation, with the one
terms of image summation@30#. In particular, the case of
RP2#RP2 ~Klein’s bottle! is nontrivial and interesting as we
shall see below. Furthermore, based on the discussion of t
analytic properties of Epstein’s zeta functions as meromo
phic functions onC, the initial condition for these heat ker-
nels can be analyzed from a different viewpoint.

Thus, let us investigate Epstein’s theta and zeta functio
for T2 andRP2#RP2.

1. The case of T2

Let us compute the nonlocal zeta function
z(x,y:s):5( i8c i(x)c i* (y)l i

2s , for T2 of the caset1Þ0.
The case oft150 goes almost similarly. The final result is
identical to the result of the caset1Þ0 with a replacement of
Q byQ0 @see Eqs.~9! and~10!#. Using results in Sec. III A 1
@Eq. ~9! and below#,

zT2~j18j28,j1j2:s!5~4p2!2sZI 0 0

Dj1 Dj2
I ~Q,s!

5222sp21
G~12s!

G~s!
ZIDj1 Dj2

0 0
I ~Q21,12s!,

~12!

whereDj1:5j12 j18, Dj2:5j22 j28, and ~A5! in the Ap-
pendix has been used in the last line.

The heat kernelK(x,y:t)5( ic i(x)c i* (y)exp~2li t) be-
comes

11See Appendix for Epstein’s theta and zeta functions.

et-

real

FIG. 12. The spectral distance between two 2-spheres with d
ferent 2-volumes, 1.0 and 1.1.
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KT2~j18j28,j1j2:t !5Q I 0 0

Dj1 Dj2
I ~Q,4pt ! ~13a!

5
1

4pt
Q IDj1 Dj2

0 0
I SQ21,

1

4pt D ,
~13b!

where~A4! has been used in the last line.
It is clear that ~13b! can be written as

( m,n52`
` (1/4pt)exp@2Q21(m1Dj1,n1Dj2)/4t], which

is an image summation of the heat kernel onR2. Thus, the
functional relation~A4! guarantees the equivalence betwe
mode summation~13a! and image summation~13b! @30#.

Clearly, KT2 satisfies the heat equation,DjWK(jW ,jW8:t)
5(]/]t)K(jW ,jW8:t). It is of some interest to clarify the initial
condition whichKT2 should satisfy: From Eq.~13b!,

lim
t↓0

KT2~jW ,jW8:t !5 lim
t↓0

1

4pt
exp@2Q21~Dj1,Dj2!/4t#

1 lim
t↓0

( 8
m,n

1

4pt

3exp@2Q21~m1Dj1,n1Dj2!/4t#.

The first term is a local contribution while the second term
a nonlocal one coming from the point identification. The fir
term is equivalent tod~Dj1!d~Dj2!. The second term can be
written as

lim
t↓0

( 8
m,n

1

4pt(k50

`
~2 !k

k!
@Q21~m1Dj1,n1Dj2!#k

1

~4t !k

5 lim
t↓0

1

4pt(k50

`
~2 !k

k!

1

~4t !k
ZIDj1 Dj2

0 0
I ~Q21,2k!.

This should vanish because

ZIgWhW I ~Q,s!

~as a meromorphic function extended ontoC! has simple
zeros ats521,22,..., and, furthermore,s50 is also a
simple zero whengW ¹ZN ~see Appendix!. ThusKT2 satisfies
the ordinary initial condition for a heat kernel. It may b
noted that if the limit limDj1,2→0 is taken before limt↓0 , the
second term behaves as limt↓01/4pt;d(0). Thus,
limDj1,2→0limt↓0Þ limt↓0limDj1,2→0 as for the second term
because of the special zero structure of the zeta function

From Eq.~13b!, one can easily derive Weyl’s asymptoti
formula for( i exp~2l i t) @see~4a!#,
en

is
st

e

,
.
c

KT2~ t !5Tr KT2~jW ,jW8:t !5
1

4pt
Q I0 0

0 0
I SQ21,

1

4pt D
5

1

4pt(m,n exp@2pQ21~m,n!/4pt#

5
1

4pt(k50

`
~2 !k

~4t !kk!
ZI0 0

0 0
I ~Q21,2k!5

1

4pt
,

~14!

where the zero structure of

ZI0 0

0 0
I

has again been used. Noting~4a! and below, this result
matches the fact thatV51, x(T2)50.

2. The case ofRP2#RP2 (Klein’s bottle)

We can proceed in an almost parallel manner as in
case ofT2. The nonlocal zeta function becomes

zKlein~j18j28,j1j2:s!5 1
2 ~4p2!2sH ZI 0 0

Dj1 Dj2
I ~Q0 ,s!

