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We investigate the representation of the geometrical information of the Universe in terms of spectra, i.e., a
set of eigenvalues of the Laplacian defined on the Universe. Here, we concentrate only on one specific problem
along this line: to introduce a concept of distance between universes in terms of the difference in the spectra.
We can find such a measure of closeness from a general discussion. First, we introduce a suitable functional
P.[ -1, where the geometrical informatic# (represented by the spectdetermines the detailed shape of the
functional. Then, the overlapping functional integral betwBef - ] andP ..[ - ] is taken, providing a measure
of closeness betweeff and %, d(¢,%"). The basic properties of this distan@eereafter referred to as
“spectral distance,” for brevity are then investigated. First, it can be related to a reduced density-matrix
element in quantum cosmology betwegnand . Thus, calculating the spectral distardi¢s, ") gives us
insight into the quantum theoretical decoherence between two universes, corresporigdiagd®”. Second,
the spectral distance becomes divergent except for idhand " have the same dimension and volume. This
is very suggestive if the above-mentioned density-matrix interpretation is taken into account.dltiyd; )
does not satisfy the triangular inequality, which illustrates clearly that the spectral distance and the distance
defined by the DeWitt metric on the superspace are not equivalent. We then pose a question: Do two universes
with different topologies interfere with each other quantum mechanically? In particular, we concentrate on the
difference in the orientabilities. To investigate this problem, several concrete models in two dimensions are set
up, and the spectral distances between them are investigated: distances between tori and Klein's bottles, and
those between spheres and real projective spaces. Quite surprisingly, we find many cases of spaces with
different orientabilities in which the spectral distance turns out to be very short. This may suggest that, without
any other special mechanism, two such universes interfere with each other quite strongly, contrary to our
intuition. We discuss some curious features of the heat kernel for tori and Klein's bottles in terms of Epstein’s
theta and zeta functions. Differences and parallelisms between the spectral distance and the DeWitt distance
are also discussefiS0556-282(196)06910-X]

PACS numbg(s): 04.20.Gz, 02.40.Ma, 04.60.Gw, 98.80.Hw

I. INTRODUCTION spacetime physics, the situation becomes diffef2@t Be-
cause of the limitation in the observational energy scale, thin
There are many situations in spacetime physics in whictobjects smaller tha& ! cannot be observe@E is the energy
space and spacetime topology takes part. First of all, it is @cale of observation Suppose the Universe is topologically
central problem of modern cosmology to determine whethegomplicated, with two kinds of small topological handles
our Universe is open or closgte., noncompact or compact  attached, one kind of scaleand the other kind of scale,
[1] and what kind of topological structure our Universe pos-| <| . |f our observational energy is between* and| 1,

sesse$2—4]. The so-called worm holeigopological handles  {he smaller handles cannot be observed and the effective to-

attached to the Ung/erﬁ;ﬁ:an cagﬁe marr:y interest(ijng phe- pology becomes simpler than the original one. If the energy
nomena, e.g., geoiiS], charge without chargk], and time scale is decreased further, such that it becomes less than

machines{7]. The phenomenon of the topology change 'SL‘l, bigger handles also cannot be observed, resulting in a

g}e of the most intriguing problems in quantum cosmologymuch simpler effective topology. Such a picture of spacetime

Among these phenomena, we now look at the scaleStructure, that the regl Universe is topologica_lly very compli-
dependent topologyor physical topology [9,10] in more cated, bl_Jt the effective topology becomes S|mp_le_r when the
detail. Mathematically, topology can be looked upon as Lbservational energy scale pecomes lower, originates from
global property of a manifold classified by the concept of WWheeler's spacetime foam pictuf&2]. In short, the scale-
continuity or continuous deformatioria1]. Thus by defini- ~dependent topologgphysical topology can be looked upon
tion, it is a scale-independent concept; i.e., objects with dif2s topology with distinction between big and small handles.
ferent scales, but being continuously deformed to each other,
are identified.

However, once the concept of topology is applied t0 iThe term “handle” usually means an object diffeomorphic to
D'XD""" (0<r=n), whereD stands for ak-dimensional disk,
andn is the dimension of a manifold. In this paper, however, any

*Present address. object that is topologically nontrivial is generally called “handle.”
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There is a clear lack of suitable language to describe suctvhat extent these counterexamples are influential on space-
phenomena sketched in the previous paragraph. To descriliene physics. In any case, it is clear that the idea of the
a sequential change in the effective topology of a space asspectral representation is still worthwhile to pursue exten-
function of observational energy, we first need to formulatesively.
closeness between two spaces whose geometries are differentln this spirit, we shall concentrate on one specific, trac-
globally as well as locally. There is no known mathematicaltable problem, which has been already implied above, i.e.,
theory suitable for this purpose. The aim of this paper is tghe introduction of a measure of closeness between two uni-
formulate the concept of closeness between two spaces frodgrses of different geometrical structures.
the viewpoint of spacetime physics. In Sec. .II, we shgll construct a general theory of the

The main obstacle is the fact that we have to representSPectral distance,” i.e., a measure of closeness between
information of topology as well as local geometry in a quan-\We manifolds in terms of spectra. Then, the physical inter-
titative, unified manner. Let us then pay attention to the ideTetation of this spectral distance shall be investigated. Af-
of using the spectra to characterize the geometrical conteffgrwards, the necessary condition for the convergence of the
of the Universe: Basic vibratiorgarmonics of some matter ~ SPectral distance shall be studied. We shall also define a
field on the Universe should reflect the local and global geScale-dependent spectral distance, which provides a quanti-
ometry of the Universe. For definiteness, (e¥,g) be a com- tative desg:rlptlon of the 'scale—dependent topology. Fmally,
pact Riemannian manifold. Hetgis a positive definite met- W€ shall discuss a peculiar property of the spectral distance,

ric. Therefore(.7,g) is regarded either the spatial section of I-€- the failure of the triangular inequality. This result clearly
the (n+1)-dimensional universe, or the Euclidean llustrates the nonequivalence between the spectral distance

n-dimensional universe. As the simplest elliptic operator,2nd the distance defined by the DeWitt metric on the super-

take the Laplace-Beltrami operator A=g?°D,D,  SPacel18].

=(1/\/§)r9a(\/§gab&b), whereD,, stands for the covariant de- In Sec. Ill, we shall pose a quantum cosmological ques-

rivative operator. Then, we can set up the eigenvalue probt—i_On as to whethgr uni\{e_r_seg with diffe_rent topologiespe-
lem on (./,g); Ag+\y=0 with a suitable boundary condi- cially different orientabilitieinterfere with each other quan-

tion. For simplicity, let us assumeZ= here. Then, a set tum mechanically. We shall use the spectral distance as a
of eigenvalues is o’btaine@&k} 0=>\§<)\1$7\2"'.T°° Thi’s set Stitable tool for analyzing this question. To investigate this

of eigenvalues of the Laplacian clearly contains the informaperblfe_lr_g’ WZ Tga." ,COQStrllJCt cor(;crﬁte thg dimdegﬂg’ n\e/t\l/ mod-
tion of both local and global geometry 6f#,9). Hereafter, els of T* and Klein's bottles, and those &I an - Ve
these eigenvalues of the Laplacian shall be caifeettra for shall then calculate the spectral distances between them. We

brevity. We may be able to treat these spectra as a part of gpal ﬁnd. many cases in Whi.Ch the_ ;pectral distance between
fundamental quantities of spacetime physics two manifolds of different orientabilities turns out to be sur-
The above idea of representing the geometrical content cﬁrlsmgly short. This result may imply that two universes

the Universe in terms of spectra is deeply related to a welWith different orientabilities sometimes interfere quite

known mathematical problem, which is usually stated asstrongly, contrary to our intuition. The DeWitt distances
“can one hear the shape of a drump?3], i.e., a problem shall be also calculated for the casesTdf and they are

asking to what extent spectra reflect the underlyin eom(-x”m.)"’"ed .With the spectral distances. We shall also construct
g P ying g nd investigate the heat kernel f6f and Klein’s bottles in

etry. In this spirit, the motto of our approach may be stated? - !
as “let us hear the shape of the Universe.” Here, the appearI—erms of E_psteln s_theta and zeta fupctm{ng,lg,zq_ .
ance of two terms “hear” and “shape” symbolizes the in- I_n the final sect|on_, the spectral distance and the_d|stance
teraction between physics and mathematics. In short, OLﬁlef'ne.d by th_e DeWitt metric shall be. compared with each
idea is to convert the spatiene) structure(a mathematical other in detail. Several other discussions shall also be pre-
objec) into spectra or “components of soundphysical ob- sented.
jects. This conversion may be called “spectral representa-
tion” of the spacetime structure. Il. THE SPECTRAL DISTANCE AND ITS PROPERTIES

There are several advantages of such a representation.
First, spectra represent the information of local and global
geometry in a unified manner, which is suitable for applica- In this subsection, we shall search for the measure of
tions of quantum gravity and cosmology. Second, the speceloseness between two given manifolds. ILe¥,g) be an
tral representation is a representation of the geometry im-dimensional Riemannian manifold. For clarity of discus-
terms of a countable set of real, positive numbers, which ision, we shall assume that#,g) is compact andy has the
easy to handle. Third, spectra are the diffeomorphism invariRiemannian signature, and not the pseudo-Riemannian sig-
ant quantities, which is appropriate from the viewpoint of nature.[Thus, (.Z,g) can be regarded as a mathematical
general relativity. model of the spatial section of the{ 1)-dimensional uni-

However, we should keep the following point in mind verse, or a model of the Euclideanrdimensional universe.
from the very beginning: There exist the isospectral maniHereafter, we may sometimes refer {07#,9) as just
folds, i.e, two Riemannian manifolds that are nonisometric td‘space” or “universe,” depending on the contektThe
each other, but have identical spectra. Such a case has firsianifold (.#,g) includes two types of information: local ge-
been constructed by Milnor of*® [14], and several other ometry and global topology. We shall use the teyeometry
cases have also been presented [tB~17. Thus, in gen- in the broadest sense, including both. We shall also use the
eral, the information contained in geometry is larger than thesymbol 2" to represent the geometrical information contained
one represented by spectra. It is uncertain, however, as io (.#,g) in this broad sense.

A. The spectral distance
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Now, suppose two geometriés and ' are given, cor- Roughly speaking, in the above functional, the appearance of
responding to manifoldé #,9) and (.#',g'), respectively. the metricg reflects the local geometry, while the integral
Our goal is to find a suitable formula for the “distance” over.Z reflects the global geometry.

d(«v,%"), representing a closeness betweghand <’ in However,of -] is not enough for our purpose since it takes
terms of the eigenvaluethereafterspectra for brevity) of  an arbitrarily large positive value so that it cannot be normal-
some elliptic differential operatdd. From the viewpoint of ized. Thus, let us fix a suitable functidf(-) such thatP[-]:
physical applications, the most interesting and simplestF(q{-]) is well behaved. In view of the preliminary con-
choice is to take a® the Laplace-Beltrami operatah, sideration aboveR[-] should satisfy

A=g?"D_Dy=(1/1/9) d.(\gf®,), whereD, stands for the

covariant derivative operatdrThe basic idea for doing this (1) P[-1=0 f [df]P[f]=1

is as follows:(1) Instead of comparing geometries directly ’ '

(which is difficult), introduce a suitable function&® ] -],
where the information of a geometfsy enters into this func-
tional as a parameter and reflects on the shape of the fun
tional. (2) By taking the overlapping functional integral be-
tweenP.[-] and P.[-], we can indirectly measure the
closeness of two geometriés and <.

As a preliminary consideration, let us deal with functions(“) the weight should be higheflower)
instead of functionals: Suppose we need to introduce a con-
cept of closeness in a sét={a,b,...}. First we fix a func-
tion in which each element af” enters as a parameter,
{Pa(-).pp(-),...}. [For instance,” is a set of positive num-
bers andp,(-) is a Gaussian function with dispersiar] Let
us choose functiong;(-) (i=a,b,...) such thatp;(-)=0 and
[Z.pi(X)dx=1. In this case, a suitable overlapping integral
is &=/ “..[pi(x)p;(x)]%x, which has the propertie§)
&i=&i, (i) 0sg=<1, and §&;=0=p(-)p;(-)=0,
&j=1epi(0)=p;(-).

Thus, we can define a measure of closeness betineah
jas

Furthermore, we shall need a physically sensible “dis-
Ea_mce” applicable to the analysis of the scale-dependent to-
pology, which requires that smaller handles should be ig-
nored under certain conditions, compared with larger
handles. Thus,

for the longer(shortej scale behavior of¢.

There are still various possibilities that remain for the
choice ofF(-). Here, for several reasons, we shall choose one
possibility among many otherk,(x) =exp(—x): First, itis a
simple function that is easy to handle. Second, it makes it
possible to relate the distance with a physical concept, i.e.,
the quantum decoherence of the universes, which shall be
discussed in detail in the next subsection. Third, it satisfies
the requirements$l) and (I1): Consider the eigenvalue prob-
lem A¢+ N =0 (with a suitable boundary condition;
mainly the case of.7 = shall be described hejelhus we

o get the spectraB\g<\;<\,---Too={\,}. If f is expanded in
d(i,i)z—ln&j:—'nf [pi(x)p;(x)]M2dx. terms of the eigenfunctionge,), f(-)=2r_oardi(-),
o then, o [f]=32;_o\¢2. By choosing F(x)=exp—x),
Then,d(i,j) takes some value betweer(@mplete overlap- thus, P,[f]1=exp(~3Z;_ohkei). This satisfies(l) obvi-
ping) and (complete nonoverlappingHere ends this pre- ously by choosing a suitable measure for the functional inte-
liminary consideration. gral. Noting that the smalleflargep A, in {\,} coarsely

There are several possibilities for the choicePof - ] and  reflects the largetsmalley scale behavior of¢, the above
the form of the overlapping functional integral. Here, we arechoice also satisfiedl). (Compare two values d? [ f] for,
interested mainly in the physical applications of the distancesay, f~ ¢35 andf~ ¢440)
so that we have to select a “physically interesting” distance Now, we shall formally generalize the procedure in the
among other possibilities. preliminary consideration. First, from the normalization re-

First, we clearly need a distancé%,<”) that is diffeo-  quirement ofP [ -] in (1), we find
morphism invariant with respect tov.r.t) < and¢". As a "
simple functional that is diffeomorphism invariant, which re- . [ Ak
flects the global as well as the local geometry, and which [df]_kﬂl Edak’
includes the derivative operat@ince it should be related to
the spectra of a differential operatowe takeof -] defined  where the zero-modg, is understood to be removed if it
as appearge.g., the case of. Z=(). Formally repeating the
same procedure as in the preliminary consideration, then,

1 1
o= =53] gvutate. @
- - §<:f,f/'>=f [dfI(PLfIP,[f])¥2
2Another interesting choice @3 may be the Dirac operator. In o day 1\ 1/4 1 2
= —— (A exp — — AmTA
this paper, however, let us confine ourselves to the case of the kll (277)12( M) 4mE:1 (At Am) iy

Laplacian, since it is more basic and well investigated in geometry.

% T\ ) —1/2
3We can also choose agfl:=3 [, {(3f)2+u?f?}. Here, u is a =11 1 \/E+ \/E )
smooth function. Then, the spectra are shifted, but there is no es- =1 | 2 )\{( N )
sential difference. Therefore, let us assume the simplest form,
Eg. (D). Thus,
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d(%, 9" =—Iné&(%, <) a). The total action is given bythe signature is chosen as
. (_1+1'“1+)]
1 1 A Ay
=32 In—(\/:,+ \ﬁ) 3 1
252l Ve T SRR ;J Rv—9+f (=320 0= 3m*¢%) =g
For brevity, let us refer to this quantity as the “spectral dis- = :Syral “1+ Smatel 72 1,

tance” between¢ and ¢".

Finally, let us note one subtlety included in the above
procedure for deriving Eq(2): In taking the overlapping
functional integral,[[df](P,[f]P,[f])Y? a prescription
for the identification of a functiorf defined on with an-
other function f defined on%” should be fixed. Here, we
have chosen the following prescription: L&t and " be
compact Riemannian manifolds, abdbe an elliptic differ-
ential operator. Let 8N<N=<\,--Joo={\,} and
0=N{<N1=<Ay--Too={\{} be spectra oD on ¥ and ¢,
respectively, numbered in increasing order. Then, we hav
sets of eigenfunctions db, {¢(-)} and{¢(-)}, corre-
sponding to{\,} and{A \}, respectively. A functiorf(-) on
¢ can be expanded in terms pH, ()}, T(-) ==, di(-).
Then, our prescription is thd(-) on < is identified w.r.t.D
with a function=,a ¢ (-) on &".

In cases wher¥” and " are within some one-parameter
family of geometries, this prescription may be justified rig-
orously through the adiabatic theord@il]. Therefore, this
way of identification seems to be the most natural one. Thi
subtlety of identifying functions on different spaces also
emerges in quantum field theory on a curved spacetime. Th
same prescription is implicitly adopted in this cag®ee the
next subsection for more detajl€ven if there is a better
prescription, the basic idea and procedures remain the sa

whereq is a suitable gravitational constant. Here, the spatial
geometry ¥ and the scalar fieldp induced on.¥ are the
configuration variables. This system obeys the quantum
theory, described by the Wheeler-DeWitt equatid8],
HWY[<,¢]=0, whereH is the Hamiltonian constraint ob-
tained fromg &, #]. In the semiclassical region, it may be a
good approximation to do the quantum theory separately for
Sgral 7] @and Spanel -£,¢0]: On the one hand, we regard that
gje dynamics of¢ is approximately described solely by
gral - 1, ON the other handyp is described byS, el ],
with < treated just as parametei@ssumption p° Thus we
set the ansatz foV[<,¢] asV[ S, dl=¢[ S )74 <, ]