1cospDj1ZI 1/2 0

Dj1 Dj2
I ~Q0 ,s!

1ZI 0 0

Dj1 D1j2
I ~Q0 ,s!

2cospDj1ZI 1/2 0

Dj1 D1j2
I(Q0 ,s)J ,

~15!

whereDj i :5j i2 j i 8 ( i51,2), D1j2:5 j21j28. Taking the
trace of this expression, the local zeta function becomes

zKlein~s!5 1
2 ~4p2!2sH ZI0 0

0 0
I ~Q0 ,s!1ZI1/2 0

0 0
I ~Q0 ,s!

1ZI0
0
I „Q0~•,0!,s…2ZI1/2

0
I „Q0~•,0!,s…J . ~16!

The first terms in~15! and~16! are similar to the case ofT2,
while the second terms originate from the half-integer mod
lm11/2,n, characteristic for the case of Klein’s bottle. Th
last two terms in~15! and ~16! reflect the spatial inhomoge-
neity of the present model.~D1j2→2j2 when Dj1,Dj2→0,
indicating the spatial dependence.!

The heat kernel for Klein’s bottle becomes
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KKlein~j18j28,j1j2:t !5 1
2 Q I 0 0

Dj1 Dj2
I ~Q0,4pt !

1 1
2 cospDj1Q I 1/2 0

Dj1 Dj2
I ~Q0,4pt !

1 1
2 Q I 0 0

Dj1 D1j2
I ~Q0,4pt !

2 1
2 cospDj1Q I 1/2 0

Dj1 D1j2
I ~Q0,4pt !. ~17a!

The application of the functional relation~A4! to the heat
kernelKKlein~j,j8:t), ~17a!, which has been obtained by th
mode summation, provides a nontrivial expression for t
heat kernel corresponding to the point summation:

KKlein~j18j28,j1j2:t !5
1

2

1

4ptH Q IDj1 Dj2

0 0
I SQ0

21,
1

4pt D
1cospDj1Q IDj1 Dj2

1/2 0
I SQ0

21,
1

4pt D
1Q IDj1 D1j2

0 0
I SQ0

21,
1

4pt D
2cospDj1Q IDj1 D1j2

1/2 0
I SQ0

21,
1

4pt D J . ~17b!

This reduces to the expression

KKlein~j,j8:t !5 (
m,n52`

`
1

4pt
cos2

p

2
~m1Dj1!

3exp@2Q0
21~m1Dj1,n1Dj2!/4t#

1 (
m,n52`

`
1

4pt
sin2

p

2
~m1Dj1!

3exp@2Q0
21~m1Dj1,n1D1j2!/4t#,

~17b8!

which is in the form of a point summation of the heat kern
for R2 in a nontrivial manner. WhenDj150, only the terms
for m5even ~odd! remain in the first~second! summation.
Then the first term matchesKT2 for a torus constructed from
132 band in~j1,j2!-space, which corresponds to the cove
ing space@11# of our Klein’s bottle. The second term origi
nates from the twisting in the point identification for con
structing the model.

Taking the trace of this, the corresponding theta functi
becomes

KKlein~ t !:5(
i
exp~2l i t !

5 1
2 Q I0 0

0 0
I ~Q0,4pt !1 1

2 Q I1/2 0

0 0
I ~Q0,4pt !
e
he

el

r-
-
-

on

1 1
2 Q I0

0
I „Q0~•,0!,4pt…2 1

2 Q I1/2
0
I „Q0~•,0!,4pt….

The interpretation of each term is similar to the case of th
zeta function.

The functional relation helps us to get further insight. By
the use of~A4!, KKlein~t! becomes

KKlein~ t !5
1

2

1

4ptH Q I0 0

0 0
I SQ0

21,
1

4pt D
1Q I 0 0

1/2 0
I SQ0

21,
1

4pt D
1

1

At2
Q I0

0
I SQ0~•,0!21,

1

4pt D
2

1

At2
Q I 0

1/2
I SQ0~•,0!21,

1

4pt D J
5

1

4pt
, ~18!

where we have followed the same discussion as the case
KT2(t). This result coincides with Weyl’s asymptotic for-
mula ~4a! corresponding to our model (n52, V51, Euler
number equals to 0!.

IV. DISCUSSIONS

Let us now compare the spectral distance and the DeW
distance with each other. There are several differences b
tween them.

First, the DeWitt metric appears within the realm of gen
eral relativity, while the spectral distance has been intro
duced from a general argument~Sec. II A!, which is itself
independent of general relativity.