Now, let us considenr] ., ¢], described byS,uel &)
Choosing N=1, N;=0, Sjater becomes Syl s, ¢]
=1[{#*— p(—A+m?)p}\h (h:=deth,,, h,y is the induced
spatial metrig. It is natural to expandb(t,X) in terms of the
normalized eigenfunctiongg,(X)}, of the elliptic operator

r=—A+m? satisfying eigenvalue equations

& ()= (AP (+), with a suitable boundary condition
ompatible with the action principle fdB [ <,®]. Thus,
(t,-) =2 (t) di(-). Then, Smatte[f?vgi’]zik%f[aﬁ
—Md(D)afldt, which is equivalent to a collection of har-
rﬂﬂew,onic oscillators(note that¥ is now treated as a fixed

and only the final result Eq2) would be subject to some parameter® Afterwards, it is in principle straightforward to

modification. Here, let us adopt the above-mentioned preguaqti;e this system. Tec_hnica_lly, the simplest way to quan-
scription tize it is to choose the adiabatic vacuum as a quantum state

(assumption t We assume that the typical time scale of the

change in the fieldp is much shorter than that of the change

in geometrys. Then we define the vacuum state at each
Physically, it is natural to expect that the geometrical in-instant of time:

formation reflects the behavior of a field distributed on

(.7,9). In fact, the functionab{ -] [Eq. (1)] is in the form of B A(£)

the action of a scalar field o6/,g). [Note, however, that o %,1=11 ( oy

(.#,9) is Riemannian.Thus, one may suppose that the spec- g

tral distanced(<,<") yields a physical interpretation. In- ) ) . .

deed, the quantitg(%, ") =exd —d(%,%")] [Egs. (2) and The density matrix of the Universe may be defined as

(3)] turns out to be related to a reduced density matrix ele-

ment for the Universe, which appears in the discussions of p(£,¢;5" ") =V[ L, V*[ 5", d"].

the emergence of the classical world from the quantum uni-

verse[22—24. Let us now see this point in order to make To give meaning to this density matrix, the wave function

clear the assumptions behind this coincidence, i.e., the relap| 4] should yield the probabilistic interpretation. This

tion of d(:7,¢") with a reduced density matrix element.  means that¥[,¢] should be understood as normalized
Let us consider the system of gravity and a massless sc@y v t. a suitable inner product, or some alternative interpre-

lar field? It is interesting to consider other kinds of fields

also, the Dirac field, for instance. However, the structure of———

the vacuum state for a fermion field looks quite different ) . .

from that for a boson field, at least mathematically, and re- "JUsually, this treatment is regarded as valid on grounds of the

quires separate investigations. To avoid extra complications Smallness” of a. More rigorously, the typical amplitude of quan-

therefore, let us consider only a scalar field h@ssumption tum_fluc_tgatl_ons of spacetlme should be taken into consideration for
the justification of this treatment].

81t is notable thatg appears in the theory only through a set of
expansion coefficientsa,} w.r.t. {¢,(-)}, a set of eigenfunctions
“There is no essential difference between the massless case afui D. In this sense{a,} can be regarded more fundamental tigan
the massive case. itself.

B. The physical interpretation of the spectral distance

1/4
exd — I\ (D) adl.
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tation for W[£,¢] should be providedassumption i To  &@aa’)=limy_ ..exd—(N/4aa’)(a—a’)?] appears, which
discuss the quantum decoherence of the Universe, one magrees with Eq(2), with \,= (k/2)a?.® Referencd24] reca-
treat s as the system variable agfas the environment, and pitulates the arguments of Ref&2] and[23] in more gen-
take the partial trace w.r.t¢ [remember the ansatz for eral terms. It even implies the idea of the distance, though no
V[, o]l further investigationge.g., its convergence condition, com-
parison with the axioms of distancare pursued. Needless to
say, these work§22—24 are all subject to the assumptions
and subtleties pointed out above.

Let us summarize the physical interpretation of the spec-
— o[ Ao [ & d < Je tral distanced(:¢,") introduced in Sec. Il A: The quantity

el7le" ]J[ Sl ¢ 4] &, ¢")=exd —d(¥,¢")] boils down to a reduced density
— D[ L E( T & matrix elementfor a system of the univerge’) and a scalar

oLzl [11e(2,77), field (¢), with ¢ being traced odtunder the following con-

where&(%,%") exactly agrees with the one given by Eg),  ditions:
the latter being expressed &%, ¢")=exd—d(<,2")]l. (3 A suitable inner product between the wave functions of
Therefore, in our terms, the longer the spectral distance  the Universe W[,4] and V[<",¢'], can be defined,

d(,") is, the smaller the corresponding off-diagonal ele- so that the density matrix admits quantum theoretical
ment prequced 6,¢") is, implying the stronger decoherence interpretation.

H e (/// . ) )
between the universes and . (b) The spacetime can be treated semiclassically, and the

In taking the partial trace w.r.t.¢, the operation . o i
) ; : . scalar field¢ on ¥ and & is in the ground state and
o= * ((// -
Jld¢] 7l &, ¢l7° [, ¢] should be of meaning. This proce can be treated adiabaticallithe time scale of the

dure contains two subtle points: First, it corresponds to com- chanae in the field is reqarded as much shorter than
paring states for two different harmonic oscillators with dif- g . 9
that of the change in geomejry

ferent frequenciesN, (%) and\ (")]. Mathematically, it is
just a change of basis in a functional space. However, physi-
cally it presupposes the identification of two Hilbert spaces, This coincidence of(.¢,:¢") boiling down to the reduced
one characterized by, (%), and the other by, (%”"). Thisis  density-matrix element suggests several important things.
not within the framework of ordinary quantum thedriec- First, the specific choice ¢%(x)=exp(—x) in Sec. Il Ais
ond, a reasonable prescription to identify a functibon & clearly distinguished among several possibilities from the
with the same ori” should be fixed. The rule adopted here viewpoint of physical applications.
is to identify =, a,d(-) with S a,p (). Here, {¢(-)} Second, once we obtain a satisfactory quantum theory of
and{¢.(-)} are eigenfunctions db on < and %", respec- gravity in the future to comput@ cquceds,-¢") exactly, it
tively. Thus, we face the same subtlety in identifying func-would be relevant to define “closeness” betwegnand &’
tions defined orfs’ and <" as discussed in Sec. Il A. These 8 —IN{prequced 2, ¢ Nel“1e*[¢"]}. In other words, the
subtleties always emerge, explicitly or implicitly, whenever more strongly two geometries interfere with each other quan-
we discuss the quantum field theory in curved spacetime. Alum mechanically, the “closer” they can be regardadsug-
we can do at present is to expect that once the inner produg€estion from physics for mathematics
in a space of wave functions of the Universd,<,¢], shall Third, one may be able to estimate
be correctly fixed, and a complete interpretatiorigfs,¢]  Preduced? ¢ N el £1@*[£'] by calculating exp-d(.£,%")]
shall be given, this problem would be automatically solvedaccording to(3) (a suggestion from mathematics for phys-
(assumption e (Therefore, assumptions d and e are deeplyicS)- Needless to say, we have no satisfactory theory of quan-
linked with each othey. tum gravity at present, so that.q,..4¢.¢") cannot be cal-
Referencd22] may be one of the earliest works that paysculated exactly. However, the reduction dif,”) (which
attention to the reduced density matrix for the explanation ohas been derived from general arguments and which is ap-
the classical behavior of the quantum universe. Referencelicable to any geometries in  principle into
[23] pursues this idea explicitly for the case of the perturbed=Mprequced s, N £1¢*[' ]} (estimated approximately
Friedmann universe with a massive scalar field, based on th&#hen ¥ and ¥" are restricted to be of the same dimension-
model of Ref[25]. In this case, unperturbed quantities, i.e.,ality and topology, is very suggestive and should be mean-
the scale factoa(t) and the homogeneous component of theingful. Thus, we can infer the following equality:
scalar field,@(t), correspond to ou. For the tensor modes
of perturbations, for instance, one can essentially set  d(¢,%")=—In{prequced &< ) o[ L1e*[ <]}
A= (k/2)a?. Then the suppression factor
In connection with the conditiorfa), we should note the
following: The inner product between two wave functions

preduce&'(fé/iff,)zJ' [doplp(L ;<" )

"One situation in usual quantum theory, which is of some similar-
ity with the present problem, appears in the discussions of the adia-
batic perturbation§21]. In this case, the Hilbert space for the sys- ®More precisely, because(t) is also included in the category
tem characterized by parameters, say can be asymptotically of our ¥, the combination K/2)a’-i2a®m¢ is to be
related with the other Hilbert space characterized ddy when  identified with X\, vyielding the factor &@a,¢;a’,¢’)
w—w'. However, the problem of our concern requires even the=limy_... exd —(N/4aa’)(a—a’)?lexd — (7/4m?aa’ (¢— ¢')?]
comparison of two drastically different Hilbert spaces. [23].
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defined on two different superspaces is much less knowtopology of .7, but does not depend on a detailed local
than the inner product between wave functions defined ogeometry of(_#,g). From (4c),

the same superspadgor instance, universes with different

dimensions or with different global topologies are subject to Ao (wpV)2N
different superspacedn other words, there is no established e m
way of comparing universes with different global structures. n

This is_ the main obstacle that prevents us from undertaking—r1us the necessary condition for convergence(6f,%") is
extensive studies on the phenomenon of the topology

change. At the same time, this is one of the motivations for dim _z=dim 7', vol .z=vol . 7', (5)
the introduction of the spectral distan¢®ec. ). At present,

we are usually forced to restrict ourselves to the comparablyhjs result is quite suggestive. According to the density-
moderate cases in which universes lie in the same superspagftrix interpretation with caveat A, this suggests that two
(in most cases, minisuperspace or its generalizat&ssum-  unjverses with different dimension or volume decohere very
ing somehow the inner product. strongly.

Regarding the relation between the spectral distance and Finally, we should note that E@5) is just the necessary
the reduced density matrix, therefore, one had better keep thmndition for convergence, but not a sufficient one.
following caveat in mind: Only for the cases whgnand¢”
are subject to the same superspéypically, of the same D. The scale-dependent spectral distance
dimension and topologydoes the above equality hold safely

under several assumptions. For other cases, it should be re- Flrog1 thedfor:nula Itqu(?:j) tvve arE n.atturzllylled to tth?f .
garded as an extrapolation. scale-dependent spectral distance by introducing a cutoff in

. . ’
Since this caveat should be always remembered whenevg}e summation: We compare the subset{)gff and {A i}
constructed from elements less thAn It corresponds to a

we connect the ;pectral distance with _phyS|_caI |_nterpreta(-:oarse comparison of two geometrigsand ', neglecting
tions, we refer to it as caveat A, for brevity. It is quite prob-

> e PTOD” the difference in the smaller scale behaviors thart’2
able that(some modified form 9¢fthe above equality will More specifically, let us define
turn out to be generally true once a satisfactory theory of '
quantum gravity is provided. Ny i =Min(#{\ e {N 0=\ <A},

r_
k2/n 2n as k— o,

C. The convergence condition of the spectral distance #{N e (N O=N <A}).

Let us now investigate the necessary condition for the A
convergence of the spectral distance, since its definition i terms ofN, , we definek  as
Eqg. (3) includes an infinite summation. Clearly, tineces-
sary condition for convergence is WA | Nk for k<N,
k=™

- AN for  k>N,,
@ ! 1 )\k )\k
ak(Q//,://‘)::E FJF " —1 ask—ow, N
k k then,{\ i }={No. N1, Ay, ANy AN, -} [N the same way,

A
. 1Ay ' ’ ' ’ ’
Note thata =1, = A=\ [ . Thus the necessary condition W& define {"}={kg, A1, Ay Ay, An, o-oof- Then, we
for the convergence ofl(:£,¢") is N{/\—1 as k—o. define the scale-dependent spectral distahdes,<") as
Now, we have Weyl's asymptotic formulg6,27], which

can be represented in several ways, - 1M N )\,QA
dA(ff, ff’)z —E In = —xt - (6)
o0 2k:1 2 )\k }\k

1
> exp—\d)= ;s V+O(1)  astl0, (43
k=0 (4mt) There are other possibilities in the way of introducing a
cutoff. For instance, instead of taking the minimum of the

N(A)~ ann A" as A—soo, (4b) two numbers in the definition dfl,, , taking the average of

(2r) the two numbers is one possibility. Replacing minimum by
maximum is another possibility. Weyl's asymptotic formula
(2m)" \2h Eq. (40 guarantees that the difference caused by different
M~ oV k as k—x, (49 choices becomes negligible whanis sufficiently large.

It is interesting to investigate the behaviordyf(:¢,<") as
wheren=dim .7 =dimension of #Z, V=vol .Z=n-volume  a function ofA for given ¥ and¥". For instance, suppose a
of 4, N(A):=#{\ \(<A}, andw, :=n-volume of a unit geometry¥” with a very complicated topological structure,
n-disk in R" (e.g., w,=m). Significantly, theO(1) term in  &=<"#h,#h, ---#h_,, where h’s are some topological
(4a) reduces tox(.#)/6+0(t) whenn=2, .7 is compact, handles of a typical scale When the cutoff parameteX is
and o.# =, wherex(.#) is the Euler number of7 [26].  increased smoothly, the spectral distamgg.s,¢") is ex-
We shall come across the application of this result in Sec. lllpected to increase abruptly near-172, indicating that%
Weyl's asymptotic formula4c) states that the asymptotic and.¥” are almost similar in the scale larger thiamut they
behavior of \, (k—) depends on dim#, vol.#, and are very different in the scale smaller thiarThis provides a
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guantitative representation of the scale-dependent topologgdvance that in Sec. lll, where two-dimensional models shall
or topological approximatiof10]. As already mentioned in be investigated, many cases shall be found in which the tri-
Sec. |, the concept of scale-dependent topology or topologiangular inequality does not hold. Thus, the spectral distance
cal approximation has many interesting applications. How-does not satisfy the triangular inequality in general. The
ever, its rigorous quantitative formulation is quite difficult: It spectral distance can be written as
requires the concept of “closeness” between two topologi-d(:£,¢")=32 r_,d(£,%") [see Eq(3)]. It is interesting to
cally different Riemannian manifoldgl0], for which we investigate the condition for the term-wise violation of the
have no mathematical theory as yet. To make this concept dfiangular inequality: First,

“closeness” or “distance” physically sensible, it should

have some connection with physical quantities. In this re- d(Z, ) +d (£, 5 =In3{3(1+ l/a)\/E
spect, the quantityd,(%,¢") is a good candidate for the .
measure of closeness betwegnand %, since it is defined +2(1+ a)l/\/ﬁ}:

in terms of spectrdwhere a matter field plays the role of a
probe for the geometrical structure of the Universad  Wherea:=y\ /N and B:=\ /N . Next,

since it can be related to the reduced density-matrix element

for the Universewith caveat A as discussed in Sec. Il B. In d (2,2 " =Ink(JB+1IB).

Ref.[10], the quantitative description of scale-dependent to-

pology has been investigated in terms of the scattering crodsow,  (1+a H)VB+3(1+a) VB - (VB+VB H=—-(1
sections, treating topological handles as a scatterer. One re-a){2a+\/B (a—B)} "%, which is negative wheB<a<1 or
striction of this framework is that it requires an asymptotic 8>a>1. Thus,

region with trivial topology to set up a scattering problem.

On the other hand, the description in terms of the scaledi(4,<")+d (<", 5 ") <d(£,<")

dependent spectral distance does not assume such an asymp-

totic region. SMSNSNE OF N> A> Mg ()

Three geometries”, &', and. " satisfyingh <\ p <\ y
E. The failure of the triangular inequality (k=1,2,...) can beconstructed easily if the difference in

. : : volumes is allowed. Note that the eigenvalues scale as
The ordinary requirements for a functieh SXS—R (S )\kocV‘Z/” w.r.t. n-volumeV. Thus, any conformally equiva-

is a sef to be regarded as a distance are e @ on
(1) Positivity: (3 d(p.q)=0, (b) d(p.q)=0sp=a. Ient( geor:wftrles AR and_ G _s_uch that
(1) Symmetry:d(p.q) = d(q.p) vol &>vol &' >vol ¥” satisfy this condition. Thus,
i) Tyhe triag-ulgr'?n; ua?"'tp 8.0 d(ar)=d(p).  BAA)HAA(S S N<dy(,2 ) in this case.(The cut-
ch q ; ,y P.g q.r)=aip.r). off A is needed, since volumes are differgtlowever, we
The spectral distancd(.¢,¢") clearly satisfiegla) and also want to know the case of-.) (corresponding to the
(1. As for (Ib), we know counterexamples that do not sat-Case of A—se). We are then Ie(;l to a que?stion‘ gDo three
isfy “=": There are examples of a pair of nonisometric : > o o ; X
geometries ¥ and ¥’ whose spectra are identical g?n?q/f_tré?; ;_ diﬁ: (’;,, an\(leI <;—vol ?;,'s_tvolsgc,,h at:gt
_ ’ . . . 6 . . _ B . - . y B . - . y
{.}‘k}_{}‘ k}- Two nonisometric geometries ari® with iden M<A <Ay (k=1,2,...)?This is a highly nontrivial ques-
tical spectra have been given by Milnfit4]. Later, other tion and it seems that the answer is not known as yet
examples were construct¢dl5, 1§ and they are called iso- In this connection, let us remember the distance in the

spectral manifold$17]. [Note that the necessary conditions : .

o i . AR ! superspace defined by the DeWitt mefd8]. Although the

& e ws = 7/ . .. e .. . .
for ¥ and ¥ to be isospectral are dié=dim ./’ and DeWitt metric is not the positive definite metric, the latter is

vol .///é:vo! A . by Weyl's asymptotic formula Eq(4c).] induced on a surface of a constant volume in the superspace.

Bn this surface, then, the distance can be defined using this
éaositive definite metric. Obviously, the distance thus defined
Shtisfies the triangular inequality as in ordinary Riemannian
IE)eometry. Thus, the failure of the triangular inequality for
the spectral distanceexamples of which shall be shown in
he next sectionexplicitly demonstrates that the spectral dis-
ance and the distance defined by the DeWitt metric are not
equivalent to each other.

terms of the spectral distance w.r.t. the Laplaclah

These isospectral manifolds do not seem to be generic,
that they may be identified in the space of all geometries. O
the identified spacdjb) can be regarded to hold well. This
observation implies that the spectral distance is a “coarser
distance compared with the distance defined by the DeWi
metric[18] (for manifolds with the same dimension, volume,
and topology. Employing the density-matrix interpretation
of the spectral distance, it might imply that a pair of isospec-
tral spaces interfere with each other strongly. However, itis !l CLOSENESS BETWEEN THE ORIENTABLE
uncertain as to what extent these exceptional cases have an ~ AND THE NONORIENTABLE UNIVERSES
influence on the applications to cosmology.