Second, the DeWitt metric is a metric that can be read o
from the structure of the ‘‘kinetic term’’ of the Hamiltonian
constraint of general relativity. Just as the kinetic term re
flects the geometrical structure of the configuration space
a mechanical system, the DeWitt metric reflects the ge
metrical structure of the superspace. On the other hand, t
spectral distance is the measure of the difference
‘‘sounds’’ of two universes. In other words, a suitable matte
field is used as a probe of local and global geometry of th
Universe. In the above sense, the DeWitt distance may
called as a ‘‘kinematical distance,’’ while the spectral dis
tance may be called a ‘‘dynamical distance.’’

Next, by construction, the DeWitt distance can be define
only between universes in the same superspace. The spec
distance can be defined in principle between any kinds
universes. As has been discussed in Secs. II C and II D, t
spectral distance requires a cutoffL for some cases, as in the
case of universes with different dimension or different vol
ume. Significantly, even then, the asymptotic behavior ofdL

as L→` still contains information about the ‘‘closeness’’
between two universes as has been discussed in Sec. III B

The most striking difference is that the triangular inequal
ity holds for the DeWitt distance by construction, while it
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fails to hold in general for the spectral distance~Sec. II E!.
@Rigorously speaking, therefore,d~G ,G 8! should be called a
‘‘measure of closeness’’ and not ‘‘distance.’’# This fact dem-
onstrates explicitly the nonequivalence between two d
tances. There is still a possibility of choosing the functio
F(x) suitably to make d~G ,G 8! satisfy the triangular
inequality ~Sec. II A!. Even though the choice ofF(x)
5exp~2x! causes the failure of the triangular inequalit
however, it is still distinguished from other possible choic
since it derives the density matrix interpretation of the spe
tral distance~Sec. II B!.

We have enumerated the differences between the
kinds of distances above. However, we can also draw so
interesting parallels between them. LetG andG 8 be of the
same dimension and topology.

As far as the models investigated in Sec. III are co
cerned, both distances correlate well with our intuitive noti
of ‘‘similar ~or different! shapes.’’ Although the two dis-
tances are not equivalent to each other, correlations betw
them are quite strong.

Another interesting parallelism appears when volumes
different. The DeWitt metric is not a positive definite metri
but it includes one negative signature. This negative sig
ture corresponds to the direction of conformal deformation
the superspace~i.e., the change of volume preserving info
mation of angles!. If two geometriesG andG 8 lie on differ-
ent surfaces of constant volume in the superspace, there
the DeWitt distance cannot be defined between them. Si
larly, the spectral distance betweenG andG 8 becomes di-
vergent in this case~Sec. II C!. Significantly, the asymptotic
behavior of the scale-dependent spectral distancedL~G ,G 8!
as L→` still provides information on the ‘‘closeness’’ o
volumes ~Sec. III B!. The above observation suggests th
the difference in volume seems to be quite different in natu
from the other differences in geometry. Combined with t
density matrix interpretation, it suggests that the differen
in volume causes a very strong decoherence between
universes~Sec. II B!. This observation also suggests th
modified way of comparing two geometries: Separating t
information of volume and the conformal geometry a
G5~V,G̃ ! ~vol G̃51!, a set~V,V8! andd~G̃ ,G̃ 8! may be used
as a measure of closeness betweenG andG 8.

Now, let us discuss the spectral distance between u
verses with different topologies. To extract the pure top
logical effects, we have prepared models ofT2 and Klein’s
bottles: Both are locally flat andT2 corresponds to a double
covering space of Klein’s bottle. Thus, they are locally of th
same geometry, and the difference between them is pu
topological. We have then investigatedd(T2,T2)
d~RP2#RP2,RP2#RP2), andd(T2,RP2#RP2) with various
Teichmüller parameters. As a result,d(T2,RP2#RP2) has
turned out to be quite short compared withd(T2,T2) and
d~RP2#RP2,RP2#RP2), taking into account thatT2 and
RP2#RP2 are topologically different~Sec. III A 4!.

Furthermore, we have also investigated the cases ofS2

andRP2 ~both are homogeneous and of the same 2-volum!.
This time,S2 is again a double-covering space ofRP2, so
that the difference in topology is minimal. In addition to thi
local geometries are also different in this case, since~con-
stant! scalar curvatures are different though both of them a
homogeneous.~In this sense, the difference in local geom
is-
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etry is also minimal.! As a result,d(S2,RP2) has again
turned out to be relatively short~Sec. III B!.