Finally, we investigate the validity oflll) the triangular
inequality,d(<,¢")+d(¥’,%")=d(¥%,<"). We mention in

We apply the spectral distance to quantum cosmology:
We ask whether universes with different topologies interfere
quantum mechanically. A probable answer that one might
give would be that they decohere with each other since they
“sound” different, resulting in a long spectral distance. To

®However, some other elliptic operators can yield the spectral disinvestigate this problem, let us set up several concrete mod-
tance that distinguishes the isospectral manifolds wAr.t. els in two dimensions with various topologies, and investi-
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gate the spectral distances between them in detail. In particu- 1 1

lar, we shall concentrate on the cases (@f) T? and A= — g(Nh®3) = (| 7|20 271 010,+ 35).
RP2#RP? (Klein's bottle) and (B) S* andRP?. Here,T? is vh T

a covering space d®P*#RP?[11], and the former is orient-  \when 70, the spectra become

able while the latter is nonorientable. The relation between ’

S? andRP? is also the same. We shall construct models of 47? > 5 1 ) )

T2 andRP?#RP2, both of which are locally flat. Then, we )\mm:7(|7| m*—27mn+n)=:47°Q(m,n), (9

can focus on the effect of the difference of global topologies,

or the difference of orientabilities, in this case. We shall alsowith normalized eigenfunctions

construct models 08? and RP?, both of which are homo-

geneougconstant curvature spage8y making the antipo- Uo,g=1 for (m,n)=(0,0),

dal identification on a 2-sphere with radiy@R, a homoge- |, - V2 cog2mmé+27ng?)  for (m,n)e.%—(0,0)
neousRP? with 2-volume 47R? can be constructefil1]. (mm , L 5 ’ T
Therefore, the difference betwe&? and RP? in this case V(mm= 2 si2mmé'+2mng?)  for (m,n)e.#—(0,0
includes a difference of local curvature as well as a differ-

ence of orientability. Thus, this is the simplest case in whic Where,%i:zNon—{O}x(—N), N:{1,2',...} ‘.”mdNO:.:{O}UN' .
. . t is convenient to represent the multiplicity of eigenvalues in
local as well as global geometries are different.

As discussed in the previous section, the spectral distanc,%1e form of a "spectral diagram” as shown in Figcal.

can be interpreted asd(¥,%")=—In{pequcedZ:¥") > T2 Th —
: g ' 4 . T? The case ofr'=0
o Fe*[ ']} with caveat A. Thus, the spectral distances for

(A) and (B) provide us with some insights for our above- The case 0f71_=0 should be treated separately. In this
mentioned question. case, the Laplacian reduces 0=(1/7)[(7)%%+d3]. The

spectra become

A. T? and RP%#RP? 2
Am a2 214 2
As the simplest class of models, we shall investigate Amn="= [(79)"M"+n7]=:47°Qo(m,n), (10
spaces(3) constructed a&=R?%G, whereG is a discrete
subgroup of the Euclid group dR? acting freely onR%  with normalized eigenfunctions
There are only five types of spaces constructed in this man-
ner: R? a cylinder, a Mbius’ strip, T?, andRP?#RP? [28]. 1, (m,n)=(0,0)
Among them, onlyT? andRP?#RP? are compact. Thus we Uymm=1 V2 cos 2rm¢Y, 2 cos 2mg?, mneN

choose these spaces as our models.
P 2 cos 2rm¢! cos 2rng?,  (m,n) e NXN,

1. T?% The case ofr'#0

A torus T? can be constructed by choosing f@ra trans- u2(m,n):[
lation group, G={ma+nb} (m,neZz), where a=(1,0)/

J72, 6=(7'1,7'2)/\/?(72>0), and Z={0,+1,+2,..}. Here a

set of two real paramete(s’, ) (#*>0) are the Teichmiler |, :[
parameters, characterizing the global shape of a {@@is® s(m.n)
We fix the volume ofT? to be unity, which is taken care of _ _
by the factory/72 in the choice ofi andb. It is convenientto  Us(m,n)=2 SIN 2rmé! sin 2mng?, (m,n) e NXN.
introduce a coordinaté&!,£%) defined by

el
== ¢
y/ 217 \0
) _ 1o - - formula for N(\) [Eq. (4b)] to hold well. [By folding the
In this coordinate systent¢”,£%), a and b can be ex-  gjagram in Fig. 1a) along them axis, one obtains a diagram
pressed as=(1,0) andb=(0,1), and the identification by that matches that in Fig.(1)].
G reads(&,&)~(&4m,&2+n) for Ym,VneZ.
The flat metric is given byls?=dx?+dy?=h_,d&'d¢?, 3. RP24RP? (Klein's bottle)
where

J2 sin2mnég2, neN (m=0)
2 cos 2rmét sin 2rnég?,  (m,n) e NXN,

V2 sin2mrmégl, meN (n=0)
2 sin 2rmét cos 2mné?,  (m,n) e NXN,

The spectral diagram for this case is shown in Fidp).1

1 ] Comparing the spectral diagram fet=0 with that for

+§2( 7-2 (8)  m+#0, we see that the distribution of spectra is modified but
T this modification is such as to guarantee Weyl's asymptotic

The Klein’s bottle can be constructed by the point identi-
fication shown in Fig. 2.
) [|T|2;:(Tl)2+(72)2]_ In mathematical terms, it can be constructed Fb%/G,
where G=(ZXZ)X¢Z, (Xg denotes semidirect product
, [28]. Now, an explicit representation &b will be given:
Thus, the Laplacian becomes Take (&,&%)-space aR? Let | =diag1,1), B=diag1,—1)
and letti="'(1,0) andv="'(0,1) (i andv are eigenvectors of
B with eigenvalues 1 ane 1, respectively. Lett;, t; repre-
in this paper,” always represents the second component ofsent translations oR? by t andv, respectively. We choose
(7,7, and not the square aof:=7+i72. guantities of the form A,t;) as a group elementA=I or

1

N.n=
ab;Z

7|
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FIG. 1. (a) The spectral diagram foF? (##0). Symbols i and ii

At [HA ]|
Fibfkikik]k
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A A A}
ik ik{b b
A

FIG. 2. Klein's bottle constructed bR%G. All line segments
that are parallel to each other should be identified, respecting the
direction shown by an arrow sign. A special letter is drawn to
visualize the way of identification.

implying G=(ZxZ)XsZ,. FurthermoreR?/G corresponds
to the point identification shown in Fig. 2, producing Klein's
bottle RP?#RP?.

The connection of(&,&%) with the standard coordinate
(x,y) is the same as in Eq8) with the restriction7=0:
Because of the particular direction of identification as shown
in Fig. 2, the deficit angle occurs whet0, contrary to the
case ofT2. Thus we shall investigate only the casesb#0.
The eigenvalues become

2
A= [(7)2mP 4 2], (11

with normalized eigenfunctions

1 for (m,n)=(0,0),

represent the multiplicity 1 and 2, respectively. For instance, the \/E cos 2rmét for meN, n=0,

multiplicity of the eigenvalue, g o (zero modgis 1 and the same of
the eigenvalue\, 5 is 2. (b) The spectral diagram foF? (7'=0).
The symbol iv represents multiplicity 4.

B) and define a multiple rule as A(t;)(A’,t;)
=(AA't;.23). Then, G is defined as G:
={(B,t5)™(l,t;)"Im,ne Z}. By simple manipulations,

(B, ta)™(1,t5)"=(B™, tmiis (—ymnp) -

Here, let us note tha™=1 whenm is even, and=B when

mis odd. Then, this element & acts on any poing in R?

as @B,ty)"(I,t;)"é=BMé+mi+(—)Mno. If we represent
(B' tmisns) @S [m,n:(=)'] (m,n,l € Z), then the multiplica-
tion rule reads

[mn:(=)')m".n": (=) I=[m+m’.n+(=)'n": (=),

J2 cos2rng2  for m=0, neN,
2 cos 2rmé! cos 2rné? for meN, neN,
2 sin 2rmét cos 2rné? for meN, neN,

and

472
)\m+1/2,n:_7_f[(72)2(m+ 1/2)2+n?], (11b

with normalized eigenfunctions

2 cos 2r(m+1/2) & sin 2rné? for meNg, neN,
2 sin 2r(m+ 1/2) &* sin 27rng? for meNy, neN.
The spectral diagram is shown in Fig. 3. Compared with the

diagram forT%(#=0) [Fig. 1(b)], the appearance of modes
characterized by half integen is characteristic. However,
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FIG. 4. AN~k plot for a torus with(+,7)=(0.1,1).
FIG. 3. The spectral diagram for Klein's bottRP2#RP?. kKp

d,-A plot. The spectral distance is about 0.4337, which is
C . o tedly short.
the distribution of spectra is again in such a way as to guaryne{(pec .
antee Weyl's asymptotic formukab) to hold good Figures 9a)—9(c) show some of spectral distances 1o,
We should note that the 2-volume of Klein's bottle con- Klein’'s bottles, and mixture cases, respectively. One can see
hat the spectral distances betwe&h and RP?#RP? are

structed in .th's manner 15 unlw: We can d_eflne the IntegraLnexpectedly short. A general tendency is that the spectral
on a nonorientable manifoldZ as half the integral on the distance forT2— T2 is longer than that fol2—RP24R P2

double-covering manifold of#. The double-covering mani- and the same foRP2#RP2—RP2#RP2 is the shortest. for
fold of RP?#RP? is T [11]. Indeed, we can see in Fig. 2 the & o4 parameters 2,2 and (7172, If we employ the
tiles that correspond t32 with 2-volume being 2[For in- density-matrix interpretatiofwith caveat A, these results
stance, a rectangle defined by p?l(fﬂso), (2.'0)’ (2,), an_d suggest that an orientable universe and a nonorientable one
(0,2).] Thus the 2-volume of Klein's bottle in our case is 1. gometimes interfere with each other quite strongly. In other
words, some extra mechanism is needed if they should de-
4. The spectral distance betweerf Bnd RPZ#RP?2 cohere with each other.

As mentioned in Sec. Il E, many examples can be found
él’_] Figs. 9a)—9(c) that do not satisfy the triangular inequality,
d(«v,")+d(¢",c"=d(«¢,%"). For instance, in Fig. @),

Having obtained spectra fa andRP?#RP? in previous
subsections, we now proceed to calculate the spectral di
tances for various cases according to E).or Eq. (6).

First, let us see how Weyl's asymptotic formula holds
nicely for checking the spectra obtained. For instance, the ***——"——"v+——"F—7F——+——+++—
case of T? with Teichmiller parameterg,7)=(0.1,)) is [ ]
shown in Figs. 4 and 5. Figure 4 is\@-k plot. In accordance
with (40) (n=2, V=1), we see that the inclination of the
plot is 4. Figure 5 is a 4N(A)/V-A plot, which ap-
proaches 1 in accordance withb). (Note thatV=1 in our I ]
case) 101 -

Next, we see the spectral distanck3 2, T?). Figure &a) [ ]
indicates the case ¢#,7)=(0,1) and(,7)=(0,2) and Fig. : ]
6(b) shows ad,[(0,1),(0,2]-A plot, giving a spectral dis- 1005 - ]
tance of about 0.219. The convergence of the scale- I 1
dependent spectral distandg when A—o is fairly good.

Figure fa) indicates the case of Klein's bottles with
(#,7)=(0,10 and (#,7)=(0,100. Figure fb) shows a H
d,[(0,10,(0,100]-A plot. The spectral distance is about I
2.916 in this case. I |

Now, the results of calculating the spectral distances be-  oses - 8
tweenT2 and RP?#RP? are quite surprising: They are quite B T B T T vy
short. For instance, Fig.(8 indicates the case of a torus and A
Klein's bottle with (7,7)=(0,) for a torus and
(#,7)=(0,10 for a Klein's bottle, and Fig. @) shows a FIG. 5. A 47N(A)-A plot for a torus with(7,7)=(0.1,1).

1.015 = -
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1 12 ; {) FP

d(0,1,(0,1000]=137.12; in Fig. %), d[(0,1,(0,10] 141
=0.4337, d[(0,10,(0,100]=2.421, while d[(0,1),(0,100] dpwl (74, 72),(7'1,7?)]=In =t
=3.488. On the other hand, one example in Fifg) 3hat -
satisfies the inequality is, for instana#(0,1),(0,50]=1.77, where r =|(r— #)(r—7*)|, r=r+i7, and 7' =7 +ir?
d(0,50,(0,100]=2.668, andd=(0,1),(0,100]=3.488. The | particular, dpy[(0,7),(0,72)]=|In #/7?, depending
failure of the triangular inequality explicitly indicates that only on the ratio 72 Thus, for instance
the spectral distance and the DeWitt distance are not eQUiV%’DW[(O 1),(0,2] = dpy[(0,10 (O. 20] = dD'W[(O 50,(0,100] '
lent to each other. . —dpy=[(0,500,(0,1000]=0.693 (Fig. 10. On the other

At this stage, it is appropriate to compare the spec’[rahand the corresponding spectral distancesdé®,1),(0,2)]
distance and the DeWitt distance with each other more ex-g 5 q d[(0.10,(0,20]=1.14, d[(0,50,(0 100]’:’5 778

plicitly. In the case off? (the positive-definite sector pthe and d[(0,500,(0,1000]=57.45, which also illustrate the
DeWitt metric reduces to the Poincametric on the upper- nonequiv'alen’ce’of these two éistances

half plane(7>0), GAB=(1/72)diaq1,1). (As is well known,
one negative signature included in the DeWitt metric corre- 5 <2 and RP2
sponds to the conformal deformation in the superspace. We -oan

shall come back to this point in Sec. )VThus, the DeWitt The comparison of the 2-sphere with the real projective
distance, namely, the geodesic distance betwetrf) and  2-spaceRP? is another case that can be investigated with
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FIG. 8. (a) A torus with (7,7)=(0,1) (a regular squajeand gn Gman (o|,1)
., . J 100)(0; (0,500)
Klein’s bottle with (7,7%)=(0,10 (a rectanglg (b) A d,-A plot for 04337 2421 3488 1735
a torus and Klein’s bottle shown i@).
ease. As discussed at the beginning of this section, one cane 005 0.0 0.5 020
: . ] | ] I |
construct the real projective spaB®? of volume 4rR? by Em— ) B
. . i . . . @ 0 (©,
the antipodal identification on a sphere with radiyigR. © o ) ped
C 0.0639 01051 0142

This space and a sphere with radRisre of same 2-volume
with different orientability as our previous models of tori and
Klein’s bottles. In the present case, however, the curvature
are also different so that the local geometries are different,
Thus, this case serves as the simplest case in which the di
ference of local geometries as well as the global geometri
takes part in. The spectra 6f are

FIG. 9. (a) Spectral distances between two tori. Parameters
7,72 for two tori and the spectral distance between them are in-
icated.(b) Spectral distances between two Klein's bottles. Param-
ters(,7%) for two Klein’s bottles and the spectral distance be-
€Sveen them are indicatett) Spectral distances between a torus and

Klein's bottle. From top to bottom, paramete(rslnz) for a torus
and Klein’s bottle, and the spectral distance between them are in-

41 . S
N=~ 1(1+1)  (multiplicity 21+1, 1=0,1,2...), dicated, in this order.
The spectral distancd(S? RP?) again turns out to be
whereV is the 2-volume of5?>. The same oRP? are unexpectedly short, about 0.8 irrespective of the value of the
A 2-volumeV (see Fig. 11 Figure 12 showsl(S?,S?) with
)T T different 2-volumes. It clearly shows the divergent behavior
=— + + = o). ) X )
M vV I(21+1)  (multiplicity 41+1, 1=0,1,2...) of the spectral distance when volumes are not idenfised
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FIG. 10. Distances between two tori defined by the DeWitt met- 100 |- i
ric. L

Eq. (5)]. Significantly, in terms of the scale-dependent spec-
tral distanced, , the degree of difference in volumes is rep-
resented by the inclination of the curve of thg-A plot: e
The larger the difference in volume, the larger the inclination 0 2x100 4x10¢ 6x100 8x10°
of thed,-A plot. In other words, althougtl, —» as A—oo A
when volumes are different, the asymptotic behaviod pf
approaching infinity still contains the information of “close-
ness” between volumes.

Even purely mathematically, it is interesting that some
manifolds with different topologyor orientability show a cases, the heat kernel is expressed nicely in terms of Ep-
very short spectral distance between them as compared &ein’s theta function§19,20,17.** In such cases, the func-
other manifolds with identical topology. Furthermore, if one tional relation for these theta functions derives Weyl's
employs the density-matrix interpretatiomith caveat A for ~ asymptotic formula, and relates directly the expression for
the spectral distance, it suggests that some universes withe heat kernel in terms of mode summation, with the one in
different orientabilities do not decohere effectively without terms of image summatiof80]. In particular, the case of

any other mechanisms. We shall come back to this point ifRP#RP? (Klein's bottle) is nontrivial and interesting as we
Sec. IV. shall see below. Furthermore, based on the discussion of the

analytic properties of Epstein’s zeta functions as meromor-
phic functions onC, the initial condition for these heat ker-
nels can be analyzed from a different viewpoint.

. . . . . . Thus, let us investigate Epstein’s theta and zeta functions
It is of some interest to construct and investigate in detallfor T2 and RP2#RP2

the heat kernel for our model¥? and RP%#RP?. In these

FIG. 12. The spectral distance between two 2-spheres with dif-
ferent 2-volumes, 1.0 and 1.1.

C. Epstein’s zeta and theta functions,
and Weyl's asymptotic formula

1. The case of T

dy

L L L e 2 e AN Let us compute the nonlocal zeta function,
] Axy:s): =31 g (X) ¥ (y)N; S, for T2 of the caser'#0.
The case of'=0 goes almost similarly. The final result is
identical to the result of the casé+0 with a replacement of
Q by Q, [see Eqs(9) and(10)]. Using results in Sec. [I1 A 1
[Eq. (9) and below,

08 -

‘ o )= (470 )\ ol (@)
[(1-s) _[A& A&
:2_25”_1—;(5) o o |@Q'1-s)
" ] (12)

where Agi=g— &' A& =&— ¢, and(A5) in the Ap-

] pendix has been used in the last line.