Now, we come back to the original question posed at the
beginning of Sec. III: Do universes with different topologies
interfere quantum mechanically? A probable answer pre
sented there was that they decohere with each other strong
since they ‘‘sound’’ differently, resulting in a long spectral
distance. However, the above results suggest that this answ
is not enough to explain everything. We now know that there
are at least some cases in which the spectral distance b
tween two spaces with different orientabilities becomes ver
short.

Clearly, further investigations are needed to clarify this
point. We need to investigate to what extent it is generally
true that the spectral distance becomes very short betwe
two spacesG andG 8, whereG5(S,g), G 85(S/G,g), and
G is a discrete subgroup of the isometry group of (S,g) ~like
our models ofT2 and Klein’s bottles!. We also need to in-
vestigate whether the spectral distance between two spac
with a more drastic difference in topology becomes large
For instance, the case of two hyperbolic surfaces with a dif
ferent genus should be investigated. In this case, the prope
ties of spectra@and the ‘‘length spectra’’~a set of lengths of
all elementary closed geodesics!, which are in some sense
the dual concept of the spectra# are extensively investigated
by means of Selberg’s trace formula@26,31#. At the same
time, in this case, numerical methods are also required to g
explicit spectra. This case of hyperbolic surfaces may be a
appropriate case as the next step in investigations.

Finally, it is appropriate to mention the relation of the
spectral representation with the index theorems@32#. They
have some similarity in the sense that both of them connec
the eigenvalues of some elliptic operator on a space, with th
topological structures of the space. It is clear, however, tha
the spectral representation provides a finer measure than t
index theorems. This can be seen in many respects. For i
stance, the index theorems talk about the analytical inde
indD, which is characterized by the zero modes,
indD:5( j50

m (2) jdim kerDj , or for the simplest case,
5dim kerD2dim kerD† @32#. On the other hand, the spec-
tral representation looks at the whole spectra. This indD
takes the value inZ, while the spectral distance varies inR.
As is seen in the examples of Sec. III for flat tori, the spectra
distance even senses the difference in the Teichmu¨ller pa-
rameters~t1,t2!. On the other hand, we can draw many par-
allels between the discussions of the spectral distance, an
those of the index theorems in the context of the anomalie
of gauge theories@32#. It is interesting to investigate to what
extent these two concepts are understood in a unified pictur
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APPENDIX

Here, we shall discuss briefly the basic properties of t
theta function and the zeta function due to Epstein.

Let Q be a N3N symmetric positive definite matrix
~so that detQ.0). For brevity, let us denote the quadrati
form defined by Q as Q(x1 ,x2 ,...,xN)5Q(xW )
:5(x1 ,x2 ,...,xN)Q

t(x1 ,x2 ,...,xN). The Epstein’s theta
function and zeta function are defined as@19#, respectively,

Q Ig1•••gN
h1•••hN

I ~Q,t !

:5 (
n1 ,...,nN52`

`

exp@2p i ~n1h11n2h21•••1nNhN!#

3exp@2pQ~n11g1 ,n21g2 ,...,nN1gN!t#, ~A1!

Z Ig1•••gN
h1•••hN

I ~Q,s!

:5 ( 8
n1 ,...,nN52`

`

exp@2p i ~n1h11n2h21•••1nNhN!#

3@Q~n11g1 ,n21g2 ,...,nN1gN!#2s ~A2!

~for Res.N/2, with the analytic continuation ontoC!,
where the prime on the summation in~A2! indicates that
(n1 ,n2 ,...,nN)52(g1 ,g2 ,...,gN) should be excluded from
the summation when (g1 ,g2 ,...,gN)PZN, to avoid diver-
gence. Introducing the vector notation~A1! and~A2! can be
expressed as, respectively,

QI gW
hW
I ~Q,t !:5 (

nW PZN
exp~2p inW •hW !exp@2pQ~nW 1gW !t#,

~A18!

ZI gW
hW
I ~Q,s!:5 ( 8

nW PZN
exp~2p inW •hW !Q~nW 1gW !2s.

~A28!

These are related to each other by the Mellin transform
tion,

M sS QI gW
hW
I ~Q,• !2dgW exp~2 i2pgW •hW ! D

5p2sG~s!ZI gW
hW
I ~Q,s!, ~A3!

where,M sf (•)5* 0
`dt ts21f (t), and dgW51 when gW PZN,

and50 otherwise.
They are generalizations of Jacobi’s theta function a

Riemann’s zeta function.@More general definitions than~A1!
and ~A2! are possible@20#, but the above are sufficient for
our purposes.# Just like Jacobi’s theta function and
of

he

c

a-

nd

Riemann’s zeta function, they satisfy the functional relation
which are very useful for physical applications@30#:

QI gW
hW
I ~Q,t !5

exp~2 i2pgW •hW !