T T The heat kerneK(x,y:t) =X, ¢;i(X) 7 (y)exp(—\;t) be-
comes

o 1
4x108

MR | N
0 2x108 6x10¢

A

FIG. 11. The spectral distance between a 2-sphere and a real
projective space with identical 2-volumésrea. 1See Appendix for Epstein’s theta and zeta functions.
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! ’ 0 1
Kra(&H €2 'flgz:t):G)HAgl Ag2 (Q,4mt) (139 Kr2(t)=Tr KT2(§§ )= ‘ ‘ 47Tt
1
N _ -1
1 Agl A§2 i 1 47Tt exn: 7TQ (m,n)/47Tt]
“4mt |0 0 ( '4m)' L E (o)
— 1 —
1 " Zmt&h (0K Z‘o o‘(Q = 2t

where(A4) has been used in the last line. (149

It is «clear that (13b) can be written as
3 = —o(Uamt)exd— Q™Y (m+A&h,n+AE%)/4t], which  \yhere the zero structure of
is an image summation of the heat kernel®h Thus, the
functional relation(A4) guarantees the equivalence between
mode summatioril3a and image summatiofl3b) [§Q]. 0O 0
Clearly, Ky2 satisfies the heat equatiod ;K(§,¢":t) ZHO OH
=(alat)K(&,£&':1). Itis of some interest to clarify the initial
condition whichK 2 should satisfy: From Eq.13b),
has again been used. Notinga and below, this result
matches the fact that=1, x(T?)=0.

1
limK2(&,&:t)=lim texp[—Q*l(Agl,Agz)Mt]

t10 104 2. The case oRP?#RP? (Klein's bottle)
We can proceed in an almost parallel manner as in the
+lim Zﬁ It case ofT2. The nonlocal zeta function becomes
t10 ™

xXexg —Q Y(m+A&Ln+Ag?)/4t].

’ ! _ 0
Laen(€1 € E€%19)= 7 (477) [2’ aet ag2 QoS
The first term is a local contribution while the second term is
a nonlocal one coming from the point identification. The first +cosmAEZ vz 0 (Qq,S)
term is equivalent taXA&Y) S(A£?). The second term can be AEL Ag Y
written as 0
Y4 S
k adt AL g Q0
(— ) 1
lim > 2 [QTHm+Aghn+A6)] 75w 1/2
4t (4t)F - 1
t10 cosmAEZ AEL A& (Qo,9)(,
't'[‘:,4mk20 ki @k ? o |(@ K
whereAg:=¢— &' (i=1,2), A, &= &+ ¢ Taking the
This should vanish because trace of this expression, the local zeta function becomes
L s 0 1/2 0
9) Laen(9)= 3 (47%) 7% Z) o 2o+ o o Q9

0 1/2

(as a meromorphic function extended or@ has simple
zeros ats=-—1,—-2,..., and, furthermores=0 is also a
simple zero wherj ¢ ZN (see Appendix ThusKq2 satisfies
the ordinary initial condition for a heat kernel. It may be The first terms in(15) and(16) are similar to the case af,
noted that if the limit lim .12 ¢ is taken before lig),, the  while the second terms originate from the half-integer modes
second term behaves as |(igl/4nt~45(0). Thus, Ay, Characteristic for the case of Klein's bottle. The
limygi2olimg g#limy glimya2 o as for the second term, last two terms in(15) and(16) reflect the spatial mhomoge-
because of the special zero structure of the zeta function. neity of the present modelA ., £-28 when A&, AE—0,
From Eq.(13b), one can easily derive Weyl's asymptotic indicating the spatial dependenke.
formula for Z; exp(—\;t) [see(4a)], The heat kernel for Klein’s bottle becomes
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. 0 0 1/2
KKIein(gl §2 vglgz:t): % Afl AgZ (QOI47Tt) + % ®0H (QO( !0)147Tt)_ % ®H 0 ‘ (QO( 10);4'7Tt)
120 The interpretation of each term is similar to th f th
1 1 pretation of each term is similar to the case of the
+ 3 cosmAL ®‘A§1 IN% (Qo4t) zeta function.
0 0 The functional relation helps us to get further insight. By
th A4), Kkein(t) b
i1 @‘ . | (Qodmt) e use of(Ad), Kein(t) becomes
A& ALg
o oy ot
Klei =5 A ypn
— 3 cosTAEO| 4 2| (Qo.4mt). (17a m T 24xt| o of| 70 4t
A& ALg

0 O 1
-1
The application of the functional relatiqA4) to the heat +®‘ 1/2 o‘ (QO ’47rt)

kernelKyein(&,€":1), (179, which has been obtained by the

mode summation, provides a nontrivial expression for the 4
heat kernel corresponding to the point summation: + \/? C 0 Qo(-.,0) At
K Vg2 g2y 1 @Agl Agll ) 1) 1 0 1
K|6In(§ f g f ) 2 4 ot 0 0 Qo -4_771 - \/_— 1/2 QO( O) 47Tt
AEL Ag? 1 1
-y et L
cosmAg ®H 12 0 (QO At 4t (18)
e Ag A, g 4 1 where we have followed the same discussion as the case of
0 0 0 47t Kt2(t). This result coincides with Weyl's asymptotic for-
1 , mula (4a corresponding to our modeh&2, V=1, Euler
—coswAE® A& ALE 4 1 a7h number equals t0)0
T 12 0 || *° aqt)|

IV. DISCUSSIONS

This reduces to the expression . .
P Let us now compare the spectral distance and the DeWitt

distance with each other. There are several differences be-
tween them.

First, the DeWitt metric appears within the realm of gen-
eral relativity, while the spectral distance has been intro-

©

1
Kien(6,6":0= 2 g 008 Z(m+Ag)

X exd — Qg H(m+ A& n+Ag%)/4t] duced from a general argumef8ec. Il A), which is itself
o independent of general relativity.
i 1 sir? —(m+A§1) Second, the DeWitt metric is a metric that can be read out
mn=—o 4qt from the structure of the “kinetic term” of the Hamiltonian

. 2 ) constraint of general relativity. Just as the kinetic term re-
Xexd — Qo "(m+A& ,n+ A, £9/4t], flects the geometrical structure of the configuration space of
(170) a mechanical system, the DeWitt metric reflects the geo-
metrical structure of the superspace. On the other hand, the
Ispectral distance is the measure of the difference in
sounds” of two universes. In other words, a suitable matter
field is used as a probe of local and global geometry of the
Universe. In the above sense, the DeWitt distance may be
called as a “kinematical distance,” while the spectral dis-
tance may be called a “dynamical distance.”

Next, by construction, the DeWitt distance can be defined
only between universes in the same superspace. The spectral
distance can be defined in principle between any kinds of
universes. As has been discussed in Secs. Il C and 1l D, the
spectral distance requires a cutaffor some cases, as in the
case of universes with different dimension or different vol-

K iein(1): :Z exp(—\;t) ume. Signif_icantly, even then, the asymptotic b‘fahavicnlpf )
| as A—» still contains information about the “closeness

which is in the form of a point summation of the heat kerne
for R? in a nontrivial manner. WheA&'=0, only the terms
for m=even(odd) remain in the first(second summation.
Then the first term matchéé;- for a torus constructed from
1x2 band in(&,£%)-space, which corresponds to the cover-
ing spacq11] of our Klein's bottle. The second term origi-
nates from the twisting in the point identification for con-
structing the model.

Taking the trace of this, the corresponding theta function
becomes

12 0 between two universes as has been discussed in Sec. Il B.

The most striking difference is that the triangular inequal-
4mt)+ 3 4 . o . i
H(QO’ Tt ®‘ ‘(QO’ ) ity holds for the DeWitt distance by construction, while it
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fails to hold in general for the spectral distan@ec. IIB.  etry is also minima). As a result,d(S?,RP?) has again
[Rigorously speaking, thereford(¢,<") should be called a turned out to be relatively shotSec. Il B).
“measure of closeness” and not “distancg.This fact dem- Now, we come back to the original question posed at the
onstrates explicitly the nonequivalence between two disbeginning of Sec. lll: Do universes with different topologies
tances. There is still a possibility of choosing the functioninterfere quantum mechanically? A probable answer pre-
F(x) suitably to maked(¥,¢") satisfy the triangular sented there was that they decohere with each other strongly
inequality (Sec. 11 A). Even though the choice oF(x) since they “sound” differently, resulting in a long spectral
=exp(—x) causes the failure of the triangular inequality, distance. However, the above results suggest that this answer
however, it is still distinguished from other possible choicesis not enough to explain everything. We now know that there
since it derives the density matrix interpretation of the specare at least some cases in which the spectral distance be-
tral distanceSec. Il B. tween two spaces with different orientabilities becomes very
We have enumerated the differences between the twshort.
kinds of distances above. However, we can also draw some Clearly, further investigations are needed to clarify this
interesting parallels between them. Lgtand " be of the  point. We need to investigate to what extent it is generally
same dimension and topology. true that the spectral distance becomes very short between
As far as the models investigated in Sec. Ill are con—yg spacess and ¢, wheres'=(3,g), ¥’ =(3/G,g), and
cerned, both distances correlate well with our intuitive notiong js a discrete subgroup of the isometry group ) (like
of “similar (or differeny shapes.” Although the two dis- 4,1 models ofT2 and Klein's bottles We also need to in-