AdetQ tN/2
•QI2hW

gW
I SQ21,

1

t D ,
~A4!

p2sG~s!ZI gW
hW
I ~Q,s!

5p2~N/22s!GSN22sD exp~2 i2pgW •hW !

AdetQ

3Z I2hW

gW
I SQ21,

N

2
2sD . ~A5!

The analytic continuation makes the zeta function e
pressed as in~A2! a meromorphic function onC. Its pole
structure and zero structure as a meromorphic function are
follows:

~i! When hW ¹ZN, it is holomorphic onC. There are
simple zeros at least ats521,22,... . Furthermore,
there occurs one more simple zero ats50 iff gW ¹ZN.

~ii ! WhenhW PZN, there is a simple pole ats5N/2 with
residue [pN/2/G(N/2)](1/AdetQ). Simple zeros at
least ats521,22,... . Furthermore, there occurs one
more simple zero ats50 iff gW ¹ZN.

Note that the above-mentioned zeros are only the on
that are found from the discussions of analytic propertie
~‘‘trivial zeros’’ !. Nothing definite can be said for other zero
even for the simplest case, i.e., the case of Riemann’s z
function~corresponding to the case ofQ[1, gW 5hW 50W ) ~one
may remember the ‘‘Riemann conjecture’’@33#!.

We now prove~A4!. Let us remember the Poisson’s sum
mation formula@34#

(
nW PZN

c~hW 1nW !5 (
nW PZN

exp~ i2pnW •hW !ĉ~nW !, ~A6!

where ĉ is the Fourier transformation of
c : ĉ(kW )5* 2`

` c(xW )exp(2 i2pkW•xW )dxW , c(xW )5* 2`
` ĉ(kW )

3exp(i2pkW•xW )dkW . ~Putting the 2p in the exponential is
just for the neatness of the formulas@34#.! Taking ĉ(kW )
5exp@2pQ(kW1gW )t], the right-hand side~RHS! of ~A6! be-
comes

Q I gW
hW
I ~Q,t !,

which in turn is the left-hand side~LHS! of ~A4!. For this
choice ofĉ, its inverse Fourier transformation becomes

c~xW !5
exp~2 i2pgW •xW !

AdetQ tN/2
expS 2pQ21~xW !

1

t D .
Thus, the LHS of~A6! turns out to be the RHS of~A4!,
which proves~A4!.

Noting ~A3!, one basically performs the Mellin transfor-
mation of both sides of~A4! to derive~A5!, but a bit of care
should be taken for the case ofgW PZN. Thus, let us set
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fI gW
hW
I ~Q,t !5QI gW

hW
I ~Q,t !2dgW exp~2 i2pgW •hW !.

Then,

fI gW
hW
I ~Q,t !52dgW exp~2 i2pgW •hW !1

1

AdetQ tN/2
dhW1

1

AdetQ tN/2
exp~2 i2pgW •hW !fI2hW

gW
I ~Q21,t21! ~A7!

because of~A4!. Then, its Mellin transformation becomes

M sf IgWhW I ~Q,• !5S E
0

1

1E
1

` Df IgW
hW
I ~Q,t !ts21 dt

5E
1

`

f IgWhW I ~Q,1/t !t212s dt1E
1

`

f IgWhW I ~Q,t !ts21 dt

5
exp~2 i2pgW •hW !

AdetQ H 2
exp@2 i2p~2hW !•gW #

N/22s
d2hW 2

1

AdetQ21

1

~N/22s!2N/2
d gW

1
exp@2 i2p~2hW !•gW #

AdetQ21 E
1

`

f IgWhW I ~Q,t !tN/22~N/22s!21 dt1E
1

`

f I2hW

gW I ~Q21,t !tN/22s21 dtJ
5
exp~2 i2pgW •hW !

AdetQ
MN/22sf I2hW

gW I ~Q21,• ! . ~A8!

Here, the change of variablet→1/t has been made to get the first term in the second line, and~A7! has been substituted into
the same term to get the next line. Then, the same procedure has been repeated to get the last line. Along with~A3!, this proves
~A5!.

We can see the pole structure of the LHS of~A3!, i.e., ofM sf i
hW
gW i(Q,•) in the third line of~A8!. Noting thatG~s! has

simple poles ats52k (k50,1,2,...) with residue ~2!k/k!, we see the above-mentioned pole and zero structures

Zi hW
gW i(Q,s) from ~A3!.
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