tances are not equivalent to each other, correlations betwe%stigate whether the spectral distance between two spaces

them are quite strong. évith a more drastic difference in topology becomes large.
: ) o " . .~ For instance, the case of two hyperbolic surfaces with a dif-
different. The DeWitt metric is not a positive definite metric, ferent genus should be investigated. In this case, the proper-

but it includes one negative signature. This negative signa- o ,
ture corresponds to the direction of conformal deformation i?]t'es of spectrdand the “length spectra’(a set of lengths of

the superspacé.e., the change of volume preserving infor- all elementary closed geodesicshich are in SOme sense
mation of angles If two geometriesz and %" lie on differ- the dual concept of th,e spectrare extensively investigated
ent surfaces of constant volume in the superspace, therefordy means of Selberg's trace formuia6,31. At the same
the DeWitt distance cannot be defined between them. Simiime; in this case, numerical methods are also required to get
larly, the spectral distance betweéhand &’ becomes di- explicit spectra. This case of hyperbolic surfaces may be an
vergent in this caséSec. Il Q. Significantly, the asymptotic appropriate case as the next step in investigations.
behavior of the scale-dependent spectral distahgés,<") Finally, it is appropriate to mention the relation of the
as A—» still provides information on the “closeness” of spectral representation with the index theordi32|. They
volumes(Sec. Il B). The above observation suggests thathave some similarity in the sense that both of them connect
the difference in volume seems to be quite different in naturghe eigenvalues of some elliptic operator on a space, with the
from the other differences in geometry. Combined with thetopological structures of the space. It is clear, however, that
density matrix interpretation, it suggests that the differencehe spectral representation provides a finer measure than the
in volume causes a very strong decoherence between twadex theorems. This can be seen in many respects. For in-
universes(Sec. Il B. This observation also suggests thestance, the index theorems talk about the analytical index
modified way of comparing two geometries: Separating thend D, which is characterized by the zero modes,
information of_volume and the conformal geometry asjnq D:=E,-:o(—)idim kerd;, or for the simplest case,
2=(V,9) (vol .7=1), aset(V,V') andd(.£,") may be used  —im kerD—dim kerD" [32]. On the other hand, the spec-
as a measure of closeness betweeand.”. tral representation looks at the whole spectra. ThisOnd
Now, let us discuss the spectral distance between unigyeg the value i, while the spectral distance variesfn
Verses with different topologies. To extract the pure ,tOpO'As is seen in the examples of Sec. Ill for flat tori, the spectral
logical effects, we have prepared modelsTéfand Klein's distance even senses the difference in the Teitlempa-

. 2 }
bottle_s. Both are Iocal'ly’ flat an@“ corresponds to a double rameters(7%,72). On the other hand, we can draw many par-
covering space of Klein’s bottle. Thus, they are locally of the . : .

lels between the discussions of the spectral distance, and

! . I
same geometry, and the difference between them is pure@] . : .
topological. We have then investigateci(T2 T?) ose of the index theorems in the context of the anomalies

d(RP2#RP2,RP2#RP?), andd(T2,RP%#RP2) with various of gauge theorieg32]. It is interesting to investigate to what
Teichmiiiler ’parameter"s. As a résuld(Tz RPZ4RP?) has eXtentthese two concepts are understood in a unified picture.

turned out to be quite short compared widiT2,T2) and
d(RP##RP? RP?#RP?), taking into account thaf® and
RP?#RP? are topologically differentSec. Il A 4). ACKNOWLEDGMENTS
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APPENDIX gH 0.0 exp(—i27g-h) @H —*hH (Q—l,l),
: : . _ h JdetQ tN?2 g t
Here, we shall discuss briefly the basic properties of the (Ad)

theta function and the zeta function due to Epstein.

Let Q be a NXN symmetric positive definite matrix
(so that deQ>0). For brevity, let us denote the quadratic 7 1“(S)Z (Q,S)
form defined by Q as Q(Xy,Xp,...Xyn)=Q(X)
= (X1, X2,...XN)Q Y(Xq,Xo,...Xy). The Epstein’s theta N —i2md-h
function and zeta function are defined[49)], respectively, = 7T<N/25>r<__s) M
2 JdeQ
g1 >
(C] t —h N
’ hy- (Q ) XZ ‘ . (Q‘l, E—s) . (A5)
o i exg] 27 (nghy + Nohy+ - +nghy) ] The analytic continuation makes the zeta function ex-
g e T2t NN pressed as ifA2) a meromorphic function of€. Its pole
structure and zero structure as a meromorphic function are as
xexgd —mQ(Ny1+9g1,n2+gz,....nntoNt],  (Al)  follows:
gy (i) When ﬁ¢ZN, it is holomorphic onC. There are
Z‘ h.. (Q S) simple zeros at least &= —1,—2,... . Furthermore,
v there occurs one more simple zeros&to iff ge ZN.
- (i) WhenheZN there is a simple pole &=N/2 with
N/2
- 2/ ex 27 (Nghy + Nohyt -+ +nyhy) ] residue [9/T'(N/2)](1/J/deQ). Simple zeros at
Ny, y=—2 least ats=—1,—2,... . Furthermore, there occurs one

~ more simple zero a=0 iff ge& ZN.
X[Q(n;+g1,N+02,....ANTON]° (A2) P g

Note that the above-mentioned zeros are only the ones
(for Res>N/2, with the analytic continuation ont€), that are found from the discussions of analytic properties
where the prime on the summation ({A2) indicates that (“trivial zeros”). Nothing definite can be said for other zeros
(n1,Nz,....N)=—(91,92,...,9n) should be excluded from even for the simplest case, i.e., the case of Riemann’s zeta

the summation whengq, g, gy) € Z", to avoid diver- ¢, ction (corresponding to the case @1, G=h=0) (one
gence. Introducing the vector notatiohl) and (A2) can be may rengemberpthe “Rgiemann conj?c;ué;é]). )

expressed as, respectively, We now prove(Ad). Let us remember the Poisson’s sum-

§ mation formula[34]
O -|(Q,t):= 2 exp(2in - h)exp: mQ(n+g)t], .
h hezN 2 ¢(h+n)—2 exp(i2mA-h)¢(R),  (AB)
(Al,) nezN nezN
g where g is  the Fourier transformation _ of
Z|-1Q,8):= D' exp2min-n)Q(A+g) S v (k)= = J 2o (X)exp(— i2k-X)dX,  $(X)=J 7. (k)
h fezM xexp(2mk-X)dk. (Putting the 2r in the exponential is

(A2")  just for the neatness of the formul§84].) Taking (k)

=exfd — aTQ(k+ g)t], the right-hand sidéRHS) of (A6) be-
These are related to each other by the Mellin transformaggomes

tion,

>

9
g . S q (Q.b),
Mgl O P (Q,-)— g exp(—i2mg-h)
which in turn is the left-hand sidd_HS) of (A4). For this
§ choice ofy, its inverse Fourier transformation becomes
=m T (s)Z q (Q.s), (A3)

. exp—i2mwg-X) o1
lﬂ(X):WeXF{—WQ 1(X)T)'

where, M¢f(-)=f5dt t°7*f(t), and §5=1 whengezZ",

and =0 otherwise. Thus, the LHS of(A6) turns out to be the RHS ofA4),
They are generalizations of Jacobi’s theta function andvhich proves(A4).
Riemann'’s zeta functiofiMore general definitions tha@1) Noting (A3), one basically performs the Mellin transfor-

and (A2) are possiblg20], but the above are sufficient for mation of both sides ofA4) to derive(A5), but a bit of care
our purposes. Just like Jacobi's theta function and should be taken for the case @& ZN. Thus, let us set
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¢ g (Q.H)=0 ﬁ» (Q,t)— &5 exp(—i2mg-h).

Then,
g
?Iq

e 1 1 P el D
(Q,t):_(Sé exq—|2wg-h)+m 5h+Wexq_|2W9'h)¢” g,”(Q l,t l) (A7)

because ofA4). Then, its Mellin transformation becomes
1 )
Jo+]
0 1
1

_expg—i2ng-h) [ exg—i2a(—h)-G] _ 1 1

 JdeQ a N/2—s 5_h_‘/—deQ—l(N/2—s)—N/25§
exd —i2m(—h)-g] (=

" JdeQ ! fd)
exp(—i27g-h) ~h

et |

Here, the change of variabte- 1/t has been made to get the first term in the second line(ArAghas been substituted into
the same term to get the next line. Then, the same procedure has been repeated to get the last line. AlB)y thithproves
(A5). R

We can see the pole structure of the LHS(AB), i.e., ofMS¢||ﬁ|\(Q,~) in the third line of (A8). Noting thatI'(s) has
simple poles ats=—k (k=0,1,2...) with residue (—)“/k!, we see the above-mentioned pole and zero structures of
Z|21(Q,s) from (A3).

My | (Q.)= o|2 @t at

9 9 ot

(Q,1/)t" 175 dt+ qus
1

g
h

(Q,t)tle—(le—s)—l dt+ fxtﬁ ’ _ﬁh (Q—l,t)tN/z—s—l dt]
1

(Q°%). (A8)
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